SECTION VIII Rules for Construction of Pressure Vessels

2023 ASME Boiler and Pressure Vessel Code An International Code

Division 2 Alternative Rules

Markings such as "ASME," "ASME Standard," or any other marking including "ASME," ASME logos, or the ASME Single Certification Mark shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code or Standard. Use of the ASME Single Certification Mark requires formal ASME certification; if no certification program is available, such ASME markings may not be used. (For Certification and Accreditation Programs, see https://www.asme.org/certification-accreditation.)

Items produced by parties not formally possessing an ASME Certificate may not be described, either explicitly or implicitly, as ASME certified or approved in any code forms or other document.

AN INTERNATIONAL CODE 2023 ASME Boiler & Pressure Vessel Code

2023 Edition

July 1, 2023

VIII RULES FOR CONSTRUCTION OF PRESSURE VESSELS

Division 2

Alternative Rules

ASME Boiler and Pressure Vessel Committee on Pressure Vessels

The American Society of Mechanical Engineers

Two Park Avenue • New York, NY • 10016 USA

Date of Issuance: July 1, 2023

This international code or standard was developed under procedures accredited as meeting the criteria for American National Standards and it is an American National Standard. The standards committee that approved the code or standard was balanced to ensure that individuals from competent and concerned interests had an opportunity to participate. The proposed code or standard was made available for public review and comment, which provided an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not "approve," "certify," "rate," or "endorse" any item, construction, proprietary device, or activity. ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor does ASME assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representatives or persons affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

The endnotes and preamble in this document (if any) are part of this American National Standard.

ASME Collective Membership Mark

ASME Single Certification Mark

"ASME" and the above ASME symbols are registered trademarks of The American Society of Mechanical Engineers.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Library of Congress Catalog Card Number: 56-3934

Adopted by the Council of The American Society of Mechanical Engineers, 1914; latest edition 2023.

The American Society of Mechanical Engineers Two Park Avenue, New York, NY 10016-5990

Copyright © 2023 by THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS All rights reserved Printed in U.S.A.

TABLE OF CONTENTS

List of Sections	XXV
Foreword	XXV
Statement of Po	licy on the Use of the ASME Single Certification Mark and Code Authorization in Advertising
Statement of Po	licy on the Use of ASME Marking to Identify Manufactured Items
Personnel	ХХ
Correspondence	e With the Committee
Summary of Cha	anges
Cross-Referenci	ng in the ASME BPVC
Part 1	General Requirements
1.1	General
1.1.1	Introduction
1.1.2	Organization
1.1.3	Definitions
1.2	Scope
1.2.1	Overview
1.2.2	Additional Requirements for Very High Pressure Vessels
1.2.3	Geometric Scope of This Division
1.2.4	Classifications Outside the Scope of this Division
1.2.5	Combination Units
1.2.6	Field Assembly of Vessels
1.2.7	Overpressure Protection
1.3	Standards Referenced by This Division
1.3	Units of Measurement
1.5	Tolerances
1.6	Technical Inquiries
1.7	Tables
1./	Tables
Annex 1-B	Definitions
1-B.1	Introduction
1-B.2	Definition of Terms
Annex 1-C	Guidance for the Use of U.S. Customary and SI Units in the ASME Boiler and Pressure
	Vessel Codes
1-C.1	Use of Units in Equations
1-C.2	Guidelines Used to Develop SI Equivalents
1-C.3	Soft Conversion Factors 1
1-C.4	Tables 1
Part 2	Responsibilities and Duties
2.1	General
2.1.1	Introduction
2.1.2	Definitions
2.1.3	Code Reference 1
2.2	User Responsibilities
2.2.1	General
2.2.2	Multiple Identical Vessels
2.2.2	User's Design Specification
2.3	Manufacturer's Responsibilities
2.3.1	Code Compliance
2.3.2	Materials Selection 1
L 101 L	

2.3.3 2.3.4	Manufacturer's Design Report	18 19
2.3.5	Manufacturer's Construction Records	19
2.3.6	Quality Control System	19
2.3.7	Manufacturer's Design Personnel	19
2.3.8	Certification of Subcontracted Services	19
2.3.9	Inspection and Examination	19
2.3.10	Application of Certification Mark	19
2.4	The Inspector	20
2.4.1	Identification of Inspector	20
2.4.2	Inspector Qualification	20
2.4.2	Inspector's Duties	20
Annex 2-A	Guide for Certifying a User's Design Specification	21
2-A.1	General	21
2-A.2	Certification of the User's Design Specification	21
2-A.3	Tables	22
Annex 2-B	Guide for Certifying a Manufacturer's Design Report	23
2-B.1	General	23
2-B.2	Certification of Manufacturer's Design Report by a Certifying Engineer	23
2-B.3	Certification of a Manufacturer's Design Report by an Engineer or a Designer	23
2-B.4	Manufacturer's Design Report Certification Form	24
2-B.5	Tables	24
Annov 2 C	Report Forms and Maintenance of Records	25
Annex 2-C 2-C.1	-	25 25
	Manufacturer's Data Reports	
2-C.2	Manufacturer's Partial Data Reports	26
2-C.3	Maintenance of Records	26
Annex 2-D	Guide for Preparing Manufacturer's Data Reports	28 28
Annex 2-D 2-D.1 2-D.2	Guide for Preparing Manufacturer's Data Reports Introduction Tables	28 28 28
2-D.1 2-D.2 Annex 2-E	Introduction Tables Quality Control System	28 28 42
2-D.1 2-D.2 Annex 2-E 2-E.1	Introduction Tables Quality Control System General	28 28 42 42
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System	28 28 42 42 42
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility	28 28 42 42 42 42 42
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization	28 28 42 42 42 42 42 42 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.3 2-E.4 2-E.5	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control	28 28 42 42 42 42 42 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control	28 28 42 42 42 42 42 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.3 2-E.4 2-E.5	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program	28 28 42 42 42 42 42 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control	28 28 42 42 42 42 42 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program	28 28 42 42 42 42 42 43 43 43 43 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program Correction of Nonconformities	28 28 42 42 42 42 42 43 43 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.8 2-E.9	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program Correction of Nonconformities Welding	28 28 42 42 42 42 42 43 43 43 43 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.9 2-E.9 2-E.10	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program Correction of Nonconformities Welding Nondestructive Examination	28 28 42 42 42 43 43 43 43 43 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.9 2-E.10 2-E.11	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program Correction of Nonconformities Welding Nondestructive Examination Heat Treatment	28 28 42 42 42 43 43 43 43 43 43 43 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.9 2-E.10 2-E.11 2-E.12	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program Correction of Nonconformities Welding Nondestructive Examination Heat Treatment Calibration of Measurement and Test Equipment Records Retention Sample Forms	28 28 42 42 43 43 43 43 43 43 43 43 43 43 43 44 44
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.9 2-E.10 2-E.11 2-E.12 2-E.13	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program Correction of Nonconformities Welding Nondestructive Examination Heat Treatment Calibration of Measurement and Test Equipment Records Retention Sample Forms Inspection of Vessels and Vessel Parts	28 28 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.9 2-E.10 2-E.11 2-E.12 2-E.13 2-E.14	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program Correction of Nonconformities Welding Nondestructive Examination Heat Treatment Calibration of Measurement and Test Equipment Records Retention Sample Forms	28 28 42 42 43 43 43 43 43 43 43 43 43 43 43 44 44
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.7 2-E.8 2-E.9 2-E.10 2-E.11 2-E.12 2-E.13 2-E.14 2-E.15	Introduction	28 28 42 42 42 43 43 43 43 43 43 43 43 43 43 44 44 44
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.9 2-E.10 2-E.11 2-E.12 2-E.13 2-E.14 2-E.15 2-E.16	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program Correction of Nonconformities Welding Nondestructive Examination Heat Treatment Calibration of Measurement and Test Equipment Records Retention Sample Forms Inspection of Vessels and Vessel Parts Inspection of Pressure Relief Valves Contents and Method of Stamping	28 28 42 42 43 43 43 43 43 43 43 43 43 43 43 43 44 44
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.7 2-E.8 2-E.9 2-E.10 2-E.11 2-E.12 2-E.13 2-E.14 2-E.15 2-E.16 Annex 2-F 2-F.1	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program Correction of Nonconformities Welding Nondestructive Examination Heat Treatment Calibration of Measurement and Test Equipment Records Retention Sample Forms Inspection of Vessels and Vessel Parts Inspection of Pressure Relief Valves Contents and Method of Stamping Required Marking for Vessels	28 28 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.7 2-E.8 2-E.9 2-E.10 2-E.11 2-E.12 2-E.13 2-E.14 2-E.15 2-E.16 Annex 2-F 2-F.1 2-F.2	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Organization Drawings, Design Calculations, and Specification Control Material Control Material Control Examination and Inspection Program Correction of Nonconformities Welding Nondestructive Examination Heat Treatment Calibration of Measurement and Test Equipment Records Retention Sample Forms Inspection of Vessels and Vessel Parts Inspection of Pressure Relief Valves Contents and Method of Stamping Required Marking for Vessels Required Marking for Combination Units	28 28 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.7 2-E.8 2-E.9 2-E.10 2-E.11 2-E.12 2-E.13 2-E.14 2-E.15 2-E.16 Annex 2-F 2-F.1	Introduction	28 28 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.7 2-E.8 2-E.9 2-E.10 2-E.11 2-E.12 2-E.13 2-E.14 2-E.15 2-E.16 Annex 2-F 2-F.1 2-F.2 2-F.3	Introduction Tables Quality Control System General Outline of Features Included in the Quality Control System Authority and Responsibility Organization Drawings, Design Calculations, and Specification Control Material Control Examination and Inspection Program Correction of Nonconformities Welding Nondestructive Examination Heat Treatment Calibration of Measurement and Test Equipment Records Retention Sample Forms Inspection of Vessels and Vessel Parts Inspection of Pressure Relief Valves Contents and Method of Stamping Required Marking for Combination Units Application of Stamp Part Marking	28 28 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43
2-D.1 2-D.2 Annex 2-E 2-E.1 2-E.2 2-E.3 2-E.4 2-E.5 2-E.6 2-E.7 2-E.8 2-E.7 2-E.8 2-E.9 2-E.10 2-E.11 2-E.12 2-E.13 2-E.14 2-E.15 2-E.16 Annex 2-F 2-F.1 2-F.2 2-F.3 2-F.4	Introduction	28 28 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43

2-F.7 2-F.8 2-F.9	Size and Arrangements of Characters for Nameplate and Direct Stamping of Vessels4Attachment of Nameplate or Tag4Figures4
Annex 2-G	Obtaining and Using Certification Mark Stamps 5
2-G.1	Certification Mark
2-G.2	Application for Certificate of Authorization 5
2-G.3	Issuance of Authorization
2-G.4	Designated Oversight
2-G.5	Quality Control System
2-G.6	Evaluation of the Quality Control System
2-G.7	Code Construction Before Receipt of Certificate of Authorization 5
Annex 2-I 2-I.1	Establishing Governing Code Editions and Cases for Pressure Vessels and Parts 5 General 5
2-1.1 2-I.2	Construction
2-1.2 2-I.3	Materials
2-1.5	
Annex 2-J	Qualifications and Requirements for Certifying Engineers and Designers 5
2-J.1	Introduction
2-J.2	Competency Requirements
2-J.3	Qualification Requirements 5
2-J.4	Certification Requirements
Part 3	Materials Requirements 5
3.1	General Requirements
3.2	Materials Permitted for Construction of Vessel Parts 5
3.2.1	Materials for Pressure Parts 5
3.2.2	Materials for Attachments to Pressure Parts 5
3.2.3	Welding Materials 5
3.2.4	Dissimilar Materials
3.2.5	Product Specifications
3.2.6 3.2.7	Certification 5 Product Identification and Traceability 5
3.2.7	Product Identification and Traceability 5 Prefabricated or Preformed Pressure Parts Furnished Without a Code Stamp 5
3.2.8 3.2.9	Definition of Product Form Thickness
3.2.9	Product Form Tolerances
3.2.10	Purchase Requirements
3.2.11	Material Identified With or Produced to a Specification Not Permitted by This Division 6
3.3	Supplemental Requirements for Ferrous Materials
3.3.1	General
3.3.2	Chemistry Requirements
3.3.3	Ultrasonic Examination of Plates 6
3.3.4	Ultrasonic Examination of Forgings 6
3.3.5	Magnetic Particle and Liquid Penetrant Examination of Forgings 6
3.3.6	Integral and Weld Metal Overlay Clad Base Metal
3.3.7	Clad Tubesheets
3.4	Supplemental Requirements for Cr–Mo Steels
3.4.1	General
3.4.2	Postweld Heat Treatment
3.4.3	Test Specimen Heat Treatment 6
3.4.4	Welding Procedure Qualifications and Welding Consumables Testing 6
3.4.5	Toughness Requirements
3.5	Supplemental Requirements for Q&T Steels With Enhanced Tensile Properties
3.5.1	General
3.5.2	Parts for Which Q&T Steels May Be Used6
3.5.3	Structural Attachments

Annex 3-B	Requirements for Material Procurement	147
3-A.3	Tables	125
3-A.2	Allowable Stress Basis — Bolting Materials	125
3-A.1	Allowable Stress Basis — All Materials Except Bolting	124
Annex 3-A	Allowable Design Stresses	124
3.20	Figures	98
3.19	Tables	89
3.18	Definitions	88
3.17	Nomenclature	88
3.16	Design Values for Temperatures Colder Than -30°C (-20°F)	88
3.15	Design Fatigue Curves	87
3.14	Physical Properties	87
3.13	Strength Parameters	87
3.12	Allowable Design Stresses	87
3.11.8	Impact Testing of Welding Procedures and Test Plates of Ferrous Materials	85
3.11.7	Toughness Testing Procedures	83
3.11.6	Bolting Materials	83
3.11.5	Nonferrous Alloys	
	High Alloy Steels Except Bolting	80
3.11.3 3.11.4		80
3.11.2 3.11.3	Quenched and Tempered Steels	75 80
3.11.1	Carbon and Low Alloy Steels Except Bolting	75 75
3.11.1	General	75
3.11	Material Toughness Requirements	75
3.10.5	Test Coupon Heat Treatment for Nonferrous Materials	75
3.10.5	Procedure for Heat Treating Test Specimens from Ferrous Materials	74
3.10.4	Procedure for Obtaining Test Specimens and Coupons	73
3.10.3	Exemptions from Requirement of Sample Test Coupons	73
3.10.2	Requirements for Sample Test Coupons	72
3.10.1	General	72
3.10	Material Test Requirements	72
3.9.4	Data Reports and Marking	72
3.9.3	Examination Requirements	72
3.9.2	Material Requirements	72
3.9.1	General	72
3.9	Supplemental Requirements for Hubs Machined From Plate	72
3.8.3	Requirements for Nonferrous Castings	71
3.8.2	Requirements for Ferrous Castings	70
3.8.1	General	69
3.8	Supplemental Requirements for Castings	69
3.7.7	Materials for Ferrous and Nonferrous Nuts of Special Design	69
3.7.6	Nonferrous Bolting	69
3.7.5	Ferrous Bolting	68
	Use of Washers	
3.7.3 3.7.4		68 68
3.7.3	Threading and Machining of Studs	68
3.7.2	Examination of Bolts, Studs, and Nuts	67
3.7.1	General	67
3.7	Supplemental Requirements for Bolting	67
3.6.6	Clad Tubesheets	67
3.6.5	Clad Plate and Products	67
3.6.4	Liquid Penetrant Examination of Forgings	67
3.6.3	Ultrasonic Examination of Forgings	66
3.6.2	Ultrasonic Examination of Plates	66
3.6.1	General	66
3.6	Supplemental Requirements for Nonferrous Materials	66

Annex 3-D	Strength Parameters
3-D.1	Yield Strength
3-D.2	Ultimate Tensile Strength
3-D.3	Stress Strain Curve
3-D.4	Cyclic Stress Strain Curve
3-D.5	Tangent Modulus
3-D.6	Nomenclature
3-D.7	Tables
5 0.7	
Annex 3-E	Physical Properties
3-E.1	Young's Modulus
3-E.2	Thermal Expansion Coefficient
3-E.3	Thermal Conductivity
3-E.4	Thermal Diffusivity
Annex 3-F	Design Fatigue Curves
3-F.1	Smooth Bar Design Fatigue Curves
3-F.2	Welded Joint Design Fatigue Curves
3-F.3	Nomenclature
3-F.4	Tables
3-F.5	Figures
D	
Part 4	Design by Rule Requirements
4.1	General Requirements
4.1.1	Scope
4.1.2	Minimum Thickness Requirements
4.1.3	Material Thickness Requirements
4.1.4	Corrosion Allowance in Design Equations
4.1.5	Design Basis
4.1.6	Design Allowable Stress
4.1.7	Materials in Combination
4.1.8	Combination Units
4.1.9	Cladding and Weld Overlay
4.1.10	Internal Linings
4.1.11	Flanges and Pipe Fittings
4.1.12	Vessels in Elevated Temperature Service
4.1.13	Nomenclature
4.1.14	Tables
4.2	Design Rules for Welded Joints
4.2.1	
4.2.1	Scope
	Weld Loint Tuno
4.2.3 4.2.4	Weld Joint Type
	Weld Joint Efficiency
4.2.5	Types of Joints Permitted
4.2.6	Nomenclature
4.2.7	Tables
4.2.8	Figures
4.3	Design Rules for Shells Under Internal Pressure
4.3.1	Scope
4.3.2	Shell Tolerances
4.3.3	Cylindrical Shells
4.3.4	Conical Shells
4.3.5	Spherical Shells and Hemispherical Heads
4.3.6	Torispherical Heads
4.3.7	Ellipsoidal Heads
4.3.8	Local Thin Areas
4.3.9	Drilled Holes Not Penetrating Through the Vessel Wall

4.3.10	Combined Loadings and Allowable Stresses	210
4.3.11	Cylindrical-to-Conical Shell Transition Junctions Without a Knuckle	212
4.3.12	Cylindrical-to-Conical Shell Transition Junctions With a Knuckle	214
4.3.13	Nomenclature	216
4.3.14	Tables	219
4.3.15	Figures	229
4.4	Design of Shells Under External Pressure and Allowable Compressive Stresses	235
4.4.1	Scope	235
4.4.2	Design Factors	236
4.4.3	Material Properties	236
4.4.3	Shell Tolerances	230
4.4.4		237
	Cylindrical Shell	
4.4.6	Conical Shell	241
4.4.7	Spherical Shell and Hemispherical Head	242
4.4.8	Torispherical Head	242
4.4.9	Ellipsoidal Head	242
4.4.10	Local Thin Areas	242
4.4.11	Drilled Holes Not Penetrating Through the Vessel Wall	243
4.4.12	Combined Loadings and Allowable Compressive Stresses	243
4.4.13	Cylindrical-to-Conical Shell Transition Junctions Without a Knuckle	248
4.4.14	Cylindrical-to-Conical Shell Transition Junctions With a Knuckle	248
4.4.15	Nomenclature	248
4.4.16	Tables	251
4.4.17	Figures	252
4.5	Design Rules for Openings in Shells and Heads	259
4.5.1	Scope	259
4.5.2	Dimensions and Shape of Nozzles	259
4.5.3	Method of Nozzle Attachment	259
4.5.4	Nozzle Neck Minimum Thickness Requirements	260
4.5.5	Radial Nozzle in a Cylindrical Shell	260
4.5.6	Hillside Nozzle in a Cylindrical Shell	264
4.5.7	Nozzle in a Cylindrical Shell Oriented at an Angle from the Longitudinal Axis	264
4.5.8	Radial Nozzle in a Conical Shell	264
4.5.9	Nozzle in a Conical Shell	265
4.5.10	Radial Nozzle in a Spherical Shell or Formed Head	265
4.5.11	Hillside or Perpendicular Nozzle in a Spherical Shell or Formed Head	270
4.5.12	Circular Nozzles in a Flat Head	270
4.5.13	Spacing Requirements for Nozzles	271
4.5.14	Strength of Nozzle Attachment Welds	272
4.5.15	Local Stresses in Shells, Formed Heads, and Nozzles from External Loads on Nozzles	274
4.5.16	Inspection Openings	274
4.5.17	Openings Subject to Axial Compression, External Pressure, and the Combination Thereof	276
4.5.18	Nomenclature	276
4.5.18		276
	Tables	
4.5.20	Figures	280
4.6	Design Rules for Flat Heads	292
4.6.1	Scope	292
4.6.2	Flat Unstayed Circular Heads	292
4.6.3	Flat Unstayed Noncircular Heads	293
4.6.4	Integral Flat Head With a Centrally Located Opening	294
4.6.5	Nomenclature	295
4.6.6	Tables	296
4.6.7	Figures	301
4.7	Design Rules for Spherically Dished Bolted Covers	301
4.7.1	Scope	301
4.7.2	Type A Head Thickness Requirements	302

4.7.3	Type B Head Thickness Requirements	302
4.7.4	Type C Head Thickness Requirements	303
4.7.5	Type D Head Thickness Requirements	304
4.7.6	Nomenclature	306
4.7.7	Tables	308
4.7.8	Figures	308
4.8	Design Rules for Quick-Actuating (Quick-Opening) Closures	310
4.8.1	Scope	310
4.8.2	Definitions	310
4.8.3		
	General Design Requirements	311
4.8.4	Specific Design Requirements	311
4.8.5	Alternative Designs for Manually Operated Closures	311
4.8.6	Supplementary Requirements for Quick-Actuating (Quick-Opening) Closures	311
4.9	Design Rules for Braced and Stayed Surfaces	312
4.9.1	Scope	312
4.9.2	Required Thickness of Braced and Stayed Surfaces	312
4.9.3	Required Dimensions and Layout of Staybolts and Stays	312
4.9.4	Requirements for Welded-in Staybolts and Welded Stays	312
4.9.5	Nomenclature	312
4.9.6	Tables	313
4.9.7	Figures	314
4.10	Design Rules for Ligaments	315
4.10.1	Scope	315
4.10.2	Ligament Efficiency	315
4.10.3	Ligament Efficiency and the Weld Joint Factor	316
4.10.4	Nomenclature	316
4.10.5	Figures	316
4.11	Design Rules for Jacketed Vessels	320
4.11.1		320
	Scope	
4.11.2	Design of Jacketed Shells and Jacketed Heads	320
4.11.3	Design of Closure Member of Jacket to Vessel	320
4.11.4	Design of Penetrations Through Jackets	321
4.11.5	Design of Partial Jackets	321
4.11.6	Design of Half-Pipe Jackets	321
4.11.7	Nomenclature	322
4.11.8	Tables	323
4.11.9	Figures	333
4.12	Design Rules for Noncircular Vessels	335
4.12.1	Scope	335
4.12.2	General Design Requirements	336
4.12.3	Requirements for Vessels With Reinforcement	337
4.12.4	Requirements for Vessels With Stays	338
4.12.5	Requirements for Rectangular Vessels With Small Aspect Ratios	339
4.12.6	Weld Joint Factors and Ligament Efficiency	339
4.12.7	Design Procedure	341
4.12.8	Noncircular Vessels Subject to External Pressure	342
4.12.9	Rectangular Vessels With Two or More Compartments of Unequal Size	343
4.12.10	Fabrication	343
4.12.10	Nomenclature	343
4.12.12	Tables	345
4.12.13	Figures	368
4.13	Design Rules for Layered Vessels	382
4.13.1	Scope	382
4.13.2	Definitions	382
4.13.3	General	382
4.13.4	Design for Internal Pressure	382

4.13.5	Design for External Pressure	382
4.13.6	Design of Welded Joints	382
4.13.7	Nozzles and Nozzle Reinforcement	383
4.13.8	Flat Heads	384
4.13.9	Bolted and Studded Connections	384
4.13.10	Attachments and Supports	384
4.13.11	Vent Holes	384
4.13.12	Shell Tolerances	385
4.13.13	Nomenclature	386
4.13.14	Figures	388
4.14	Evaluation of Vessels Outside of Tolerance	401
4.14.1	Shell Tolerances	401
4.14.2	Local Thin Areas	401
4.14.3	Marking and Reports	401
4.14.4	Figures	401
4.15	Design Rules for Supports and Attachments	401
4.15	Scope	402
4.15.2	Design of Supports	402
4.15.2		402
	Saddle Supports for Horizontal Vessels	402 407
4.15.4	Skirt Supports for Vertical Vessels	
4.15.5	Lug and Leg Supports	407
4.15.6	Nomenclature	408
4.15.7	Tables	410
4.15.8	Figures	411
4.16	Design Rules for Flanged Joints	419
4.16.1	Scope	419
4.16.2	Design Considerations	419
4.16.3	Flange Types	419
4.16.4	Flange Materials	420
4.16.5	Gasket Materials	420
4.16.6	Design Bolt Loads	420
4.16.7	Flange Design Procedure	421
4.16.8	Split Loose Type Flanges	422
4.16.9	Noncircular Shaped Flanges With a Circular Bore	423
4.16.10	Flanges With Nut Stops	423
4.16.11	Joint Assembly Procedures	423
4.16.12	Evaluation of External Forces and Moments for Flanged Joints With Standard Flanges	423
4.16.13	Nomenclature	423
4.16.14	Tables	425
4.16.15	Figures	437
4.17	Design Rules for Clamped Connections	445
4.17.1	Scope	445
4.17.2	Design Considerations	445
4.17.3	Flange Materials	445
4.17.4	Design Bolt Loads	445
4.17.5	Flange and Clamp Design Procedure	446
4.17.6	Nomenclature	448
4.17.7	Tables	451
4.17.8	Figures	453
4.18	Design Rules for Shell-and-Tube Heat Exchangers	454
4.18.1	Scope	454
4.18.2	Terminology	454
4.18.3	General Design Considerations	455
4.18.4	General Conditions of Applicability for Tubesheets	455
4.18.5	Tubesheet Flanged Extension	456
4.18.6	Tubesheet Characteristics	457

4.18.7	Rules for the Design of U-Tube Tubesheets
4.18.8	Rules for the Design of Fixed Tubesheets
4.18.9	Rules for the Design of Floating Tubesheets
4.18.11	Bellows Expansion Joints
4.18.12	Flexible Shell Element Expansion Joints
4.18.13	Pressure Test Requirements
4.18.14	Heat Exchanger Marking and Reports
4.18.15	Nomenclature
4.18.16	Tables
4.18.17	Figures
4.19	Design Rules for Bellows Expansion Joints
4.19.1	Scope
4.19.2	Conditions of Applicability
4.19.3	Design Considerations
4.19.4	Materials
4.19.5	Design of U-Shaped Unreinforced Bellows
4.19.6	Design of U-Shaped Reinforced Bellows
4.19.7	Design of Toroidal Bellows
4.19.8	Bellows Subjected to Axial, Lateral, or Angular Displacements
4.19.9	Pressure Test Design Requirements
4.19.10	Marking and Reports
4.19.10 4.19.11	Nomenclature
4.19.12	Tables
4.19.12	
	Figures
4.19.14	Specification Sheets
4.20	Design Rules for Flexible Shell Element Expansion Joints
4.20.1	Scope
4.20.2	Conditions of Applicability
4.20.3	Design Considerations
4.20.4	Materials
4.20.5	Design
4.20.6	Marking and Reports
4.20.7	Nomenclature
4.20.8	Figures
4.21	Tube-to-Tubesheet Joint Strength
4.21.1	Scope
4.21.2	Joint Strength by Calculation
4.21.3	Joint Strength Factors
4.21.4	Nomenclature
4.21.5	Tables
4.21.6	Figures
Annex 4-A	
Annex 4-B	Guide for the Design and Operation of Quick-Actuating (Quick-Opening) Closures
4-B.1	Introduction
4-B.2	Responsibilities
4-B.3	Design
4-B.4	Installation
4-B.5	Inspection
4-B.6	Training
4-B.7	Administrative Controls
Annex 4-D	Guidance to Accommodate Loadings Produced by Deflagration
4-D.1	Scope
4-D.2	General
4-D.3	Design Limitations
4-D.4	Design Criteria

4-D.5	References	568
Annex 4-E	Tube Expanding Procedures and Qualification	569
4-E.1	General	569
4-E.2	Scope	569
4-E.3	Terms and Definitions	569
4-E.4	Tube Expanding Procedure Specification (TEPS)	570
4-E.5	Tube Expanding Procedure Qualification	570
4-E.6	Tube Expanding Performance Qualification (TEPQ)	571
4-E.7	Tube Expanding Variables	571
Dowt F		
Part 5 5.1	Design by Analysis Requirements	580 580
5.1.1	General Requirements	580
5.1.2	Scope	580
5.1.2	Numerical Analysis	580
5.1.5	Loading Conditions	581
	Protection Against Plastic Collapse	
5.2.1 5.2.2	Overview	581 582
5.2.3	Elastic Stress Analysis Method	584
	Limit-Load Analysis Method	584 585
5.2.4 5.3	Elastic–Plastic Stress Analysis Method	585 586
5.3.1	Protection Against Local Failure Overview	586
5.3.2	Elastic Analysis — Triaxial Stress Limit	586
5.3.3	Elastic–Plastic Analysis — Local Strain Limit	586
5.4	Protection Against Collapse From Buckling	587
5.4.1	General	587
5.4.2	Buckling Analysis — Method A	588
5.4.3	Buckling Analysis — Method B	588
5.5	Protection Against Failure From Cyclic Loading	589
5.5.1	Overview	589
5.5.2	Screening Criteria for Fatigue Analysis	590
5.5.3	Fatigue Assessment — Elastic Stress Analysis and Equivalent Stresses	592
5.5.4	Fatigue Assessment — Elastic-Plastic Stress Analysis and Equivalent Stress Stress Stress Analysis and Equivalent Strains	594
5.5.5	Fatigue Assessment of Welds — Elastic Analysis and Structural Stress	595
5.5.6	Ratcheting Assessment — Elastic Stress Analysis	598
5.5.7	Ratcheting Assessment — Elastic–Plastic Stress Analysis	600
5.6	Supplemental Requirements for Stress Classification in Nozzle Necks	600
5.7	Supplemental Requirements for Bolts	601
5.7.1	Design Requirements	601
5.7.2	Service Stress Requirements	601
5.7.3	Fatigue Assessment of Bolts	601
5.8	Supplemental Requirements for Perforated Plates	601
5.9	Supplemental Requirements for Layered Vessels	601
5.10	Experimental Stress Analysis	602
5.11	Fracture Mechanics Evaluations	602
5.12	Definitions	602
5.13	Nomenclature	604
5.14	Tables	609
5.15	Figures	619
Annex 5-A	Linearization of Stress Results for Stress Classification	622
5-A.1	Scope	622
5-A.2	General	622
5-A.3	Selection of Stress Classification Lines	622
5-A.4	Stress Integration Method	623
5-A.5	Structural Stress Method Based on Nodal Forces	624
5-A.6	Structural Stress Method Based on Stress Integration	625
	0	

5-A.7	Nomenclature
5-A.8	Tables 62
5-A.9	Figures
Annex 5-B	Histogram Development and Cycle Counting for Fatigue Analysis 64
5-B.1	General
5-B.2	Definitions
5-B.3	Histogram Development
5-B.4	Cycle Counting Using the Rainflow Method 64
5-B.5	Cycle Counting Using Max-Min Cycle Counting Method 64
5-B.6	Nomenclature
Annex 5-C	Alternative Plasticity Adjustment Factors and Effective Alternating Stress for Elastic Fatigue Analysis 64
5-C.1	Scope
5-C.2	Definitions
5-C.3	Effective Alternating Stress for Elastic Fatigue Analysis
5-C.4	Nomenclature
5-0.4	
Annex 5-D	Stress Indices
5-D.1	General
5-D.2	Stress Indices for Radial Nozzles
5-D.3	Stress Indices for Laterals
5-D.4	Nomenclature
5-D.5	Tables 65
5-D.6	Figures
Annex 5-E	Design Methods for Perforated Plates Based on Elastic Stress Analysis
5-E.1	Overview
5-E.2	Stress Analysis of the Equivalent Solid Plate
5-E.3	Stiffness Effects of the Tubes
5-E.4	Effective Material Properties for the Equivalent Solid Plate
5-E.5	Pressure Effects in Tubesheet Perforations
5-E.6	Protection Against Plastic Collapse
5-E.7	Protection Against Cyclic Loading
5-E.8	Nomenclature
5-E.9	Tables
5-E.10	Figures
	O
Annex 5-F	Experimental Stress and Fatigue Analysis 68
5-F.1	Overview
5-F.2	Strain Measurement Test Procedure for Stress Components 68
5-F.3	Protection Against Cyclic Loading
5-F.4	Nomenclature
5-F.5	Figures
Part 6	Fabrication Requirements 69
6.1	General Fabrication Requirements
6.1.1	Materials
6.1.2	Forming
6.1.3	Base Metal Preparation 69
	1
6.1.4 6.1.5	
6.1.5	8
6.1.6	Alignment Tolerances for Edges to Be Butt Welded 69 Welding Fabrication Requirements 70
6.2	Welding Fabrication Requirements 70 Welding Processes 70
6.2.1	Welding Processes 70 Welding Contraction 70
6.2.2	Welding Qualifications and Records 70
6.2.3	Precautions to Be Taken Before Welding
6.2.4	Specific Requirements for Welded Joints

6.2.5	Miscellaneous Welding Requirements	703
6.2.6	Summary of Joints Permitted and Their Examination	705
6.2.7	Repair of Weld Defects	705
6.2.8	Special Requirements for Welding Test Plates for Titanium Materials	705
6.3	Special Requirements for Tube-to-Tubesheet Welds	705
6.3.1	Material Requirements	705
6.3.2	Holes in Tubesheets	705
6.3.3	Weld Design and Joint Preparation	705
6.3.4	Qualification of Welding Procedure	705
		706
6.4	Preheating and Heat Treatment of Weldments	
6.4.1	Requirements for Preheating of Welds	706
6.4.2	Requirements for Postweld Heat Treatment	706
6.4.3	Procedures for Postweld Heat Treatment	708
6.4.4	Operation of Postweld Heat Treatment	709
6.4.5	Postweld Heat Treatment After Repairs	709
6.4.6	Postweld Heat Treatment of Nonferrous Materials	711
6.5	Special Requirements for Clad or Weld Overlay Linings, and Lined Parts	711
6.5.1	Materials	711
6.5.2	Joints in Corrosion Resistant Clad or Weld Metal Overlay Linings	712
6.5.3	Welding Procedures	712
6.5.4	Methods to Be Used in Attaching Applied Linings	712
6.5.5	Postweld Heat Treatment of Clad and Lined Weldments	712
6.5.6	Requirements for Base Material With Corrosion Resistant Integral or Weld Metal Overlay	
	Cladding	712
6.5.7	Examination Requirements	712
6.5.8	Inspection and Tests	712
6.5.9	Stamping and Reports	712
6.6	Special Requirements for Tensile Property Enhanced Q&T Ferritic Steels	713
6.6.1	General	713
6.6.2		713
	Marking on Plates and Other Materials	
6.6.3	Requirements for Heat Treating After Forming	713
6.6.4	Minimum Thickness after Forming	713
6.6.5	Welding Requirements	713
6.6.6	Postweld Heat Treatment	715
6.6.7	Heat Treatment Certification Tests	716
6.6.8	Examination Requirements	716
6.6.9	Inspection and Tests	716
6.6.10	Stamping and Reports	717
6.7	Special Requirements for Forged Fabrication	717
6.7.1	General	717
6.7.2	Ultrasonic Examination	717
6.7.3	Toughness Requirements	717
6.7.4	Tolerances on Cylindrical Forgings	717
6.7.5	Methods of Forming Forged Heads	718
6.7.6	Heat Treatment Requirements for Forged Fabrication	718
6.7.7	Welding for Fabrication	719
6.7.8	Repair of Defects in Material	719
6.7.9	Threaded Connections to Vessel Walls, Forged Necks, and Heads	720
6.7.10	Inspection, Examination, and Testing	720
6.7.10 6.7.11		
	Stamping and Reports for Forged Vessels	721
6.7.12	Overpressure Protection	721
6.8	Special Fabrication Requirements for Layered Vessels	721
6.8.1	General	721
6.8.2	General Fabrication Requirements	721
6.8.3	Welding Fabrication Requirements	721
6.8.4	Welding Qualification and Records	721

6.8.5	Specific Requirements for Welded Joints	722
6.8.6	Nondestructive Examination of Welded Joints	722
6.8.7	Welded Joint Efficiency	722
6.8.8	Contact between Layers	722
6.8.9	Vent Holes	722
6.8.10	Heat Treatment of Weldments	723
6.9	Special Fabrication Requirements for Expansion Joints	723
6.9.1	Bellows Expansion Joints	723
6.9.2	Flexible Shell Element Expansion Joints	723
6.10	Nomenclature	724
6.11	Tables	725
6.12	Figures	746
Annex 6-A	Positive Material Identification Practice	751
Part 7	Inspection and Examination Requirements	759
7.1	General	759
7.2	Responsibilities and Duties	759
7.2.1	Responsibilities and Duties of the Manufacturer and Inspector	759
7.2.2	Access for Inspector	759
7.2.3	Notification of Work Progress	759
7.3	Qualification of Nondestructive Examination Personnel	759
7.4	Examination of Welded Joints	759
7.4.1	Nondestructive Examination Requirements	759
7.4.2	Examination Groups for Pressure Vessels	759
7.4.3	Extent of Nondestructive Examination	760
7.4.4	Selection of Examination Method for Internal (Volumetric) Flaws	761
7.4.5	Selection of Examination Method for Surface Flaws	761
7.4.6	Surface Condition and Preparation	761
7.4.0	-	761
7.4.7	Supplemental Examination for Cyclic Service	761
	Examination and Inspection of Vessels With Protective Linings and Cladding	
7.4.9	Examination and Inspection of Tensile Property Enhanced Q&T Vessels	762
7.4.10	Examination and Inspection of Integrally Forged Vessels	762
7.4.11	Examination and Inspection of Fabricated Layered Vessels	763
7.4.12	Examination and Inspection of Expansion Joints	765
7.5	Examination Method and Acceptance Criteria	765
7.5.1	General	765
7.5.2	Visual Examination	765
7.5.3	Radiographic Examination	766
7.5.4	Ultrasonic Examination	767
7.5.5	Ultrasonic Examination Used in Lieu of Radiographic Examination	768
7.5.6	Magnetic Particle Examination (MT)	769
7.5.7	Liquid Penetrant Examination (PT)	769
7.5.8	Eddy Current Surface Examination Procedure Requirements (ET)	770
7.5.9	Evaluation and Retest for Partial Examination	772
7.6	Final Examination of Vessel	772
7.6.1	Surface Examination after Hydrotest	772
7.6.2	Inspection of Lined Vessel Interior after Hydrotest	772
7.7	Leak Testing	772
7.8	Acoustic Emission	772
7.9	Tables	773
7.10	Figures	784
Annex 7-A	Responsibilities and Duties for Inspection and Examination Activities	802
7-A.1	General	802
7-A.2	Manufacturer's Responsibility	802
7-A.3	Inspector's Responsibility	802
7-A.4	Tables	804

Part 8		Pressure Testing Requirements	807 807
8.1 8.1.1		General Requirements	807
8.1.1 8.1.2			807
8.1.2 8.1.3		Precautions	808
8.1.3 8.1.4		Pressure Gages	809
8.1.4 8.1.5		Test Gaskets and Fasteners	809
8.2		Testing	809
8.2.1		Test Pressure	809
8.2.1		Preparation for Testing	810
8.2.2 8.2.3		Test Fluid	810
8.2.3		Test Procedures	810
8.2.4		Test Inspection and Acceptance Criteria	810
8.3		Alternative Pressure Testing	811
8.3.1		Hydrostatic–Pneumatic Tests	811
8.3.2		Leak Tightness Testing	811
8.4		Documentation	811
8.5		Nomenclature	811
0.5		Nomenciature	011
Part 9		Pressure Vessel Overpressure Protection	812
9.1		General Requirements	812
9.2		Responsibilities	812
9.3		Determination of Pressure-Relieving Requirements	812
9.4		Overpressure Limits	813
9.5		Permitted Pressure Relief Devices and Methods	814
9.6		Pressure Settings and Performance Requirements	815
9.7		Installation	815
Annex 9	. .	Best Practices for the Installation and Operation of Pressure Relief Devices	817
9-A.1	9-A	Introduction	817
9-A.1 9-A.2			817
9-A.2 9-A.3		Provisions for the Installation of Stop Valves in the Relief Path	817
9-A.3 9-A.4		Inlet Piping Pressure Drop for Pressure Relief Valves	817
9-A.4 9-A.5		Discharge Lines from Pressure Relief Devices	817
		Cautions Regarding Pressure Relief Device Discharge into a Common Header Pressure Differentials (Operating Margin) for Pressure Relief Valves	818
9-A.6			
9-A.7 9-A.8		Pressure Relief Valve Orientation	819 819
		Reaction Forces and Externally Applied Piping Loads	
9-A.9		Sizing of Pressure Relief Devices for Fire Conditions	819
9-A.10		Use of Pressure-Indicating Devices to Monitor Pressure Differential	820
Annex 9	9-B	Guide to the Relocation of Overpressure Protection Requirements	821
FIGURES			
2-F.1	Form	of Stamping	49
3.1		o Heat Treatment Criteria	98
3.2		al Locations for Tensile Specimens	99
3.3		y V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels	
0.0	-	a Function of the Minimum Specified Yield Strength — Welded Parts Not Subject to PWHT	100
3.3M		by V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels	100
5.514		a Function of the Minimum Specified Yield Strength — Welded Parts Not Subject to PWHT	101
3.4		y V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels	101
5.4		a Function of the Minimum Specified Yield Strength — Welded Parts Subject to PWHT or	
		I O ,	102
2 4 M		nwelded Parts	102
3.4M		by V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels	
		a Function of the Minimum Specified Yield Strength — Welded Parts Subject to PWHT or	100
2 5		nwelded Parts	103
3.5		ration of Lateral Expansion in a Broken Charpy V-Notch Specimen	104
3.6	Latera	al Expansion Requirements	105

3.6M	Lateral Expansion Requirements	105
3.7	Impact Test Exemption Curves — Welded Parts Not Subject to PWHT	106
3.7M	Impact Test Exemption Curves — Welded Parts Not Subject to PWHT	108
3.8	Impact Test Exemption Curves — Welded Parts Subject to PWHT and Nonwelded Parts	110
3.8M	Impact Test Exemption Curves — Welded Parts Subject to PWHT and Nonwelded Parts	112
3.9	Typical Vessel Details Illustrating the Governing Thickness	114
3.10	Typical Vessel Details Illustrating the Governing Thickness	115
3.11	Typical Vessel Details Illustrating the Governing Thickness	116
3.12	Reduction in the MDMT Without Impact Testing — Parts Not Subject to PWHT	117
3.12 3.12M	Reduction in the MDMT Without Impact Testing — Parts Not Subject to PWHT	118
3.12M 3.13		110
	Reduction in the MDMT Without Impact Testing — Parts Subject to PWHT and Nonwelded Parts	
3.13M	Reduction in the MDMT Without Impact Testing — Parts Subject to PWHT and Nonwelded Parts	120
3.14	Orientation and Location of Transverse Charpy V-Notch Specimens	121
3.15	Weld Metal Delta Ferrite Content	122
3.16	HAZ Impact Specimen Removal	122
3.17	Location of HAZ Specimen Removal	123
3-F.1	Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for	
	Temperatures Not Exceeding 700°F — $\sigma_{uts} \leq 80$ ksi	161
3-F.1M	Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for	
	Temperatures Not Exceeding 371° C — $\sigma_{uts} \leq 552$ MPa	161
3-F.2	Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for	
	Temperatures Not Exceeding 700°F — σ_{uts} = 115 ksi to 130 ksi	162
3-F.2M	Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for	
	Temperatures Not Exceeding 371°C — σ_{uts} = 793 MPa to 892 MPa \ldots	162
3-F.3	Fatigue Curve for Series 3XX High Alloy Steels, Austenitic-Ferritic Duplex Stainless Steels, Nickel-	
	Chromium-Iron Alloy, Nickel-Iron-Chromium Alloy, and Nickel-Copper Alloy for Temperatures	
	Not Exceeding 800°F	163
3-F.3M	Fatigue Curve for Series 3XX High Alloy Steels, Austenitic-Ferritic Duplex Stainless Steels, Nickel-	
	Chromium-Iron Alloy, Nickel-Iron-Chromium Alloy, and Nickel-Copper Alloy for Temperatures	
	Not Exceeding 427°C	163
3-F.4	Fatigue Curve for Wrought 70–30 Copper–Nickel for Temperatures Not Exceeding 700°F — $\sigma_{vs} \leq$	
0	18 ksi	164
3-F.4M	Fatigue Curve for Wrought 70–30 Copper–Nickel for Temperatures Not Exceeding $371^{\circ}\text{C} - \sigma_{vs} \leq$	101
0 11111	134 MPa	164
3-F.5	Fatigue Curve for Wrought 70–30 Copper–Nickel for Temperatures Not Exceeding 700°F — σ_{vs} =	101
51.5	30 ksi	165
3-F.5M	Fatigue Curve for Wrought 70–30 Copper–Nickel for Temperatures Not Exceeding $371^{\circ}C - \sigma_{vs} =$	105
3-1.3M	207 MPa	165
2 5 6	Fatigue Curve for Wrought 70–30 Copper–Nickel for Temperatures Not Exceeding 700°F — σ_{vs} =	105
3-F.6		1.00
2 5 6 1		166
3-F.6M	Fatigue Curve for Wrought 70–30 Copper–Nickel for Temperatures Not Exceeding 371°C — σ_{ys} =	1.00
	310 MPa	166
3-F.7	Fatigue Curve for Nickel-Chromium-Molybdenum-Iron Alloys X, G, C-4, and C-276 for Tempera-	
	tures Not Exceeding 800°F	167
3-F.7M	Fatigue Curve for Nickel-Chromium-Molybdenum-Iron Alloys X, G, C-4, and C-276 for Tempera-	
	tures Not Exceeding 427°C	167
3-F.8	Fatigue Curve for High Strength Bolting for Temperatures Not Exceeding 700°F — Maximum	
	Nominal Stress $\leq 2.7S_M$	168
3-F.8M	Fatigue Curve for High Strength Bolting for Temperatures Not Exceeding 371°C — Maximum	
	Nominal Stress $\leq 2.7S_M$	168
3-F.9	Fatigue Curve for High Strength Bolting for Temperatures Not Exceeding 700°F — Maximum	
	Nominal Stress > $2.7S_M$	169
3-F.9M	Fatigue Curve for High Strength Bolting for Temperatures Not Exceeding 371°C — Maximum	
	Nominal Stress > $2.7S_M$	169
4.2.1	Weld Joint Locations Typical of Categories A, B, C, D, E, and F	202
4.2.2	Some Bracket, Lug, and Stiffener Attachment Weld Details	203

4.2.3	Some Acceptable Methods of Attaching Stiffening Rings	204
4.2.4	Some Acceptable Skirt Weld Details	205
4.3.1	Conical Shell	229
4.3.2	Offset Transition Detail	229
4.3.3	Torispherical Head of Uniform Thickness	230
4.3.4	Torispherical Head of Different Thickness of Dome and Knuckle	230
4.3.5	Ellipsoidal Head	230
4.3.6	Local Thin Band in a Cylindrical Shell	231
4.3.7	Shells Subjected to Supplemental Loadings	232
4.3.8	Conical Transition Details	232
4.3.9	Reinforcement Requirements for Conical Transition Junction	233
4.3.10	•	234
	Parameters for Knuckle and Flare Design Lines of Support or Unsupported Length for Typical Vessel Configurations	
4.4.1		252
4.4.2	Lines of Support or Unsupported Length for Unstiffened and Stiffened Cylindrical Shells	253
4.4.3	Stiffener Ring Parameters	254
4.4.4	Various Arrangements of Stiffening Rings for Cylindrical Vessels Subjected to External Pressure	255
4.4.5	Maximum Arc of Shell Left Unsupported Because of a Gap in the Stiffening Ring of a Cylindrical Shell	
	Under External Pressure	256
4.4.6	Lines of Support or Unsupported Length for Unstiffened and Stiffened Conical Shells	257
4.4.7	Lines of Support or Unsupported Length for Unstiffened and Stiffened Conical Shell Transitions	
	With or Without a Knuckle	258
4.5.1	Nomenclature for Reinforced Openings	280
4.5.2	Nomenclature for Variable Thickness Openings	281
4.5.3	Radial Nozzle in a Cylindrical Shell	282
4.5.4	Hillside Nozzle in a Cylindrical Shell	283
4.5.5	Nozzle in a Cylindrical Shell Oriented at an Angle From the Longitudinal Axis	284
4.5.6	Radial Nozzle in a Conical Shell	285
4.5.7	Nozzle in a Conical Shell Oriented Perpendicular to the Longitudinal Axis	286
4.5.8	Nozzle in a Conical Shell Oriented Parallel to the Longitudinal Axis	287
4.5.9	Radial Nozzle in a Formed Head	288
4.5.10	Hillside or Perpendicular Nozzle in a Spherical Shell or Formed Head	289
4.5.11	Example of Two Adjacent Nozzle Openings	290
4.5.12	Example of Three Adjacent Nozzle Openings	290
4.5.13	Metal Area Definition for A_2 With Variable Thickness of Set-in Nozzles	291
4.5.14	Metal Area Definition for A_2 With Variable Thickness of Set-on Nozzles	292
4.6.1	Integral Flat Head With a Large Central Opening	301
4.7.1	Type A Dished Cover With a Bolting Flange	308
4.7.2	Type B Spherically Dished Cover With a Bolting Flange	309
4.7.2	Type C Spherically Dished Cover With a Bolting Flange	309
4.7.3	Type D Spherically Dished Cover With a Bolting Flange	
4.7.4		310
	Type D Head Geometry for Alternative Design Procedure	310
4.9.1	Typical Forms of Welded Staybolts	314
4.10.1	Example of Tube Spacing With the Pitch of Holes Equal in Every Row	316
4.10.2	Example of Tube Spacing With the Pitch of Holes Unequal in Every Second Row	316
4.10.3	Example of Tube Spacing With the Pitch of Holes Varying in Every Second and Third Row	317
4.10.4	Example of Tube Spacing With the Tube Holes on Diagonal Lines	317
4.10.5	Diagram for Determining the Efficiency of Longitudinal and Diagonal Ligaments Between Openings in Cylindrical Shells	318
4.10.6	Diagram for Determining the Equivalent Efficiency of Diagonal Ligaments Between Openings in Cylindrical Shells	319
4.11.1	Types of Jacketed Vessels	333
4.11.2	Types of Partial Jackets	334
4.11.3	Half Pipe Jackets	335
4.12.1	Type 1 Noncircular Vessels	368
4.12.2	Type 2 Noncircular Vessels	369
4.12.3	Type 3 Noncircular Vessels	370

4.12.4	Type 4 Noncircular Vessels 37
4.12.5	Type 5 Noncircular Vessels 37
4.12.6	Type 6 Noncircular Vessels 37
4.12.7	Type 6 Noncircular Vessels
4.12.8	Type 7 Noncircular Vessels
4.12.9	Type 8 Noncircular Vessels 37
4.12.10	Type 9 Noncircular Vessels
4.12.11	Type 10 Noncircular Vessels
4.12.12	Type 11 Noncircular Vessels 37 37
4.12.13	Type 12 Noncircular Vessels
4.12.13	Multi-Diameter Holes 38
4.12.15	Rectangular Vessels With Multiple Compartments 38
4.12.15	Some Acceptable Layered Shell Types 38
4.13.1	Some Acceptable Layered Head Types So 38
4.13.2	
4.13.4	Some Acceptable Welded Joints of Layered-to-Layered and Layered-to-Solid Sections
4.13.5	Some Acceptable Solid Head Attachments to Layered Shell Sections
4.13.6	Some Acceptable Flat Heads and Tubesheets With Hubs Joining Layered Shell Sections
4.13.7	Some Acceptable Flanges for Layered Shells
4.13.8	Some Acceptable Layered Head Attachments to Layered Shells
4.13.9	Some Acceptable Nozzle Attachments to Layered Shell Sections 39
4.13.10	Some Acceptable Supports for Layered Vessels 40
4.13.11	Gap Between Vessel Layers 40
4.14.1	LTA Blend Radius Requirements
4.15.1	Horizontal Vessel on Saddle Supports 41
4.15.2	Cylindrical Shell Without Stiffening Rings
4.15.3	Cylindrical Shell With Stiffening Rings in the Plane of the Saddle
4.15.4	Cylindrical Shell With Stiffening Rings on Both Sides of the Saddle
4.15.5	Locations of Maximum Longitudinal Normal Stress and Shear Stress in the Cylinder 41
4.15.6	Locations of Maximum Circumferential Normal Stresses in the Cylinder 41
4.15.7	Skirt Attachment Location on Vertical Vessels 41
4.15.8	A Typical Hot-Box Arrangement for Skirt Supported Vertical Vessels
4.16.1	Integral Type Flanges 43
4.16.2	Integral Type Flanges With a Hub43
4.16.3	Integral Type Flanges With Nut Stops — Diameter Less Than or Equal to 450 mm (18 in.) 43
4.16.4	Integral Type Flanges With Nut Stops — Diameter Greater Than 450 mm (18 in.) 44
4.16.5	Loose Type Flanges
4.16.6	Loose-Type Lap Joint Type Flanges44
4.16.7	Reverse Flanges 44
4.16.8	Location of Gasket Reaction Load Diameter 44
4.17.1	Typical Hub and Clamp Configuration45
4.17.2	Typical Clamp Lugs Configurations45
4.18.1	Terminology of Heat Exchanger Components49
4.18.2	Tubesheet Geometry 49
4.18.3	Typical Untubed Lane Configurations 50
4.18.4	U-Tube Tubesheet Configurations
4.18.5	Fixed Tubesheet Configurations 50
4.18.6	Z_d, Z_v, Z_w , and Z_m Versus X_a
4.18.7	F_m Versus X_a (0.0 $\leq Q_3 \leq 0.8$)
4.18.8	F_m Versus X_a (-0.8 $\leq Q_3 \leq 0.0$)
4.18.9	Different Shell Thickness and/or Material Adjacent to the Tubesheets
4.18.10	Floating Tubesheet Heat Exchangers
4.18.11	Stationary Tubesheet Configurations 50
4.18.12	Floating Tubesheet Configurations 50
4.18.14	Tube Layout Perimeter 50
4.18.15	Integral Channels 51
-	

4.18.16	Some Representative Configurations Describing the Minimum Required Thickness of the Tubesheet	
	Flanged Extension, <i>h_r</i>	511
4.18.17	Kettle Shell	511
4.18.18	Location of Tubesheet Metal Temperature, T', at the Rim	512
4.18.19	Nozzles Adjacent to Tubesheets	513
4.19.1	Typical Bellows Expansion Joints	535
4.19.2	Starting Points for the Measurement of the Length of Shell on Each Side of Bellows	536
4.19.3	Possible Convolution Profile in Neutral Position	537
4.19.4	Dimensions to Determine I_{xx}	537
4.19.5	Bellows Subjected to an Axial Displacement <i>x</i>	538
4.19.6	Bellows Subjected to a Lateral Deflection <i>y</i>	538
4.19.7	Bellows Subjected to an Angular Rotation θ	539
4.19.8	Cyclic Displacements	540
4.19.9	Cyclic Displacements	540
4.19.10	Cyclic Displacements	541
4.19.11	Some Typical Expansion Bellows Attachment Welds	542
4.19.12	C_p Versus C_1 and C_2	543
4.19.13	C_f Versus C_1 and C_2	544
4.19.14	C_d Versus C_1 and C_2	545
4.20.1	Typical Flexible Shell Element Expansion Joints	550
4.20.2	Typical Nozzle Attachment Details Showing Minimum Length of Straight Flange or Outer Shell	000
112012	Element	551
4.21.1	Tube-to-Tubesheet Joints Acceptable to Determine Joint Strength by Calculation	560
4.21.2	Some Acceptable Types of Tube-to-Tubesheet Joints	561
4.21.3	Typical Test Fixtures for Expanded or Welded Tube-to-Tubesheet Joints	562
5.1	Stress Categories and Limits of Equivalent Stress	619
5.2	Example of Girth Weld Used to Tie Layers for Solid Wall Equivalence	620
5.3	Example of Circumferential Butt Weld Attachment Between Layered Sections in Zone of	
F 4	Discontinuity	620
5.4	An Example of Circle Weld Used to Tie Layers for Solid Wall Equivalence	621
5-A.1	Stress Classification Line (SCL) and Stress Classification Plane (SCP)	629
5-A.2	Stress Classification Lines (SCLs)	630
5-A.3	Stress Classification Line Orientation and Validity Guidelines	631
5-A.4	Computation of Membrane and Bending Equivalent Stresses by the Stress Integration Method Using the Results From a Finite Element Model With Continuum Elements	632
5-A.5	Continuum Finite Element Model Stress Classification Line for the Structural Stress Method	633
5-A.6	Computation of Membrane and Bending Equivalent Stresses by the Structural Stress Method Using Nodal Force Results From a Finite Element Model With Continuum Elements	634
5-A.7	Processing Nodal Force Results With the Structural Stress Method Using the Results From a Finite	00
5 11.7	Element Model With Three-Dimensional Second Order Continuum Elements	635
5-A.8	Processing Structural Stress Method Results for a Symmetric Structural Stress Range	636
5-A.9	Computation of Membrane and Bending Equivalent Stresses by the Structural Stress Method Using	050
5 11.7	the Results From a Finite Element Model With Shell Elements	637
5-A.10	Processing Nodal Force Results With the Structural Stress Method Using the Results From a Finite	037
J-A.10	Element Model With Three-Dimensional Second Order Shell Elements	638
5-A.11		030
5-A.11	Element Sets for Processing Finite Element Nodal Stress Results With the Structural Stress Method	620
F D 1	Based on Stress Integration	639
5-D.1	Direction of Stress Components	652
5-D.2	Nozzle Nomenclature and Dimensions	653
5-D.3	Nomenclature and Loading for Laterals	654
5-E.1	Perforated Plate Geometry Details	683
5-E.2	Perforated Plate Geometry Details	684
5-E.3	Boundary Conditions for Numerical Analysis	685
5-E.4	Stress Orientations for Perforated Plate With Triangular Pattern Holes	686
5-E.5	Stress Orientations for Perforated Plate With Square Pattern Holes	687
5-F.1	Construction of the Testing Parameter Ratio Diagram	693

5-F.2	Construction of the Testing Parameter Ratio Diagram for Accelerated Tests	694
6.1	Peaking Height at a Category A Joint	746
6.2	Weld Toe Dressing	746
6.3	Forged Bottle Construction	747
6.4	Solid-to-Layer and Layer-to-Layer Test Plates	748
6.5	Tensile Specimens for Layered Vessel Construction	749
6.6	Toroidal Bellows Manufacturing Tolerances	750
7.1	Examination of Layered Vessels	784
7.2	Examination of Layered Vessels	785
7.3	Aligned Rounded Indications	786
7.4	Groups of Aligned Rounded Indications	786
7.5	Charts for 3 mm ($\frac{1}{8}$ in.) to 6 mm ($\frac{1}{4}$ in.) Wall Thickness, Inclusive	787
7.6	Charts for Over 6 mm ($\frac{1}{4}$ in.) to 10 mm ($\frac{3}{8}$ in.) Wall Thickness, Inclusive	787
7.7	Charts for Over 10 mm ($\frac{3}{8}$ in.) to 19 mm ($\frac{3}{4}$ in.) Wall Thickness, Inclusive	788
7.8	Charts for Over 19 mm (³ / ₄ in.) to 50 mm (2 in.) Wall Thickness, Inclusive	789
7.9	Charts for Over 50 mm (2 in.) to 100 mm (4 in.) Wall Thickness, Inclusive	790
7.10	Charts for Over 100 mm (4 in.) Wall Thickness	791
7.11	Flaw Classification of Single Indication	792
7.12	Surface Flaw Acceptance Criteria	793
7.13	Subsurface Flaw Acceptance Criteria	795
7.14	Multiple Planar Flaws Oriented in a Plane Normal to the Pressure-Retaining Surface	797
7.15	Surface and Subsurface Flaws	798
7.16	Nonaligned Coplanar Flaws in a Plane Normal to the Pressure-Retaining Surface	799
7.17	Multiple Aligned Planar Flaws	800
7.18	Dimension <i>a</i> for Partial Penetration and Fillet Welds	801
7.19	Dimensions <i>a</i> and <i>d</i> for a Partial Penetration Corner Weld	801

TABLES

1.1	Year of Acceptable Edition of Referenced Standards in This Division
1.2	Standard Units for Use in Equations
1-C.1	Typical Size or Thickness Conversions for Fractions 10
1-C.2	Typical Size or Thickness Conversions 10
1-C.3	Typical Size or Length Conversions 11
1-C.4	Typical Nominal Pipe Size Conversions 11
1-C.5	Typical Area Conversions
1-C.6	Typical Volume Conversions
1-C.7	Typical Pressure Conversions
1-C.8	Typical Strength Conversions
1-C.9	Typical Temperature Conversions
1-C.10	Conversion Factors
2-A.1	Typical Certification of Compliance of the User's Design Specification 22
2-B.1	Typical Certification of Compliance of the Manufacturer's Design Report
2-D.1	Instructions for the Preparation of Manufacturer's Data Reports
2-D.2	Supplementary Instructions for the Preparation of Manufacturer's Data Reports for Layered
	Vessels
2-J.1	Design Activities Requiring a Certifying Engineer
3.1	Material Specifications
3.2	Composition Requirements for 2.25Cr-1Mo-0.25V Weld Metal
3.3	Toughness Requirements for 2.25Cr–1Mo Materials
3.4	Low Alloy Bolting Materials for Use With Flanges Designed to 4.16
3.5	High Alloy Bolting Materials for Use With Flanges Designed to 4.16
3.6	Aluminum Alloy, Copper, and Copper Alloy Bolting Materials for Use With Flanges Designed to
	4.16
3.7	Nickel and Nickel Alloy Bolting Materials for Use With Flanges Designed to 4.16
3.8	Bolting Materials for Use With Flanges Designed to Part 5
3.9	Maximum Severity Levels for Castings With a Thickness of Less Than 50 mm (2 in.)

3.10	Maximum Severity Levels for Castings With a Thickness of 50 mm to 305 mm (2 in. to 12 in.)	93
3.11	Charpy Impact Test Temperature Reduction Below the Minimum Design Metal Temperature .	93
3.12	Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy	
	Steels as a Function of the Minimum Specified Yield Strength — Welded Parts Not Subject to	
	PWHT (See Figures 3.3 and 3.3M)	93
3.13	Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy	
	Steels as a Function of the Minimum Specified Yield Strength — Welded Parts Subject to PWHT	
	or Nonwelded Parts (See Figures 3.4 and 3.4M)	94
3.14	Impact Test Exemption Curves — Parts Not Subject to PWHT (See Figures 3.7 and 3.7M)	95
3.15	Impact Test Exemption Curves — Parts Subject to PWHT and Nonwelded Parts (See Figures 3.8	
	and 3.8M)	95
3.16	Reduction in the MDMT, T_R , Without Impact Testing — Parts Not Subject to PWHT	
	(See Figures 3.12 and 3.12M)	96
3.17	Reduction in the MDMT, T_R , Without Impact Testing — Parts Subject to PWHT and Nonwelded	
	Parts (See Figures 3.13 and 3.13M)	97
3.18	Required HAZ Impact Test Specimen Set Removal	97
3-A.1	Carbon Steel and Low Alloy Materials	125
3-A.2	Quenched and Tempered High Strength Steels	130
3-A.3	High Alloy Steel	131
3-A.4	Aluminum Alloys	137
3-A.5	Copper Alloys	138
3-A.6	Nickel and Nickel Alloys	139
3-A.7	Titanium and Titanium Alloys	141
3-A.8	Ferrous Bolting Materials for Design in Accordance With Part 4	142
3-A.9	Aluminum Alloy and Copper Alloy Bolting Materials for Design in Accordance With Part 4	144
3-A.10	Nickel and Nickel Alloy Bolting Materials for Design in Accordance With Part 4	144
3-A.11	Bolting Materials for Design in Accordance With Part 5	145
3-D.1	Stress–Strain Curve Parameters	151
3-D.2	Cyclic Stress–Strain Curve Data	151
3-D.2M	Cyclic Stress–Strain Curve Data	153
3-F.1	Smooth Bar Fatigue Curve Stress Amplitude Correction Equations	159
3-F.2	Coefficients for the Welded Joint Fatigue Curves	160
3-F.2M	Coefficients for the Welded Joint Fatigue Curves	160
4.1.1	Design Loads	176
4.1.2	Design Load Combinations	176
4.1.3	Load Factor, β , and Pressure Test Factors, β_T , γ_{min} , and $\gamma_{St/S}$, for Class 1 and Class 2 Con-	
	struction and Hydrostatic or Pneumatic Testing	177
4.2.1	Definition of Weld Categories	183
4.2.2	Definition of Weld Joint Types	184
4.2.3	Definition of Material Types for Welding and Fabrication Requirements	184
4.2.4	Some Acceptable Weld Joints for Shell Seams	184
4.2.5	Some Acceptable Weld Joints for Formed Heads	186
4.2.6	Some Acceptable Weld Joints for Unstayed Flat Heads, Tubesheets Without a Bolting Flange, and	100
1.2.0	Side Plates of Rectangular Pressure Vessels	188
4.2.7	Some Acceptable Weld Joints With Butt Weld Hubs	189
4.2.8	Some Acceptable Weld Joints for Attachment of Tubesheets With a Bolting Flange	190
4.2.9	Some Acceptable Weld Joints for Flange Attachments	190
4.2.10	Some Acceptable Full Penetration Welded Nozzle Attachments Not Readily Radiographable	193
4.2.11	Some Acceptable Pad Welded Nozzle Attachments and Other Connections to Shells	195
4.2.11	Some Acceptable Fitting-Type Welded Nozzle Attachments and Other Connections to Shells	193
4.2.12	Some Acceptable Welded Nozzle Attachments That Are Readily Radiographable	197
4.2.13	Some Acceptable Vertial Penetration Nozzle Attachments	200
4.2.14	Nozzle Necks Attached to Piping of Lesser Wall Thickness	200
4.2.15	Corner Welds for Flexible Shell Element Expansion Joints	201
4.3.1	Large End Junction	201
4.3.2	Small End Junction	219
1.0.2	chan Line junction in the transmission of tran	220

4.3.3	Pressure Applied to Large End Junction	221
4.3.4	Equivalent Line Load Applied to Large End Junction	222
4.3.5	Pressure Applied to Small End Junction	223
4.3.6	Equivalent Line Load Applied to Small End Junction	224
4.3.7	Stress Calculations — Knuckle — Large End Cylinder	225
4.3.8	Stress Calculations — Flare — Small End Cylinder	227
4.4.1	Maximum Metal Temperature for Compressive Stress Rules	251
4.4.2	Algorithm for Computation of Predicted Inelastic Buckling Stress, <i>F</i> _{<i>ic</i>}	251
4.5.1	Minimum Number of Pipe Threads for Connections	279
4.5.2	Nozzle Minimum Thickness Requirements	279
4.6.1	<i>C</i> Parameter for Flat Head Designs	296
4.6.2	Junction Stress Equations for an Integral Flat Head With Opening	300
4.6.3	Stress Acceptance Criteria for an Integral Flat Head With Opening	300
4.7.1	Junction Stress Equations and Acceptance Criteria for a Type D Head	308
4.9.1	Stress Factor for Braced and Stayed Surfaces	313
4.11.1	Design of Closure Member of Jacket to Shell	323
4.11.2	Design of Jacket Penetration Details	329
4.11.3	Coefficients for Eq. (4.11.5)	331
4.12.1	Noncircular Vessel Configurations and Types	345
4.12.2	Stress Calculations and Acceptance Criteria for Type 1 Noncircular Vessels (Rectangular Cross Section)	346
4.12.3	Stress Calculations and Acceptance Criteria for Type 2 Noncircular Vessels (Rectangular Cross	510
1.12.5	Section With Unequal Side Plate Thicknesses)	347
4.12.4	Stress Calculations and Acceptance Criteria for Type 3 Noncircular Vessels (Chamfered Rectan-	517
1.12.1	gular Cross Section)	349
4.12.5	Stress Calculations and Acceptance Criteria for Type 4 Noncircular Vessels (Reinforced Rectan-	517
1.12.5	gular Cross Section)	350
4.12.6	Stress Calculations and Acceptance Criteria for Type 5 Noncircular Vessels (Reinforced Rectan-	550
11210	gular Cross Section With Chamfered Corners)	352
4.12.7	Stress Calculations and Acceptance Criteria for Type 6 Noncircular Vessels (Reinforced Octagonal	001
	Cross Section With Chamfered Corners)	354
4.12.8	Stress Calculations and Acceptance Criteria for Type 7 Noncircular Vessels (Rectangular Cross	001
	Section With Single-Stay Plate or Multiple Bars)	359
4.12.9	Stress Calculations and Acceptance Criteria for Type 8 Noncircular Vessels (Rectangular Cross	
	Section With Double-Stay Plate or Multiple Bars)	360
4.12.10	Stress Calculations and Acceptance Criteria for Type 9 Noncircular Vessels (Obround Cross	
	Section)	361
4.12.11	Stress Calculations and Acceptance Criteria for Type 10 Noncircular Vessels (Reinforced Obround	
	Cross Section)	362
4.12.12	Stress Calculations and Acceptance Criteria for Type 11 Noncircular Vessels (Obround Cross	
	Section With Single-Stay Plate or Multiple Bars)	364
4.12.13	Stress Calculations and Acceptance Criteria for Type 12 Noncircular Vessels (Circular Cross	
	Section With Single-Stay Plate)	365
4.12.14	Effective Width Coefficient	366
4.12.15	Compressive Stress Calculations	367
4.15.1	Stress Coefficients for Horizontal Vessels on Saddle Supports	410
4.16.1	Gasket Factors for Determining the Bolt Loads	425
4.16.2	Recommended Minimum Gasket Contact Width	427
4.16.3	Effective Gasket Width for Determining the Bolt Loads	427
4.16.4	Flange Stress Factors Equations Involving Diameter	429
4.16.5	Flange Stress Factor Equations	431
4.16.6	Moment Arms for Flange Loads for the Operating Condition	433
4.16.7	Flange Moments of Inertia	433
4.16.8	Flange Stress Equations	434
4.16.9	Flange Stress Acceptance Criteria	434
4.16.10	Flange Rigidity Criterion	435

4.16.11	Bolt Spacing Equations
4.16.12	Moment Factor, F_M
4.17.1	Flange Stress Equations
4.17.2	Flange Stress Acceptance Criteria
4.18.1	Effective Elastic Modulus and Poisson's Ratio for a Perforated Plate With an Equilateral Triangular Hole Pattern
4.18.2	Effective Elastic Modulus and Poisson's Ratio for a Perforated Plate With a Square Hole Pattern 49
4.18.3	•
4.18.4	Evaluation of $F_{t,\min}$ and $F_{t,\max}$
4.18.5	Flexible Shell Element Expansion Joint Load Cases and Stress Limits 49 The local Element Expansion Joint Load Cases and Stress Limits 49
4.18.6	Tubesheet Effective Bolt Load, W* 49
4.18.7	Load Combinations Required to Evaluate the Heat Exchanger for the Design Condition49
4.18.8	Load Combinations Required to Evaluate the Heat Exchanger for Each Operating Condition x
4.18.9	Load Combinations Required to Evaluate the Heat Exchanger for Each Operating Condition x 49
4.19.1	Maximum Design Temperatures for Application of the Rules of 4.1952
4.19.2	Stress Calculations and Acceptability Criteria for U-Shaped Unreinforced Bellows Subject to In- ternal Pressure
4.19.3	Method to Determine Coefficient C_p
4.19.4	Method to Determine Coefficient C_f
4.19.5	Method to Determine Coefficient C_d
4.19.6	Allowable Number of Cycles for U-Shaped Unreinforced Bellows
4.19.7	Stress Calculations and Acceptability Criteria for U-Shaped Reinforced Bellows Subject to Internal Pressure
4.19.8	Allowable Number of Cycles for U-Shaped Reinforced Bellows
4.19.8	Stress Calculations and Acceptability Criteria for Toroidal Bellows Subject to Internal Pressure
4.19.9	
4.19.11	Allowable Number of Cycles for Toroidal Bellows
4.21.1	Efficiencies for Welded and/or Expanded Tube-to-Tubesheet Joints
TEXP-1	Instructions for Filling Out TEPS Form
5.1	Loads and Load Cases to Be Considered in a Design 60
5.2	Load Combination Parameters 61
5.3	Load Case Combinations and Allowable Stresses for an Elastic Analysis 61
5.4	Load Case Combinations and Load Factors for a Limit-Load Analysis 61
5.5	Load Case Combinations and Load Factors for an Elastic-Plastic Analysis 61
5.6	Examples of Stress Classification
5.7	Uniaxial Strain Limit for Use in Multiaxial Strain Limit Criterion 61
5.8	Temperature Factors for Fatigue-Screening Criteria 61
5.9	Fatigue-Screening Criteria for Method A 61
5.10	Factors for Method B 61
5.11	Weld Surface Fatigue-Strength-Reduction Factors 61
5.12	Weld Surface Fatigue-Strength-Reduction Factors 61
5.13	Fatigue Penalty Factors for Fatigue Analysis 61
5.14	Load Case Combinations for Method A and Method B Buckling Analysis
5-A.1	Structural Stress Definitions for Continuum Finite Elements
5-A.2	Structural Stress Definitions for Shell or Plate Finite Elements
5-D.1	Stress Indices for Nozzles in Spherical Shells and Portions of Formed Heads
5-D.2	Stress Indices for Nozzles in Cylindrical Shells
5-D.3	Stress Indices for Laterals
5-E.1	Values of E^* for Perforated Tubesheets With an Equilateral Triangular Pattern
5-E.2	Values of v^* for Perforated Tubesheets With an Equilateral Triangular Pattern
5-E.3	Values of E^* for Perforated Tubesheets With a Square Pattern
5-E.4	Values of v^* for Perforated Tubesheets With a Square Pattern
5-E.5	Effective Elastic Modulus, Poisson's Ratio, and Shear Modulus for a Perforated Plate With a Tri- angular Hole Pattern
5-E.6	Effective Elastic Modulus, Poisson's Ratio, and Shear Modulus for a Perforated Plate With a Square
-	Hole Pattern — Pitch Direction

5-E.7	Effective Elastic Modulus, Poisson's Ratio, and Shear Modulus for a Perforated Plate With a Square
	Hole Pattern — Diagonal Direction66
5-E.8	Orthotropic Effective Elasticity Matrix for a Perforated Plate With an Equilateral Triangular Hole
	Pattern
5-E.9	Orthotropic Effective Elasticity Matrix for a Perforated Plate With a Square Hole Pattern 66
5-E.10	Equations for Determining Stress Components Based on the Results From an Equivalent Plate
	Analysis for an Equilateral Rectangular Hole Pattern
5-E.11	Stress Factor K_x Coefficients — Triangular Hole Pattern
5-E.12	Stress Factor K_{y} Coefficients — Triangular Hole Pattern
5-E.13	Stress Factor K_{xy} Coefficients — Triangular Hole Pattern
5-E.14	Stress Factor K_{xz} Coefficients — Triangular Hole Pattern
5-E.15	Stress Factor K_{yz} Coefficients — Triangular Hole Pattern
5-E.16	Stress Factors K_x and K_y Coefficients — Rectangular Hole Pattern
5-E.17	Stress Factor K_{xy} — Square Hole Pattern
5-E.18	Stress Factors K_{xz} and K_{yz} — Square Hole Pattern
5-E.19	Boundary Conditions for the Numerical Analysis (See Figure 5-E.3)
6.1	Equations for Calculating Forming Strains
6.2.A	Post-Cold-Forming Strain Limits and Heat-Treatment Requirements for P-No. 15E Materials 72
6.2.B	Post-Fabrication Strain Limits and Required Heat Treatment for High Alloy Materials 72
6.3	Post-Fabrication Strain Limits and Required Heat Treatment for Nonferrous Materials 72
6.4	Maximum Allowable Offset in Welded Joints
6.5	Welding Process Application Limitations 72
6.6	Maximum Reinforcement for Welded Joints
6.7	Minimum Preheat Temperatures for Welding
6.8	Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Ma-
010	terials: P-No. 1, Group 1, 2, 3
6.9	Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Ma-
(10	terials: P-No. 3, Group 1, 2, 3
6.10	Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Ma-
C 1 1	terials: P-No. 4, Group 1, 2
6.11	Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Ma-
C 1 1 1	terials: P-No. 5A; P-No. 5B, Group 1; and P-No. 5C, Group 1
6.11.A	Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Ma-
(1)	terials: P-No. 15E, Group 1
6.12	Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 6, Group 1, 2, 3 73
6.13	Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Ma-
	terials: P-No. 7, Group 1, 2; and P-No. 8 73
6.14	Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Ma-
	terials: P-No. 9A, Group 1, and P-No. 9B, Group 1
6.15	Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Ma-
	terials: P-No. 10A, Group 1; P-No. 10C, Group 1; P-No. 10H, Group 1; P-No. 10I, Group 1; P-No.
	10K, Group 1; and P-No. 45
6.16	Alternative Postweld Heat Treatment Requirements 74
6.17	Postweld Heat Treatment Requirements for Quenched and Tempered Materials in Table 3-A.2 74
6.18	Quench and Tempered Steels Conditionally Exempt From Production Impact Tests
6.19	High Nickel Alloy Filler for Quench and Tempered Steels 74
6.20	Mandrel Radius for Guided Bend Tests for Forged Fabrication
6.21	U-Shaped Unreinforced and Reinforced Bellows Manufacturing Tolerances
6-A.9.2-1	Technical Data Sheet for PMI
7.1	Examination Groups for Pressure Vessels
7.2	Nondestructive Examination
7.3	Selection of Nondestructive Testing Method for Full Penetration Joints
7.4	Nondestructive Examination of Layered Vessels
7.5	NDE Techniques, Method, Characterization, Acceptance Criteria
7.6	Visual Examination Acceptance Criteria

7.7	Radiographic Acceptance Standards for Rounded Indications (Examples Only)	781
7.8	Flaw Acceptance Criteria for Welds With Thicknesses Between 6 mm ($\frac{1}{4}$ in.) and Less Than	
	13 mm ($\frac{1}{2}$ in.)	781
7.9	Flaw Acceptance Criteria for Welds With Thicknesses Between 13 mm ($\frac{1}{2}$ in.) and Less Than	
	25 mm (1 in.)	782
7.10	Flaw Acceptance Criteria for Welds With Thicknesses Between 25 mm (1 in.) and Less Than or	
	Equal to 300 mm (12 in.)	782
7.11	Flaw Acceptance Criteria for Welds With Thicknesses Equal to or Greater Than 400 mm (16 in.)	783
7-A.1	Inspection and Examination Activities and Responsibilities/Duties	804

FORMS

A-1	Manufacturer's Data Report for Pressure Vessels	31
A-1P	Manufacturer's Data Report for Plate Heat Exchangers	34
A-2	Manufacturer's Partial Data Report	36
A-3	Manufacturer's Data Report Supplementary Sheet	39
A-3L	Manufacturer's Data Report Supplementary Sheet	40
A-4	Manufacturer's Data Report Supplementary Sheet Shell-and-Tube Heat Exchangers	41
4.19.1	Metric Form Specification Sheet for ASME Section VIII, Division 2 Bellows Expansion Joints, Metric Units	546
4.19.2	U.S. Customary Form Specification Sheet for ASME Section VIII, Division 2 Bellows Expansion Joints, U.S. Customary Units	547
TEXP-1	Tube Expanding Procedure Specification (TEPS)	574
TEXP-2	Suggested Format for Tube-to-Tubesheet Expanding Procedure Qualification Record for Test	
	Qualification (TEPQR)	578

LIST OF SECTIONS

SECTIONS

- I Rules for Construction of Power Boilers
- II Materials
 - Part A Ferrous Material Specifications
 - Part B Nonferrous Material Specifications
 - Part C Specifications for Welding Rods, Electrodes, and Filler Metals
 - Part D Properties (Customary)
 - Part D Properties (Metric)
- III Rules for Construction of Nuclear Facility Components
 - Subsection NCA General Requirements for Division 1 and Division 2
 - Appendices
 - Division 1
 - Subsection NB Class 1 Components
 - Subsection NCD Class 2 and Class 3 Components
 - Subsection NE Class MC Components
 - Subsection NF Supports
 - Subsection NG Core Support Structures
 - Division 2 Code for Concrete Containments
 - Division 3 Containment Systems for Transportation and Storage of Spent Nuclear Fuel and High-Level Radioactive Material
 - Division 4 Fusion Energy Devices
 - Division 5 High Temperature Reactors
- IV Rules for Construction of Heating Boilers
- V Nondestructive Examination
- VI Recommended Rules for the Care and Operation of Heating Boilers
- VII Recommended Guidelines for the Care of Power Boilers
- VIII Rules for Construction of Pressure Vessels
 - Division 1
 - Division 2 Alternative Rules
 - Division 3 Alternative Rules for Construction of High Pressure Vessels
- IX Welding, Brazing, and Fusing Qualifications
- X Fiber-Reinforced Plastic Pressure Vessels
- XI Rules for Inservice Inspection of Nuclear Reactor Facility Components
 - Division 1 Rules for Inspection and Testing of Components of Light-Water-Cooled Plants
 - Division 2 Requirements for Reliability and Integrity Management (RIM) Programs for Nuclear Reactor Facilities
- XII Rules for Construction and Continued Service of Transport Tanks
- XIII Rules for Overpressure Protection

FOREWORD^{*}

In 1911, The American Society of Mechanical Engineers established the Boiler and Pressure Vessel Committee to formulate standard rules for the construction of steam boilers and other pressure vessels. In 2009, the Boiler and Pressure Vessel Committee was superseded by the following committees:

- (a) Committee on Power Boilers (I)
- (b) Committee on Materials (II)
- (c) Committee on Construction of Nuclear Facility Components (III)
- (d) Committee on Heating Boilers (IV)
- (e) Committee on Nondestructive Examination (V)
- (f) Committee on Pressure Vessels (VIII)
- (g) Committee on Welding, Brazing, and Fusing (IX)
- (h) Committee on Fiber-Reinforced Plastic Pressure Vessels (X)
- (i) Committee on Nuclear Inservice Inspection (XI)
- (j) Committee on Transport Tanks (XII)
- (k) Committee on Overpressure Protection (XIII)
- (1) Technical Oversight Management Committee (TOMC)

Where reference is made to "the Committee" in this Foreword, each of these committees is included individually and collectively.

The Committee's function is to establish rules of safety relating only to pressure integrity, which govern the construction^{**} of boilers, pressure vessels, transport tanks, and nuclear components, and the inservice inspection of nuclear components and transport tanks. The Committee also interprets these rules when questions arise regarding their intent. The technical consistency of the Sections of the Code and coordination of standards development activities of the Committees is supported and guided by the Technical Oversight Management Committee. This Code does not address other safety issues relating to the construction of boilers, pressure vessels, transport tanks, or nuclear components, or the inservice inspection of nuclear components or transport tanks. Users of the Code should refer to the pertinent codes, standards, laws, regulations, or other relevant documents for safety issues other than those relating to pressure integrity. Except for Sections XI and XII, and with a few other exceptions, the rules do not, of practical necessity, reflect the likelihood and consequences of deterioration in service related to specific service fluids or external operating environments. In formulating the rules, the Committee considers the needs of users, manufacturers, and inspectors of pressure vessels. The objective of the rules is to afford reasonably certain protection of life and property, and to provide a margin for deterioration in service to give a reasonably long, safe period of usefulness. Advancements in design and materials and evidence of experience have been recognized.

This Code contains mandatory requirements, specific prohibitions, and nonmandatory guidance for construction activities and inservice inspection and testing activities. The Code does not address all aspects of these activities and those aspects that are not specifically addressed should not be considered prohibited. The Code is not a handbook and cannot replace education, experience, and the use of engineering judgment. The phrase *engineering judgment* refers to technical judgments made by knowledgeable engineers experienced in the application of the Code. Engineering judgments must be consistent with Code philosophy, and such judgments must never be used to overrule mandatory requirements or specific prohibitions of the Code.

The Committee recognizes that tools and techniques used for design and analysis change as technology progresses and expects engineers to use good judgment in the application of these tools. The designer is responsible for complying with Code rules and demonstrating compliance with Code equations when such equations are mandatory. The Code neither requires nor prohibits the use of computers for the design or analysis of components constructed to the

^{*} The information contained in this Foreword is not part of this American National Standard (ANS) and has not been processed in accordance with ANSI's requirements for an ANS. Therefore, this Foreword may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to the Code.

^{**} *Construction*, as used in this Foreword, is an all-inclusive term comprising materials, design, fabrication, examination, inspection, testing, certification, and overpressure protection.

requirements of the Code. However, designers and engineers using computer programs for design or analysis are cautioned that they are responsible for all technical assumptions inherent in the programs they use and the application of these programs to their design.

The rules established by the Committee are not to be interpreted as approving, recommending, or endorsing any proprietary or specific design, or as limiting in any way the manufacturer's freedom to choose any method of design or any form of construction that conforms to the Code rules.

The Committee meets regularly to consider revisions of the rules, new rules as dictated by technological development, Code Cases, and requests for interpretations. Only the Committee has the authority to provide official interpretations of this Code. Requests for revisions, new rules, Code Cases, or interpretations shall be addressed to the Secretary in writing and shall give full particulars in order to receive consideration and action (see Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees). Proposed revisions to the Code resulting from inquiries will be presented to the Committee for appropriate action. The action of the Committee becomes effective only after confirmation by ballot of the Committee and approval by ASME. Proposed revisions to the Code approved by the Committee are submitted to the American National Standards Institute (ANSI) and published at http://go.asme.org/BPVCPublicReview to invite comments from all interested persons. After public review and final approval by ASME, revisions are published at regular intervals in Editions of the Code.

The Committee does not rule on whether a component shall or shall not be constructed to the provisions of the Code. The scope of each Section has been established to identify the components and parameters considered by the Committee in formulating the Code rules.

Questions or issues regarding compliance of a specific component with the Code rules are to be directed to the ASME Certificate Holder (Manufacturer). Inquiries concerning the interpretation of the Code are to be directed to the Committee. ASME is to be notified should questions arise concerning improper use of the ASME Single Certification Mark.

When required by context in this Section, the singular shall be interpreted as the plural, and vice versa, and the feminine, masculine, or neuter gender shall be treated as such other gender as appropriate.

The words "shall," "should," and "may" are used in this Standard as follows:

- Shall is used to denote a requirement.
- *Should* is used to denote a recommendation.
- *May* is used to denote permission, neither a requirement nor a recommendation.

STATEMENT OF POLICY ON THE USE OF THE ASME SINGLE CERTIFICATION MARK AND CODE AUTHORIZATION IN ADVERTISING

ASME has established procedures to authorize qualified organizations to perform various activities in accordance with the requirements of the ASME Boiler and Pressure Vessel Code. It is the aim of the Society to provide recognition of organizations so authorized. An organization holding authorization to perform various activities in accordance with the requirements of the Code may state this capability in its advertising literature.

Organizations that are authorized to use the ASME Single Certification Mark for marking items or constructions that have been constructed and inspected in compliance with the ASME Boiler and Pressure Vessel Code are issued Certificates of Authorization. It is the aim of the Society to maintain the standing of the ASME Single Certification Mark for the benefit of the users, the enforcement jurisdictions, and the holders of the ASME Single Certification Mark who comply with all requirements.

Based on these objectives, the following policy has been established on the usage in advertising of facsimiles of the ASME Single Certification Mark, Certificates of Authorization, and reference to Code construction. The American Society of Mechanical Engineers does not "approve," "certify," "rate," or "endorse" any item, construction, or activity and there shall be no statements or implications that might so indicate. An organization holding the ASME Single Certification Mark and/or a Certificate of Authorization may state in advertising literature that items, constructions, or activities "are built (produced or performed) or activities conducted in accordance with the requirements of the ASME Boiler and Pressure Vessel Code," or "meet the requirements of the ASME Boiler and Pressure Vessel Code." An ASME corporate logo shall not be used by any organization other than ASME.

The ASME Single Certification Mark shall be used only for stamping and nameplates as specifically provided in the Code. However, facsimiles may be used for the purpose of fostering the use of such construction. Such usage may be by an association or a society, or by a holder of the ASME Single Certification Mark who may also use the facsimile in advertising to show that clearly specified items will carry the ASME Single Certification Mark.

STATEMENT OF POLICY ON THE USE OF ASME MARKING TO IDENTIFY MANUFACTURED ITEMS

The ASME Boiler and Pressure Vessel Code provides rules for the construction of boilers, pressure vessels, and nuclear components. This includes requirements for materials, design, fabrication, examination, inspection, and stamping. Items constructed in accordance with all of the applicable rules of the Code are identified with the ASME Single Certification Mark described in the governing Section of the Code.

Markings such as "ASME," "ASME Standard," or any other marking including "ASME" or the ASME Single Certification Mark shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code.

Items shall not be described on ASME Data Report Forms nor on similar forms referring to ASME that tend to imply that all Code requirements have been met when, in fact, they have not been. Data Report Forms covering items not fully complying with ASME requirements should not refer to ASME or they should clearly identify all exceptions to the ASME requirements.

PERSONNEL ASME Boiler and Pressure Vessel Standards Committees, Subgroups, and Working Groups

January 1, 2023

TECHNICAL OVERSIGHT MANAGEMENT COMMITTEE (TOMC)

R. E. McLaughlin, Chair N. A. Finney, Vice Chair S. J. Rossi, Staff Secretary G. Aurioles. Sr. R. W. Barnes T. L. Bedeaux C. Brown D. B. DeMichael R. P. Deubler J. G. Feldstein G. W. Galanes J. A. Hall T. E. Hansen G. W. Hembree R. B. Keating B. Linnemann

W. M. Lundy D. I. Morris T. P. Pastor M. D. Rana S. C. Roberts F. I. Schaaf. Ir. G. Scribner W. J. Sperko D. Srnic R. W. Swayne J. Vattappilly M. Wadkinson B. K. Nutter, Ex-Officio Member M. J. Pischke, Ex-Officio Member J. F. Henry, Honorary Member

Subgroup on Research and Development (TOMC)

S. C. Roberts, Chair R. B. Keating S. J. Rossi, Staff Secretary R. E. McLaughlin R. W. Barnes T. P. Pastor N. A. Finney D. Andrei, Contributing Member W. Hoffelner

Subgroup on Strategic Initiatives (TOMC)

N. A. Finney, Chair	M. H. Jawad
S. J. Rossi, Staff Secretary	R. B. Keating
R. W. Barnes	R. E. McLaughlin
T. L. Bedeaux	T. P. Pastor
G. W. Hembree	S. C. Roberts

Task Group on Remote Inspection and Examination (SI-TOMC)

S. C. Roberts, Chair	M. Tannenbaum
P. J. Coco	J. Cameron, Alternate
N. A. Finney	A. Byk, Contributing Member
S. A. Marks	J. Pang, Contributing Member
R. Rockwood	S. J. Rossi, Contributing Member
C. Stevens	C. A. Sanna, Contributing Member

Special Working Group on High Temperature Technology (TOMC)

D. Dewees, Chair	B. F. Hantz
F. W. Brust	R. I. Jetter
T. D. Burchell	P. Smith
P. R. Donavin	

ADMINISTRATIVE COMMITTEE

R. E. McLaughlin, Chair M. J. Pischke N. A. Finney, Vice Chair M. D. Rana S. J. Rossi, Staff Secretary S. C. Roberts J. Cameron R. R. Stevenson R. B. Keating R. W. Swayne B. Linnemann M. Wadkinson B. K. Nutter

MARINE CONFERENCE GROUP

J. Oh, Staff Secretary	H. N. Patel
J. G. Hungerbuhler, Jr.	N. Prokopuk
G. Nair	J. D. Reynolds

CONFERENCE COMMITTEE

R. D. Troutt — Texas, Chair J. LeSage, Jr. — Louisiana J. T. Amato — Ohio, Secretary A. M. Lorimor — South Dakota W. Anderson — Mississippi M. Mailman - Northwest R. Becker — Colorado Territories, Canada T. D. Boggs — Missouri W. McGivney — City of New York, R. A. Boillard — Indiana New York S. F. Noonan — Maryland C. L. O'Guin — Tennessee D. P. Brockerville — Newfoundland and Labrador, B. S. Oliver — New Hampshire J. L. Oliver — Nevada R. J. Bunte — Iowa J. H. Burpee — Maine P. B. Polick — Illinois M. Carlson — Washington T. G. Clark — Oregon I. F. Porcella — West Virginia B. Ricks — Montana B. J. Crawford — Georgia W. I. Ross — Pennsylvania E. L. Creaser - New Brunswick, M. H. Sansone — New York T. S. Seime — North Dakota J. J. Dacanay — Hawaii C. S. Selinger — Saskatchewan, R. DeLury — Manitoba, Canada Canada A. Denham — Michigan J. E. Sharier — Ohio C. Dinic — Ontario, Canada R. Spiker — North Carolina D. A. Ehler — Nova Scotia, Canada D. Srnic — Alberta, Canada S. D. Frazier — Washington D. J. Stenrose — Michigan R. J. Stimson II — Kansas T. J. Granneman II — Oklahoma S. Harder — Arizona R. K. Sturm — Utah M. L. Jordan — Kentucky D. K. Sullivan — Arkansas J. Taveras — Rhode Island R. Kamboj — British Columbia, G. Teel — California E. Kawa — Massachusetts D. M. Warburton — Florida A. Khssassi — Quebec, Canada M. Washington — New Jersey D. Kinney — North Carolina E. Wiggins — Alabama

K. S. Lane — Alaska

Canada

Canada

Canada

INTERNATIONAL INTEREST REVIEW GROUP

C. Minu

Y.-W. Park

P. Williamson

A. R. Reynaga Nogales

V. Felix Y.-G. Kim S. H. Leong W. Lin O. F. Manafa

COMMITTEE ON POWER BOILERS (BPV I)

R. E. McLaughlin, Chair E. M. Ortman, Vice Chair U. D'Urso, Staff Secretary D. I. Anderson J. L. Arnold K. K. Coleman J. G. Feldstein S. Fincher G. W. Galanes T. E. Hansen J. S. Hunter M. Ishikawa M. Lemmons L. Moedinger Y. Oishi M. Ortolani A. Spangenberg D. E. Tompkins D. E. Tuttle J. Vattappilly

M. Wadkinson R. V. Wielgoszinski F. Zeller H. Michael, Delegate D. L. Berger, Honorary Member P. D. Edwards, Honorary Member D. N. French, Honorary Member J. Hainsworth, Honorary Member J. F. Henry, Honorary Member W. L. Lowry, Honorary Member J. R. MacKay, Honorary Member P. A. Molvie, Honorary Member J. T. Pillow, Honorary Member B. W. Roberts, Honorary Member R. D. Schueler, Jr., Honorary Member J. M. Tanzosh, Honorary Member R. L. Williams, Honorary Member L. W. Yoder, Honorary Member

Executive Committee (BPV I)

E. M. Ortman, Chair R. E. McLaughlin, Vice Chair D. I. Anderson I. L. Arnold J. R. Braun K. K. Coleman H. Dalal T. Dhanraj

Subgroup on Design (BPV I)

D. I. Anderson, Chair L. S. Tsai, Secretary P. Becker L. Krupp C. T. McDaris

N. S. Ranck J. Vattappilly M. Wadkinson D. Dewees, Contributing Member J. P. Glaspie, Contributing Member

Subgroup on Fabrication and Examination (BPV I)

P. Jennings

C. T. McDaris

R. J. Newell

Y. Oishi

R. E. McLaughlin

R. V. Wielgoszinski

M. Lewis

J. L. Arnold, <i>Chair</i>
P. F. Gilston, Vice Chair
P. Becker, Secretary
K. K. Coleman
S. Fincher
G. W. Galanes
T. E. Hansen

U. D'Urso P. F. Gilston K. Hayes P. Jennings A. Spangenberg D. E. Tompkins M. Wadkinson

Subgroup on General Requirements and Piping (BPV I)

D. E. Tompkins, Chair M. Wadkinson, Vice Chair M. Lemmons, Secretary R. Antoniuk T. E. Hansen M. Ishikawa R. E. McLaughlin

L. Moedinger

Subgroup on Locomotive Boilers (BPV I)

J. R. Braun, Chair S. M. Butler, Secretary G. W. Galanes D. W. Griner M. A. Janssen

S. A. Lee L. Moedinger G. M. Rav M. W. Westland

Subgroup on Materials (BPV I)

K. K. Coleman. Chair K. Hayes, Vice Chair M. Lewis, Secretary S. H. Bowes G. W. Galanes P. F. Gilston J. S. Hunter E. Liebl F. Masuyama

L. S. Nicol M. Ortolani D. W. Rahoi F. Zeller B. W. Roberts, Contributing Member J. M. Tanzosh, Contributing Member

Subgroup on Solar Boilers (BPV I)

P. Jennings, Chair R. E. Hearne, Secretary S. Fincher

L.S. Hunter P. Swarnkar

Task Group on Modernization (BPV I)

D. I. Anderson, Chair U. D'Urso, Staff Secretary J. L. Arnold D. Dewees G. W. Galanes J. P. Glaspie

T. E. Hansen R. E. McLaughlin E. M. Ortman D. E. Tuttle J. Vattappilly

Germany International Working Group (BPV I)

- A. Spangenberg, Chair R. A. Meyers P. Chavdarov, Secretary H. Michael B. Daume F. Miunske J. Fleischfresser M. Sykora R. Helmholdt, Contributing C. Jaekel R. Kauer Memher D. Koelbl J. Henrichsmeyer, Contributing S. Krebs Member B. Müller, Contributing Member T. Ludwig

B. J. Mollitor Y. Oishi E. M. Ortman D. E. Tuttle J. Vattappilly R. V. Wielgoszinski W. L. Lowry, Contributing Member

India International Working Group (BPV I)

H. Dalal, Chair	S. Purkait
T. Dhanraj, Vice Chair	M. G. Rao
K. Thanupillai, Secretary	G. U. Shanker
P. Brahma	D. K. Shrivastava
S. Chakrabarti	K. Singha
A. Hantodkar	R. Sundararaj
A. J. Patil	S. Venkataramana

COMMITTEE ON MATERIALS (BPV II)

J. Cameron <i>, Chair</i>	D. W. Rahoi
G. W. Galanes, Vice Chair	W. Ren
C. E. Rodrigues, Staff Secretary	E. Shapiro
A. Appleton	R. C. Sutherlin
P. Chavdarov	F. Zeller
K. K. Coleman	O. Oldani, <i>Delegate</i>
D. W. Gandy	A. Chaudouet, Contributing
J. F. Grubb	Member
J. A. Hall	J. D. Fritz, Contributing Member
D. O. Henry	W. Hoffelner, Contributing Member
K. M. Hottle	K. E. Orie, Contributing Member
M. Ishikawa	D. T. Peters, Contributing Member
K. Kimura	B. W. Roberts, Contributing
M. Kowalczyk	Member
D. L. Kurle	J. M. Tanzosh, Contributing
F. Masuyama	Member
S. Neilsen	E. Upitis, Contributing Member
L. S. Nicol	R. G. Young, Contributing Member
M. Ortolani	

Executive Committee (BPV II)

W. Hoffelner

M. Ishikawa

M. Ortolani

J. Robertson

M. H. Jawad

D. L. Kurle

P. K. Rai

R. W. Mikitka

M. Wadkinson

S. Krishnamurthy

E. Shapiro

P. K. Rai

J. Cameron, Chair
C. E. Rodrigues, Staff Secretary
A. Appleton
K. K. Coleman
G. W. Galanes
J. F. Grubb
S. Guzey

Subgroup on External Pressure (BPV II)

S. Guzey <i>, Chair</i>
E. Alexis, Vice Chair
J. A. A. Morrow, Secretary
L. F. Campbell
H. Chen
D. S. Griffin
J. F. Grubb

Subgroup on Ferrous Specifications (BPV II)

A. Appleton, Chair
K. M. Hottle, Vice Chair
C. Hyde, Secretary
D. Amire-Brahimi
G. Cuccio
0. Elkadim
D. Fialkowski
J. F. Grubb
D. S. Janikowski
YJ. Kim

S. G. Lee W. C. Mack J. Nickel K. E. Orie D. Poweleit E. Upitis L. Watzke J. D. Fritz, *Contributing Member* C. Meloy, *Contributing Member*

Subgroup on International Material Specifications (BPV II)

M. Ishikawa, ChairF. ZellerP. Chavdarov, Vice ChairC. ZhouA. ChaudouetO. Oldani, DelegateH. ChenH. Lorenz, Contributing MemberA. F. GarbolevskyT. F. Miskell, Contributing MemberD. O. HenryE. Upitis, Contributing MemberW. M. LundyH. Lundy

Subgroup on Nonferrous Alloys (BPV II)

J. A. McMaster E. Shapiro, Chair W. MacDonald, Vice Chair D. W. Rahoi J. Robertson, Secretary W. Ren R. M. Beldyk R. C. Sutherlin J. M. Downs R. Wright J. F. Grubb S. Yem J. A. Hall D. B. Denis, Contributing Member D. Maitra D. T. Peters, Contributing Member

Subgroup on Physical Properties (BPV II)

P. K. Rai, ChairR. D. JonesS. Neilsen, Vice ChairP. K. LamG. Aurioles, Sr.D. W. RahoiD. ChandiramaniE. ShapiroP. ChavdarovD. K. VermaH. EshraghiS. YemJ. F. GrubbD. B. Denis, Contributing MemberB. F. Hantz

Subgroup on Strength, Ferrous Alloys (BPV II)

M. Ortolani, ChairM. OsterfossL. S. Nicol, SecretaryD. W. RahoiG. W. GalanesS. RosinskiJ. A. HallM. UeyamaM. IshikawaF. ZellerS. W. KnowlesF. Abe, Contributing MemberF. MasuyamaR. G. Young, Contributing Member

Subgroup on Strength of Weldments (BPV II & BPV IX)

K. K. Coleman, Chair J. Penso K. L. Hayes, Vice Chair D. W. Rahoi S. H. Bowes, Secretary W. J. Sperko M. Denault J. P. Swezy, Jr. G. W. Galanes M. Ueyama D. W. Gandy P. D. Flenner, Contributing Member M. Ghahremani B. W. Roberts, Contributing W. F. Newell, Jr. Member

Working Group on Materials Database (BPV II)

W. Hoffelner, Chair	J. Cameron, Contributing Member
C. E. Rodrigues, Staff Secretary	J. F. Grubb, Contributing Member
F. Abe	D. T. Peters, Contributing Member
W. MacDonald	W. Ren, Contributing Member
R. C. Sutherlin	B. W. Roberts, Contributing
D. Andrei, Contributing Member	Member
J. L. Arnold, Contributing Member	E. Shapiro, Contributing Member

Working Group on Creep Strength Enhanced Ferritic Steels (BPV II)

M. Ortolani, *Chair* G. W. Galanes, *Vice Chair* P. Becker, *Secretary* S. H. Bowes K. K. Coleman K. Kimura M. Lang S. Luke F. Masuyama T. Melfi

- W. F. Newell, Jr. J. J. Sanchez-Hanton J. A. Siefert W. J. Sperko F. Zeller F. Abe, *Contributing Member* P. D. Flenner, *Contributing Member* J. M. Tanzosh, *Contributing*
 - Member

Working Group on Data Analysis (BPV II)

J. F. Grubb, *Chair* W. Ren, *Vice Chair* K. Kimura F. Masuyama S. Neilsen M. Ortolani M. J. Swindeman

- ta Analysis (BPV II) F. Abe, Contributing Member W. Hoffelner, Contributing Member W. C. Mack, Contributing Member D. T. Peters, Contributing Member B. W. Roberts, Contributing
- Member

China International Working Group (BPV II)

T. Xu, Secretary	S. Tan
W. Cai	C. Wang
W. Fang	Jinguang Wang
Q. C. Feng	Jiongxiang Wang
S. Huo	QJ. Wang
F. Kong	X. Wang
H. Leng	HC. Yang
Hli Li	J. Yang
Hongbin Li	L. Yin
J. Li	H. Zhang
S. Liu	XH. Zhang
Z. Rongcan	Y. Zhang

COMMITTEE ON CONSTRUCTION OF NUCLEAR FACILITY COMPONENTS (BPV III)

R. B. Keating, Chair T. M. Adams, Vice Chair D. E. Matthews, Vice Chair A. Maslowski, Staff Secretary A. Appleton S. Asada R. W. Barnes W. H. Borter M. E. Cohen R. P. Deubler P. R. Donavin A. C. Eberhardt J. V. Gardiner J. Grimm S. Hunter R. M. Jessee R. I. Jetter C. C. Kim G. H. Koo D. W. Lewis M. A. Lockwood K. A. Manoly

K. Matsunaga B. McGlone S. McKillop J. McLean J. C. Minichiello M. N. Mitchell T. Nagata J. B. Ossmann S. Pellet E. L. Pleins T.-L. Sham W. J. Sperko W. Windes C. Basavaraju, Alternate C. T. Smith, Contributing Member W. K. Sowder, Jr., Contributing Member M. Zhou, Contributing Member E. B. Branch, Honorary Member G. D. Cooper, Honorary Member D. F. Landers, Honorary Member

C. Pieper, Honorary Member

Executive Committee (BPV III)

R. B. Keating, ChairK. A. ManolyA. Maslowski, SecretaryD. E. MatthewsT. M. AdamsS. McKillopP. R. DonavinJ. McLeanJ. V. GardinerT.-L. ShamJ. GrimmW. K. Sowder, Jr.D. W. LewisK. A. Kavanagh, Alternate

Argentina International Working Group (BPV III)

M. F. Liendo, *Chair* J. Fernández, *Vice Chair* O. Martinez, *Staff Secretary* O. A. Verastegui, *Secretary* E. H. Aldaz G. O. Anteri A. P. Antipasti D. O. Bordato G. Bourguigne M. Brusa A. Claus R. G. Cocco

M. M. Gamizo I. M. Guerreiro I. A. Knorr D. E. Matthews A. E. Pastor M. Rivero M. D. Vigliano P. Yamamoto M. Zunino

A. J. Dall'Osto

J. I. Duo

China International Working Group (BPV III)

Y. Wang, Chair	C. Peiyin
H. Yu, Secretary	Z. Sun
L. Feng	G. Tang
J. Gu	L. Ting
L. Guo	F. Wu
C. Jiang	C. Yang
D. Kang	P. Yang
Y. Li	W. Yang
H. Lin	H. Yin
S. Liu	D. Yuangang
W. Liu	G. Zhang
J. Ma	D. Zhao
К. Мао	Z. Zhong
D. E. Matthews	Q. Zhou
J. Ming	H. Zhu
W. Pei	

Germany International Working Group (BPV III)

J. Wendt <i>, Chair</i>	C. Kuschke
D. Koelbl, Vice Chair	HW. Lange
R. Gersinska, Secretary	T. Ludwig
P. R. Donavin	X. Pitoiset
R. Döring	M. Reichert
C. G. Frantescu	G. Roos
A. Huber	J. Rudolph
R. E. Hueggenberg	L. Sybertz
C. Huttner	I. Tewes
E. Iacopetta	R. Tiete
M. H. Koeppen	F. Wille

India International Working Group (BPV III)

R. N. Sen, Chair	R. Kumar
S. B. Parkash, Vice Chair	S. Kumar
A. D. Bagdare, Secretary	M. Lakshminarasimhan
S. Aithal	T. Mukherjee
S. Benhur	D. Narain
N. M. Borwankar	A. D. Paranjpe
M. Brijlani	J. R. Patel
H. Dalal	E. L. Pleins
S. K. Goyal	T. J. P. Rao
A. Johori	V. Sehgal
A. P. Kishore	S. Singh
D. Kulkarni	B. K. Sreedhar

Korea International Working Group (BPV III)

G. H. Koo, <i>Chair</i> OS. Kim, <i>Secretary</i> H. Ahn S. Cho GS. Choi MJ. Choi S. Choi J. Y. Hong NS. Huh JK. Hwang S. S. Hwang	YS. Kim D. Kwon B. Lee D. Lee S. Lee SG. Lee H. Lim LK. Nam CK. Oh CY. Oh EJ. Oh C. PIL
,	
J. Y. Hong	IK. Nam
NS. Huh	CK. Oh
JK. Hwang	CY. Oh
S. S. Hwang	EJ. Oh
C. Jang	C. Park
I. I. Jeong	H. Park
S. H. Kang	Y. S. Pyun
JI. Kim	T. Shin
JS. Kim	S. Song
MW. Kim	W. J. Sperko
SS. Kim	J. S. Yang
YB. Kim	0. Yoo

Seismic Design Steering Committee (BPV III)

T. M. Adams, Chair	G. H. Koo
F. G. Abatt, Secretary	A. Maekawa
G. A. Antaki	K. Matsunaga
C. Basavaraju	J. McLean
D. Chowdhury	R. M. Pace
R. Döring	D. Watkins

Task Group on Alternate Requirements (BPV III)

J. Wen, Chair
R. R. Romano, Secretary
P. J. Coco
P. R. Donavin
J. V. Gardiner
J. Grimm
R. S. Hill III
M. Kris
M. A. Lockwood

D. E. Matthews S. McKillop B. P. Nolan J. B. Ossmann E. C. Renaud M. A. Richter I. H. Tseng Y. Wang

United Kingdom International Working Group (BPV III)

C. D. Bell, Chair G. Innes P. M. James, Vice Chair S. A. Jones B. Pellereau C. B. Carpenter, Secretary T. M. Adams C. R. Schneider T. Bann J. W. Stairmand M. J. Chevalier J. Sulley A. J. Cole-Baker J. Talamantes-Silva M. Consonni A. J. Holt, Contributing Member M. J. Crathorne

Special Working Group on New Plant Construction Issues (BPV III)

J. B. Ossmann, Chair R. E. McLaughlin A. Maslowski, Staff Secretary E. L. Pleins M. C. Buckley, Secretary D. W. Sandusky M. Arcaro M. C. Scott A. Cardillo R. R. Stevenson P. J. Coco H. Xu K. Harris J. Yan J. Honcharik J. C. Minichiello, Contributing M. Kris Member

Special Working Group on Editing and Review (BPV III)

S. Hunter
J. C. Minichiello
J. F. Strunk
C. Wilson

Special Working Group on HDPE Stakeholders (BPV III)

S. Patterson, Secretary S. Choi C. M. Faidy M. Golliet R. M. Jessee J. Johnston, Jr. M. Kuntz M. Lashley K. A. Manoly D. P. Munson T. M. Musto J. E. O'Sullivan V. Rohatgi F. J. Schaaf, Jr. R. Stakenborghs M. Troughton B. Lin, *Alternate*

Special Working Group on Honors and Awards (BPV III)

J. C. Minichiello, Chair	R. M. Jessee
A. Appleton	D. E. Matthews
R. W. Barnes	

Special Working Group on International Meetings and IWG Liaisons (BPV III)

D. E. Matthews, Chair	P. R. Donavin
A. Maslowski, Staff Secretary	E. L. Pleins
T. M. Adams	W. J. Sperko
R. W. Barnes	

Joint ACI-ASME Committee on Concrete Components for Nuclear Service (BPV III)

J. McLean <i>, Chair</i>	G. Thomas
L. J. Colarusso, Vice Chair	A. Varma
J. Cassamassino, Staff Secretary	S. Wang
A. Dinizulu, Staff Secretary	A. Istar, Alternate
C. J. Bang	A. Adediran, Contri
A. C. Eberhardt	S. Bae, Contributing
B. D. Hovis	JB. Domage, Contri
T. C. Inman	P. S. Ghosal, Contril
C. Jones	B. B. Scott, Contribu
T. Kang	M. R. Senecal, Contr
NH. Lee	Member
J. A. Munshi	Z. Shang, Contributi
T. Muraki	M. Sircar, Contribut
J. S. Saini	C. T. Smith, Contrib
I E Strupk	

J. F. Strunk

ibuting Member g Member ributing Member ibuting Member outing Member tributing ting Member iting Member buting Member

Special Working Group on Modernization (BPV III-2)

S. Wang, <i>Chair</i>	A. Varma
J. McLean, Vice Chair	F. Lin, Contributing Member
A. Adediran	J. A. Pires, Contributing Member
S. Malushte	I. Zivanovic, Contributing Member
J. S. Saini	

Task Group on Steel-Concrete Composite Containments (BPV III-2)

A. Varma, <i>Chair</i>	J. A. Pires
S. Malushte	J. S. Saini
J. McLean	

Working Group on Design (BPV III-2)

NH. Lee, Chair
S. Wang, Vice Chair
M. Allam
S. Bae
L. J. Colarusso
A. C. Eberhardt
B. D. Hovis
T. C. Inman
C. Jones
J. A. Munshi
T. Muraki
I. S. Saini

G. Thomas A. Istar, Alternate P. S. Ghosal, Contributing Member S.-Y. Kim, Contributing Member J. Kwon, Contributing Member S. E. Ohler-Schmitz, Contributing Member B. B. Scott, Contributing Member Z. Shang, Contributing Member M. Shin, Contributing Member M. Sircar, Contributing Member

Working Group on Materials, Fabrication, and Examination (BPV III-2)

C. Jones <i>, Chair</i>	Z. Shang
A. Eberhardt, <i>Vice Chair</i>	J. F. Strunk
C. J. Bang	A. A. Aboelmagd, Contributing
B. Birch	Member
JB. Domage	P. S. Ghosal, Contributing Member
T. Kang	B. B. Scott, Contributing Member
NH. Lee	I. Zivanovic, Contributing Member

Subcommittee on Design (BPV III)

P. R. Donavin, Chair	B. Pellereau
S. McKillop, Vice Chair	TL. Sham
R. P. Deubler	W. F. Weitze
M. A. Gray	C. Basavaraju, Alternate
R. I. Jetter	G. L. Hollinger, Contributing
R. B. Keating	Member
JI. Kim	M. H. Jawad, Contributing Member
K. A. Manoly	W. J. O'Donnell, Sr., Contributing
D. E. Matthews	Member
M. N. Mitchell	K. Wright, Contributing Member

Subgroup on Component Design (SC-D) (BPV III)

P. Vock, Vice ChairD. MurphyS. Pellet, SecretaryT. M. MustoT. M. AdamsT. Nagata	D. E. Matthews, Chair	T. Mitsuhashi
	P. Vock, Vice Chair	D. Murphy
T. M. Adams T. Nagata	S. Pellet, Secretary	T. M. Musto
	T. M. Adams	T. Nagata
D. J. Ammerman G. Z. Tokarski	D. J. Ammerman	G. Z. Tokarski
G. A. Antaki S. Willoughby-Braun	G. A. Antaki	S. Willoughby-Braun
J. J. Arthur C. Wilson	J. J. Arthur	C. Wilson
S. Asada A. A. Dermenjian, <i>Contributing</i>	S. Asada	A. A. Dermenjian, Contributing
J. F. Ball Member	J. F. Ball	Member
C. Basavaraju P. Hirschberg, Contributing	C. Basavaraju	P. Hirschberg, Contributing
D. Chowdhury Member	D. Chowdhury	Member
N. A. Costanzo R. B. Keating, Contributing Member	N. A. Costanzo	R. B. Keating, Contributing Member
R. P. Deubler OS. Kim, Contributing Member	R. P. Deubler	OS. Kim, Contributing Member
M. Kassar R. J. Masterson, Contributing	M. Kassar	R. J. Masterson, Contributing
D. Keck Member	D. Keck	Member
T. R. Liszkai H. S. Mehta, Contributing Member	T. R. Liszkai	H. S. Mehta, Contributing Member
K. A. Manoly I. Saito, Contributing Member	K. A. Manoly	I. Saito, Contributing Member
J. C. Minichiello J. P. Tucker, <i>Contributing Member</i>	J. C. Minichiello	J. P. Tucker, Contributing Member

Task Group to Improve Section III/XI Interface (SG-CD) (BPV III)

P. Vock, Chair E. Henry, Secretary G. A. Antaki A. Cardillo D. Chowdhury J. Honcharik J. Hurst J. Lambin

C. A. Nove T. Nuoffer J. B. Ossmann A. T. Roberts III J. Sciulli A. Udyawar S. Willoughby-Braun

Working Group on Core Support Structures (SG-CD) (BPV III)

D. Keck, Chair
R. Z. Ziegler, Vice Chair
R. Martin, Secretary
G. W. Delport
L. C. Hartless
T. R. Liszkai
M. Nakajima

- M. D. Snyder R. Vollmer T. M. Wiger
- C. Wilson
- Y. Wong
- H. S. Mehta, Contributing Member

Working Group on Design of Division 3 Containment Systems (SG-CD) (BPV III)

- D. J. Ammerman, Chair D. Siromani S. Klein, Secretary R. Sypulski G. Bjorkman X. Zhai V. Broz X. Zhang D. W. Lewis C. R. Sydnor, Alternate J. M. Piotter J. C. Minichiello, Contributing A. Rigato Member
- xxxvi

P. Sakalaukus, Jr.

Working Group on HDPE Design of Components (SG-CD) (BPV III)

- T. M. Musto, *Chair* J. B. Ossmann, *Secretary* M. Brandes S. Choi J. R. Hebeisen P. Krishnaswamy M. Kuntz
- K. A. Manoly D. P. Munson F. J. Schaaf, Jr. R. Stakenborghs M. T. Audrain, *Alternate* J. C. Minichiello, *Contributing Member*

Working Group on Piping (SG-CD) (BPV III)

G. A. Antaki, <i>Chair</i>	K. E. Reid II
G. Z. Tokarski, Secretary	D. Vlaicu
C. Basavaraju	S. Weindorf
J. Catalano	T. M. Adams, Contributing Member
F. Claeys	R. B. Keating, Contributing Member
C. M. Faidy	T. B. Littleton, Contributing
R. G. Gilada	Member
N. M. Graham	Y. Liu, Contributing Member
M. A. Gray	J. F. McCabe, Contributing Member
R. J. Gurdal	J. C. Minichiello, Contributing
R. W. Haupt	Member
A. Hirano	A. N. Nguyen, Contributing Member
P. Hirschberg	M. S. Sills, Contributing Member
M. Kassar	N. C. Sutherland, Contributing
J. Kawahata	Member
D. Lieb	E. A. Wais, Contributing Member
IK. Nam	CI. Wu, Contributing Member
J. O'Callaghan	

Working Group on Pressure Relief (SG-CD) (BPV III)

- K. R. May, *Chair* R. Krithivasan, *Secretary* M. Brown J. W. Dickson S. Jones R. Lack D. Miller T. Patel K. Shores
- I. H. Tseng B. J. Yonsky Y. Wong, Alternate J. Yu, Alternate S. T. French, Contributing Member D. B. Ross, Contributing Member S. Ruesenberg, Contributing Member

Working Group on Pumps (SG-CD) (BPV III)

- D. Chowdhury, *Chair* J. V. Gregg, Jr., *Secretary* B. Busse M. D. Eftychiou R. A. Fleming K. J. Noel J. Sulley
- K. B. Wilson Y. Wong I. H. Tseng, Alternate X. Di, Contributing Member C. Gabhart, Contributing Member R. Ladefian, Contributing Member

Working Group on Supports (SG-CD) (BPV III)

- N. A. Costanzo, *Chair* U. S. Bandyopadhyay, *Secretary* K. Avrithi N. M. Bisceglia R. P. Deubler N. M. Graham Y. Matsubara
- S. Pellet

- G. Thomas
- G. Z. Tokarski L. Vandersip
- P. Wiseman
 - . wiseman
- R. J. Masterson, Contributing
- Member
- J. R. Stinson, Contributing Member

Working Group on Valves (SG-CD) (BPV III)

P. Vock, Chair H. O'Brien S. Jones, Secretary J. O'Callaghan M. C. Buckley M. Rain A. Cardillo K. E. Reid II G. A. Jolly J. Sulley J. Lambin I. H. Tseng J. P. Tucker T. Lippucci C. A. Mizer Y. Wong, Alternate

Working Group on Vessels (SG-CD) (BPV III)

D. Murphy, Chair T. J. Schriefer S. Willoughby-Braun, Secretary M. C. Scott J. J. Arthur P. K. Shah C. Basavaraju D. Vlaicu M. Brijlani C. Wilson L. Constantinescu R. Z. Ziegler J. I. Kim R. J. Huang, Alternate 0.-S. Kim B. Basu, Contributing Member D. E. Matthews R. B. Keating, Contributing Member W. F. Weitze, Contributing Member T. Mitsuhashi

Subgroup on Design Methods (SC-D) (BPV III)

S. McKillop, Chair	P. Smith
P. R. Donavin, Vice Chair	R. Vollmer
J. Wen, Secretary	W. F. Weitze
K. Avrithi	T. M. Adams, Contributing Member
L. Davies	C. W. Bruny, Contributing Member
M. A. Gray	S. R. Gosselin, Contributing
J. V. Gregg, Jr.	Member
K. Hsu	H. T. Harrison III, Contributing
R. Kalnas	Member
D. Keck	W. J. O'Donnell, Sr., Contributing
J. I. Kim	Member
B. Pellereau	K. Wright, Contributing Member
W. D. Reinhardt	

Special Working Group on Computational Modeling for Explicit Dynamics (SG-DM) (BPV III)

G. Bjorkman, Chair	D. Siromani
D. J. Ammerman, Vice Chair	CF. Tso
V. Broz, Secretary	M. C. Yaksh
S. Kuehner	U. Zencker
D. Molitoris	X. Zhang
W. D. Reinhardt	Y. Wong, Contributing Member

Working Group on Design Methodology (SG-DM) (BPV III)

B. Pellereau, Chair R. Vollmer, Secretary K. Avrithi C. Basavaraju F. Berkepile C. M. Faidy Y. Gao M. Kassar J. I. Kim T. R. Liszkai D. Lytle K. Matsunaga S. McKillop S. Ranganath W. D. Reinhardt P. K. Shah S. Wang W. F. Weitze J. Wen

- T. M. Wiger
 K. Hsu, Alternate
 G. Banyay, Contributing Member
 D. S. Bartran, Contributing Member
 R. D. Blevins, Contributing Member
 M. R. Breach, Contributing Member
 C. W. Bruny, Contributing Member
 D. L. Caldwell, Contributing Member
 H. T. Harrison III, Contributing
- Member C. F. Heberling II, Contributing Member
- P. Hirschberg, *Contributing*
- Member
- R. B. Keating, Contributing Member
- A. Walker, Contributing Member
- K. Wright, Contributing Member

Working Group on Environmental Fatigue Evaluation Methods (SG-DM) (BPV III)

M. A. Gray <i>, Chair</i>	B. Pellereau
W. F. Weitze, Secretary	D. Vlaicu
S. Asada	K. Wang
K. Avrithi	R. Z. Ziegler
R. C. Cipolla	S. Cuvilliez, Contributing Member
T. M. Damiani	T. D. Gilman, Contributing Member
C. M. Faidy	S. R. Gosselin, Contributing
A. Hirano	Member
P. Hirschberg	Y. He, Contributing Member
K. Hsu	H. S. Mehta, Contributing Member
JS. Park	K. Wright, Contributing Member

Working Group on Fatigue Strength (SG-DM) (BPV III)

I. I. Kim

S. H. Kleinsmith

B. Pellereau S. Ranganath Y. Wang

P. R. Donavin, Chair
M. S. Shelton, Secretary
R. S. Bass
T. M. Damiani
D. W. DeJohn
C. M. Faidy
P. Gill
S. R. Gosselin
R. J. Gurdal
C. F. Heberling II
C. E. Hinnant
P. Hirschberg
K. Hsu

W. F. Weitze Y. Zou S. Majumdar, *Contributing Member* H. S. Mehta, *Contributing Member* W. J. O'Donnell, Sr., *Contributing Member* K. Wright, *Contributing Member*

Working Group on Probabilistic Methods in Design (SG-DM) (BPV III)

M. Golliet, *Chair* R. Kalnas, *Vice Chair* K. Avrithi G. Brouette J. Hakii D. O. Henry

A. Hirano K. A. Manoly P. J. O'Regan B. Pellereau M. Yagodich

M. Yagodich R. S. Hill III, Contributing Member

Subgroup on Containment Systems for Spent Nuclear Fuel and High-Level Radioactive Material (BPV III)

R. Sypulski

Member

- D. W. Lewis, Chair
- D. J. Ammerman, Vice Chair
- S. Klein, Secretary
- G. Bjorkman
- V. Broz
- A. Rigato
- P. Sakalaukus, Jr.
- D. Siromani D. B. Spencer
- J. Wellwood X. J. Zhai X. Zhang D. Dunn, *Alternate* W. H. Borter, *Contributing Member* E. L. Pleins, *Contributing Member*
 - N. M. Simpson, *Contributing*
- ncer

Subgroup on Fusion Energy Devices (BPV III)

W. K. Sowder, Jr., Chair C. I. Lammi A. Maslowski, Staff Secretary S. Lawler M. Ellis, Secretary P. Mokaria M. Bashir D. J. Roszman I. P. Blanchard F. J. Schaaf, Jr. P. Smith T. P. Davis B. R. Doshi Y. Song L. El-Guebaly C. Vangaasbeek G. Holtmeier I. J. Zatz D. Johnson R. W. Barnes, Contributing Member

I. Kimihiro

Special Working Group on Fusion Stakeholders (BPV III-4)

T. P. Davis, *Chair* R. W. Barnes V. Chugh S. S. Desai F. Deschamps M. Hua S. Lawler

D.

Μ.

S. C. Middleburgh R. J. Pearson W. K. Sowder, Jr. D. A. Sutherland N. Young J. Zimmermann

Working Group on General Requirements (BPV III-4)

J. Roszman <i>, Chair</i>	P. Mokaria
Ellis	W. K. Sowder, Jr.

Working Group on In-Vessel Components (BPV III-4)

M. Bashir, <i>Chair</i>	M. Kalsey
Y. Carin	S. T. Madabusi
T. P. Davis	

Working Group on Magnets (BPV III-4)

W. K. Sowder, Jr., Chair

M. Porton, Chair

T. P. Davis

D. S. Bartran

Working Group on Materials (BPV III-4)

P. Mummery

Working Group on Vacuum Vessels (BPV III-4)

I. Kimihiro, Chair	
L. C. Cadwallader	
B. R. Doshi	

D. Johnson Q. Shijun Y. Song

Subgroup on General Requirements (BPV III)

N. DeSantis, Secretary J. Rogers
V. Apostolescu R. Spuhl
A. Appleton D. M. Vickery
S. Bell J. DeKleine, Contributing Member
J. R. Berry H. Michael, Contributing Member
G. Brouette D. J. Roszman, Contributing
G. C. Deleanu Member
J. W. Highlands C. T. Smith, Contributing Member
E. V. Imbro W. K. Sowder, Jr., Contributing
K. A. Kavanagh Member
YS. Kim G. E. Szabatura, Contributing
B. McGlone Member
E. C. Renaud

Special Working Group on General Requirements Consolidation (SG-GR) (BPV III)

E. C. Renaud
J. L. Williams
C. T. Smith, Contributing Member

Working Group on General Requirements (SG-GR) (BPV III)

B. McGlone, Chair	D. T. Meisch
J. Grimm, Secretary	E. C. Renaud
V. Apostolescu	T. N. Rezk
A. Appleton	J. Rogers
S. Bell	B. S. Sandhu
J. R. Berry	R. Spuhl
G. Brouette	J. F. Strunk
P. J. Coco	D. M. Vickery
N. DeSantis	J. L. Williams
Y. Diaz-Castillo	J. DeKleine, Contributing Member
O. Elkadim	S. F. Harrison, Jr., Contributing
J. Harris	Member
J. W. Highlands	D. J. Roszman, Contributing
E. V. Imbro	Member
K. A. Kavanagh	G. E. Szabatura, Contributing
YS. Kim	Member
Y. K. Law	

Working Group on General Requirements for Graphite and Ceramic Composite Core Components and Assemblies (SG-GR) (BPV III)

- W. J. Geringer, *Chair* A. Appleton J. R. Berry C. Cruz Y. Diaz-Castillo J. Lang
- M. N. Mitchell J. Potgieter E. C. Renaud R. Spuhl W. Windes B. Lin, *Alternate*

Subgroup on High Temperature Reactors (BPV III)

TL. Sham, <i>Chair</i>	A. Mann
Y. Wang, Secretary	M. C. Messner
M. Ando	X. Wei
N. Broom	W. Windes
F. W. Brust	R. Wright
P. Carter	G. L. Zeng
M. E. Cohen	D. S. Griffin, Contributing Member
W. J. Geringer	X. Li, Contributing Member
B. F. Hantz	W. O'Donnell, Sr., Contributing
M. H. Jawad	Member
W. T. Jessup	L. Shi, Contributing Member
R. I. Jetter	R. W. Swindeman, Contributing
K. Kimura	Member
G. H. Koo	

Special Working Group on High Temperature Reactor Stakeholders (SG-HTR) (BPV III)

M. E. Cohen, Chair	G. H. Koo
M. C. Albert	N. J. McTiernan
M. Arcaro	T. Nguyen
R. W. Barnes	K. J. Noel
N. Broom	TL. Sham
R. Christensen	B. Song
V. Chugh	X. Wei
W. Corwin	G. L. Zeng
G. C. Deleanu	T. Asayama, Contributing Member
R. A. Fleming	X. Li, Contributing Member
K. Harris	L. Shi, Contributing Member
R. I. Jetter	G. Wu, Contributing Member
Y. W. Kim	

Task Group on Division 5 AM Components (SG-HTR) (BPV III)

R. Wright, Chair M. McMurtrey R. Bass, Secretary M. C. Messner M. C. Albert T. Patterson R. W. Barnes E. C. Renaud F. W. Brust D. Rudland Z. Feng T.-L. Sham S. Lawler I. J. Van Rooyen X. Lou X. Wei

Working Group on Allowable Stress Criteria (SG-HTR) (BPV III)

R. Wright, ChairW. RenM. McMurtrey, SecretaryT.-L. ShamR. BassY. WangK. KimuraX. WeiD. MaitraM. Yoo, AlternateR. J. McReynoldsR. W. Swindeman, ContributingM. C. MessnerMemberJ. C. PoehlerHember

Working Group on Analysis Methods (SG-HTR) (BPV III)

M. C. Messner, Chair	TL. Sham
H. Mahajan, Secretary	X. Wei
R. W. Barnes	S. X. Xu
J. A. Blanco	J. Young
P. Carter	M. R. Breach, Contributing Member
W. T. Jessup	T. Hassan, Contributing Member
R. I. Jetter	S. Krishnamurthy, Contributing
G. H. Koo	Member
H. Qian	M. J. Swindeman, Contributing
T. Riordan	Member

Working Group on Creep-Fatigue and Negligible Creep (SG-HTR) (BPV III)

Y. Wang, <i>Chair</i>	M. C. Messner
M. Ando	T. Nguyen
P. Carter	J. C. Poehler
M. E. Cohen	H. Qian
J. I. Duo	R. Rajasekaran
R. I. Jetter	TL. Sham
G. H. Koo	X. Wei
H. Mahajan	J. Young
M. McMurtrey	M. Yoo, Alternate

Working Group on High Temperature Flaw Evaluation (SG-HTR) (BPV III)

C. J. Sallaberry, Chair
F. W. Brust
P. Carter
S. Kalyanam
BL. Lyow
M. C. Messner
J. C. Poehler

H. Qian D. A. Scarth D. J. Shim A. Udyawar X. Wei S. X. Xu M. Yoo, Alternate

Working Group on Nonmetallic Design and Materials (SG-HTR) (BPV III)

W. Windes, Chair
W. J. Geringer, Vice Chair
J. Potgieter, Secretary
G. Beirnaert
C. Chen
A. N. Chereskin
V. Chugh
C. Contescu
N. Gallego
S. T. Gonczy
K. Harris
M. G. Jenkins
J. Lang
M. P. Metcalfe
M. N. Mitchell

J. Parks T.-L. Sham A. Tzelepi G. L. Zeng M. Yoo, Alternate A. Appleton, Contributing Member R. W. Barnes, Contributing Member A. A. Campbell, Contributing Member S.-H. Chi, Contributing Member Y. Katoh, Contributing Member A. Mack, Contributing Member J. B. Ossmann, Contributing Member

Subgroup on Materials, Fabrication, and Examination (BPV III)

J. Grimm, Chair	M. Kris
S. Hunter, Secretary	D. W. Mann
W. H. Borter	T. Melfi
M. Brijlani	IK. Nam
G. R. Cannell	J. B. Ossmann
A. Cardillo	J. E. O'Sullivan
S. Cho	M. C. Scott
P. J. Coco	W. J. Sperko
R. H. Davis	J. R. Stinson
D. B. Denis	J. F. Strunk
B. D. Frew	W. Windes
D. W. Gandy	R. Wright
S. E. Gingrich	S. Yee
M. Golliet	H. Michael, Delegate
L. S. Harbison	A. L. Hiser, Jr., Alternate
R. M. Jessee	R. W. Barnes, Contributing Member
C. C. Kim	-

Task Group on Advanced Manufacturing (BPV III)

D. W. Mann. Chair T. Melfi D. W. Gandy, Secretary E. C. Renaud R. Bass W. J. Sperko D. Chowdhury J. F. Strunk P. J. Coco J. Sulley B. D. Frew S. Tate J. Grimm S. Wolbert A. L. Hiser, Jr. H. Xu J. Lambin D. W. Pratt, Alternate T. Lippucci S. Malik, Contibuting Member K. Matsunaga

Joint Working Group on HDPE (SG-MFE) (BPV III)

M. Brandes. Chair K. Manoly T. M. Musto, Chair D. P. Munson J. O'Sullivan J. B. Ossmannn, Secretary G. Brouette V. Rohatgi M. C. Buckley F. Schaaf, Jr. S. Choi S. Schuessler M. Golliet R. Stakenborghs J. Hebeisen M. Troughton J. Johnston, Jr. P. Vibien P. Krishnaswamy J. Wright M. Kuntz T. Adams, Contributing Member B. Lin

COMMITTEE ON HEATING BOILERS (BPV IV)

C. Dinic M. Wadkinson, Chair J. L. Kleiss, Vice Chair C. R. Ramcharran, Staff Secretary B. Ahee L. Badziagowski T. L. Bedeaux B. Calderon J. P. Chicoine

J. M. Downs J. A. Hall M. Mengon D. Nelson H. Michael, Delegate D. Picart, Delegate

J. P. Chicoine

P. A. Molvie, Contributing Member

Executive Committee (BPV IV)

M. Wadkinson, Chair

- C. R. Ramcharran, Staff Secretary
- J. A. Hall L. Badziagowski J. L. Kleiss
- T. L. Bedeaux

Subgroup on Cast Boilers (BPV IV)

J. P. Chicoine, Chair	J. A. Hall
J. M. Downs, Vice Chair	J. L. Kleiss
C. R. Ramcharran, Staff Secretary	M. Mengon
T. L. Bedeaux	

Subgroup on Materials (BPV IV)

J. A. Hall, Chair	T. L. Bedeaux
J. M. Downs, Vice Chair	Y. Teng
C. R. Ramcharran, Staff Secretary	M. Wadkinson
L. Badziagowski	

Subgroup on Water Heaters (BPV IV)

J. L. Kleiss, Chair	B. J. Iske
L. Badziagowski, Vice Chair	M. Mengon
C. R. Ramcharran, Staff Secretary	Y. Teng
B. Ahee	T. E. Trant
J. P. Chicoine	P. A. Molvie, Contributing Member
C. Dinic	

Subgroup on Welded Boilers (BPV IV)

T. L. Bedeaux, Chair	J. L. Kleiss
C. R. Ramcharran, Staff Secretary	M. Mengon
B. Ahee	M. Wadkinson
L. Badziagowski	M. J. Melita, Alternate
B. Calderon	D. Nelson, Alternate
J. P. Chicoine	P. A. Molvie, Contributing Member
C. Dinic	

Europe International Working Group (BPV IV)

L. Badziagowski, Chair	E. Van Bruggen
D. Picart, Vice Chair	G. Vicchi
R. Lozny	A. Alessandrini, Alternate

COMMITTEE ON NONDESTRUCTIVE EXAMINATION (BPV V)

N. A. Finney, Chair	B. D. Laite
C. May, Vice Chair	P. B. Shaw
C. R. Ramcharran, Staff Secretary	C. Vorwald
D. Bajula	S. J. Akrin, Contributing Member
P. L. Brown	J. E. Batey, Contributing Member
M. A. Burns	A. S. Birks, Contributing Member
N. Carter	N. Y. Faransso, Contributing
T. Clausing	Member
C. Emslander	J. F. Halley, Contributing Member
A. F. Garbolevsky	R. W. Kruzic, Contributing Member
P. T. Hayes	L. E. Mullins, Contributing Member
G. W. Hembree	F. J. Sattler, Contributing Member
F. B. Kovacs	H. C. Graber, Honorary Member
K. Krueger	T. G. McCarty, Honorary Member

Executive Committee (BPV V)

C. May, Chair	G. W. Hembree
N. A. Finney, Vice Chair	F. B. Kovacs
C. R. Ramcharran, Staff Secretary	K. Krueger
N. Carter	E. Peloquin
V. F. Godinez-Azcuaga	C. Vorwald
P. T. Hayes	

Subgroup on General Requirements/Personnel Qualifications and Inquiries (BPV V)

C. Vorwald, Chair	K. Krueger
D. Bajula	С. Мау
N. Carter	S. J. Akrin, Contributing Member
P. Chavdarov	N. Y. Faransso, Contributing
T. Clausing	Member
C. Emslander	J. F. Halley, Contributing Member
N. A. Finney	D. I. Morris, Contributing Member
G. W. Hembree	J. P. Swezy, Jr., Contributing
F. B. Kovacs	Member

Project Team on Assisted Analysis (BPV V)

K. Hayes, Chair	C. Hansen
J. Aldrin	G. W. Hembree
J. Chen	R. S. F. Orozco
N. A. Finney	E. Peloquin
V. F. Godinez-Azcuaga	T. Thulien

Subgroup on Volumetric Methods (BPV V)

C. May, Chair E. Peloquin P. T. Hayes, Vice Chair C. Vorwald D. Adkins S. J. Akrin, Contributing Member P. L. Brown N. Y. Faransso, Contributing N. A. Finney Member A. F. Garbolevsky J. F. Halley, Contributing Member R. W. Hardy R. W. Kruzic, Contributing Member G. W. Hembree L. E. Mullins, Contributing Member F. B. Kovacs F. J. Sattler, Contributing Member K. Krueger

Working Group on Radiography (SG-VM) (BPV V)

C. Vorwald, Chair	C. May
D. M. Woodward, Vice Chair	R. J. Mills
J. Anderson	J. F. Molinaro
P. L. Brown	T. Vidimos
C. Emslander	B. White
A. F. Garbolevsky	S. J. Akrin, Contributing Member
R. W. Hardy	T. L. Clifford, Contributing Member
G. W. Hembree	N. Y. Faransso, Contributing
F. B. Kovacs	Member
B. D. Laite	R. W. Kruzic, Contributing Member
T. R. Lerohl	

Working Group on Ultrasonics (SG-VM) (BPV V)

D. Van Allen
J. Vinyard
C. Vorwald
C. Wassink
N. Y. Faransso, Contributing
Member
J. F. Halley, Contributing Member
R. W. Kruzic, Contributing Member
P. Mudge, Contributing Member
L. E. Mullins, Contributing Member
M. J. Quarry, Contributing Member
F. J. Sattler, Contributing Member
J. Vanvelsor, Contributing Member

Working Group on Acoustic Emissions (SG-VM) (BPV V)

V. F. Godinez-Azcuaga, Chair J. Catty, Vice Chair S. R. Doctor N. F. Douglas, Jr.

R. K. Miller N. Y. Faransso, Contributing Member

Working Group on Full Matrix Capture (SG-VM) (BPV V)

E. Peloquin, Chair G. W. Hembree C. Wassink, Vice Chair K. Krueger D. Bajula M. Lozev D. Bellistri R. Nogueira J. Catty D. Richard N. A. Finney M. Sens I. L. Garner D. Tompkins R. T. Grotenhuis J. F. Halley, Contributing Member P. T. Hayes L. E. Mullins, Contributing Member

Subgroup on Inservice Examination Methods and Techniques

(BPV V)

- P. T. Hayes, Chair E. Peloquin, Vice Chair M. A. Burns M. Carlson N. A. Finney V. F. Godinez-Azcuaga
- G. W. Hembree K. Krueger C. May D. D. Raimander C. Vorwald

Subgroup on Surface Examination Methods (BPV V)

N. Carter, Chair P. B. Shaw B. D. Laite, Vice Chair R. M. Beldyk P. L. Brown T. Clausing C. Emslander N. Farenbaugh N. A. Finney A. F. Garbolevsky K. Hayes G. W. Hembree C. May

Germany International Working Group (BPV V)

P. Chavdarov, Chair	
C. Kringe, Vice Chair	
HP. Schmitz, Secretary	
KH. Gischler	

R. Tedder C. Vorwald C. Wassink D. M. Woodward S. J. Akrin, Contributing Member N. Y. Faransso, Contributing Member J. F. Halley, Contributing Member R. W. Kruzic, Contributing Member L. E. Mullins, Contributing Member F. J. Sattler, Contributing Member

D.	Kaiser
S.	Mann

V. Reusch

D. D. Raimander. Chair O. Oldani, Vice Chair

- C. R. Ramcharran, Staff Secretary P. Campli, Secretary M. Agostini T. Aldo F. Bresciani N. Caputo
- M. Colombo P. L. Dinelli
- F. Ferrarese
- E. Ferrari

India International Working Group (BPV V)

P. Kumar, Chair G. R. Joshi A. V. Bhagwat A. Relekar J. Chahwala V. J. Sonawane S. Jobanputra D. B. Tanpure D. Joshi

Italy International Working Group (BPV V)

G. Luoni U. Papponetti P. Pedersoli A. Veroni M. Zambon V. Calo, Contributing Member G. Gobbi, Contributing Member A. Gusmaroli, Contributing

M. A. Grimoldi

- Member
- G. Pontiggia, Contributing Member

COMMITTEE ON PRESSURE VESSELS (BPV VIII)

S. C. Roberts, Chair M. D. Lower, Vice Chair S. J. Rossi, Staff Secretary G. Aurioles, Sr. S. R. Babka R. J. Basile P. Chavdarov D. B. DeMichael I. F. Grubb B. F. Hantz M. Kowalczyk D. L. Kurle R. Mahadeen S. A. Marks P. Matkovics R. W. Mikitka B. R. Morelock T. P. Pastor D. T. Peters M. J. Pischke M. D. Rana G. B. Rawls, Jr. F. L. Richter C. D. Rodery

J. C. Sowinski D. Srnic D. B. Stewart P. L. Sturgill K. Subramanian D. A. Swanson J. P. Swezy, Jr. S. Terada E. Upitis A. Viet K. Xu P. A. McGowan, Delegate H. Michael, Delegate K. Oyamada, Delegate M. E. Papponetti, Delegate A. Chaudouet, Contributing Member J. P. Glaspie, Contributing Member K. T. Lau, Contributing Member U. R. Miller, Contributing Member K. Mokhtarian, Contributing Member G. G. Karcher, Honorary Member K. K. Tam, Honorary Member

Executive Committee (BPV VIII)

- M. D. Lower, Chair S. J. Rossi, Staff Secretary G. Aurioles, Sr. C. W. Cary J. Hoskinson M. Kowalczyk
- S. A. Marks P. Matkovics S. C. Roberts J. C. Sowinski K. Subramanian K. Xu

Subgroup on Design (BPV VIII)

J. C. Sowinski, <i>Chair</i>	G. B. Rawls, Jr.
C. S. Hinson, Vice Chair	S. C. Roberts
G. Aurioles, Sr.	C. D. Rodery
S. R. Babka	T. G. Seipp
0. A. Barsky	D. Srnic
R. J. Basile	D. A. Swanson
D. Chandiramani	S. Terada
M. D. Clark	J. Vattappilly
M. Faulkner	K. Xu
B. F. Hantz	K. Oyamada, <i>Delegate</i>
C. E. Hinnant	M. E. Papponetti, Delegate
M. H. Jawad	P. K. Lam, Contributing Member
S. Krishnamurthy	K. Mokhtarian, Contributing
D. L. Kurle	Member
K. Kuscu	T. P. Pastor, Contributing Member
M. D. Lower	S. C. Shah, Contributing Member
R. W. Mikitka	K. K. Tam, Contributing Member
B. Millet	E. Upitis, Contributing Member
M. D. Rana	

Working Group on Design-by-Analysis (BPV VIII)

B. F. Hantz, Chair	S. Krishnamurthy
T. W. Norton, Secretary	A. Mann
D. A. Arnett	C. Nadarajah
J. Bedoya	P. Prueter
S. Guzey	T. G. Seipp
C. F. Heberling II	M. A. Shah
C. E. Hinnant	S. Terada
M. H. Jawad	R. G. Brown, Contributing Member
S. Kataoka	D. Dewees, Contributing Member
S. Kilambi	K. Saboda, Contributing Member
K. D. Kirkpatrick	

Working Group on Elevated Temperature Design (BPV I and VIII)

A. Mann, Chair M. C. Messner C. Nadarajah, Secretary M. N. Mitchell D. Anderson P. Prueter D. Dewees M. J. Swindeman B. F. Hantz J. P. Glaspie, Contributing Member M. H. Jawad N. McMurray, Contributing R. I. Jetter S. Krishnamurthy B. J. Mollitor, Contributing Member T. Le

Subgroup on Fabrication and Examination (BPV VIII)

Member

S. A. Marks, Chair	B. F. Shelley
D. I. Morris, Vice Chair	D. Smith
T. Halligan, Secretary	P. L. Sturgill
N. Carter	J. P. Swezy, Jr.
J. Lu	E. Upitis
B. R. Morelock	C. Violand
O. Mulet	K. Oyamada, Delegate
M. J. Pischke	W. J. Bees, Contributing Member
M. J. Rice	L. F. Campbell, Contributing
J. Roberts	Member
C. D. Rodery	R. Uebel, Contributing Member

Subgroup on General Requirements (BPV VIII)

J. Hoskinson, Chair	F. L. Richter
M. Faulkner, Vice Chair	S. C. Roberts
N. Barkley	J. Rust
R. J. Basile	J. C. Sowinski
T. P. Beirne	P. Speranza
D. B. DeMichael	D. Srnic
M. D. Lower	D. B. Stewart
T. P. Pastor	D. A. Swanson
I. Powell	J. P. Glaspie, Contributing Member
G. B. Rawls, Jr.	Y. Yang, Contributing Member

Task Group on Fired Heater Pressure Vessels (BPV VIII)

J. Hoskinson, Chair	R. Robles
W. Kim	J. Rust
S. Kirk	P. Shanks
D. Nelson	E. Smith
T. P. Pastor	D. Srnic

Task Group on Subsea Applications (BPV VIII)

M. Sarzynski, Chair	C. Lan
A. J. Grohmann, Vice Chair	P. Lutkiewicz
L. P. Antalffy	N. McKie
R. C. Biel	S. K. Parimi
J. Ellens	R. H. Patil
J. Hademenos	M. P. Vaclavik
J. Kaculi	R. Cordes, Contributing Member
K. Karpanan	D. T. Peters, Contributing Member
F. Kirkemo	J. R. Sims, Contributing Member

Subgroup on Heat Transfer Equipment (BPV VIII)

P. Matkovics, Chair R. Mahadeen M. D. Clark, Vice Chair S. Mayeux S. Neilsen L. Bower, Secretary G. Aurioles, Sr. E. Smith S. R. Babka A. M. Voytko J. H. Barbee R. P. Wiberg O. A. Barsky J. Pasek, Contributing Member T. Bunyarattaphantu D. Srnic, Contributing Member A. Chaudouet Z. Tong, Contributing Member D. L. Kurle

Working Group on Plate Heat Exchangers (BPV VIII)

D. I. Morris, Chair P. Matkovics S. R. Babka M. J. Pischke J. F. Grubb P. Shanks V. Gudge E. Smith D. Srnic R. Mahadeen S. A. Marks S. Sullivan

Subgroup on High Pressure Vessels (BPV VIII)

Y. Xu A. M. Clayton, Contributing Member R. Cordes, Contributing Member R. D. Dixon, Contributing Member Q. Dong, Contributing Member T. A. Duffey, Contributing Member R. M. Hoshman, Contributing Member F. Kirkemo, Contributing Member R. A. Leishear, Contributing Memher G. M. Mital, Contributing Member M. Parr, Contributing Member M. D. Rana, Contributing Member C. Romero, Contributing Member C. Tipple, *Contributing Member* K.-J. Young, Contributing Member

- D. J. Burns, Honorary Member
- G. J. Mraz, Honorary Member

Subgroup on Materials (BPV VIII)

M. Kowalczyk, Chair	E. Upitis
P. Chavdarov, Vice Chair	K. Xu
S. Kilambi, Secretary	S. Yem
J. Cameron	A. Di Rienzo, Contributing Member
J. F. Grubb	J. D. Fritz, Contributing Member
D. Maitra	M. Katcher, Contributing Member
D. W. Rahoi	W. M. Lundy, Contributing Member
J. Robertson	J. Penso, Contributing Member
R. C. Sutherlin	

Subgroup on Toughness (BPV VIII)

D. A. Swanson

J. P. Swezy, Jr.

J. Vattappilly

Member

Member

J. D. Clements

H. Lee, Jr.

S. Mehrez

A. A. Stupica

T. Rudy

K. Oyamada, Delegate

L. Dong, Contributing Member

S. Krishnamurthy, Contributing

K. Mokhtarian, Contributing

S. Terada

E. Upitis

K. Xu, Chair
T. Halligan, Vice Chair
T. Finn
C. S. Hinson
S. Kilambi
D. L. Kurle
T. Newman
J. Qu
M. D. Rana
F. L. Richter
K. Subramanian

Subgroup on Graphite Pressure Equipment (BPV VIII)

C. W. Cary, Chair
A. Viet, Vice Chair
G. C. Becherer
F. L. Brown
R. J. Bulgin

Argentina International Working Group (BPV VIII)

A. Dominguez, Chair	M. Favareto
R. Robles, Vice Chair	M. D. Kuhn
G. Glissenti, Secretary	F. P. Larrosa
M. M. Acosta	L. M. Leccese
R. A. Barey	C. Meinl
C. Alderetes	M. A. Mendez
F. A. Andres	J. J. Monaco
A. Antipasti	C. Parente
D. A. Bardelli	M. A. A. Pipponzi
L. F. Boccanera	L. C. Rigoli
O. S. Bretones	A. Rivas
A. Burgueno	D. Rizzo
G. Casanas	J. C. Rubeo
D. H. Da Rold	S. Schamun
D. A. Del Teglia	G. Telleria
J. I. Duo	M. M. C. Tocco

China International Working Group (BPV VIII)

C. Miao X. Chen, Chair L. Sun B. Shou, Vice Chair Z. Fan, Secretary C. Wu J. Xiaobin Y. Chen J. Cui F. Xu R. Duan G. Xu J.-G. Gong F. Yang B. Han Y. Yang J. Hu Y. Yuan Yanfeng Zhang Q. Hu H. Hui Yijun Zhang K. Li S. Zhao D. Luo J. Zheng G. Zhu Y. Luo

Germany International Working Group (BPV VIII)

R. Kauer, Chair S. Krebs M. Sykora, Vice Chair T. Ludwig A. Aloui R. A. Meyers P. Chavdarov H. Michael A. Emrich S. Reich J. Fleischfresser A. Spangenberg C. Jaekel C. Stobbe D. Koelbl G. Naumann, Contributing Member

India International Working Group (BPV VIII)

- D. Chandiramani, Chair A. Kakumanu V. V. P. Kumar D. Kulkarni, Vice Chair A. D. Dalal, Secretary T. Mukherjee P. Arulkumar P. C. Pathak B. Basu D. Prabhu P. Gandhi A. Sadasivam U. Ganesan M. P. Shah S. K. Goyal R. Tiru V. Jayabalan V. T. Valavan V. K. Joshi
 - M. Sharma, Contributing Member

Italy International Working Group (BPV VIII)

A. Teli, Chair	
M. Millefanti, Vice Chair	
P. Campli, Secretary	
B. G. Alborali	
P. Aliprandi	
A. Avogadri	
A. Camanni	
N. Caputo	
M. Colombo	
P. Conti	
D. Cortassa	
P. L. Dinelli	
F. Finco	

M. Guglielmetti A. F. Magri P. Mantovani L. Moracchioli P. Pacor S. Sarti V. Calo, Contributing Member G. Gobbi, Contributing Member A. Gusmaroli, Contributing Member G. Pontiggia, Contributing Member D. D. Raimander, Contributing Member

Special Working Group on Bolted Flanged Joints (BPV VIII)

W. Brown, Chair	W. McDaniel
M. Osterfoss, Vice Chair	R. W. Mikitka
G. Aurioles, Sr.	D. Nash
D. Bankston, Jr.	M. Ruffin
H. Bouzid	R. Wacker
A. Chaudouet	E. Jamalyaria,
H. Chen	Member
D. Francis	J. R. Payne, Co
H. Lejeune	G. Van Zyl, Co
A. Mann	J. Veiga, Conti

Wacker Jamalyaria, Contributing Member R. Payne, Contributing Member Van Zyl, Contributing Member J. Veiga, Contributing Member

Subgroup on Interpretations (BPV VIII)

G. Aurioles, Sr., Chair
J. Oh, Staff Secretary
S. R. Babka
J. Cameron
C. W. Cary
B. F. Hantz
M. Kowalczyk
D. L. Kurle
M. D. Lower
S. A. Marks
P. Matkovics
D. I. Morris
D. T. Peters
F. L. Richter
S. C. Roberts
C. D. Rodery
T. G. Seipp

- J. C. Sowinski D. B. Stewart K. Subramanian D. A. Swanson J. P. Swezy, Jr. J. Vattappilly A. Viet K. Xu R. J. Basile, Contributing Member D. B. DeMichael, Contributing Member R. D. Dixon, Contributing Member S. Kilambi, Contributing Member R. Mahadeen, Contributing Member T. P. Pastor, Contributing Member
- P. L. Sturgill, Contributing Member

COMMITTEE ON WELDING, BRAZING, AND FUSING (BPV IX)

M. J. Pischke, <i>Chair</i>	W. J. Sperko
P. L. Sturgill, <i>Vice Chair</i>	J. P. Swezy, Jr.
R. Rahaman, <i>Staff Secretary</i>	A. D. Wilson
M. Bernasek	E. W. Woelfel
M. A. Boring	D. Pojatar, <i>Delegate</i>
D. A. Bowers	A. Roza, <i>Delegate</i>
N. Carter	M. Consonni, <i>Contributing Member</i>
J. G. Feldstein	P. D. Flenner, <i>Contributing Member</i>
P. Gilston S. E. Gingrich K. L. Hayes R. M. Jessee J. S. Lee W. M. Lundy D. W. Mann S. A. Marks T. Melfi W. F. Newell, Jr. E. G. Reichelt M. J. Rice M. B. Sims	 S. A. Jones, Contributing Member D. K. Peetz, Contributing Member S. Raghunathan, Contributing Member M. J. Stanko, Contributing Member P. L. Van Fosson, Contributing Member R. K. Brown, Jr., Honorary Member M. L. Carpenter, Honorary Member B. R. Newmark, Honorary Member S. D. Reynolds, Jr., Honorary Member

Subgroup on Brazing (BPV IX)

M. J. Pischke

P. L. Sturgill

J. P. Swezy, Jr.

S. A. Marks, Chair E. W. Beckman A. F. Garbolevsky N. Mohr

Subgroup on General Requirements (BPV IX)

N. Carter, Chair P. L. Sturgill P. Gilston, Vice Chair J. P. Swezy, Jr. J. P. Bell E. W. Woelfel D. A. Bowers E. W. Beckman, Contributing M. Heinrichs Member A. Howard A. Davis, Contributing Member R. M. Jessee D. K. Peetz, Contributing Member S. A. Marks B. R. Newmark, Honorary Member H. B. Porter

Subgroup on Materials (BPV IX)

M. Bernasek, Chair M. J. Pischke T. Anderson A. Roza L. Constantinescu C. E. Sainz P. L. Sturgill E. Cutlip M. Denault C. Zanfir S. E. Gingrich V. G. V. Giunto, Delegate L. S. Harbison D. J. Kotecki, Contributing Member M. James B. Krueger, Contributing Member W. J. Sperko, Contributing Member R. M. Jessee T. Melfi M. J. Stanko, Contributing Member S. D. Nelson

Subgroup on Plastic Fusing (BPV IX)

K. L. Hayes, Chair	S. Schuessler
R. M. Jessee	M. Troughton
J. Johnston, Jr.	C. Violand
J. E. O'Sullivan	E. W. Woelfel
E. G. Reichelt	J. Wright
M. J. Rice	

Subgroup on Welding Qualifications (BPV IX)

T. Melfi, Chair A. D. Wilson, Vice Chair K. L. Hayes, Secretary M. Bernasek M. A. Boring D. A. Bowers R. Campbell R. B. Corbit L. S. Harbison M. Heinrichs I. S. Lee W. M. Lundy D. W. Mann W. F. Newell, Jr.

E. G. Reichelt M. I. Rice M. B. Sims W. J. Sperko P. L. Sturgill J. P. Swezy, Jr. C. Violand D. Chandiramani, Contributing Member M. Consonni, Contributing Member M. Dehghan, Contributing Member P. D. Flenner, Contributing Member T. C. Wiesner, Contributing Memher

COMMITTEE ON FIBER-REINFORCED PLASTIC PRESSURE VESSELS (BPV X)

B. Linnemann. Chair D. Eisberg, Vice Chair P. D. Stumpf, Staff Secretary A. L. Beckwith F. L. Brown J. L. Bustillos B. R. Colley T. W. Cowley I. L. Dinovo J. Eihusen M. R. Gorman B. Hebb L. E. Hunt

D. H. McCaulev N. L. Newhouse G. Ramirez J. R. Richter B. F. Shelley G. A. Van Beek S. L. Wagner D. O. Yancey, Jr. P. H. Ziehl D. H. Hodgkinson, Contributing Memher D. L. Keeler, Contributing Member

COMMITTEE ON NUCLEAR INSERVICE INSPECTION (BPV XI)

R. W. Swayne, Chair T. Nuoffer D. W. Lamond, Vice Chair J. Nygaard A. T. Roberts III, Vice Chair J. E. O'Sullivan N. A. Palm D. Miro-Quesada, Staff Secretary J. F. Ball G. C. Park W. H. Bamford D. A. Scarth M. L. Benson F. J. Schaaf, Jr. J. M. Boughman S. Takaya C. Brown D. Vetter S. B. Brown T. V. Vo T. L. Chan J. G. Weicks R. C. Cipolla M. Weis D. R. Cordes Y.-K. Chung, Delegate C. Ye, Delegate H. Do E. V. Farrell, Jr. B. Lin, Alternate M. J. Ferlisi R. O. McGill, Alternate T. J. Griesbach L. A. Melder, Alternate J. Hakii A. Udyawar, Alternate E. B. Gerlach, *Contributing Member* M. L. Hall P. J. Hennessey C. D. Cowfer, Honorary Member R. E. Gimple, Honorary Member D. O. Henry K. Hoio F. E. Gregor, Honorary Member S. D. Kulat R. D. Kerr, Honorary Member C. Latiolais P. C. Riccardella, Honorary Member J. T. Lindberg R. A. West, Honorary Member H. Malikowski C. J. Wirtz, Honorary Member S. L. McCracken R. A. Yonekawa, Honorary Member S. A. Norman

Executive Committee (BPV XI)

D. W. Lamond, Chair S. L. McCracken R. W. Swavne, Vice Chair T. Nuoffer D. Miro-Quesada, Staff Secretary N. A. Palm M. L. Benson G. C. Park M. I. Ferlisi A. T. Roberts III S. D. Kulat B. L. Lin, Alternate J. T. Lindberg

Argentina International Working Group (BPV XI)

O. Martinez, Staff Secretary	F. J. Schaaf, Jr.
A. Claus	F. M. Schroeter
I. M. Guerreiro	P. Yamamoto
L. R. Miño	

Argentina International Working Group (BPV IX)

A. Burgueno, Chair A. R. G. Frinchaboy, Vice Chair R. Rahaman, Staff Secretary M. D. Kuhn, Secretary B. Bardott L. F. Boccanera P. J. Cabot J. Caprarulo

J. A. Gandola C. A. Garibotti I. A. Herrera M. A. Mendez A. E. Pastor G. Telleria M. M. C. Tocco

M. Favareto

Germany International Working Group (BPV IX)

A. Roza, Chair A. Spangenberg, Vice Chair R. Rahaman, Staff Secretary P. Chavadarov B. Daume J. Fleischfresser P. Khwaja S. Krebs

T. Ludwig

S. Wegener F. Wodke J. Daldrup, Contributing Member E. Floer, Contributing Member R. Helmholdt, Contributing Member G. Naumann, Contributing Member K.-G. Toelle, Contributing Member

Italy International Working Group (BPV IX)

D. D. Raimander, Chair F. Ferrarese, Vice Chair R. Rahaman, Staff Secretary M. Bernasek A. Camanni P. L. Dinelli M. Mandina A. S. Monastra

L. Moracchioli P. Pacor P. Siboni V. Calo, Contributing Member G. Gobbi, Contributing Member A. Gusmaroli, Contributing Member G. Pontiggia, Contributing Member

Spain International Working Group (BPV IX)

- F. J. Q. Pandelo, Chair F. L. Villabrille, Vice Chair R. Rahaman, Staff Secretary F. R. Hermida, Secretary C. A. Celimendiz M. A. F. Garcia R. G. Garcia
- F. Manas B. B. Miguel

 - S. Sevil
 - G. Gobbi, Contributing Member

China International Working Group (BPV XI)

J. H. Liu, Chair	S. Shuo
J. F. Cai, Vice Chair	Y. Sixin
C. Ye, Vice Chair	Y. X. Sun
M. W. Zhou, Secretary	G. X. Tang
H. Chen	Q. Wang
H. D. Chen	Q. W. Wang
Y. Cheng	Z. S. Wang
Y. B. Guo	L. Xing
Y. Hongqi	F. Xu
D. R. Horn	S. X. Xu
Y. Hou	Q. Yin
S. X. Lin	K. Zhang
Y. Nie	Y. Zhe
W. N. Pei	Z. M. Zhong
L. Shiwei	-

Germany International Working Group (BPV XI)

R. Döring, Chair	N. Legl
M. Hagenbruch, Vice Chair	T. Ludwig
R. Piel, Secretary	X. Pitoiset
A. Casse	M. Reichert
C. G. Frantescu	L. Sybertz
E. Iacopetta	I. Tewes
S. D. Kulat	R. Tiete
HW. Lange	J. Wendt

India International Working Group (BPV XI)

S. B. Parkash, Chair	N. Palm
D. Narain, Vice Chair	D. Rawal
K. K. Rai, Secretary	R. Sahai
Z. M. Mansuri	R. K. Sharma
M. R. Nadgouda	

Special Working Group on Editing and Review (BPV XI)

R. W. Swayne, Chair	M. Orihuela
R. C. Cipolla	D. A. Scarth
D. O. Henry	

Task Group on Inspectability (BPV XI)

J. T. Lindberg, Chair	J. Honcharik
E. Henry, Secretary	C. Latiolais
A. Bushmire	G. A. Lofthus
A. Cardillo	S. Matsumoto
K. Caver	D. E. Matthews
D. R. Cordes	P. J. O'Regan
P. Gionta	J. B. Ossmann
D. O. Henry	C. Thomas

Working Group on Spent Nuclear Fuel Storage and Transportation Containment Systems (BPV XI)

K. Hunter, Chair	K. Mauskar
M. Orihuela, Secretary	R. M. Meyer
D. J. Ammerman	R. M. Pace
W. H. Borter	E. L. Pleins
J. Broussard	M. A. Richter
C. R. Bryan	B. Sarno
T. Carraher	R. Sindelar
S. Corcoran	M. Staley
D. Dunn	J. Wellwood
N. Fales	K. A. Whitney
R. C. Folley	X. J. Zhai
G. Grant	PS. Lam, Alternate
B. Gutherman	G. White, Alternate
M. W. Joseph	J. Wise, Alternate
M. Keene	H. Smith, Contributing Member
M. Liu	

Task Group on Mitigation and Repair of Spent Nuclear Fuel Canisters (WG-SNFS & TCS) (BPV XI)

J. Tatman <i>, Chair</i>	M. Kris
D. J. Ammerman	M. Liu
J. Broussard	K. Mauskar
C. R. Bryan	S. L. McCracken
G. R. Cannell	M. Orihuela
K. Dietrich	M. Richter
D. Dunn	K. E. Ross
N. Fales	B. Sarno
R. C. Folley	R. Sindelar
D. Jacobs	J. Wellwood
N. Klymyshyn	A. Williams

Subgroup on Evaluation Standards (SG-ES) (BPV XI)

N. A. Palm, Chair Y. S. Li S. X. Xu, Secretary R. O. McGill W. H. Bamford K. Miyazaki M. Brumovsky R. M. Pace H. D. Chung J. C. Poehler R. C. Cipolla S. Ranganath D. A. Scarth C. M. Faidy M. M. Farooq D. J. Shim A. Udyawar B. R. Ganta T. J. Griesbach T. V. Vo K. Hasegawa G. M. Wilkowski K. Hojo M. L. Benson, Alternate D. N. Hopkins H. S. Mehta, Contributing Member D. R. Lee

Task Group on Evaluation of Beyond Design Basis Events (SG-ES) (BPV XI)

K. Hojo
S. A. Kleinsmith
S. M. Moenssens
T. V. Vo
G. M. Wilkowski
H. S. Mehta, Contributing Member
T. Weaver, Contributing Member

Working Group on Flaw Evaluation (SG-ES) (BPV XI)

R. C. Cipolla, Chair S. X. Xu, Secretary W. H. Bamford M. L. Benson M. Brumovsky H. D. Chung N. G. Cofie M. A. Erickson C. M. Faidy M. M. Farooq B. R. Ganta R. G. Gilada C. Guzman-Leong P. H. Hoang К. Нојо D. N. Hopkins S. Kalyanam Y. Kim V. Lacroix D. R. Lee

Y. S. Li C. Liu M. Liu G. A. Miessi K. Miyazaki S. Noronha R. K. Qashu S. Ranganath D. A. Scarth W. L. Server D. J. Shim S. Smith M. Uddin A. Udvawar T. V. Vo K. Wang B. Wasiluk G. M. Wilkowski H. S. Mehta, Contributing Member

Working Group on Flaw Evaluation Reference Curves (SG-ES) (BPV XI)

A. Udyawar, Chair	V. Lacroix
D. A. Scarth, Secretary	K. Miyazaki
W. H. Bamford	B. Pellereau
M. L. Benson	S. Ranganath
F. W. Brust	D. J. Shim
R. C. Cipolla	S. Smith
M. M. Farooq	M. Uddin
A. E. Freed	T. V. Vo
P. Gill	G. White
K. Hasegawa	S. X. Xu
К. Нојо	H. S. Mehta, Contributing Member

Working Group on Operating Plant Criteria (SG-ES) (BPV XI)

N. A. Palm, Chair A. D. Odell A. E. Freed, Secretary R. M. Pace W. H. Bamford J. C. Poehler M. Brumovsky S. Ranganath M. A. Erickson W. L. Server T. J. Griesbach C. A. Tomes M. Hayashi A. Udyawar R. Janowiak T. V. Vo M. Kirk H. Q. Xu S. A. Kleinsmith H. S. Mehta, Contributing Member H. Kobayashi

Task Group on Appendix L (WG-OPC) (BPV XI)

N. Glunt, *Chair* R. M. Pace, *Secretary* J. I. Duo A. E. Freed M. A. Gray T. J. Griesbach H. Nam A. Nana A. D. Odell C.-S. Oh H. Park S. Ranganath A. Scott D. J. Shim S. Smith A. Udyawar T. V. Vo

Working Group on Pipe Flaw Evaluation (SG-ES) (BPV XI)

D. A. Scarth, Chair	Y. Kim
S. Kalyanam, Secretary	V. Lacroix
K. Azuma	Y. S. Li
W. H. Bamford	R. O. McGill
M. L. Benson	G. A. Miessi
M. Brumovsky	K. Miyazaki
F. W. Brust	S. M. Parker
H. D. Chung	S. H. Pellet
R. C. Cipolla	C. J. Sallaberry
N. G. Cofie	W. L. Server
C. M. Faidy	D. J. Shim
M. M. Farooq	S. Smith
B. R. Ganta	M. F. Uddin
R. G. Gilada	A. Udyawar
S. R. Gosselin	T. V. Vo
C. E. Guzman-Leong	K. Wang
K. Hasegawa	B. Wasiluk
P. H. Hoang	G. M. Wilkowski
К. Нојо	S. X. Xu
D. N. Hopkins	Y. Zou
E. J. Houston	K. Gresh, Alternate
R. Janowiak	H. S. Mehta, Contributing Member
K. Kashima	

Task Group on Code Case N-513 (WG-PFE) (BPV XI)

R. O. McGill, Chair	E. J. Houston
S. M. Parker, Secretary	R. Janowiak
G. A. Antaki	S. H. Pellet
R. C. Cipolla	D. Rudland
M. M. Farooq	D. A. Scarth
K. Gresh	S. X. Xu

Task Group on Evaluation Procedures for Degraded Buried Pipe (WG-PFE) (BPV XI)

R. O. McGill, Chair R. Janowiak S. X. Xu, Secretary M. Kassar F. G. Abatt M. Moenssens G. A. Antaki D. P. Munson R. C. Cipolla R. M. Pace R. G. Gilada S. H. Pellet K. Hasegawa D. Rudland K. M. Hoffman D. A. Scarth

Task Group on Flaw Evaluation for HDPE Pipe (WG-PFE) (BPV XI)

S. Kalyanam, *Chair* P. Krishnaswamy M. Moenssens D. P. Munson D. A. Scarth D. J. Shim M. Troughton J. Wright S. X. Xu

Subgroup on Nondestructive Examination (SG-NDE) (BPV XI)

J. T. Lindberg, *Chair* D. O. Henry, *Vice Chair* T. Cinson, *Secretary* M. Briley C. Brown A. Bushmire T. L. Chan D. R. Cordes S. E. Cumblidge K. J. Hacker J. Harrison D. A. Kull C. Latiolais F. J. Schaaf, Jr. R. V. Swain C. A. Nove, *Alternate*

Working Group on Personnel Qualification and Surface Visual and Eddy Current Examination (SG-NDE) (BPV XI)

Lindberg

C. Brown, Chair	D. O. Henry
M. Orihuela, Secretary	J. T. Lindber
J. Bennett	C. Shinsky
T. Cinson	R. Tedder
S. E. Cumblidge	T. Thulien
A. Diaz	J. T. Timm
N. Farenbaugh	

Working Group on Procedure Qualification and Volumetric Examination (SG-NDE) (BPV XI)

J. Harrison <i>, Chair</i>	C. Latiolais
D. A. Kull, Secretary	C. A. Nove
M. Briley	D. R. Slivon
A. Bushmire	R. V. Swain
D. R. Cordes	D. Van Allen
K. J. Hacker	J. Williams
R. E. Jacob	B. Lin, Alternate
W. A. Jensen	

Subgroup on Reliability and Integrity Management Program (SG-RIM) (BPV XI)

A. T. Roberts III, Chair	P. J. Hennessey
D. Vetter, Secretary	S. Kalyanam
T. Anselmi	D. R. Lee
M. T. Audrain	R. J. McReynolds
N. Broom	R. Meyer
F. W. Brust	M. Orihuela
V. Chugh	C. J. Sallaberry
S. R. Doctor	F. J. Schaaf, Jr.
J. D. Fletcher	H. M. Stephens, Jr.
J. T. Fong	R. W. Swayne
R. Grantom	S. Takaya
K. Harris	R. Vayda

Working Group on MANDE (SG-RIM) (BPV XI)

H. M. Stephens, Jr., Chair	J. T. Fong
S. R. Doctor, Vice Chair	D. O. Henry
M. Turnbow, Secretary	R. J. McReynolds
T. Anselmi	R. Meyer
M. T. Audrain	M. Orihuela
N. A. Finney	K. Yamada

Task Group on Nonmetallic Component Degradation and Failure Monitoring (SG-RIM) (BPV XI)

M. P. Metcalfe, Chair	W. J. Geringer
A. Tzelepi, Secretary	K. Harris
M. T. Audrain	J. Lang
G. Beirnaert	J. Potgieter
C. Chen	

ASME/JSME Joint Working Group on RIM Processes and System-Based Code (SG-RIM) (BPV XI)

S. Takaya, Chair	R. Meyer
R. J. McReynolds, Vice Chair	T. Muraki
M. T. Audrain	S. Okajima
K. Dozaki	A. T. Roberts III
J. T. Fong	C. J. Sallaberry
J. Hakii	F. J. Schaaf, Jr.
K. Harris	R. Vayda
M. Hayashi	D. Watanabe
S. Kalyanam	H. Yada
D. R. Lee	K. Yamada
H. Machida	T. Asayama, Contributing Member

Subgroup on Repair/Replacement Activities (SG-RRA) (BPV XI)

S. L. McCracken, Chair	L. A. Melder
E. V. Farrell, Jr., Secretary	S. A. Norman
J. F. Ball	G. T. Olson
M. Brandes	J. E. O'Sullivan
S. B. Brown	G. C. Park
R. Clow	R. R. Stevenson
S. J. Findlan	R. W. Swayne
M. L. Hall	D. J. Tilly
J. Honcharik	J. G. Weicks
A. B. Meichler	B. Lin, Alternate

Working Group on Design and Programs (SG-RRA) (BPV XI)

S. B. Brown, Chair H. Malikowski R. A. Patel, Secretary A. B. Meichler 0. Bhatty G. C. Park R. Clow M. A. Pyne R. R. Croft R. R. Stevenson E. V. Farrell, Jr. K. Sullivan K. Harris R. W. Swayne B. Lin

Task Group on Repair and Replacement Optimization (WG-D&P) (BPV XI)

S. L. McCracken, Chair	M. L. Hall
S. J. Findlan, Secretary	D. Jacobs
T. Basso	H. Malikowski
R. Clow	T. Nuoffer
K. Dietrich	G. C. Park
E. V. Farrell, Jr.	A. Patel
M. J. Ferlisi	R. R. Stevenson
R. C. Folley	J. G. Weicks

Working Group on Nonmetals Repair/Replacement Activities (SG-RRA) (BPV XI)

J. E. O'Sullivan, Chair	T. M. Musto
S. Schuessler, Secretary	A. Pridmore
M. Brandes	F. J. Schaaf, Jr.
D. R. Dechene	R. Stakenborghs
M. Golliet	P. Vibien
J. Johnston, Jr.	M. P. Marohl, Contributing Member
B. Lin	

Task Group on HDPE Piping for Low Safety Significance Systems (WG-NMRRA) (BPV XI)

M. Brandes, Chair	T. M. Musto
J. E. O'Sullivan, Secretary	F. J. Schaaf, Jr.
M. Golliet	S. Schuessler
B. Lin	R. Stakenborghs

Task Group on Repair by Carbon Fiber Composites (WG-NMRRA) (BPV XI)

J. E. O'Sullivan <i>, Chair</i>	C. A. Nove
S. F. Arnold	R. P. Ojdrovic
S. W. Choi	A. Pridmore
D. R. Dechene	S. Rios
M. Golliet	C. W. Rowley
L. S. Gordon	J. Sealey
P. Krishnaswamy	R. Stakenborghs
M. Kuntz	N. Stoeva
H. Lu	M. F. Uddin
M. P. Marohl	J. Wen
L. Nadeau	B. Davenport, Alternate

Working Group on Welding and Special Repair Processes (SG-RRA) (BPV XI)

J. G. Weicks, <i>Chair</i> G. T. Olson, <i>Secretary</i> D. Barborak S. J. Findlan R. C. Folley M. L. Hall L. Honcharik	D. Jacobs M. Kris S. E. Marlette S. L. McCracken L. A. Melder J. E. O'Sullivan D. L. Tilly
J. Honcharik	D. J. Tilly

Task Group on Temper Bead Welding (WG-W&SRP) (BPV XI)

- S. J. Findlan, *Chair* D. Barborak R. C. Folley J. Graham M. L. Hall D. Jacobs H. Kobayashi
- S. L. McCracken N. Mohr G. T. Olson J. E. O'Sullivan A. Patel J. Tatman J. G. Weicks

Task Group on Weld Overlay (WG-W&SRP)(BPV XI)

C. Lohse

A. Patel

S. E. Marlette

D. W. Sandusky D. E. Waskey

G. T. Olson

J. G. Weicks

S. L. McCracken, Chair
S. Hunter, Secretary
D. Barborak
S. J. Findlan
J. Graham
M. L. Hall
D. Jacobs

Subgroup on Water-Cooled Systems (SG-WCS) (BPV XI)

M. J. Ferlisi, Chair	S. D. Kulat
J. Nygaard, Secretary	D. W. Lamond
J. M. Boughman	T. Nomura
S. T. Chesworth	T. Nuoffer
J. Collins	M. A. Pyne
H. Q. Do	H. M. Stephens, Jr.
K. W. Hall	R. Thames
P. J. Hennessey	M. Weis
A. E. Keyser	I. A. Anchondo-Lopez, Alternate

Task Group on High Strength Nickel Alloys Issues (SG-WCS) (BPV XI)

ni
e
C
ev
;y

Working Group on Containment (SG-WCS) (BPV XI)

M. J. Ferlisi, *Chair* R. Thames, *Secretary* P. S. Ghosal H. T. Hill S. Johnson A. E. Keyser B. Lehman P. Leininger J. A. Munshi M. Sircar P. C. Smith S. Walden M. Weis S. G. Brown, *Alternate*

Working Group on Inspection of Systems and Components (SG-WCS) (BPV XI)

J. Howard H. Q. Do, Chair M. Weis, Secretary A. Keller I. A. Anchondo-Lopez S. D. Kulat R. W. Blyde E. Lantz K. Caver A. Maekawa C. Cueto-Felgueroso T. Nomura M. I. Ferlisi J. C. Nygaard M. L. Garcia Heras S. Orita K. W. Hall A. W. Wilkens

Working Group on Pressure Testing (SG-WCS) (BPV XI)

J. M. Boughman, *Chair* S. A. Norman, *Secretary* T. Anselmi M. J. Homiack A. E. Keyser D. W. Lamond M. Moenssens R. A. Nettles C. Thomas K. Whitney

M. J. Homiack

D. W. Lamond

P. J. O'Regan

N. A. Palm

D. Vetter

S. D. Kulat

E. Lantz

Working Group on Risk-Informed Activities (SG-WCS) (BPV XI)

M. A. Pyne, *Chair* S. T. Chesworth, *Secretary* G. Brouette C. Cueto-Felgueroso R. Haessler J. Hakii K. W. Hall

Working Group on General Requirements (BPV XI)

T. Nuoffer, *Chair* J. Mayo, *Secretary* J. F. Ball T. L. Chan P. J. Hennessey K. A. Kavanagh G. Ramaraj T. N. Rezk A. T. Roberts III S. R. Scott D. Vetter S. E. Woolf B. Harris, *Alternate* R. S. Spencer, *Alternate*

COMMITTEE ON TRANSPORT TANKS (BPV XII)

N. J. Paulick, Chair	M. Pitts
M. D. Rana, Vice Chair	J. Roberts
J. Oh, Staff Secretary	T. A. Rogers
A. N. Antoniou	R. C. Sallash
K. W. A. Cheng	M. Shah
P. Chilukuri	S. Staniszewski
W. L. Garfield	A. P. Varghese
P. Miller	R. Meyers, Contributing Member

Executive Committee (BPV XII)

M. D. Rana, Chair	T. A. Rogers
N. J. Paulick, Vice Chair	R. C. Sallash
J. Oh, Staff Secretary	S. Staniszewski
M. Pitts	A. P. Varghese

Subgroup on Design and Materials (BPV XII)

R. C. Sallash, Chair D. K. Chandiramani K. W. A. Cheng P. Chilukuri S. L. McWilliams N. J. Paulick M. D. Rana T. J. Rishel T. A. Rogers M. Shah S. Staniszewski

A. P. Varghese K. Xu Y. Doron, Contributing Member A. T. Duggleby, Contributing Member R. D. Hayworth, Contributing Member B. E. Spencer, Contributing Member

J. Zheng, Contributing Member

Subgroup on Fabrication, Inspection, and Continued Service (BPV XII)

M. Pitts, Chair	T. A. Rogers
K. W. A. Cheng	R. C. Sallash
P. Chilukuri	S. Staniszewski
M. Koprivnak	Y. Doron, Contributing Member
P. Miller	R. D. Hayworth, Contributing
O. Mulet	Member
T. J. Rishel	G. McRae, Contributing Member
J. Roberts	

Subgroup on General Requirements (BPV XII)

- S. Staniszewski, Chair A. N. Antoniou P. Chilukuri H. Ebben III J. L. Freiler W. L. Garfield 0. Mulet B. F. Pittel M. Pitts
- R. C. Sallash Y. Doron, Contributing Member T. J. Hitchcock, Contributing Member S. L. McWilliams, Contributing
 - Member
- T. A. Rogers, Contributing Member
- D. G. Shelton, Contributing Member

Subgroup on Nonmandatory Appendices (BPV XII)

R. C. Sallash T. A. Rogers, Chair S. Staniszewski, Secretary D. G. Shelton P. Chilukuri D. D. Brusewitz, Contributing N. J. Paulick Member M. Pitts Y. Doron, Contributing Member T. J. Rishel

COMMITTEE ON OVERPRESSURE PROTECTION (BPV XIII)

B. K. Nutter, <i>Chair</i> A. Donaldson, <i>Vice Chair</i> C. E. Rodrigues, <i>Staff Secretary</i>	R. D. Danzy, <i>Contributing Member</i> A. Frigerio, <i>Contributing Member</i> J. P. Glaspie, <i>Contributing Member</i>
J. F. Ball J. Burgess	S. F. Harrison, Jr., Contributing Member
B. Calderon D. B. DeMichael	A. Hassan, Contributing Member P. K. Lam, Contributing Member
J. W. Dickson	M. Mengon, Contributing Member
J. M. Levy D. Miller	J. Mize, Contributing Member
T. Patel	M. Mullavey, <i>Contributing Member</i> S. K. Parimi, <i>Contributing Member</i>
B. F. Pittel	J. Phillips, Contributing Member
T. R. Tarbay	M. Reddy, Contributing Member
D. E. Tompkins	S. Ruesenberg, Contributing
Z. Wang	Member
J. A. West	K. Shores, Contributing Member
B. Engman, Alternate	D. E. Tezzo, Contributing Member
H. Aguilar, Contributing Member	A. Wilson, Contributing Member
R. W. Barnes, Contributing Member	

Executive Committee (BPV XIII)

A. Donaldson, <i>Chair</i>	D. B. DeMichael
B. K. Nutter, Vice Chair	K. R. May
C. E. Rodrigues, Staff Secretary	D. Miller
J. F. Ball	

Subgroup on Design and Materials (BPV XIII)

J. A. West
A. Williams
D. J. Azukas, Contributing Member
R. D. Danzy, Contributing Member
A. Hassan, Contributing Member
R. Miyata, Contributing Member
M. Mullavey, Contributing Member
S. K. Parimi, Contributing Member
G. Ramirez, Contributing Member
K. Shores, Contributing Member

D.

Subgroup on General Requirements (BPV XIII)

A. Donaldson, Chair B. F. Pittel, Vice Chair J. M. Levy, Secretary R. Antoniuk D. J. Azukas J. F. Ball J. Burgess D. B. DeMichael S. T. French J. Grace C. Haldiman I. Horne R. Klimas, Jr. Z. E. Kumana P. K. Lam D. Mainiero-Cessna K. R. May J. Mize L. Moedinger M. Mullavey K. Shores D. E. Tezzo D. E. Tompkins J. F. White

- B. Calderon, Contributing Member
 P. Chavdarov, Contributing Member
 T. M. Fabiani, Contributing Member
 J. L. Freiler, Contributing Member
 J. P. Glaspie, Contributing Member
 G. D. Goodson, Contributing Member
 B. Joergensen, Contributing Member
 C. Lasarte, Contributing Member
- M. Mengon, *Contributing Member*
- D. E. Miller, Contributing Member
- R. Miyata, Contributing Member
- B. Mruk. Contributing Member
- J. Phillips, Contributing Member
- M. Reddy, Contributing Member
- S. Ruesenberg, Contributing
- Member
- R. Sadowski, Contributing Member
- A. Swearingin, Contributing Member
- A. P. Varghese, Contributing Member

Subgroup on Nuclear (BPV XIII)

K. R. May, *Chair* J. F. Ball, *Vice Chair* R. Krithivasan, *Secretary* M. Brown J. W. Dickson S. Jones R. Lack D. Miller T. Patel K. Shores I. H. Tseng B. J. Yonsky J. M. Levy, Alternate Y. Wong, Alternate J. Yu, Alternate S. T. French, Contributing Member D. B. Ross, Contributing Member

Subgroup on Testing (BPV XIII)

B. K. Nutter, Chair J. W. Dickson, Vice Chair R. Houk, Secretary T. P. Beirne M. Brown B. Calderon V. Chicola III B. Engman R. J. Garnett R. Lack M. Mengon

- ng (BPV XIII)
- C. Sharpe J. R. Thomas, Jr.
- Z. Wang
- D. Nelson, *Alternate*
- D. Nelsoli, Alternute
- J. Mize, Contributing Member M. Mullavey, Contributing Member
- S. Ruesenberg, *Contributing*
- Member
- K. Shores, Contributing Member
- A. Strecker, Contributing Member
- A. Wilson, Contributing Member

US TAG to ISO TC 185 Safety Devices for Protection Against Excessive Pressure (BPV XIII)

D. Miller, Chair	B. K. Nutter
C. E. Rodrigues, Staff Secretary	T. Patel
J. F. Ball	J. R. Thomas, Jr.
T. J. Bevilacqua	D. Tuttle
D. B. DeMichael	J. A. West
I. W. Dickson	I. F. White

COMMITTEE ON BOILER AND PRESSURE VESSEL CONFORMITY ASSESSMENT (CBPVCA)

R. V. Wielgoszinski, *Chair* G. Scribner, *Vice Chair* G. Moino, *Staff Secretary* M. Blankinship J. P. Chicoine T. E. Hansen W. Hibdon B. L. Krasiun L. E. McDonald N. Murugappan I. Powell D. E. Tuttle E. A. Whittle P. Williams T. P. Beirne, Alternate N. Caputo, Alternate P. Chavdarov, Alternate J. M. Downs, Alternate P. D. Edwards, Alternate Y.-S. Kim, Alternate B. Morelock, Alternate M. Prefumo, Alternate R. Rockwood, Alternate K. Roewe, Alternate B. C. Turczynski, Alternate J. Yu, Alternate D. Cheetham, Contributing Member A. J. Spencer, Honorary Member

COMMITTEE ON NUCLEAR CERTIFICATION (CNC)

R. R. Stevenson, Chair M. A. Lockwood, Vice Chair S. Khan, Staff Secretary A. Appleton J. F. Ball G. Claffey N. DeSantis C. Dinic G. Gobbi J. W. Highlands K. A. Kavanagh J. C. Krane T. McGee E. L. Pleins T. E. Quaka T. N. Rezk D. M. Vickery E. A. Whittle

T. Aldo, Alternate M. Blankinship, Alternate G. Brouette, Alternate M. Burke, Alternate P. J. Coco, Alternate Y. Diaz-Castillo, Alternate P. D. Edwards. Alternate J. Grimm, Alternate K. M. Hottle, Alternate P. Krane. Alternate S. J. Montano, Alternate I. Olson, Alternate L. Ponce, Alternate M. Wilson, Alternate S. Yang, Alternate S. F. Harrison, Jr., Contributing Member

CORRESPONDENCE WITH THE COMMITTEE

General

ASME codes and standards are developed and maintained by committees with the intent to represent the consensus of concerned interests. Users of ASME codes and standards may correspond with the committees to propose revisions or cases, report errata, or request interpretations. Correspondence for this Section of the ASME Boiler and Pressure Vessel Code (BPVC) should be sent to the staff secretary noted on the Section's committee web page, accessible at https://go.asme.org/CSCommittees.

NOTE: See ASME BPVC Section II, Part D for guidelines on requesting approval of new materials. See Section II, Part C for guidelines on requesting approval of new welding and brazing materials ("consumables").

Revisions and Errata

The committee processes revisions to this Code on a continuous basis to incorporate changes that appear necessary or desirable as demonstrated by the experience gained from the application of the Code. Approved revisions will be published in the next edition of the Code.

In addition, the committee may post errata and Special Notices at http://go.asme.org/BPVCerrata. Errata and Special Notices become effective on the date posted. Users can register on the committee web page to receive e-mail notifications of posted errata and Special Notices.

This Code is always open for comment, and the committee welcomes proposals for revisions. Such proposals should be as specific as possible, citing the paragraph number(s), the proposed wording, and a detailed description of the reasons for the proposal, including any pertinent background information and supporting documentation.

Cases

(a) The most common applications for cases are

(1) to permit early implementation of a revision based on an urgent need

(2) to provide alternative requirements

(3) to allow users to gain experience with alternative or potential additional requirements prior to incorporation directly into the Code

(4) to permit use of a new material or process

(b) Users are cautioned that not all jurisdictions or owners automatically accept cases. Cases are not to be considered as approving, recommending, certifying, or endorsing any proprietary or specific design, or as limiting in any way the freedom of manufacturers, constructors, or owners to choose any method of design or any form of construction that conforms to the Code.

(c) The committee will consider proposed cases concerning the following topics only:

(1) equipment to be marked with the ASME Single Certification Mark, or

(2) equipment to be constructed as a repair/replacement activity under the requirements of Section XI

(*d*) A proposed case shall be written as a question and reply in the same format as existing cases. The proposal shall also include the following information:

(1) a statement of need and background information

(2) the urgency of the case (e.g., the case concerns a project that is underway or imminent)

(3) the Code Section and the paragraph, figure, or table number(s) to which the proposed case applies

(4) the edition(s) of the Code to which the proposed case applies

(e) A case is effective for use when the public review process has been completed and it is approved by the cognizant supervisory board. Cases that have been approved will appear in the next edition or supplement of the Code Cases books, "Boilers and Pressure Vessels" or "Nuclear Components." Each Code Cases book is updated with seven Supplements. Supplements will be sent or made available automatically to the purchasers of the Code Cases books until the next edition of the Code. Annulments of Code Cases become effective six months after the first announcement of the annulment in a Code Case Supplement or Edition of the appropriate Code Case book. The status of any case is available at http://go.asme.org/BPVCCDatabase. An index of the complete list of Boiler and Pressure Vessel Code Cases and Nuclear Code Cases is available at http://go.asme.org/BPVCC.

Interpretations

(a) Interpretations clarify existing Code requirements and are written as a question and reply. Interpretations do not introduce new requirements. If a revision to resolve conflicting or incorrect wording is required to support the interpretation, the committee will issue an intent interpretation in parallel with a revision to the Code.

(b) Upon request, the committee will render an interpretation of any requirement of the Code. An interpretation can be rendered only in response to a request submitted through the online Interpretation Submittal Form at http://go.asme.org/InterpretationRequest. Upon submitting the form, the inquirer will receive an automatic e-mail confirming receipt.

(c) ASME does not act as a consultant for specific engineering problems or for the general application or understanding of the Code requirements. If, based on the information submitted, it is the opinion of the committee that the inquirer should seek assistance, the request will be returned with the recommendation that such assistance be obtained. Inquirers may track the status of their requests at http://go.asme.org/Interpretations.

(*d*) ASME procedures provide for reconsideration of any interpretation when or if additional information that might affect an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME committee or subcommittee. ASME does not "approve," "certify," "rate," or "endorse" any item, construction, proprietary device, or activity.

(e) Interpretations are published in the ASME Interpretations Database at http://go.asme.org/Interpretations as they are issued.

Committee Meetings

The ASME BPVC committees regularly hold meetings that are open to the public. Persons wishing to attend any meeting should contact the secretary of the applicable committee. Information on future committee meetings can be found at http://go.asme.org/BCW.

SUMMARY OF CHANGES

Changes listed below are identified on the pages by a margin note, **(23)**, placed next to the affected area.

Page	Location	Change
xxvii	List of Sections	 (1) Under Section III, Division 4 added (2) Title of Section XI and subtitle of Section XI, Division 2 revised (3) Information on interpretations and Code cases moved to "Correspondence With the Committee"
xxxi	Personnel	Updated
liii	Correspondence With the Committee	Added (replaces "Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees")
lx	Cross-Referencing in the ASME BPVC	Updated
3	1.2.4.2	In subpara. (b), cross-reference to API updated
5	Table 1.1	(1) Updated (2) Note (2) added
15	2.2.1	Reformatted and former 2.2.1.2 deleted
17	2.3.1	In 2.3.1.2 and 2.3.1.3, "PRT" revised to "PRT VIII-2"
18	2.3.3	(1) 2.3.3.1 revised (2) 2.3.3.2 deleted and subsequent paragraph redesignated
21	2-A.2.1	In first paragraph, first cross-reference updated
23	2-B.1	In subpara. (b), last cross-reference updated
23	2-B.2.1	In first paragraph, first cross-reference updated
25	2-C.1.1	In subpara. (c), "PRT" revised to "PRT VIII-2"
26	2-C.3.1	Subparagraph (d)(13) added
36	Form A-2	Under "Certificate of Shop Compliance," "PRT" revised to "PRT VIII-2"
44	2-E.16	Deleted
45	2-F.1	"PRT" revised to "PRT VIII-2"
46	2-F.3	"PRT" revised to "PRT VIII-2"
46	2-F.4.1	"PRT" revised to "PRT VIII-2"
46	2-F.5	Subparagraph (a)(3) revised in its entirety
49	Figure 2-F.1	In illustration (b), "PRT" revised to "PRT VIII-2"
50	2-G.1	"PRT" revised to "PRT VIII-2"
50	2-G.6.2	"PRT" revised to "PRT VIII-2"
58	3.2.7.1	In subpara. (c), first sentence revised
64	3.3.6.6	Added
75	3.11.2.1	Subparagraph (b)(1) revised

Page	Location	Change
76	3.11.2.3	Subparagraph (a) revised
77	3.11.2.4	Revised
77	3.11.2.5	(1) Steps 2 and 3 revised (2) In subpara. (d), first sentence revised
79	3.11.2.9	In subpara. (b), second sentence revised
82	3.11.4.5	Subparagraph (c) revised
83	3.11.6.1	Revised
85	3.11.8	 (1) In 3.11.8.1, subpara. (b) revised (2) In 3.11.8.2, title and subparas. (a) through (c) revised (3) 3.11.8.3 revised in its entirety (4) In 3.11.8.4, title and subparas. (a), (b), and (c)(1)(-c) revised
89	Table 3.1	(1) Entries for 2 ¹ / ₄ Cr–1Mo revised (2) Note (1) added
90	Table 3.4	Revised
91	Table 3.5	(1) For SA-320, cross-references in last column revised (2) For SA-453, entries revised
93	Table 3.12	Title revised
94	Table 3.13	Title revised
97	Table 3.18	Deleted
100	Figure 3.3	Title revised
101	Figure 3.3M	Title revised
102	Figure 3.4	Title revised
103	Figure 3.4M	Title revised
105	Figure 3.6	Arrowhead added by errata
105	Figure 3.6M	Arrowhead added by errata
106	Figure 3.7	Title revised
108	Figure 3.7M	Title revised
110	Figure 3.8	Title revised
112	Figure 3.8M	Title revised
123	Figure 3.17	Added
125	Table 3-A.1	For SA-283, Grade B deleted
138	Table 3-A.5	Revised
151	Table 3-D.1	(1) Revised (2) Note (1) added
151	Table 3-D.2	"2 ¹ / ₄ Cr- ¹ / ₂ Mo" revised to "2 ¹ / ₄ Cr-1Mo"
153	Table 3-D.2M	"2 ¹ / ₄ Cr- ¹ / ₂ Mo" revised to "21 ¹ / ₄ Cr-1Mo"
156	3-F.1.2	Subparagraph (b) revised
158	3-F.2.1	Subparagraph (b) revised
163	Figure 3-F.3	Title revised

Page	Location	Change
163	Figure 3-F.3M	Title revised
174	4.1.8.2	Title of subpara. (b) revised
178	4.2.5.3	In subpara. (a)(2), cross-reference updated
178	4.2.5.4	In subpara. (a)(2), cross-reference updated
179	4.2.5.5	In subpara. (a)(2), cross-reference updated
182	4.2.5.7	(1) Added (2) Former 4.2.5.7 redesignated as 4.2.5.8 (3) Former 4.2.5.8 deleted
183	Table 4.2.1	(1) Description for Weld Category C revised (2) Weld Category F added
184	Table 4.2.3	For Material Type 1, description for P-No. 4, Group 1 revised
190	Table 4.2.9	For Detail 9, entry in "Design Notes" column revised
197	Table 4.2.12	For Details 1 through 5, "DIN" corrected by errata to "DN" in "Design Notes" column
202	Figure 4.2.1	Title and illustration revised
207	4.3.6.1	In Step 2, last sentence added
212	4.3.11.3	Revised
225	Table 4.3.7	For "Stress Calculation in the Non-Compact Knuckle Region," breaks added between equations for clarity
243	4.4.12.1	Revised
279	Table 4.5.1	In first column, "DIN" corrected by errata to "DN"
323	Table 4.11.1	<i>(1)</i> For Detail 6, entry for "Requirements" revised <i>(2)</i> For Detail 6, illustrations (a), (b), and (c) revised
404	4.15.3.5	Subparagraphs (c), (d), and (e) revised
408	4.15.6	In definitions of S_{hy} and S_{y} , cross-reference updated
410	Table 4.15.1	Note (4) editorially revised
413	Figure 4.15.3	Illustration (c) revised
414	Figure 4.15.4	In illustration (a), bottom image revised
423	4.16.13	Definition of A_b revised
429	Table 4.16.4	Equations for X_h revised
433	Table 4.16.7	Equations for h_p revised
455	4.18.4	 (1) Subparagraph (d) revised (2) Subparagraphs (f) and (g) added and subsequent subparagraphs redesignated
458	4.18.7.4	Revised and equations renumbered
464	4.18.8.4	Revised and equations renumbered
471	4.18.8.5	(1) Last sentence in (c)(2) revised(2) Equations renumbered
471	4.18.8.6	Equations renumbered

Page	Location	Change
472	4.18.8.7	(1) Subparagraph (b) and last equation revised (2) Equations renumbered
473	4.18.8.8.3	Subparagraph (b)(1) revised
477	4.18.9.4	Revised and equations renumbered
483	4.18.9.5	Equations renumbered
484	4.18.9.6	Last equation revised and equations renumbered
488	4.18.15	(1) In subpara. (b), nomenclature revised (2) In subpara. (d), ℓ_t added
510	Figure 4.18.15	(1) cross-reference to Note (3) added to illustration (b) (2) Illustration (d) and Note (4) added
548	4.20.2	Subparagraph (d) revised
549	4.20.7	Definition of L_{limit} added
550	Figure 4.20.1	Revised
587	5.4	Revised in its entirety
589	5.5	Equations renumbered
591	5.5.2.4	Revised in its entirety
604	5.13	Revised
615	Table 5.7	(1) Revised (2) Note (4) added
616	Table 5.10	Revised in its entirety
701	6.2.2.2	Second paragraph added
711	6.4.6.2	First sentence revised
730	Table 6.8	In second column, entries for SI Units revised
731	Table 6.9	(1) In first column, (c)(2) revised (2) In second column, entries for SI Units revised
732	Table 6.10	Revised
733	Table 6.11	Revised
735	Table 6.12	In second column, entries for SI Units revised
736	Table 6.13	<i>(1)</i> Under "PWHT Requirements," first cross-reference in (c) revised <i>(2)</i> In second column, entries for SI Units revised
737	Table 6.14	In second column, entries for SI Units revised
739	Table 6.15	In second column, entries for SI Units revised
742	Table 6.16	Revised
759	7.4.2.1	In subpara. (a), first sentence revised
762	7.4.9.2	Second sentence revised
774	Table 7.2	For Joint Category D, last row revised and redesignated as F
778	Table 7.3	Under "Shell Thickness," column heads revised
809	8.1.4	In subpara. (a), first sentence revised

Page	Location	Change
810	8.2.4	Revised
810	8.2.5	Title and subpara. (a) revised
812	Part 9	Note revised
812	9.1	Subparagraph (c) revised
821	Annex 9-B	Deleted

CROSS-REFERENCING IN THE ASME BPVC

Paragraphs within the ASME BPVC may include subparagraph breakdowns, i.e., nested lists. The following is a guide to the designation and cross-referencing of subparagraph breakdowns:

(a) Hierarchy of Subparagraph Breakdowns

(1) First-level breakdowns are designated as (a), (b), (c), etc.

(2) Second-level breakdowns are designated as (1), (2), (3), etc.

(3) Third-level breakdowns are designated as (-a), (-b), (-c), etc.

(4) Fourth-level breakdowns are designated as (-1), (-2), (-3), etc.

(5) Fifth-level breakdowns are designated as (+a), (+b), (+c), etc.

(6) Sixth-level breakdowns are designated as (+1), (+2), etc.

(b) Cross-References to Subparagraph Breakdowns. Cross-references within an alphanumerically designated paragraph (e.g., PG-1, UIG-56.1, NCD-3223) do not include the alphanumerical designator of that paragraph. The crossreferences to subparagraph breakdowns follow the hierarchy of the designators under which the breakdown appears. The following examples show the format:

(1) If X.1(c)(1)(-a) is referenced in X.1(c)(1), it will be referenced as (-a).

(2) If X.1(c)(1)(-a) is referenced in X.1(c)(2), it will be referenced as (1)(-a).

(3) If X.1(c)(1)(-a) is referenced in X.1(e)(1), it will be referenced as (c)(1)(-a).

(4) If X.1(c)(1)(-a) is referenced in X.2(c)(2), it will be referenced as X.1(c)(1)(-a).

PART 1 GENERAL REQUIREMENTS

1.1 GENERAL

1.1.1 INTRODUCTION

1.1.1.1 This Division contains mandatory requirements, specific prohibitions, and nonmandatory guidance for the design, materials, fabrication, examination, inspection, testing, overpressure protection, and certification of pressure vessels.

1.1.1.2 The Code does not address all aspects of these activities. Those aspects that are not specifically addressed should not be considered prohibited and shall be addressed by appropriate engineering judgment. Engineering judgment shall be consistent with the philosophy of this Division, and such judgments shall never be used to overrule mandatory requirements or specific prohibitions of this Division.

1.1.2 ORGANIZATION

1.1.2.1 The requirements of this Division are contained in the nine Parts listed below. Each of these Parts and Annexes is composed of paragraphs that are identified by an alphanumeric numbering system in accordance with the ISO Standard Template for the Preparation of Normative-Type Documents. References to paragraphs are made directly by reference to the paragraph number. For example, the Scope is referenced as 1.2.

(a) Part 1 – General Requirements, provides the scope of this division and establishes the extent of coverage

(b) Part 2 – Responsibilities and Duties, sets forth the responsibilities of the user and Manufacturer, and the duties of the Inspector

(c) Part 3 – Materials Requirements, provides the permissible materials of construction, applicable material specification and special requirements, physical properties, allowable stresses, and design fatigue curves

(*d*) Part 4 – Design by Rule Requirements, provides requirements for design of vessels and components using rules (*e*) Part 5 – Design by Analysis Requirements, provides requirements for design of vessels and components using analytical methods

(f) Part 6 - Fabrication Requirements, provides requirements governing the fabrication of vessels and parts

(g) Part 7 – Examination and Inspection Requirements, provides requirements governing the examination and inspection of vessels and parts

(h) Part 8 – Pressure Testing Requirements, provides pressure testing requirements

(*i*) Part 9 – Pressure Vessel Overpressure Protection, provides overpressure protection requirements

1.1.2.2 Mandatory and nonmandatory requirements are provided as normative and informative annexes, respectively, to the specific Part under consideration. The Normative Annexes address specific subjects not covered elsewhere in this Division and their requirements are mandatory when the subject covered is included in construction under this Division. Informative Annexes provide information and suggested good practices.

1.1.2.3 The materials, design, fabrication, examination, inspection, testing, overpressure protection, and certification of pressure vessels shall satisfy all applicable Parts and Normative Annexes shown above in order to qualify the construction in accordance with this Division.

1.1.3 DEFINITIONS

The definitions for the terminology used in this Part are contained in Annex 1-B.

1.2 SCOPE

1.2.1 OVERVIEW

1.2.1.1 In the scope of this Division, pressure vessels are containers for the containment of pressure, either internal or external. This pressure may be obtained from an external source or by the application of heat from a direct or indirect source as a result of a process, or any combination thereof.

1.2.1.2 Vessels with an internal or external design pressure not exceeding 103 kPa (15 psi) and multichambered vessels of which the design pressure on the common elements does not exceed 103 kPa (15 psi) were not considered when the rules of this Division were developed and are not considered within the scope.

1.2.1.3 The rules of this Division may be used for the construction of the following pressure vessels. These vessels shall be designated as either a Class 1 or Class 2 vessel in conformance with the User's Design Specification required in Part 2.

(a) Vessels to be installed at a fixed (stationary) location for a specific service where operation and maintenance control is retained during the useful life of the vessel by the user and is in conformance with the User's Design Specification required by Part 2.

(*b*) Pressure vessels installed in ocean-going ships, barges, and other floating craft or used for motor vehicle or rail freight. For these applications it is necessary that prior written agreement with the jurisdictional authority be established covering operation and maintenance control for a specific service. This operation and maintenance control must be retained during the useful life of the pressure vessel by the user in conformance with the User's Design Specification required in Part 2. Such a pressure vessel as described above may be constructed and stamped within the scope of this Division, provided it meets all other requirements as specified with the following additional provisions.

(1) Loading conditions imposed by movement of the pressure vessel during operation and by relocation of the pressure vessel between work sites or due to loading and discharge, as applicable, shall be considered in the design.

(2) The User's Design Specification shall include the agreements that define those aspects of operation and maintenance control unique to the particular pressure vessel.

(c) Pressure vessels or parts subject to direct firing from the combustion of fuel (solid, liquid, or gaseous), that are not within the scope of Section I, III, or IV may be constructed in accordance with the rules of this Division.

(d) Unfired steam boilers shall be constructed in accordance with the rules of Section I or Section VIII, Division 1.

(e) The following pressure vessels in which steam is generated shall be constructed in accordance with the rules of Section VIII, Division 1 or this Division:

(1) Vessels known as evaporators or heat exchangers;

(2) Vessels in which steam is generated by the use of heat resulting from operation of a processing system containing a number of pressure vessels such as used in the manufacture of chemical and petroleum products; and

(3) Vessels in which steam is generated but not withdrawn for external use.

1.2.1.4 The scope of this Division has been established to identify components and parameters considered in formulating the rules given in this Division. Laws or regulations issued by municipality, state, provincial, federal, or other enforcement or regulatory bodies having jurisdiction at the location of an installation establish the mandatory applicability of the Code rules, in whole or in part, within the jurisdiction. Those laws or regulations may require the use of this Division of the Code for vessels or components not considered to be within its scope. These laws or regulations should be reviewed to determine size or service limitations of the coverage which may be different or more restrictive than those given here.

1.2.2 ADDITIONAL REQUIREMENTS FOR VERY HIGH PRESSURE VESSELS

1.2.2.1 The rules of this Division do not specify a limitation on pressure but are not all-inclusive for all types of construction. For very high pressures, some additions to these rules may be necessary to meet the design principles and construction practices essential to vessels for such pressures. However, only in the event that, after application of additional design principles and construction practices, the vessel still complies with all of the requirements of the Code, may it be stamped with the Certification Mark.

1.2.2.2 As an alternative to this Division, Section VIII, Division 3 should be considered for the construction of vessels intended for operating pressures exceeding 68.95 MPa (10,000 psi).

1.2.3 GEOMETRIC SCOPE OF THIS DIVISION

The scope of this Division is intended to include only the vessel and integral communicating chambers, and shall include the following:

(*a*) Where external piping, other pressure vessels including heat exchangers, or mechanical devices (i.e., pumps, mixers, or compressors) are to be connected to the vessel:

(1) The welding end connection for the first circumferential joint for welded connections (see 4.2.5.9).

(2) The first threaded joint for screwed connections.

(3) The face of the first flange for bolted and flanged connections. Optionally, when the first flange is welded to the nozzle neck, the weld connecting the flange to the nozzle neck may be considered as the first circumferential joint, provided this construction is documented in the User's Design Specification and is properly described on the vessel drawing and the Manufacturer's Data Report Form.

(4) The first sealing surface for proprietary connections or fittings.

(*b*) Where non-pressure parts are welded directly to either the internal or external pressure-retaining surface of a pressure vessel, the scope of this Division shall include the design, fabrication, testing, and material requirements established for non-pressure-part attachments by the applicable paragraphs of this Division (see 4.2.5.6).

(c) Pressure-retaining covers and their fasteners (bolts and nuts) for vessel openings, such as manhole and handhole covers.

(*d*) The first sealing surface for proprietary connections, fittings or components that are designed to rules that are not provided by this Division, such as gages, instruments, and nonmetallic components.

1.2.4 CLASSIFICATIONS OUTSIDE THE SCOPE OF THIS DIVISION

1.2.4.1 The scope of this Division has been established to identify the components and parameters considered in formulating the rules given in this Division. Laws or regulations issued by a Jurisdictional Authority at the location of an installation establish the mandatory applicability of the Code rules, in whole or in part, within that jurisdiction. Those laws or regulations may require the use of this Division of the Code for vessels or components not considered to be within its Scope. These laws or regulations should be reviewed to determine size or service limitations that may be more restrictive than those given here.

1.2.4.2 The following vessels are not included in the scope of this Division. However, any pressure vessel, with the (23) exception of (a) below, that is not excluded from the scope of this Division by 1.2.1.3 and that meets all applicable requirements of this Division may be stamped with the Certification Mark with the U2 Designator and vessel class.

(a) Vessels within the scope of other Sections.

(b) Fired process tubular heaters as defined in API STD 560.

(c) Pressure containers that are integral parts or components of rotating or reciprocating mechanical devices, such as pumps, compressors, turbines, generators, engines, and hydraulic or pneumatic cylinders where the primary design considerations and/or stresses are derived from the functional requirements of the device.

(*d*) Structures consisting of piping components, such as pipe, flanges, bolting, gaskets, valves, expansion joints, and fittings whose primary function is the transport of fluids from one location to another within a system of which it is an integral part, that is, piping systems, including the piping system between a pressure relief device and the vessel it protects, see Part 9.

(e) Pressure-containing parts of components, such as strainers and devices that serve such purposes as mixing, separating, snubbing, distributing, and metering or controlling flow, provided that pressure-containing parts of such components are generally recognized as piping components or accessories.

(f) A vessel for containing water under pressure, including those containing air the compression of which serves only as a cushion, when none of the following limitations are exceeded:

(1) A design pressure of 2.07 MPa (300 psi)

(2) A design temperature of 99°C (210°F)

(g) A hot water supply storage tank heated by steam or any other indirect means when none of the following limitations is exceeded:

(1) A heat input of 58.6 kW (200,000 Btu/hr)

(2) A water temperature of 99°C (210°F)

(3) A nominal water containing capacity of 454 L (120 gal)

(*h*) Vessels with an internal or external design pressure not exceeding 103 kPa (15 psi) with no limitation on size, for multi-chambered vessels, the design pressure on the common elements shall not exceed 103 kPa (15 psi).

(*i*) Vessels with an inside diameter, width, height, or cross section diagonal not exceeding 150 mm (6 in.), with no limitation on length of vessel or pressure.

(*j*) Pressure vessels for human occupancy (requirements for pressure vessels for human occupancy are covered in ASME PVHO-1).

1.2.5 COMBINATION UNITS

When a pressure vessel unit consists of more than one pressure chamber, only the chambers that come within the scope of this Division need be constructed in compliance with its provisions (see 4.1.8).

1.2.6 FIELD ASSEMBLY OF VESSELS

1.2.6.1 Field assembly of vessels constructed to this Division may be performed as follows.

(*a*) The Manufacturer of the vessel completes the vessel in the field, completes the Form A-1 or Form A-1P Manufacturer's Data Report, and stamps the vessel.

(*b*) The Manufacturer of parts of a vessel to be completed in the field by some other party stamps these parts in accordance with Code rules and supplies the Form A-2 Manufacturer's Partial Data Report to the other party. The other party, who must hold a valid U2 Certificate of Authorization, makes the final assembly, performs the required NDE, performs the final pressure test, completes the Form A-1 or Form A-1P Manufacturer's Data Report, and stamps the vessel.

(c) The field portion of the work is completed by a holder of a valid U2 Certificate of Authorization other than the vessel Manufacturer. The Certificate holder performing the field work is required to supply a Form A-2 Manufacturer's Partial Data Report covering the portion of the work completed by his organization (including data on the pressure test if conducted by the Certificate holder performing the field work) to the Manufacturer responsible for the Code vessel. The vessel Manufacturer applies his Certification Mark with U2 Designator in the presence of a representative from his Inspection Agency and completes the Form A-1 or Form A-1P Manufacturer's Data Report with his Inspector.

1.2.6.2 In all three alternatives, the party completing and signing the Form A-1 or Form A-1P Manufacturer's Data Report assumes full Code responsibility for the vessel. In all three cases, each Manufacturer's Quality Control System shall describe the controls to assure compliance by each Certificate holder.

1.2.7 OVERPRESSURE PROTECTION

The scope of this Division includes provisions for overpressure protection necessary to satisfy the requirements of Part 9.

1.3 STANDARDS REFERENCED BY THIS DIVISION

(a) Throughout this Division, references are made to various standards, such as ASME standards, which describe parts or fittings or which establish dimensional limits for pressure vessel parts. These standards, with the year of the acceptable edition, are listed in Table 1.1.

(b) Rules for the use of these standards are stated elsewhere in this Division.

1.4 UNITS OF MEASUREMENT

(a) Either U.S. Customary, SI, or any local customary units may be used to demonstrate compliance with requirements of this edition related to materials, fabrication, examination, inspection, testing, certification, and overpressure protection.

(b) A single system of units shall be used for all aspects of design except where otherwise permitted by this Division. When components are manufactured at different locations where local customary units are different than those used for the general design, the local units may be used for the design and documentation of that component within the limitations given in (c). Similarly, for proprietary components or those uniquely associated with a system of units different than that used for the general design, the alternate units may be used for the design and documentation of that component within the limitations given in (c).

(c) For any single equation, all variables shall be expressed in a single system of units. Calculations using any material data published in this Division or Section II, Part D (e.g., allowable stresses, physical properties, external pressure design factor B) shall be carried out in one of the standard units given in Table 1.2. When separate equations are provided for U.S. Customary and SI units, those equations shall be executed using variables in the units associated with the specific equation. Data expressed in other units shall be converted to U.S. Customary or SI units for use in these equations. The result obtained from execution of these equations or any other calculations carried out in either U.S. Customary or SI units may be converted to other units.

(*d*) Production, measurement and test equipment, drawings, welding procedure specifications, welding procedure and performance qualifications, and other fabrication documents may be in U.S. Customary, SI or local customary units in accordance with the fabricator's practice. When values shown in calculations and analysis, fabrication documents or measurement and test equipment are in different units, any conversions necessary for verification of Code compliance and to ensure that dimensional consistency is maintained shall be in accordance with the following:

(1) Conversion factors shall be accurate to at least four significant figures

(2) The results of conversions of units shall be expressed to a minimum of three significant figures

(e) Conversion of units, using the precision specified above shall be performed to assure that dimensional consistency is maintained. Conversion factors between U.S. Customary and SI units may be found in Annex 1-C. Whenever local customary units are used the Manufacturer shall provide the source of the conversion factors which shall be subject to verification and acceptance by the Authorized Inspector or Certified Individual.

(f) Dimensions shown in the text, tables and figures, whether given as a decimal or a fraction, may be taken as a decimal or a fraction and do not imply any manufacturing precision or tolerance on the dimension.

(g) Material that has been manufactured and certified to either the U.S. Customary or SI material specification (e.g., SA-516 or SA-516M) may be used regardless of the unit system used in design. Standard fittings (e.g., flanges and elbows) that have been certified to either U.S. Customary units or SI units may be used regardless of the units system used in design.

(*h*) All entries on a Manufacturer's Data Report and data for Code-required nameplate marking shall be in units consistent with the fabrication drawings for the component using U.S. Customary, SI, or local customary units. Units (either primary or alternative) may be shown parenthetically. Users of this Code are cautioned that the receiving Jurisdiction should be contacted to ensure the units are acceptable.

1.5 TOLERANCES

The Code does not fully address tolerances. When dimensions, sizes, or other parameters are not specified with tolerances, the values of these parameters are considered nominal, and allowable tolerances or local variances may be considered acceptable when based on engineering judgment and standard practices as determined by the designer.

1.6 TECHNICAL INQUIRIES

A procedure for submittal of Technical Inquiries to the ASME Boiler and Pressure Vessel Code Committee is contained in the front matter.

1.7 TABLES

Title	Number	Year
Marking and Labeling Systems	ANSI/UL-969	Latest edition
Fitness-For-Service	API 579-1/ASME FFS-1	2021
Materials and Fabrication of 2 ¹ / ₄ Cr–1Mo, 2 ¹ / ₄ Cr–1Mo– ¹ / ₄ V, 3Cr–1Mo, and 3Cr–1Mo– ¹ / ₄ V Steel Heavy Wall Pressure Vessels for High-Temperature, High-Pressure Hydrogen Service	API RP 934-A	2019
Fired Heaters for General Refinery Service	API Standard 560	Latest edition
Minimum Design Loads and Associated Criteria for Buildings and Other Structures	ASCE/SEI 7	2022
Nuts for General Applications: Machine Screw Nuts, Hex, Square, Hex Flange, and Coupling Nuts (Inch Series)	ASME/ANSI B18.2.2	Latest edition
Unified Inch Screw Threads (UN and UNR Thread Form)	ASME B1.1	Latest edition
Metric Screw Threads — M Profile	ASME B1.13M	Latest edition
Pipe Threads, General Purpose, Inch	ASME B1.20.1	Latest edition
Metric Screw Threads — MJ Profile	ASME B1.21M	Latest edition
Pipe Flanges and Flanged Fittings, NPS $^{1}\!\!/_{2}$ Through NPS 24 Metric/Inch Standard	ASME B16.5	2020 [Note (1)]
Factory-Made Wrought Buttwelding Fittings	ASME B16.9	Latest edition
Forged Fittings, Socket-Welding and Threaded	ASME B16.11	Latest edition
Cast Copper Alloy Threaded Fittings, Classes 125 and 250	ASME B16.15	Latest Edition
Metallic Gaskets for Pipe Flanges	ASME B16.20	Latest edition
Cast Copper Alloy Pipe Flanges, Flanged Fittings, and Valves, Classes 150, 300, 600, 900, 1500, and 2500	ASME B16.24	2016
Large Diameter Steel Flanges, NPS 26 Through NPS 60 Metric/Inch Standard	ASME B16.47	2020 [Note (1)]
Metric Heavy Hex Screws	ASME B18.2.3.3M	Latest edition
Metric Hex Bolts	ASME B18.2.3.5M	Latest edition
Metric Heavy Hex Bolts	ASME B18.2.3.6M	Latest edition
Metric Fasteners for Use in Structural Applications	ASME B18.2.6M	Latest edition
Conformity Assessment Requirements	ASME CA-1	Latest edition
Guidelines for Pressure Boundary Bolted Flange Joint Assembly	ASME PCC-1	2019
Repair of Pressure Equipment and Piping	ASME PCC-2	2022
Qualifications for Authorized Inspection	ASME QAI-1	Latest edition
Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations	ASTM A1033	Latest edition
Standard Test Method for Measurement of Fracture Toughness	ASTM E1820	2021

 Table 1.1

 Year of Acceptable Edition of Referenced Standards in This Division (Cont'd)

Title	Number	Year
Standard Reference Photographs for Magnetic Particle Indications on Ferrous Castings	ASTM E125	1963 (R2018) [Note (2)]
Standard Practice for Fabricating and Checking Aluminum Alloy Ultrasonic Standard Reference Blocks	ASTM E127	2020
Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials	ASTM E139	Latest edition
Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness	ASTM E140	Latest edition
Standard Reference Radiographs for Heavy-Walled [2 to 4 ¹ / ₂ in. (50.8 to 114 mm)] Steel Castings	ASTM E186	2020
Standard Test Method of Conducting Drop Weight Test to Determine Nil Ductility Transition Temperature of Ferritic Steel	ASTM E208	Latest edition
Standard Reference Radiographs for High-Strength Copper-Base and Nickel-Copper Alloy Castings	ASTM E272	2019
Standard Reference Radiographs for Heavy-Walled [4 ¹ / ₂ to 12 in. (114 to 305 mm)] Steel Castings	ASTM E280	2021
Standard Reference Radiographs for Steel Castings up to 2 in. (51 mm) in Thickness	ASTM E446	2020
Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Austenitic-Ferrite Stainless Steel Weld Metal	AWS A4.2M	2020
Metallic materials — Charpy pendulum impact test — Part 1: Test method	ISO 148-1	Latest edition
Metallic materials — Charpy pendulum impact test — Part 2: Verification of testing machines	ISO 148-2	Latest edition
Metallic materials — Charpy pendulum impact test — Part 3: Preparation and characterization of Charpy V-notch test pieces for indirect verification of pendulum impact machines	ISO 148-3	Latest edition
Petroleum, petrochemical and natural gas industries — Fired heaters for general refinery service	ISO 13705	Latest edition
Standard Practice for Ultrasonic Examination of Steel Forgings	SA-388/SA-388M	Latest edition

(1) The use of a flange or flanged fitting that relies on and meets the requirements of an ASME B16 Case is not permitted.
(2) "R" indicates reaffirmed.

Table 1.2Standard Units for Use in Equations		
Quantity	SI Units	U.S. Customary Units
Linear dimensions (e.g., length, height, thickness, radius, diameter)	millimeters (mm)	inches (in.)
Area	square millimeters (mm ²)	square inches (in. ²)
Volume	cubic millimeters (mm ³)	cubic inches (in. ³)
Section modulus	cubic millimeters (mm ³)	cubic inches (in. ³)
Moment of inertia of section	millimeters ⁴ (mm ⁴)	inches ⁴ (in. ⁴)
Mass (weight)	kilograms (kg)	pounds mass (lbm)
Force (load)	newtons (N)	pounds force (lbf)
Bending moment	newton-millimeters (N·mm)	inch-pounds (inlb)
Pressure, stress, stress intensity, and modulus of elasticity	megapascals (MPa)	pounds per square inch (psi)
Energy (e.g., Charpy impact values)	joules (J)	foot-pounds (ft-lb)
Temperature	degrees Celsius (°C)	degrees Fahrenheit (°F)
Absolute temperature	kelvin (K)	Rankine (°R)
Fracture toughness	MPa square root meters (MPa \sqrt{m})	ksi square root inches (ksi $\sqrt{in.}$)
Angle	degrees or radians	degrees or radians
Boiler capacity	watts (W)	Btu/hr

ANNEX 1-B DEFINITIONS

(Normative)

1-B.1 INTRODUCTION

This Annex contains definitions of terms generally used in this Division. Definitions relating to specific applications may also be found in related Parts of this Division.

1-B.2 DEFINITION OF TERMS

1-B.2.1 Acceptance by the Inspector, accepted by the Inspector - an indication that the Inspector has reviewed a subject in accordance with his duties as required by the rules of this Division and after such review is able to sign the Certificate of Inspection for the applicable Manufacturer's Data Report Form.

1-B.2.2 ASME Designated Organization – see ASME CA-1.

1-B.2.3 ASME designee – see ASME CA-1.

1-B.2.4 Certificate of Compliance – a document that states that the material represented has been manufactured, sampled, tested and inspected in accordance with the requirements of the material specification (including year of issue) and any other requirements specified in the purchase order or contract shown on the certificate and has been found to meet such requirements. This document may be combined with the Materials Test Report (see 1-B.2.19) as a single document.

1-B.2.5 Certificate of Authorization – a document issued by the Society that authorizes the use of the ASME Certification Mark and appropriate designator for a specified time and for a specified scope of activity.

1-B.2.6 Certification Mark – an ASME symbol identifying a product as meeting Code requirements.

1-B.2.7 Certification Mark Stamp – a metallic stamp issued by the Society for use in impressing the Certification Mark.

1-B.2.8 Certification Designator (Designator) – the symbol used in conjunction with the Certification Mark for the scope of activity described in a Manufacturer's Certificate of Authorization.

1-B.2.9 Certifying Engineer – an engineer or other technically competent professional duly accredited and qualified to practice engineering as required by this Division.

1-B.2.10 Class 1 Vessel – a vessel that is designed using the allowable stresses from Section II, Part D, Subpart 1, Table 2A or Table 2B.

1-B.2.11 Class 2 Vessel – a vessel that is designed using the allowable stresses from Section II, Part D, Subpart 1, Table 5A or Table 5B.

1-B.2.12 Communicating Chambers – appurtenances to a vessel that intersect the shell or heads of a vessel and form an integral part of the pressure-containing enclosure.

1-B.2.13 Construction – an all-inclusive term comprising materials, design, fabrication, examination, inspection, testing, certification, and pressure relief.

1-B.2.14 Designer – an individual who is qualified to design pressure vessels in accordance with the rules of this Division by demonstrated knowledge in Code requirements and proficiency in selecting correct design formulas and appropriate values to be used when preparing the design of a pressure vessel.

1-B.2.15 Local Jurisdictional Authority – an agency enforcing laws or regulations applicable to pressure vessels.

1-B.2.16 Manufacturer – the organization responsible for construction of a pressure vessel, vessel component, or part in accordance with the rules of this Division and who holds an ASME Certificate of Authorization to apply the Certification Mark to such an item.

1-B.2.17 Material – any substance or product form covered by a material specification in Section II Part A, B, or C or any other substance or product form permitted for use in pressure vessel construction by this Division.

1-B.2.18 Material Manufacturer – the organization responsible for the production of products meeting the requirements of the material specification and accepting the responsibility for any statements or data in any required Certificate of Compliance or Material Test Report representing the material.

1-B.2.19 Material Test Report – a document in which the results of tests, examinations, repairs, or treatments required by the material specification to be reported are recorded, including those of any supplementary requirements or other requirements stated in the order for the material. This document may be combined with a Certificate of Compliance (see 1-B.2.4) as a single document.

1-B.2.20 User – the organization that purchases the finished pressure vessel for its own use or as an agent for the owner. The user's designated agent may be either a design agency specifically engaged by the user, the Manufacturer of a system for a specific service which includes a pressure vessel as a part and which is purchased by the user, or an organization which offers pressure vessels for sale or lease for specific services.

ANNEX 1-C GUIDANCE FOR THE USE OF U.S. CUSTOMARY AND SI UNITS IN THE ASME BOILER AND PRESSURE VESSEL CODES

(Informative)

1-C.1 USE OF UNITS IN EQUATIONS

The equations in this Division are suitable for use only with either the SI or U.S. Customary units provided in Table 1.2 or with the units provided in the nomenclatures associated with the equations. It is the responsibility of the individual and organization performing the calculations to ensure that appropriate units are used. Either SI or U.S. Customary units may be used as a consistent set. When necessary to convert from one system to another, the units shall be converted to at least four significant figures for use in calculations and other aspects of construction.

1-C.2 GUIDELINES USED TO DEVELOP SI EQUIVALENTS

(a) U.S. Customary units are placed in parenthesis after the SI unit in the text.

(*b*) In general, both SI and U.S. Customary tables are provided if interpolation is expected. The table designation (e.g., table number) is the same for both the SI and the U.S. Customary tables, with the addition of an M after the table number for the SI Table. In the text, references to a Table use only the primary table number (i.e., without the M). For some small tables, where interpolation is not required, U.S. Customary units are placed in parenthesis after the SI unit.

(c) Separate SI and U.S. Customary versions of graphical information (charts) are provided, except that if both axes are dimensionless a single figure (chart) is used.

(*d*) In most cases, conversions of units in the text were done using hard SI conversion practices, with some soft conversions on a case-by-case basis as appropriate. This was implemented by rounding the SI values to the number of significant figures of implied precision in the existing U.S. Customary units. For example, 3,000 psi has an implied precision of one significant figure. Therefore, the conversion to SI units would typically be to 20 000 kPa. This is a difference of about 3% from the "exact" or soft conversion of 20 684.27 kPa. However, the precision of the conversion was determined by the Committee on a case-by-case basis. More significant digits were included in the SI equivalent if there was any question. The values of allowable stress in Section II, Part D generally include three significant figures.

(e) Minimum thickness and radius values that are expressed in fractions of an inch were generally converted according to Table 1-C.1.

(*f*) For nominal sizes that are in even increments of inches, even multiples of 25 mm were generally used. Intermediate values were interpolated rather than converting and rounding to the nearest mm. See examples in Table 1-C.2. Note that this table does not apply to nominal pipe sizes (NPS), which are covered in Table 1-C.4.

(g) For nominal pipe sizes, the relationships shown in Table 1-C.4 were used.

(*h*) Areas in square inches (in.²) were converted to square millimeters (mm^2), and areas in square feet (ft^2) were converted to square meters (m^2), see examples in Table 1-C.5.

(*i*) Volumes in cubic inches (in.³) were converted to cubic millimeters (mm^3), and volumes in cubic feet (ft^3) were converted to cubic meters (m^3), see examples in the Table 1-C.6.

(*j*) Although the pressure should always be in MPa or psi for calculations, there are cases where other units are used in the text. For example, kPa is sometimes used for low pressures and ksi is sometimes used for high pressures and stresses. Also, rounding was to one significant figure (two at the most) in most cases, see examples in Table 1-C.7. Note that 14.7 psi converts to 101 kPa, while 15 psi converts to 100 kPa. While this may seem at first glance to be an anomaly, it is consistent with the rounding philosophy.

(*k*) Material properties that are expressed in psi or ksi (e.g., allowable stress, yield and tensile strength, elastic modulus) were generally converted to MPa to three significant figures. See example in Table 1-C.8.

(*l*) In most cases, temperatures (e.g., for PWHT) were rounded to the nearest 5°C. Depending on the implied precision of the temperature, some were rounded to the nearest 1°C or 10°C or even 25°C. Temperatures colder than 0°F (negative values) were generally rounded to the nearest 1°C. The examples in Table 1-C.9 were created by rounding to the nearest 5°C, with one exception.

1-C.3 SOFT CONVERSION FACTORS

Table 1-C.10 of "soft" conversion factors is provided for convenience. Multiply the U.S. Customary value by the factor given to obtain the SI value. Similarly, divide the SI value by the factor given to obtain the U.S. Customary value. In most cases it is appropriate to round the answer to three significant figures.

1-C.4 TABLES

Table 1-C.1 Typical Size or Thickness Conversions for Fractions		
raction in U.S. Customary Units, in.	Proposed SI Conversion, mm	Difference, %
1/32	0.8	-0.8
3/64	1.2	-0.8
1/16	1.5	5.5
³ / ₃₂	2.5	-5.0
1/8	3	5.5
5/32	4	-0.8
3/16	5	-5.0
7/32	5.5	1.0
1/4	6	5.5
5/16	8	-0.8
³ /8	10	-5.0
7/16	11	1.0
1/2	13	-2.4
⁹ /16	14	2.0
5/8	16	-0.8
¹¹ / ₁₆	17	2.6
3/4 7/8	19	0.3
7/8	22	1.0
1	25	1.6

	1-C.2 ckness Conversions	
Size, in.	Size, mm	
1	25	
$1\frac{1}{8}$	29	
$1^{1}/_{4}$	32	
$1^{1}/_{2}$	38	
2	50	
$2^{1}/_{4}$ $2^{1}/_{2}$	57	
$2^{1}/_{2}$	64	
3	75	
3 ¹ / ₂	89	
4	100	

	Table 1-C.2 Typical Size or Thickness Conversions (Cont'd)		
Size, in.	Size, mm		
5	125		
6	150		
8	200		
12	300		
18	450		
20	500		
24	600		
36	900		
40	1 000		
54	1 350		
60	1 500		
72	1 800		

Table 1-C.3Typical Size or Length Conversions		
Size or Length, ft	Size or Length, m	
3	1	
5	1.5	
200	60	

Table 1-C.4 Typical Nominal Pipe Size Conversions				
U.S. Customary Practice	SI Practice	U.S. Customary Practice	SI Practice	
NPS ¹ / ₈	DN 6	NPS 20	DN 500	
NPS ¹ / ₄	DN 8	NPS 22	DN 550	
NPS ³ / ₈	DN 10	NPS 24	DN 600	
NPS $\frac{1}{2}$	DN 15	NPS 26	DN 650	
NPS ³ / ₄	DN 20	NPS 28	DN 700	
NPS 1	DN 25	NPS 30	DN 750	
NPS $1^{1}/_{4}$	DN 32	NPS 32	DN 800	
NPS $1^{1}/_{2}$	DN 40	NPS 34	DN 850	
NPS 2	DN 50	NPS 36	DN 900	
NPS 2 ¹ / ₂	DN 65	NPS 38	DN 950	
NPS 3	DN 80	NPS 40	DN 1000	
NPS $3^{1}/_{2}$	DN 90	NPS 42	DN 1050	
NPS 4	DN 100	NPS 44	DN 1100	
NPS 5	DN 125	NPS 46	DN 1150	
NPS 6	DN 150	NPS 48	DN 1200	
NPS 8	DN 200	NPS 50	DN 1250	
NPS 10	DN 250	NPS 52	DN 1300	
NPS 12	DN 300	NPS 54	DN 1350	
NPS 14	DN 350	NPS 56	DN 1400	
NPS 16	DN 400	NPS 58	DN 1450	
NPS 18	DN 450	NPS 60	DN 1500	

Table 1-C.5 Typical Area Conversions		
Area in U.S. Customary	Area in SI	
1 in. ²	650 mm ²	
6 in. ²	4 000 mm ²	
10 in. ²	6 500 mm ²	
5 ft^2	0.5 m^2	

Table 1-C.6 Typical Volume Conversions		
Volume in U.S. Customary	Volume in SI	
1 in. ³	16 000 mm ³	
6 in. ³ 10 in. ³	100 000 mm ³	
10 in. ³	160 000 mm ³	
5 ft^3	0.14 m ³	

Table 1 Typical Pressur		
Pressure in U.S. Customary	Pressure in SI	_
0.5 psi	3 kPa	
2 psi	15 kPa	
3 psi	20 kPa	
10 psi	70 kPa	
14.7 psi	101 kPa	
15 psi	100 kPa	
30 psi	200 kPa	
50 psi	350 kPa	
100 psi	700 kPa	
150 psi	1 MPa	
200 psi	1.5 MPa	
250 psi	1.7 MPa	
300 psi	2 MPa	
350 psi	2.5 MPa	
400 psi	3 MPa	
500 psi	3.5 MPa	
600 psi	4 MPa	
1,200 psi	8 MPa	
1,500 psi	10 MPa	

Table 1-C.8 Typical Strength Conversions		
Strength in U.S. Customary, psi	Strength in SI, MPa	
30,000	205	
38,000	260	
60,000	415	
70,000	480	
95,000	655	

Tabl Typical Temper	e 1-C.9 ature Conversions	
Temperature, °F	Temperature, °C	
70	20	
100	38	
120	50	
150	65	
200	95	
250	120	
300	150	
350	175	
400	205	
450	230	
500	260	
550	290	
600	315	
650	345	
700	370	
750	400	
800	425	
850	455	
900	480	
925	495	
950	510	
1,000	540	
1,050	565	
1,100	595	
1,150	620	
1,200	650	
1,250	675	
1,800	980	
1,900	1 040	
2,000	1 095	
2,050	1 120	

Table 1-C.10 Conversion Factors					
U.S. Customary	SI	Conversion Factor	Notes		
in.	mm	25.4			
ft	m	0.3048			
in. ²	mm ²	645.16			
ft ²	m ²	0.09290304			
in ³	mm ³	16,387.064			
ft ³	m ³	0.02831685			
US Gal.	m ³	0.003785412			
psi	MPa	0.0068948	Used exclusively in equations		
psi	kPa	6.894757	Used only in text and for nameplate		
ft-lb	J	1.355818			
°F	°C	5∕9(°F − 32)	Not for temperature difference		
°F	°C	5∕/ ₉ (°F)	For temperature differences only		
R	К	5/9	Absolute temperature		
lbm	kg	0.4535924			
lbf	Ν	4.448222			
inlb	N∙mm	112.98484	Use exclusively in equations		
ft-lb	N·m	1.3558181	Use only in text		
ksi√in	$MPa\sqrt{m}$	1.0988434			
Btu/hr	W	0.2930711	Use for Boiler rating and heat transfer		
lb/ft ³	kg/m ³	16.018463			

(23)

PART 2 RESPONSIBILITIES AND DUTIES

2.1 GENERAL

2.1.1 INTRODUCTION

The user, Manufacturer, and Inspector involved in the production and certification of vessels in accordance with this Division have definite responsibilities or duties in meeting the requirements of this Division. The responsibilities and duties set forth in the following relate only to compliance with this Division, and are not to be construed as involving contractual relations or legal liabilities.

2.1.2 **DEFINITIONS**

The definitions for the terminology used in this Part are contained in Annex 1-B.

2.1.3 CODE REFERENCE

The Code Edition year on the User's Design Specification and Manufacturer's Design Report shall be the same as the Code Edition year on the Manufacturer's Data Report.

2.2 USER RESPONSIBILITIES

2.2.1 GENERAL

2.2.1.1 It is the responsibility of the user or an agent acting on behalf of the user to provide a User's Design Specification for each pressure vessel to be constructed in accordance with this Division. The User's Design Specification shall contain sufficient detail to provide a complete basis for design and construction in accordance with this Division. It is the user's responsibility to specify, or cause to be specified, the effective Code edition and vessel class to be used for construction.

2.2.1.2 The User's Design Specification shall be certified by a Certifying Engineer meeting the requirements described in Annex 2-A when the user provides the data required by 2.2.3.1(f)(1) and 2.2.3.1(f)(2) to perform a fatigue analysis.

2.2.2 MULTIPLE IDENTICAL VESSELS

A single User's Design Specification may be prepared to support the design of more than one pressure vessel that is to be located in a single, specific jurisdiction provided that the environmental requirements and jurisdictional regulatory authority applied for each installation location are clearly specified and are the same or more conservative than required.

2.2.3 USER'S DESIGN SPECIFICATION

2.2.3.1 The User's Design Specification shall include but not necessarily be limited to the following:

- (a) Installation Site
 - (1) Location
 - (2) Jurisdictional authority if applicable
 - (3) Environmental conditions
 - (-a) Wind design loads including relevant factors (i.e., design wind speed, exposure, gust factors)
 - (-b) Earthquake design loads
 - (-c) Snow loads
 - (-d) Lowest one day mean temperature for location
- (b) Vessel Identification
 - (1) Vessel number or identification
- (2) Service fluid for proprietary fluids specific properties needed for design, e.g., gas, liquid, density, etc. (c) Vessel Configuration and Controlling Dimensions
 - configuration and controlling Dimensions

(1) Outline drawings

(2) Vertical or horizontal

(3) Openings, connections, closures including quantity, type and size, and location (i.e., elevation and orientation)

(4) Principal component dimensions in sufficient detail so that volume capacities can be determined

(5) Support method

(d) Design Conditions

(1) Specified design pressure. The specified design pressure is the design pressure, see 4.1.5.2(a), required at the top of the vessel in its operating position. It shall include suitable margins required above the maximum anticipated operating pressure to ensure proper operation of the pressure relief devices. The MAWP of the vessel may be set equal to this specified design pressure. If the actual MAWP of the vessel is calculated, it shall not be less than the specified design pressure.

(2) Design temperature and coincident specified design pressure [see 4.1.5.2(d)].

(3) Minimum Design Metal Temperature (MDMT) and coincident specified design pressure [see 4.1.5.2(e)].

(4) Dead loads, live loads, and other loads required to perform the load case combinations required in Parts 4 and 5. (e) Operating Conditions

(1) Operating pressure and pressure load factor for occasional load combinations in Tables 4.1.2 and 5.3

(2) Operating temperature

(3) Fluid transients and flow and sufficient properties for determination of steady-state and transient thermal gradients across the vessel sections, if applicable (see 5.5.2)

(4) Dead loads, live loads, and other operating loads required to perform the load case combinations required in Part 5

(f) Design Fatigue Life

(1) Cyclic operating conditions and whether or not a fatigue analysis of the vessel as required shall be determined in accordance with 4.1.1.4. When a fatigue analysis is required, provide information in sufficient detail so that an analysis of the cyclic operation can be carried out in accordance with 5.5.

(2) When a vessel is designed for cyclic conditions, the number of design cycles per year and the required vessel design life in years shall be stated.

(3) When cyclic operating conditions exist and a fatigue analysis is not required based on comparable equipment experience, this shall be stated. The possible harmful effects of the design features listed in 5.5.2.2(a) through 5.5.2.2(f) shall be evaluated when contemplating comparable equipment experience.

(4) Corrosion Fatigue

(-a) The design fatigue cycles given by eqs. (3-F.21) and (3-F.22) do not include any allowances for corrosive conditions and may be modified to account for the effects of environment other than ambient air that may cause corrosion or subcritical crack propagation. If corrosion fatigue is anticipated, a factor should be chosen on the basis of experience or testing, by which the calculated design fatigue cycles (fatigue strength) should be reduced to compensate for the corrosion.

(-b) When using eq. (3-F.22) an environmental modification factor shall be specified in the User's Design Specification.

(-c) If due to lack of experience it is not certain that the chosen stresses are low enough, it is advisable that the frequency of inspection be increased until there is sufficient experience to justify the factor used. This need for increased frequency should be stated in the User's Design Specification.

(g) Materials of Construction

(1) Material specification requirements shall be in accordance with one or more of the following criteria.

(-a) Specification of materials of construction in accordance with Part 3.

(-b) Generic material type (i.e., carbon steel or Type 304 Stainless Steel). The user shall specify requirements that provide an adequate basis for selecting materials to be used for the construction of the vessel. The Manufacturer shall select the appropriate material from Part 3, considering information provided by the user per (3).

(2) The user shall specify the corrosion and/or erosion allowance.

(3) The user, when selecting the materials of construction, shall consider the following:

(-*a*) Damage mechanisms associated with the service fluid at design conditions. Informative and nonmandatory guidance regarding metallurgical phenomena is provided in Section II, Part D, Nonmandatory Appendix A; API RP 571; and WRC Bulletins 488, 489, and 490.

(-b) Minimum Design Metal Temperature and any additional toughness requirements.

(-*c*) The need for specific weld filler material to meet corrosion resistance requirements, see 6.2.5.8. (*h*) Loads and Load Cases

(1) The user shall specify all expected loads and load case combinations as listed in 4.1.5.3.

(2) These loading data may be established by:

(-a) Calculation

(-b) Experimental methods

(-c) Actual experience measurement from similar units

(-d) Computer analysis

(-e) Published data

(i) Overpressure Protection

(1) The user shall be responsible for the design, construction and installation of the overpressure protection system unless it is delegated to the Manufacturer. This system shall meet the requirements of Part 9.

(2) The type of over pressure protection intended for the vessel shall be documented in the User's Design Specification as follows (see 9.1):

(-a) Type of overpressure protection system (e.g., type of pressure relief valve, rupture disc, etc.)

(-b) System design [see 9.5(e)]

(3) The user shall state if jurisdictional acceptance is required prior to operation of the vessel.

2.2.3.2 Additional Requirements. The user shall state what additional requirements are appropriate for the intended vessel service such as:

(a) Additional requirements such as non-destructive examination, restricted chemistry, or heat treatments

(b) Type of weld joints and the extent of required nondestructive examinations

(c) Nonmandatory or optional provisions of this Division that are considered to be mandatory for the subject vessel (d) Any special requirements for marking and their location (see 4.1 and Annex 2-F)

(e) Requirements for seals and/or bolting for closures and covers

(f) Additional requirements relating to erection loadings

(g) Any agreements which resolve the problems of operation and maintenance control unique to the particular pressure vessel. See also 2.2.3.1(f)(4)(-c).

(*h*) Specific additional requirements relating to pressure testing such as:

(1) Fluid properties and test temperature limits

- (2) Position of vessel and support/foundation adequacy if field hydrostatic testing is required
- (3) Location: Manufacturer's facility or on-site
- (4) Cleaning and drying

(5) Selection of pressure test method (see 8.1.1)

(6) Application of paints, coatings and linings [see 8.1.2(e)]

2.3 MANUFACTURER'S RESPONSIBILITIES

2.3.1 CODE COMPLIANCE

2.3.1.1 The Manufacturer is responsible for the structural and pressure-retaining integrity of a vessel or part thereof, as established by conformance with the requirements of the rules of this Division and the requirements in the User's Design Specification.

2.3.1.2 The Manufacturer completing any vessel or part marked with the Certification Mark with the U2 Designator and class or the Certification Mark with the PRT VIII-2 Designator in accordance with this Division has the responsibility to comply with all the applicable requirements of this Division and, through proper certification, to ensure that any work by others also complies with the requirements of this Division. The Manufacturer shall certify compliance with these requirements by completing a Manufacturer's Data Report (see 2.3.4).

2.3.1.3 The PRT VIII-2 Certificate Holder is not permitted to assume full Code responsibility for the completed vessel. The PRT VIII-2 Certificate Holder shall only assume responsibility for the construction and marking of completed parts.

2.3.1.4 A single Manufacturer's Design Report may be completed and certified to document more than one pressure vessel that is to be located in a single, specific jurisdiction, provided that the details of design and construction demonstrate that the environmental requirements and jurisdictional regulatory authority applied for each installation location are the same or more conservative than required.

2.3.2 MATERIALS SELECTION

2.3.2.1 When generic material types (i.e., carbon steel or Type 304 Stainless Steel) are specified, the Manufacturer shall select the appropriate material from Part 3, considering information provided by the user per 2.2.3.1(g)(3).

2.3.2.2 Any material substitutions by the Manufacturer are subject to approval of the user.

(23) 2.3.3 MANUFACTURER'S DESIGN REPORT

2.3.3.1 Certification of a Manufacturer's Design Report.

(*a*) The Manufacturer's Design Report shall be certified by a Certifying Engineer in accordance with Annex 2-B when any of the following are performed:

(1) fatigue analysis

(2) use of Part 5 to determine thickness of pressure parts when design rules are not provided in Part 4

(3) use of Part 5 to establish design thickness in lieu of Part 4 specified in 4.1.1.5.2

(4) use of Part 4.8 to design a quick-actuating closure

(5) a dynamic seismic analysis

(b) The Manufacturer's Design Report may be certified by an engineer or a designer in accordance with Annex 2-B when none of the conditions of (a)(1) through (a)(5) apply.

2.3.3.2 Contents of the Manufacturer's Design Report. The Manufacturer shall provide a Manufacturer's Design Report that includes:

(a) Final as-built drawings.

(b) The actual material specifications used for each component.

(c) Design calculations and analysis that establish that the design as shown on the drawings complies with the requirements of this Division for the design conditions that have been specified in the User's Design Specification.

(1) Documentation of design-by-rule calculations in Part 4 shall include the following:

(-*a*) The name and version of computer software, if applicable

(-b) Loading conditions and boundary conditions used to address the load cases in the User's Design Specification

(-c) Material models utilized for all required physical properties (i.e., stress-strain data, modulus of elasticity, Poisson's ratio, thermal expansion coefficient, thermal conductivity, thermal diffusivity), strength parameters (i.e., yield and tensile strength), and allowable stresses

(-*d*) Detailed calculations, including results from all of the applicable steps in the calculations, showing the acceptance criteria utilized to meet the requirements of this Division.

(-e) A summary of the calculation results

(2) Documentation of design-by-analysis calculations in Part 5 shall include the following:

(-*a*) A detailed description of the numerical method used, including the name and version of computer software, if applicable

(-b) Description of model geometry (including element type for finite element analysis)

(-c) Loading conditions and boundary conditions used to address the load cases in the User's Design Specification

(-d) Material models utilized for all required physical properties (i.e., modulus of elasticity, Poisson's ratio, thermal expansion coefficient, thermal conductivity, thermal diffusivity), strength parameters (i.e., yield and tensile strength), strain limits, if applicable, and the design membrane stress intensity per Part 3

(-e) Description of whether material nonlinearity is utilized in the analysis including a description of the material model (i.e., stress–strain curve and cyclic stress–strain curve)

(-f) Description of the numerical analysis procedure (i.e., static analysis, thermal analysis (temperature and stress), buckling analysis, natural frequency analysis, dynamic analysis) and whether a geometrically linear or nonlinear option is invoked

(-g) Graphical display of relevant results (i.e., numerical model, deformed plots, and contour plots of thermal and stress results)

(-h) Method used to validate the numerical model (i.e., mesh sensitivity review and equilibrium check for finite element analysis, e.g., check of hoop stress in a component away from structural discontinuity and a check to ensure that global equilibrium is achieved between applied loads and reactions at specified boundary conditions)

(-*i*) Description of results processing performed to establish numerical analysis results (i.e., stress linearization method, use of centroidal or nodal values for stress, strain, and temperature results)

(-*j*) A summary of the numerical analysis results showing the acceptance criteria utilized to meet the requirements of this Division

(-*k*) Electronic storage of analysis results including input files and output files that contain numerical analysis results utilized to demonstrate compliance with the requirements of this Division

(*d*) Any methods of design used that are not covered by the rules of this Division.

(e) The results of any fatigue analyses according to 5.5, as applicable.

(f) Any assumptions used by the Manufacturer to perform the vessel design.

2.3.4 MANUFACTURER'S DATA REPORT

The Manufacturer shall certify compliance to the requirements of this Division by the completion of the appropriate Manufacturer's Data Report as described in Annex 2-C and Annex 2-D.

2.3.5 MANUFACTURER'S CONSTRUCTION RECORDS

The Manufacturer shall prepare, collect and maintain construction records and documentation as fabrication progresses, to show compliance with the Manufacturer's Design Report (e.g., NDE reports, repairs, deviations from drawings, etc.). An index of the construction records files, in accordance with the Manufacturer's Quality Control System, shall be maintained current (see 2-C.3). These construction records shall be maintained by the Manufacturer for the duration as specified in 2-C.3.

2.3.6 QUALITY CONTROL SYSTEM

The Manufacturer shall have and maintain a Quality Control System in accordance with Annex 2-E.

2.3.7 MANUFACTURER'S DESIGN PERSONNEL

2.3.7.1 The Manufacturer has the responsibility of ensuring all personnel performing and/or evaluating design activities are competent in the area of design (see Annexes 2-C and 2-J).

2.3.7.2 The Manufacturer shall maintain a controlled document, referenced in the Quality Control System, identifying the persons who may exercise control of the design work performed by others.

2.3.8 CERTIFICATION OF SUBCONTRACTED SERVICES

2.3.8.1 The Quality Control System shall describe the manner in which the Manufacturer (Certificate Holder) controls and accepts the responsibility for the subcontracting of activities. The Manufacturer shall ensure that all contracted activities meet the requirements of this Division.

2.3.8.2 Work such as forming, nondestructive examination, heat treating, etc., may be performed by others (for welding, see 6.1.4.2). It is the vessel Manufacturer's responsibility to ensure that all work performed complies with all the applicable requirements of this Division. After ensuring compliance, and obtaining concurrence of the Inspector, the vessel may be stamped with the Certification Mark.

2.3.8.3 Subcontracts that involve welding on the pressure boundary components for construction under the rules of this Division, other than as provided in 6.1.4.2 and for repair welds permitted by the ASME material specifications, shall be made only to subcontractors holding a valid U2 Certificate of Authorization. All such subcontracted welding shall be documented on Form A-2 (see Annex 2-D).

2.3.8.4 A Manufacturer may engage individuals by contract for their services as Welders or Welding Operators, at shop or site locations shown on his Certification of Authorization, provided all of the following conditions are met:

(a) The work to be done by Welders or Welding Operators is within the scope of the Certificate of Authorization.

(*b*) The use of such Welders or Welding Operators is described in the Quality Control System of the Manufacturer. The Quality Control System shall include a requirement for direct supervision and direct technical control of the Welders and Welding operators, acceptable to the Manufacturer's accredited Authorized Inspection Agency.

(c) The Welding Procedures have been properly qualified by the Manufacturer, according to Section IX.

(d) The Welders and Welding Operators are qualified by the Manufacturer according to Section IX to perform these procedures.

(e) Code responsibility and control is retained by the Manufacturer.

2.3.9 INSPECTION AND EXAMINATION

The Manufacturer's responsibility for inspection and examination is summarized in Annex 7-A.

2.3.10 APPLICATION OF CERTIFICATION MARK

Vessels or parts shall be stamped in accordance with the requirements in Annex 2-F. The procedure to obtain and use a Certification Mark is described in Annex 2-G.

2.4 THE INSPECTOR

2.4.1 IDENTIFICATION OF INSPECTOR

All references to Inspectors throughout this Division mean the Authorized Inspector as defined in this paragraph. All inspections required by this Division shall be by an Inspector regularly employed by an ASME accredited Authorized Inspection Agency, as defined in ASME QAI-1, or by a company that manufacturers pressure vessels exclusively for its own use and not for resale that is defined as a User-Manufacturer. This is the only instance in which an Inspector may be in the employ of the Manufacturer.

2.4.2 INSPECTOR QUALIFICATION

All Inspectors shall have been qualified in accordance with ASME QAI-1.

2.4.3 INSPECTOR'S DUTIES

2.4.3.1 It is the duty of the Inspector to make all the inspections specified by the rules of this Division. In addition, the Inspector shall make other such inspections as considered necessary in order to ensure that all requirements have been met. Some typical required inspections and verifications that are defined in the applicable rules are included in the Inspector's responsibility for inspection and examination as summarized in Annex 7-A.

2.4.3.2 The Inspector of the completed vessel does not have the duty of establishing the accuracy of the design calculations but has the duty of verifying that the required design calculations have been performed. The Inspector has the duty of verifying that the Manufacturer of the completed vessel has the User's Design Specification on file and that the requirements specified therein have been addressed in the Manufacturer's Design Report. The Inspector shall verify that both the User's Design Specification and the Manufacturer's Design Report are certified in accordance with the requirements of this Division.

2.4.3.3 The Inspector shall verify that the Manufacturer has a valid Certificate of Authorization and is working according to an approved Quality Control System including having a system in place to maintain the documentation for the Manufacturer's construction records current with production, and the reconciliation of any deviations from the Manufacturer's Design Report.

2.4.3.4 The Inspector shall certify the Manufacturer's Data Report. When the Inspector has certified by signing the Manufacturer's Data Report, this indicates acceptance by the Inspector. This acceptance does not imply assumption by the Inspector of any responsibilities of the Manufacturer.

ANNEX 2-A GUIDE FOR CERTIFYING A USER'S DESIGN SPECIFICATION

(Normative)

2-A.1 GENERAL

(a) When required in 2.2.1, one or more individuals in responsible charge of the specification of the vessel and the required design conditions shall certify that the User's Design Specification meets the requirements of this Division and any additional requirements needed for adequate design. Such certification requires the signature(s) of one or more Certifying Engineers as described in (b). One or more individuals may sign the documentation based on information they reviewed and the knowledge and belief that the objectives of this Division have been satisfied.

(b) One or more individuals in responsible charge of the specification of the vessel and the required design conditions shall certify that the User's Design Specification meets the requirements in 2.2.3. Such certification requires the signature(s) of one or more Certifying Engineers with the requisite technical stature and, when applicable, jurisdictional authority to sign such a document. One or more individuals shall sign the documentation based on information they reviewed and the knowledge and belief that the objectives of this Division have been satisfied. In addition, these individuals shall prepare a statement to be affixed to the document attesting to compliance with the applicable requirements of the Code (see 2-A.2.3).

2-A.2 CERTIFICATION OF THE USER'S DESIGN SPECIFICATION

2-A.2.1 When required by 2.2.1.2, certification of the User's Design Specification requires the signature(s) of one or (23) more Certifying Engineers with requisite experience and qualifications as defined in Annex 2-J. The Certifying Engineer (s) shall certify that the User's Design Specification meets the requirements of 2.2.3.

(*a*) The Certifying Engineer(s) shall prepare a statement to be affixed to the document attesting to compliance with the applicable requirements of the Code (see 2-A.2.3).

(*b*) This Certifying Engineer shall be other than the Certifying Engineer who certifies the Manufacturer's Design Report, although both may be employed by or affiliated with the same organization.

(c) The Certifying Engineer shall identify the location and authority under which he or she has received the authority to perform engineering work stipulated by the user in the User's Design Specification.

2-A.2.2 When more than one Certifying Engineer certifies and signs the User's Design Specification the area of expertise shall be noted next to their signature under "areas of responsibilities" (e.g., design, metallurgy, pressure relief, fabrication). In addition, one of the Certifying Engineers signing the User's Design Specification shall certify that all elements required by this Division are included in the Specification.

2-A.2.3 An example of a typical User's Design Specification Certification Form is shown in Table 2-A.1.

2-A.3 TABLES

	CERTIFICATION OF COMPLIANCE OF THE USER'S DESIGN SPECIFICATION	
this User's Des Service Condit of the ASME S	rsigned, being experienced and competent in the applicable field of design related to pressure vessel requirements relating Specification, certify that to the best of my knowledge and belief it is correct and complete with respect to the Design specification, certify that to the best of my knowledge and belief it is correct and complete with respect to the Design of specification, certify that to the best of my knowledge and belief it is correct and complete with respect to the Design specification, certify that to the best of my knowledge and belief it is correct and complete with respect to the Design of specification, and provides a complete basis for construction in accordance with Part 2, 2.2.3 and other applicable require ection VIII, Division 2 Pressure Vessel Code, Class,Edition, and Code Case(s) is made on behalf of the organization that will operate these vessels (company name)	gn and ments
5		
Title and areas or responsibility:	of	
Date:		
Certified by:		
Title and areas o		
	·	
Date:		
Certifying Engin	eer Seal: (As required)	
Date		
	tration authority:	
	hority location:	
	tration number (if applicable):	
Engineer's regis		

ANNEX 2-B GUIDE FOR CERTIFYING A MANUFACTURER'S DESIGN REPORT

(Normative)

2-B.1 GENERAL

(*a*) As required in 2.3.3, one or more individuals in responsible charge of the design and construction of the vessel(s) shall certify that the Manufacturer's Design Report is complete, accurate, and in accordance with the User's Design Specification, and that all the requirements of this Division and any additional requirements needed for adequate design have been met. Such certification requires the signature(s) of one or more individuals as described in (b). One or more individuals may sign the documentation based on information they reviewed and the knowledge and belief that the requirements of this Division have been satisfied.

(*b*) One or more individual(s) experienced in pressure vessel design shall certify that the Manufacturer's Design Report meets the requirements in 2.3.3. Such certification requires the signature(s) of one or more individuals with the requisite technical and corporate authority needed for such a document. These responsible individuals shall sign the documentation based on information they have reviewed and the knowledge and belief that the objectives of this Division have been satisfied. In addition, these individuals shall prepare a statement to be affixed to the document attesting to compliance with the applicable requirements of the Code (see 2-B.4).

(*c*) The Inspector shall review the Manufacturer's Design Report and ensure that the requirements of 2.4.3 have been satisfied.

2-B.2 CERTIFICATION OF MANUFACTURER'S DESIGN REPORT BY A CERTIFYING ENGINEER

2-B.2.1 When required by 2.3.3.1(a), certification of the Manufacturer's Design Report requires the signature(s) of (23) one or more Certifying Engineers with requisite experience and qualifications as defined in Annex 2-J. The Certifying Engineer(s) shall certify that the Manufacturer's Design Report meets the requirements of 2.3.3.

(*a*) The Certifying Engineer(s) shall prepare a statement to be affixed to the document attesting to compliance with the applicable requirements of the Code (see 2-B.4).

(b) This Certifying Engineer shall be other than the Certifying Engineer who certifies the User's Design Specification, although both may be employed by or affiliated with the same organization.

(c) The Certifying Engineer shall identify the location and authority under which he or she has reached the authority to perform engineering work stipulated by the user in the User's Design Specification.

2-B.2.2 When more than one Certifying Engineer certifies and signs the Manufacturer's Design Report, the area of expertise shall be noted next to their signature under "areas of responsibilities" (e.g., design, metallurgy, pressure relief, fabrication). In addition, one of the Certifying Engineers signing the Manufacturer's Design Report shall certify that all elements required by this Division are included in the Report.

2-B.3 CERTIFICATION OF A MANUFACTURER'S DESIGN REPORT BY AN ENGINEER OR A DESIGNER

When permitted by 2.3.3.1(b), certification of the Manufacturer's Design Report requires the signature(s) of one or more engineers or designers with requisite experience and qualifications as defined in Annex 2-J. The engineer(s) or designer(s) shall certify that the Manufacturer's Design report meets the requirements of 2.3.3. The Inspector shall review the Manufacturer's Design Report and ensure that the requirements of 2.4.3 have been satisfied.

(*a*) The engineer or designer shall prepare a statement to be affixed to the document attesting to its compliance with the applicable requirements of the Code (see 2-B.4).

(b) When more than one engineer or designer certifies and signs the Manufacturer's Design Report, the area of expertise shall be noted next to their signature under "areas of responsibilities" (e.g., design, metallurgy, pressure relief, fabrication). In addition, one of the engineers or designers signing the Manufacturer's Design Report shall certify that all elements required by this Division are included in the report.

2-B.4 MANUFACTURER'S DESIGN REPORT CERTIFICATION FORM

An example of a typical Manufacturer's Design Report Certification Form is shown in Table 2-B.1.

2-B.5 TABLES

CERTIFICATION OF COMPLIANCE OF THE MANUFACTURER'S DESIGN REPORT					
I (We), the undersigned, being experienced and competent in the applicable field of design related to pressure vessel construction relative to the certified User's Design Specification, certify that to the best of my knowledge and belief the Manufacturer's Design Report is comp accurate and complies with the User's Design Specification and with all the other applicable construction requirements of the ASME Section VIII, Division 2 Pressure Vessel Code, Class,Edition, and Code Case(s) This certification is made on behalf of the Manufacturer (company name)					
Certified by:					
Title and areas of responsibility:					
Date:					
Certified by:					
Title and areas of responsibility:					
Date:					
Certifying Engineer Seal: (As required)					
Date:					
Engineer's registration authority:					
Registration authority location:					
Engineer's registration number (if applicable):	•				
Authorized Inspector Review:					
Date:					

ANNEX 2-C REPORT FORMS AND MAINTENANCE OF RECORDS

(Normative)

2-C.1 MANUFACTURER'S DATA REPORTS

2-C.1.1 A Manufacturer's Data Report shall be completed by the Manufacturer for each pressure vessel to be (23) stamped with the Certification Mark.

(a) For sample report forms and guidance in preparing Manufacturer's Data Reports, see Annex 2-D.

(b) A Manufacturer's Data Report shall be filled out on Form A-1 or Form A-1P by the Manufacturer and shall be signed by the Manufacturer and the Inspector for each pressure vessel stamped with the Certification Mark with the U2 Designator and class.

(c) A Manufacturer's Data Report shall be filled out on Form A-2 by the Manufacturer and shall be signed by the Manufacturer and the Inspector for each part stamped with the Certification Mark with the U2 or PRT VIII-2 Designator, as applicable. Same-day production of vessel parts may be reported on a single parts-documenting Form A-2, provided all of the following requirements are met:

(1) Vessel parts are identical.

(2) Vessel parts are manufactured for stock or for the same user or his designated agent.

(3) Serial numbers are in uninterrupted sequence.

(4) The Manufacturer's written Quality Control System includes procedures to control the development, distribution, and retention of the Manufacturer's Data Reports.

(*d*) Horizontal spacing for information on each page may be altered as necessary. All information must be addressed; however, footnotes described in the "Remarks" block are acceptable, e.g., for multiple cases of "none" or "not applicable."

(e) The method of completing the Manufacturer's Data Report shall be consistent. The report shall be typed or handwritten using legible printing. Handwritten additions or corrections shall be initialed and dated by the Manufacturer's representative and Inspector.

(f) Forms shall not contain advertising slogans, logos, or other commercial matter.

(g) Manufacturer's Data Report Forms may be preprinted or computer generated. Forms shall be identical in size, arrangement, and content, as shown in this Appendix, except that additional lines may be added or Form A-3 or Form A-4 may be used.

When using forms that result in multiple pages, each page shall be marked to be traceable to the first page of the form. For Forms A-1 and A-2, each page shall contain, at the top of the page, as a minimum, the Manufacturer's name, Manufacturer's serial number, CRN (as applicable), and National Board number (as applicable), as shown on the first page of the form.

Additionally, on all forms, each sheet shall contain the page number and total number of pages that compose the complete form. These requirements do not apply to Forms A-3 and A-4, which are intended to be single-page forms attached to another form.

2-C.1.2 Special Requirements for Layered Vessels. A description of the layered shell and/or layered heads shall be given on the Manufacturer's Data Report, describing the number of layers, their thickness or thicknesses, and type of construction (see Table 2-D.2 for the use of Form A-3, Manufacturer's Data Report Supplementary Sheet). An example of the use of Form A-3 illustrating the minimum required data for layered construction is given in Form A-3L.

2-C.1.3 Special Requirements for Combination Units.

(*a*) Those chambers included within the scope of this Division shall be described on the same Manufacturer's Data Report. This includes the following, as applicable:

(1) for differential pressure design, the maximum differential design pressure for each common element and the name of the higher pressure chamber

(2) for mean metal temperature design, the maximum mean metal design temperature for each common element

(3) for a common element adjacent to a chamber not included within the scope of this Division, the common element design conditions from that chamber

(*b*) It is recommended that those chambers not included within the scope of this Division be described in the "Remarks" section of the Manufacturer's Data Report.

(c) For fixed tubesheet heat exchangers, Form A-4 shall be completed in conjunction with Form A-1.

2-C.1.4 The Manufacturer shall distribute the Manufacturer's Data Report as indicated below.

(a) Furnish a copy of the Manufacturer's Data Report to the user and, upon request, to the Inspector;

(*b*) Submit a copy of the Manufacturer's Data Report to the appropriate enforcement authority in the jurisdiction in which the vessel is to be installed where required by law;

(c) Keep a copy of the Manufacturer's Data Report on file in a safe repository for at least 3 yr;

(*d*) In lieu of (b) or (c) above, the vessel may be registered and the Manufacturer's Data Reports filed with the National Board of Boiler and Pressure Vessel Inspectors, 1055 Crupper Ave., Columbus, Ohio 43229, USA, where permitted by the jurisdiction in which the vessel is to be installed.

2-C.2 MANUFACTURER'S PARTIAL DATA REPORTS

2-C.2.1 The parts Manufacturer shall indicate under "Remarks" the extent the Manufacturer has performed any or all of the design functions. For guidance in preparing Manufacturer's Partial Data Reports, see <u>Annex 2-D</u>.

2-C.2.2 Manufacturer's Partial Data Reports for pressure vessel parts requiring examination under this Division, which are furnished to the Manufacturer responsible for the completed vessel, shall be executed by the parts Manufacturer's Inspector in accordance with this Division (see 2.3.1.2). All Manufacturer's Partial Data Reports, Form A-2, shall be attached to the Manufacturer's Data Report, Form A-1 or Form A-1P.

2-C.2.3 A Manufacturer with multiple locations, each holding its own Certificate of Authorization, may transfer pressure vessel parts from one of its locations to another without Manufacturer's Partial Data Reports, provided the Quality Control System describes the method of identification, transfer, and receipt of the parts. For cases in which a Manufacturer has multiple locations that include both shop and field locations, and the field assembly of the vessel is completed by one Manufacturer's location that is different from the part Manufacturer's location(s), the name of the Manufacturer responsible for field assembly shall be shown on Line 1 of the Manufacturer's Data Report. The Manufacturer's Data Report.

2-C.3 MAINTENANCE OF RECORDS

(23) **2-C.3.1** The Manufacturer shall maintain a file for three years after stamping of the vessel, and furnish to the user and, upon request, to the Inspector, the reports and records shown below. It is noted that items that are included in the Manufacturer's Quality Control System meet the requirements of these subparagraphs.

(a) User's Design Specification (see 2.2.3)

(b) Manufacturer's Design Report (see 2.3.3)

(c) Manufacturer's Data Report (see 2.3.4)

(d) Manufacturer's Construction Records and Manufacturer's Partial Data Reports (see 2.3.5)

(1) Tabulated list of all material used for fabrication with Materials Certifications and Material Test Reports, and a record of any repairs to pressure-retaining material that require a radiographic examination by the rules of this Division. The record of the repairs shall include the location of the repair, examination results, and the repair procedures.

(2) Fabrication information including all heat treatment requirements, forming and rolling procedure when prepared, an inspection and test plan identifying all inspection points required by the user, and signed inspection reports

(3) List of any subcontracted services or parts, if applicable

(4) Welding Procedure Specifications (WPS), Procedure Qualification Records (PQR), weld map and Welder/Welding Operator Performance Qualification Records for each welder who welded on the vessel

(5) Pressure parts documentation and certifications

(6) Record of all heat treatments including post weld heat treatment (these records may be either the actual heat treatment charts or a certified summary description of heat treatment time and temperature)

(7) Results of production test plates, if applicable

(8) NDE procedures, records of procedure demonstrations, and records of personnel certifications

(9) All reports stating the results of inspection, nondestructive examinations, and testing, including radiographic examination, ultrasonic examination, magnetic particle examination, liquid dye penetrant examination, and hardness tests; and documentation of the Manufacturer's acceptance of the examination results

(10) All nonconformance reports including resolution and a detailed description of any repairs including repair procedures, a sketch, photo, or drawing indicating the location and size of the repaired area

(11) Charts or other records of required hydrostatic, pneumatic, or other tests. Test logs shall include the test date, testing fluid, duration of the test, temperature of the test fluid, and test pressure

(12) Dimensional drawings of the as-built condition

(13) Continuity records showing that the qualifications of welders, brazers, welding operators, and brazing operators have been maintained

2-C.3.2 The Manufacturer shall maintain a complete set of radiographs until the signing of the Manufacturer's Data Report, and furnish upon request to the user and, upon request, to the Inspector [see 7.5.3.1(a)].

ANNEX 2-D GUIDE FOR PREPARING MANUFACTURER'S DATA REPORTS

(Informative)

2-D.1 INTRODUCTION

2-D.1.1 The instructions in this Annex provide general guidance to the Manufacturer in preparing the Manufacturer's Data Reports as required in 2.3.4.

2-D.1.2 Manufacturer's Data Reports required by this Division are not intended for pressure vessels that do not meet the provisions of this Division, including those of special design or construction that require and receive approval by jurisdictional authorities under, laws, rules, and regulations of the respective state or municipality in which the vessel is to be installed.

2-D.1.3 The instructions for completing the Manufacturer's Data Reports are identified by numbers corresponding to numbers on the sample forms in this Annex (see Forms A-1, A-1P, A-2, A-3, and A-4).

2-D.1.4 Where more space is needed than has been provided on the form for any item, indicate in the space "See Remarks," "See attached Form A-3," or "See attached Form A-4," as appropriate.

2-D.1.5 For fixed tubesheet heat exchangers, Form A-4 shall be completed.

2-D.1.6 It is not intended that these Manufacturer's Data Reports replace in any way the required Manufacturer's Design Report (see 2.3.3) or the Manufacturer's Construction Records (see 2.3.5). It is intended that the Manufacturer's Data Reports be used for identifying the vessel, retrieval of records, and certification of compliance with this Division and with the User's Design Specification, by the Manufacturer and by the Inspector.

2-D.2 TABLES

	Table 2-D.1 Instructions for the Preparation of Manufacturer's Data Reports								
	Appl	Applies to Form			Note				
A-1	A-1P	A-2	A-3	A-4	No.	Instructions			
Х	Х	Х	Х	Х	1	Name, street address, city, state or province (as applicable), and country of Manufacturer.			
Х	Х		Х	Х	2	Name and address of purchaser.			
Х	Х		Х	Х	3	Name of user, and address where vessel is to be installed.			
		Х			4	Name and address of Manufacturer who will use the vessel part in making the complete vessel			
Х	Х	Х		Х	5	Type of vessel, such as horizontal or vertical, tank, separator, heat exchanger, reactor.			
		Х			6	Brief description of vessel part (i.e., shell, two-piece head, tube, bundle).			
Х	Х	Х	Х	Х	7	An identifying Manufacturer's serial number marked on the vessel (or vessel part) (see Annex 2-F).			
Х	Х	Х	Х	Х	8	Applicable Jurisdiction Registration No.			
Х	Х	Х		Х	9	Indicate drawing numbers, including revision numbers, which cover general assembly and list materials. For Canadian registration, the number of the drawing approved by the applicable jurisdictional authority.			
		Х			10	Organization that prepared drawing.			
Х	Х	х	Х	Х	11	Where applicable, National Board Number from Manufacturer's Series of National Board Numbers.			
Х	Х	Х			12	Issue date of Section VIII, Division 2 under which vessel was manufactured, and vessel class.			
Х	Х	Х			13	All Code Case numbers when the vessel is manufactured to any Code Cases.			

Table 2-D.1 Instructions for the Preparation of Manufacturer's Data Reports (Cont'd)

	Appl	lies to I	Form		Note	
A-1	A-1P	A-2	A-3	A-4	No.	Instructions
Х					14	To be completed when one or more parts of the vessel are furnished by others and certified on Manufacturer's Data Report Form A-2 as required by Annex 2-F. The part manufacturer's name and serial number should be indicated.
Х	Х	Х			15	Show the complete ASME Specification number and grade of the actual material used in the vessel par Material is to be as designated in Section VIII, Division 2 (e.g., "SA-285 C"). Exceptions: A specificatio number for a material not identical to an ASME Specification may be shown only if such material meet the criteria in the Foreword of this Section. When material is accepted through a Code Case, the applicable Case Number shall be shown.
х	Х	Х			16	Thickness is the nominal thickness of the material used in the fabrication of the vessel. It includes corrosion allowance.
Х	Х	Х			17	State corrosion allowance on thickness.
Х		Х			18	Indicate whether the diameter is inside diameter or outside diameter.
Х		Х			19	The shell length shall be shown as the overall length between closure or transition section welds, for shell of a single diameter. In other cases, define length, as appropriate.
Х		Х			20	Type of longitudinal joint in cylindrical section, or any joint in a sphere (e.g., Type No.1 butt, or seamless per 4.2.
Х	Х	Х			21	State the temperature and time if heat treatment is performed by the Manufacturer (i.e., postweld heat treatment, annealing, or normalizing). Explain any special cooling procedure under "Remarks."
х		Х			22	Indicate examination applied to longitudinal seams. Any additional examinations should be included under "Remarks."
Х		Х			23	Type of welding used in girth joints in the cylindrical section (see 20).
Х		Х			24	Indicate examination applied to girth joints (see 22).
Х		Х			25	Number of cylindrical courses, or belts, required to make one shell.
Х		Х			26	Show specified minimum thickness of head after forming. State dimensions that define the head shap
Х	Х	Х			27	Bolts used to secure removable head or heads of vessel and vessel sections.
Х		Х			28	For jacketed vessels, explain the type of jacket closures used.
Х	Х	Х		Х	29	Show the internal maximum allowable working pressure and the external maximum allowable workin pressure.
Х	Х	Х		Х	30	Show the coincident temperatures that correspond to the internal maximum allowable working pressur and the external maximum allowable working pressure, as applicable.
Х	Х	Х			31	Show minimum Charpy V-notch impact value required and impact test temperature. If exempted, indicat under "Remarks" paragraph under which exemption was taken.
Х	Х	Х			32	Show minimum design metal temperature.
Х	Х	Х			33	Show hydrostatic or other tests made with specified test pressure at top of vessel in the test position Cross out words (pneumatic, hydrostatic, or combination test pressure) that do not apply. Indicate under "Remarks" if vessel was tested in the vertical position. See Part 8 for special requirements for combination units.
Х	Х	Х			34	Indicate nozzle or other opening that is designated for pressure relief.
Х	Х	Х			35	Show other nozzles and openings by size and type (see 50).
Х	Х	Х			36	Show opening designated for inspection. Show location.
Х	Х	Х			37	Indicate provisions for support of the vessel and any attachments for superimposed equipment.
Х	Х	Х			38	Indicate whether fatigue analysis is required per Part 4.
Х	Х	Х			39	Describe contents or service of the vessel.
Х	Х	Х			40	Space for additional comments, including any Code restrictions on the vessel or any unusual Code requirements that have been met, such as those noted in 21, 22, 24, 31, and 33, or in 1.2.1 and 1.2.2 2-C.1.3; or 5.10. Indicate stiffening rings, if used.
Х	х	Х			41	Certificate of Compliance block is to show the name of the Manufacturer as shown on his ASME Code Certificate of Authorization. This should be signed in accordance with organizational authority define in the Quality Control System (see Annex 2-E).
Х	Х	Х			42	This certificate is to be completed by the Manufacturer to show the disposition of the User's Design Specification and the Manufacturer's Design Report, and to identify the individuals who certify ther per 2.2.3 and 2.3.3, respectively (see 49).

Table 2-D.1
Instructions for the Preparation of Manufacturer's Data Reports (Cont'd)

	Appl	ies to l	Form		Note	
A-1	A-1P	A-2	A-3	A-4	No.	Instructions
Х	Х	Х	Х	Х	43	This certificate is to be completed by the Manufacturer and signed by the Authorized Inspector who performs the shop inspection.
Х	Х	Х	Х	Х	44	This National Board Authorized Inspector Commission number must be shown.
Х	Х				45	This certificate is for the Authorized Inspector to sign for any field construction or assembly work (see 4 for National Board Authorized Inspector Commission number requirements). Indicate the method use to pressure test the vessel.
			Х	Х	46	Fill in information identical to that shown on the Data Report to which this sheet is supplementary.
			Х	Х	47	Fill in information for which there was insufficient space for a specific item on the Data Report Form a identified by the notation "See attached Form A-3" or "See attached Form A-4" on the Data Report. Identify the information by the applicable Data Report Item Number.
		Х			48	Indicate data, if known.
Х	Х	Х			49	Registration locale (as required per 2.2.3 and 2.3.3).
Х	Х	Х			50	 Data entries with descriptions acceptable to Inspector. Abbreviations, coded identification, or reference to Code Figure and sketch number may be used to define any generic name. For ASME B16.5 flange the class should be identified. Flange facing and attachment to neck is not required. Some typical abbreviations are shown below. Flanged fabricated nozzle: Cl. 300 flg Long weld neck flange: Cl. 300 Iwn Weld end fabricated nozzle: w.e.
Х	Х	Х			51	Material for nozzle neck. Flange material not necessary.
х	Х	Х			52	Nominal nozzle neck thickness. For ASME B16.ll and similar parts, class designation may be substitute for thickness.
				Х	53	Fill in data required by 4.18.14.3(b).
	Х				54	Indicate whether the heat transfer plates are gasketed, semiwelded, or brazed.
	Х				55	Indicate the endplate width and length dimensions.
	Х				56	Describe
						 (a) heat transfer plate model name (b) heat transfer plate nominal thickness (c) minimum and maximum number of heat transfer plates for the given frame configuration (d) quantity of heat transfer plates installed at time of pressure test (e) minimum and maximum tightening dimension of installed heat transfer plates at the time of pressure test

Table 2-D.2 Supplementary Instructions for the Preparation of Manufacturer's Data Reports for Layered Vessels

Note Letter	Instructions
А	Letter symbols indicate instructions that supplement the instructions of Table 2-D.1.
В	The Form A-3L is not available preprinted as shown. It is intended as an example of suggested use of Form A-3 for reporting data for a vessel of layered construction. It is intended that the Manufacturer develop his own arrangement to provide supplementary data that describes his vessel.
С	Note the NDE performed (RT, PT, MT, UT).
D	Applies only when heads are of layered construction.
Е	Indicates if seamless or welded.
F	When more than one layer thickness is used, add lines as needed.
G	Indicate diameter of vent holes in the layers.
Н	Indicate whether vent holes are in random locations in each layer, or are drilled through all layers.
I	Indicate locations of nozzles and openings; layered shell; layered head.
J	Indicate method of attachment and reinforcement of nozzles and openings in layered shells and layered heads. Refer to figure number if applicable.

								\sim				
1.	Manufacti	ured and	certified by			/No	(mo and addr	1) ess of manufact	uror)			
2.	Manufactu						ine and addit	2)	urer)			
۷.	Wallulaci					(N	lame and add	- Iress of purchas	er)			
3.	Location o	of installa	tion				(3				
						~		nd address)	0		~	
4.	Туре	L La via	or vert. tank			(7) serial no.		8 CRN	9 Drawing no.		(1) I. Bd. r	no. Year buil
	-											
5.									ifications of th tion VIII, Divis		JILER	AND PRESSURE
		(12					(12)					13
Itai	me 6 to 11	Ye incl to be		l for single w	all vaccale	iackate of	Class	accale ar cha	lls of heat exc	hangare	С	ode case no.
6.	Shell	1101. 10 00	(15)	i ioi siligie w	(16) (16) (16) (16) (17) (16)	ackets of	17	535613, 01 3116	18 OI HEAL EAU	nangers		(19)
0.		Material (s	pec. no., grad	e) [Nom. thk.		Corr. allow.		Diameter		L	ength (overall)
7.	Seams _		20				21				22	
	(23)	L	ongitudinal.	21)			Heat treatm	ent		Nondestru	ctive e	examination
	Girth		Heat trea	-		Nondes	structive exam	nination		No.	of cou	urses
8.	Heads: (a)	Matl.			15 20 21 2	-		(b) M	atl.	<u> </u>	20 21	0
		41	N.4:		Spec. no., gra		Elliptical			Spec. r		
	Loca (Top, Bott		Minimum Thickness	Corrosion Allowance	Crown Radius	Knuckle Radius	Elliptical Ratio	Conical Apex Angle	Hemispherica Radius	I Flat Diam	elel	Side to Pressure (Convex or Concav
(a) (b)	_		26	17								
(0)												
	Jacket clo	(29	28 ogee and weld, 23 (External)	bar, etc.	emp	30		Min. desi			
		(Interr	29	-	bar, etc. at max. t	emp(30 Internal)		Min. desi	gn metal te	mp	<u></u> at <u></u>
	MAWP _	(Interr	29	29	bar, etc. at max. t 	emp(30 Internal)		Min. desi	gn metal te	mp	lescribe or sketch at a 3)
11. Itei	MAWP _ Impact te Hydro., p ms 12 and 2	(Interr est oneu., or o 13 to be d	29 nal) comb test p	(External)	bar, etc. at max. t 31	emp(30 Internal)	33	Min. desi	gn metal te	mp	<u></u> at <u></u>
11. Itei	MAWP _ Impact te Hydro., p	(Interr est oneu., or (1 3 to be (ts	29 nal) comb test p completed fo	(External) ressure	bar, etc. at max. t 	emp(30 Internal)	(External 33	Min. desi) At test temp	gn metal te erature of ①	mp	3) at 3
11. Iter	MAWP _ Impact te Hydro., p ms 12 and 2	(Interr est oneu., or (1 3 to be (ts	a) comb test p completed f (5) nary matl. (sp grade)	(External) ressure	bar, etc. at max. t 31	emp(30 Internal)	(External 33 (6) Nom. thk.	Min. desi) At test temp	gn metal te erature of m orr. allow.	mp	<u></u> at <u></u>
11. Iter	MAWP _ Impact te Hydro., p ms 12 and 2	(Interr est oneu., or 13 to be o ts Statio	29 hal) comb test p completed f (5) nary matl. (sp grade) (15)	29 (External) ressure for tube secti ec. no.,	bar, etc. at max. t 	emp(30 Internal)	(External 33 16 Nom. thk. 16	Min. desi At test temp C	gn metal te erature of m orr. allow.	mp	3 at 2
11. <i>Iter</i> 12.	MAWP _ Impact te Hydro., p ms 12 and 3 Tubeshee	(Interr est oneu., or 13 to be o ts Statio	29 hal) comb test p completed for (B) nary matl. (spe grade) (c) ting matl. (spe grade)	29 (External) ressure for tube secti ec. no.,	bar, etc. at max. t 	emp(30 Internal)	(External 33 (6) Nom. thk.	Min. desi At test temp C	gn metal te erature of m orr. allow.	mp	3) at 3
11. <i>Iter</i> 12.	MAWP _ Impact te Hydro., p ms 12 and 2	(Interr est oneu., or o 13 to be o ts Statio Float	a) comb test p completed f (s) nary matl. (sp grade) (5) ting matl. (spe	29 (External) ressure for tube section ec. no., c. no.,	bar, etc. at max. t 	emp(to pressure	30 Internal)	(External 33 16 Nom. thk. 16	Min. desi) At test temp C C	gn metal te erature of m orr. allow.	mp	3 at 2
11. <i>Iter</i> 12. 13.	MAWP _ Impact te Hydro., p ms 12 and 3 Tubeshee Tubes	(Interr est oneu., or (13 to be o ts Float Mat	(a) (comb test p (combleted fi (c) (c) (c) (c) (c) (c) (c) (c)	29 (External) ressure for tube section ec. no., rade)	bar, etc. at max. t 	emp(to pressure m.) D.	30 Internal) a) b) b) c)	(External (External 3) (6) Nom. thk. (6) Nom. thk. Nom. thk.	Min. desi) At test temp C C	gn metal te erature of (7) orr. allow. (7) rr. allow. Number	mp	3) at 2) at 3) at
11. <i>Iter</i> 12. 13.	MAWP _ Impact te Hydro., p ms 12 and 3 Tubeshee Tubes	(Interr est ineu., or d 13 to be d ts Float Mat t incl. to b	29 hal) comb test p completed f (5) nary matl. (sp grade) (7) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2	(External) ressure ressure for tube section ec. no., rec. no., rade) rade for inner c	bar, etc. at max. t 	emp(to pressure m.) D.	30 Internal) e)	(External (External 3) (6) Nom. thk. (6) Nom. thk. Nom. thk.	Min. desi) At test temp C C C C eat exchange	gn metal te erature of (7) orr. allow. (7) rr. allow. Number	mp	3) (3) (1) (wid., boited) (ttach. (wid., boited) (ttach. (ttach. (wid., boited)) (ttach. (ttach.
11. <i>Iter</i> 12. 13. <i>Iter</i> 14.	MAWP _ Impact te Hydro., p ms 12 and 7 Tubesheer Tubes shell _	(Interr est ineu., or d 13 to be d ts Float Mat t incl. to b	(a) (comb test p (combleted fi (c) (c) (c) (c) (c) (c) (c) (c)	(External) ressure ressure for tube section ec. no., rec. no., rade) rade for inner c	bar, etc. at max. t 	emp(to pressure m.) D.	30 Internal) a) b) b) c)	(External (External 3) (6) Nom. thk. (6) Nom. thk. Nom. thk.	Min. desi At test temp C C C	gn metal te erature of (7) orr. allow. (7) rr. allow. Number 's	mp	3) at 2) at 3) at
11. <i>Iter</i> 12. 13. <i>Iter</i> 14.	MAWP Impact te Hydro., p ms 12 and 7 Tubesheer Tubes Tubes	(Interr est ineu., or d 13 to be d ts Float Mat t incl. to b	29 hal) comb test p completed f (5) nary matl. (spe grade) (5) ting matl. (spe grade) (6) ting completed (5) t. (spec. no., g (5) spec. no., grade) (5)	(23) (External) ressure (or tube section ec. no., (c. no.,) (c. no.,) <td< td=""><td>bar, etc. at max. t </td><td>emp(to pressure im.) D. jacketed</td><td>30 Internal) e) </td><td>(External (External 3) (6) Nom. thk. (6) Nom. thk. Nom. thk.</td><td> Min. desi) At test temp C C C C eat exchange</td><td>gn metal te erature of (7) orr. allow. (7) rr. allow. Number</td><td>mp _ At _ At </td><td>3) (3) (1) (wid., bolted) (tach. (wid., bolted)) (tach. (wid., bolted) (tach. (wid., bolted)) (tach. (wid., bolted) (tach. (wid., bolted)) (tach. (tach. (wid., bolted)) (tach. (tach. (tach.</td></td<>	bar, etc. at max. t 	emp(to pressure im.) D. j acketed	30 Internal) e)	(External (External 3) (6) Nom. thk. (6) Nom. thk. Nom. thk.	Min. desi) At test temp C C C C eat exchange	gn metal te erature of (7) orr. allow. (7) rr. allow. Number	mp _ At _ At 	3) (3) (1) (wid., bolted) (tach. (wid., bolted)) (tach. (wid., bolted) (tach. (wid., bolted)) (tach. (wid., bolted) (tach. (wid., bolted)) (tach. (tach. (wid., bolted)) (tach. (tach.
11. <i>Iter</i> 12. 13. <i>Iter</i> 14.	MAWP _ Impact te Hydro., p ms 12 and 1 Tubeshee Tubes Shell _ Seams 	(Interr est ineu., or d 13 to be d ts Float Mat t incl. to b	29 hal) comb test p completed for (B) hary matl. (spe grade) (B) (s) (s) complete (s) complete (s) complete (s) completed (s) completed (s) completed (s) completed (s) completed for (s) (s) completed for (s) (s) (s) (s) (s) (s) (s) (s)	29 (External) ressure or tube section ec. no., icc. no., rade) df or inner c de) nal	bar, etc. at max. t 	emp(to pressure im.) D. jacketed fi Heat	المعادية المعاديماممامية المعادية المعادة المعادية المعادية المعادية	(a) (External (a) (b) (b) (c) (c) <td> Min. desi) At test temp C C C C eat exchange</td> <td>gn metal te erature of orr. allow. (7) rr. allow. Number rs Number rs (2) Nondestrue</td> <td>mp </td> <td>at 2 at 2</td>	Min. desi) At test temp C C C C eat exchange	gn metal te erature of orr. allow. (7) rr. allow. Number rs Number rs (2) Nondestrue	mp 	at 2
11. <i>Iter</i> 12. 13. <i>Iter</i> 14.	MAWP Impact te Hydro., p ms 12 and 1 Tubeshee Tubess ms 14 to 18 Shell Seams 	(Interrest	29 hal) comb test p combleted fr (s) (s) (s) (s) (s) (s) (s) (s)	29 (External) ressure or tube section ec. no., icc. no., rade) df or inner c de) nal	bar, etc. at max. t 	emp(to pressure im.) D. j acketed i Heat	المعادية المعاديماممامية المعادية المعادية المعادية المعادية المعاديم	(a) (External (a) (b) (b) (c) (c) <td> Min. desi) At test temp C C C C eat exchange</td> <td>gn metal te erature of orr. allow. (7) rr. allow. Number rs Number rs (2) Nondestrue</td> <td>mp _ At _ At </td> <td>at 2 at 2</td>	Min. desi) At test temp C C C C eat exchange	gn metal te erature of orr. allow. (7) rr. allow. Number rs Number rs (2) Nondestrue	mp _ At _ At 	at 2
11. <i>Iter</i> 12. 13. <i>Iter</i> 14.	MAWP _ Impact te Hydro., p ms 12 and 1 Tubeshee Tubes Shell _ Seams 	(Interrest	29 hal) comb test p completed for (B) hary matl. (spe grade) (B) (s) (s) complete (s) complete (s) complete (s) completed (s) completed (s) completed (s) completed (s) completed (s) (s) completed (s) (s) (s) (s) (s) (s) (s) (s)	29 (External) ressure or tube section ec. no., icc. no., rade) df or inner c de) nal	bar, etc. at max. t 3) 	emp(to pressure im.) D. j acketed i Heat	المعادية المعاديماممامية المعادية المعادة المعادية المعادية المعادية	(a) (External (a) (b) (b) (c) (c) <td> Min. desi At test temp C C C eat exchanged Diameter </td> <td>gn metal te erature of orr. allow. (7) rr. allow. Number rs Number rs (2) Nondestrue</td> <td>mp </td> <td>at 2 at 2</td>	Min. desi At test temp C C C eat exchanged Diameter 	gn metal te erature of orr. allow. (7) rr. allow. Number rs Number rs (2) Nondestrue	mp 	at 2
11. <i>Iter</i> 12. 13. <i>Iter</i> 14.	MAWP Impact te Hydro., p ms 12 and 1 Tubesheet Tubes shell Seams 	(Interr est	29 hal) comb test p completed for (B) nary matl. (spe grade) (B) (c) (c) (c) (c) (c) (c) (c) (c	(External) (External) ressure for tube secti ec. no., [rade) ded for inner c de nal ment	bar, etc. at max. t 3 ons Diam. (subject (Dia 0 hambers of TB Nom. thk. ade	emp((30) Internal) (e) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(External (External (G) Nom. thk. (G) Nom. thk. channels of h definition	Min. desi At test temp C C C C C C C C C C C C C	gn metal te erature of forr. allow. forr. allow. forr. allow. Number fs Nondestruc No. o No. o	mp	at 2
11. <i>Iter</i> 13. <i>Iter</i> 14. 15. 16.	MAWP Impact te Hydro., p ms 12 and 7 Tubesheer Tubes shell Seams 	(Interrest	29 hal) comb test p completed for (B) hary matl. (spe grade) (B) (s) (s) complete (s) complete (s) complete (s) completed (s) completed (s) completed (s) completed (s) completed (s) (s) completed (s) (s) (s) (s) (s) (s) (s) (s)	29 (External) ressure or tube section ec. no., icc. no., rade) dd for inner c dde) inal iment Spec. no., grader	bar, etc. at max. t 3) 	emp((30) Internal) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(a) (External (a) (b) (b) (c) (c) <td> Min. desi At test temp C C _ C</td> <td>gn metal te erature of orr. allow. (7) rr. allow. (7) rr. allow. Number '3 Nondestruc Non c . no., grade nerical Flat Di</td> <td>mp</td> <td>at 2 at 2</td>	Min. desi At test temp C _ C	gn metal te erature of orr. allow. (7) rr. allow. (7) rr. allow. Number '3 Nondestruc Non c . no., grade nerical Flat Di	mp	at 2
11. <i>Iter</i> 12. 13. <i>Iter</i> 14. 15. 16.	MAWP Impact te Hydro., p ms 12 and 1 Tubeshee Tubes Shell Seams 	(Interrest	29 hal) comb test p completed f (5) nary matl. (sp grade) (5) ting matl. (spec grade) (5) L. (spec. no., g be complete (5) L. (spec. no., grav (20) Longitudi (21) Heat treat	(External) ressure or tube secti ec. no., rade) df for inner c de ment Spec. no., gra Corrosion	bar, etc. at max. t 3 ons Diam. (subject (Dia 0 hambers of TB Nom. thk. ade	emp(to pressure im.) D. jacketed Heat Nondestru(k usKnuc	(30) Internal) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(External (External (External (External (F) Nom. thk. (F) Nom. thk. channels of h ation ptical Conica	Min. desi At test temp C _ C	gn metal te erature of orr. allow. (7) rr. allow. (7) rr. allow. Number '3 Nondestruc Non c . no., grade nerical Flat Di	mp	at 2
11. <i>Iter</i> 12. 13. <i>Iter</i> 14. 15. 16. (a) (b)	MAWP Impact te Hydro., p ms 12 and 7 Tubesheer Tubes shell Seams 	(Interrest	29 hal) comb test p completed f (5) hary matl. (spe grade) (5) ting matl. (spe grade) (6) t. (spec. no., grade) (5) spec. no., grade) (5) t. (spec. no., gr	(External) ressure or tube section ec. no., rade) rade for inner c. de) ment Spec. no., gra Corrosion Allowance	bar, etc. at max. t 33 ons Diam. (subject (Dia (Dia 0. hambers of Nom. thk. ade Crown Radiu	emp(to pressure im.) D. jacketed Heat Nondestru Lis Knuc Radi	(30) Internal) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(External (External (External (External (F) Nom. thk. (F) Nom. thk. channels of h ation ptical Conica	Min. desi At test temp C _ C	gn metal te erature of orr. allow. (7) rr. allow. (7) rr. allow. Number '3 Nondestruc Non c . no., grade nerical Flat Di	mp	at 2
 11. <i>Iter</i> 12. 13. <i>Iter</i> 14. 15. 16. (a) (b) 17. 	MAWP Impact te Hydro., p ns 12 and 7 Tubesheer Tubes shell Seams 	(Interrest	29 hal) comb test p completed f (5) hary matl. (spe grade) (5) ting matl. (spe grade) (6) t. (spec. no., grade) (5) spec. no., grade) (5) t. (spec. no., gr	(External) ressure or tube secti ec. no., rade) df for inner c de df for inner c f	bar, etc. at max. t 3) ons Diam. (subject (Diam. (subject (Diam. (subject)) (Diam. (subjec	emp(to pressure m.) D. jacketed n Heat Nondestru LIS Knuce Radi	(30) Internal) Internal) (1) (2) (2) (2) (2) (2) (2) (3) (4) (2) (3) (4) (4) (5) (5) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) <tr< td=""><td>(External (External (External (External (F) Nom. thk. (F) Nom. thk. channels of h dation (f) (f)</td><td> Min. desi At test temp C C _ C</td><td>gn metal te erature of forr. allow. forr. allow. forr. allow. forr. allow. forr. allow. forr. allow. for for for for for for for for for for</td><td>mp</td><td>at 2 at 2</td></tr<>	(External (External (External (External (F) Nom. thk. (F) Nom. thk. channels of h dation (f)	Min. desi At test temp C _ C	gn metal te erature of forr. allow. forr. allow. forr. allow. forr. allow. forr. allow. forr. allow. for for for for for for for for for for	mp	at 2
 11. <i>Iter</i> 12. 13. <i>Iter</i> 14. 15. 16. (a) (b) 17. 	MAWP Impact te Hydro., p ms 12 and 7 Tubesheer Tubes shell Seams 	(Interrest	29 hal) comb test p completed f (5) nary matl. (spe grade) (5) ting matl. (spe grade) (6) L (spec. no., grade) (5) spec. no., grade) (5) Longitudi (2) Heat treat Minimum Thickness used (desc.	(External) ressure or tube section ec. no., rc. no., rade) def or inner content def or inner content Spec. no., gra Corrosion Allowance Tibe other fas (29)	bar, etc. at max. t 33 ons Diam. (subject (Dia (Dia 0. hambers of Nom. thk. ade Crown Radiu	emp		(External (External (3) Nom. thk. (6) Nom. thk. Channels of h ation	Min. desi At test temp C _ C	gn metal te erature of forr. allow. forr. allow. forr. allow. forr. allow. forr. allow. forr. allow. for for the formation of the formation for the formation of the formation of the formation of the formation for the formation of the f	mp	at 2
11. <i>Iter</i> 12. 13. <i>Iter</i> 14. 15. 16. (a) (b) 17.	MAWP Impact te Hydro., p ns 12 and 7 Tubesheer Tubes shell Seams 	(Interrest	29 hal) comb test p completed f (5) nary matl. (spe grade) (5) ting matl. (spe grade) (6) L (spec. no., grade) (5) spec. no., grade) (5) Longitudi (2) Heat treat Minimum Thickness used (desc.	(External) ressure or tube secti ec. no., rade) df for inner c de rade) de ranal Spec. no., gra Corrosion Allowance ribe other fas	bar, etc. at max. t 3) ons Diam. (subject (Diam. (subject (Diam. (subject)) (Diam. (subjec	emp	(30) Internal) Internal) (1) (2) (2) (2) (2) (2) (2) (3) (4) (2) (3) (4) (4) (5) (5) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) <tr< td=""><td>(External (3) (6) Nom. thk. (6) Nom. thk. (7) Nom. thk. channels of h ation (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)</td><td> Min. desi At test temp C C _ C</td><td>gn metal te erature of forr. allow. forr. allow. forr. allow. forr. allow. for metal te number gn metal te</td><td>mp</td><td>at 2 at 2</td></tr<>	(External (3) (6) Nom. thk. (6) Nom. thk. (7) Nom. thk. channels of h ation (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Min. desi At test temp C _ C	gn metal te erature of forr. allow. forr. allow. forr. allow. forr. allow. for metal te number gn metal te	mp	at 2

								ORN	1 A-1				гаде	of
Man	ufacture	d by						(41)						
Man	ufacture	r's Serial	No	(7	CRN		8)	[National Boar	d No	11	
					essels whe elief device									
(Inlet	Purp t, Outlet	oose , Drain, e		lo. Diar	m. or Size	Туре	Mate	erial	Nom	n. Thk.	Reinforceme	nt Material	How Attached	Location
	34 (3	85 36			35	35 50	(15)	(51)	(16	62				36
	ody Flar Flanges	nges s on She	lls											
											ļ	1	Bolting	T
No.	Type	ID	OD	Flange Thk	Min Hub Thk	Materia	al	How At	tached	Location	Num & Size	Bolting Materia	Washer I (OD, ID, thk)	Washer Mater
						(15)					(27)	(15)		(15)
L				1	1						I	1	1	
Body	^r Flanges	s on Hea	ds	1				1					Bolting	
No.	Туре	ID	OD	Flange Thk	Min Hub Thk	Materia	al	How At	tached	Location	Num & Size	Bolting Materia	Washer	Washer Mater
						(15)					(27)	(15)		(15)
		-												
21. \$	Support	SkirtY	37 es or no	Lug:	s No.		N	lo.	Other				d Where and	
		Skirt Y Fatigue	ा es or no analysi	Luge	s No. d Yes or	Legs and _					Describe		d Where and	
	Support Service: narks:	Skirt Fatigue	ा es or no analysi	Lugi Lugi	s No. d Yes or	Legs and _	N De (22) (24)						d Where and	
		Skirt Y Fatigue	ा es or no analysi	Lug	s No. d Yes or	Legs and _							d Where and	
		SkirtY Fatigue	3) es or no analysi	Lug:	s No. d Yes or	Legsand(2)	22 24	31 33) () ()		Describe		d Where and	
Rem (42) Use	narks: r's Desig	gn Speci	fication	ı on file a	t	Legs and(?)	22 24 CERTIF	31 33 FICATIO	3 37 (DN OF	40 (47)	Describe	Attached		how
(42) Usel Man Usel	r's Desig ufactur r's Desig	gn Speci er's Des gn Speci	fication ign Rep ification	on file a ort on file	t e at by	Legsand	(2) (24) CERTIF	G (31) (33) FICATIO) ③ () DN OF	40 47 DESIGN	Describe	Attached		how
(42) Usel Man Usel	r's Desig ufactur r's Desig	gn Speci er's Des gn Speci	fication ign Rep ification	on file a ort on file	t	Legsand	(2) (24) CERTIF	G (31) (33) FICATIO) ③ () DN OF	40 47 DESIGN	Describe	Attached	Where and Where and Reg. No Reg. No	how
(42) User Man User Man (41) We	r's Designufactur r's Designufactur r's Designufactur certify t	gn Speci er's Des gn Speci er's Des that the s	ification ign Rep ification ign Rep stateme	on file a ort on file certified ort certifi ents in thi	t e at by ed by is report ar	Legsand no(2)	22 24 CERTIF	FICATIO) (37) (DN OF PE S PE S HOP C etails c	(40) (47) DESIGN tate tate COMPLIA of design 1 2	Describe ce I (d) (d)	Attached		how
(42) Usel Man Usel Man (41) We vess ""U2"	narks: n's Designufactur r's Designufactur certify t sel confo " Certifiu	gn Speci er's Des gn Speci er's Des that the orm to tl cate of 7	ification ign Rep ification ign Rep stateme he ASM Authoriz	on file a ort on file octrified ort certifi ents in thi E Code for zation No	t e at by ed by is report ar or Pressure t	Legsand no(2) (2)(2) (2)	22 24 CERTIF CERTIF	FICATIO) (37) (DN OF PE S PE S HOP C etails c	(40) (47) DESIGN tate tate COMPLIA of design 1 2	Describe 2e I (42) ANCE 1, material, c	Attached	Reg. No Reg. No	how
(42) User Man User Man (41) We	narks: n's Designufactur r's Designufactur certify t sel confo " Certifiu	gn Speci er's Des gn Speci er's Des that the orm to tl cate of 7	ification ign Rep ification ign Rep stateme he ASM Authoriz	on file a ort on file octrified ort certifi ents in thi E Code for zation No	t e at by ed by is report ar	Legsand no(2) (2)(2) (2)	(22) (24) CERTIF	FICATIO) (37) (DN OF PE S PE S HOP C tails c livision	(40) (47) DESIGN tate tate COMPLIA of design 1 2	Describe ce I (d) (d)	Attached	Reg. No Reg. No Reg. No and workmansl	how
(42) User Man User Man We vess "U2" Date	r's Designufactur r's Designufactur r's Designufactur certify t sel confr " Certific e	gn Speci er's Des gn Speci er's Des that the orm to tl cate of 7	ification ign Rep ification ign Rep stateme he ASM Authoriz	on file a ort on file ocrtified ort certifi ents in thi E Code for zation No	t e at by ed by is report ar or Pressure to (4) o. name	Legsand no(2)(CERTIF	E OF S at all de o VIII, D res 4 Manufac) (37) (DN OF PE S PE S HOP C etails c ivisior	(d) (a) DESIGN tate tate COMPLIA of design 1 2.	Describe 2e I (i) (i) (ii) (iii	(6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Reg. No Reg. No and workmansl (i) Represente	how
(42) User Man User Man We vess "U2" Date	r's Designufactur r's Designufactur r's Designufactur certify t sel confr " Certific e	gn Speci er's Des gn Speci er's Des that the orm to tl cate of 7	ification ign Rep ification ign Rep stateme he ASM Authoriz	on file a ort on file ocrtified ort certifi ents in thi E Code for zation No	t e at by ed by is report ar or Pressure to (4) o. name	Legsand no(2)(CERTIF	FICATIO	ON OF PE S PE S PE S HOP C etails c turer HOP II Board	(40) (47) DESIGN tate tate tate tate tate COMPLIA of design n 2. NSPECT d of Boil	Describe 2e I (a) (a) (b) For and Press	Attached Attached onstruction, ure Vessel In	Reg. No Reg. No and workmansl(i)Represente uspectors and er	how
Rem (42) User Man User Man We vess "U2" Date (43) Vess I, the have and Sect Cond	r's Designufactur nufactur r's Designufactur r's Designufactur certify t sel confr " Certific e	gn Speci er's Des gn Speci er's Des chat the sorm to tl cate of <i>i</i> signed, l signed, l tted the at, to the , Divisio the pres	ification ign Rep fication ign Rep stateme he ASM Authoriz holding pressur e best of n 2. By sure ve	a on file a ort on file certified ort certified ents in thi E Code fr zation No a valid c c e vessel o f my know signing ssel desc	t e at by ed by is report ar or Pressure (4) . name ommission described i wledge and this certific this certific	Legs and (2) CERT e correct a Vessels, () CERT i issued by n this Man belief, the cate neithe s Manufac	(2) (2) CERTIF CERTIF IFICAT and tha Section at the Na utfacturer's'	(i) (ii) FICATIC E OF S at all de VIII, D Wanufac E OF S ational rer's D facture nspect Data F		(40) (47) DESIGN tate tate compLIA of design 1 2. NSPECT NSPECT port on construct his em . Further	Describe Descri	Attached Attached Attached onstruction, ure Vessel In sure vessel ir sany warra	Reg. No Reg. No and workmansl (i) Represente	how how how hip of this tive nployed by h ASME Code or implied, yer shall be
Rem (42) User Man User Man We vess "U2" Date (43) Vess I, the have and Sect Cond	r's Designufactur r's Designufactur r's Designufactur certify t sel confr " Certifie e under e under e inspec state th tion VIII cerning le in am	gn Speci er's Des gn Speci er's Des chat the sorm to ti cate of <i>i</i> signed, l signed, l cted the at, to the <i>t</i> pres y manne	ification ign Rep fication ign Rep he ASM Authoriz holding pressure b best of n 2. By sure ver	a on file a ort on file certified ort certified ents in thi E Code fr zation No a valid c c e vessel o f my know signing ssel desc	t e at by ed by or Pressure or Pressure to a construction described in wiledge and this certific ribed in this al injury of al injury of the construction the construction	Legs and (2) CERT re correct a vossels, { (1) CERT issued by n this Man belief, the cate neithes s Manufac s Manufac s Manufac	(2) (2) CERTIF CERTIF IFICAT and tha Section at the Na utfacturer's'	(i) (ii) FICATIC FICATIC FICATIC FICATIC FICATIC (i) FICATIC FICATIC (i) FICAT		(4) (4) DESIGN tate tate tate tate tate COMPLIA of design 1 2. NSPECT d of Boil port on construct his em Further f any kirs s _	Describe	Attached Attached Attached onstruction, ure Vessel In sure vessel ir s any warra r the Inspect m or connee (a)	Reg. No Reg. No and workmansl (i) Representa spectors and er accordance with nty, expressed or nor his emplot ted with this ins	how how how how how how how has the spectron.

			FORM A-1		Pageof
Manufactured by			(41)		
Manufacturer's Serial No.	_	CRN		National Board No	(1)
of the ASME BOILER AND PF	RESSURE VESSE	on of all parts L CODE.	of this vessel cor	BLY COMPLIANCE nforms with the requirements	
"U2" Certificate of Authoriza	tion No	expi	res	0. 1	
Date	Co. name	Assembler that	certified and constru	Signed	Representative
(45) I, the undersigned, holding a		on issued by the	National Board	BLY INSPECTION of Boiler and Pressure Vessel of	Inspectors and employed by
	nts in this Manufa	acturer's Data Re	eport with the des	scribed pressure vessel and st	ate that parts referred to as
Manufacturer has constructed The described vessel was in: By signing this certificate ne vessel described in this Man for any personal injury or p	ed and assembled spected and subj ither the Inspecto ufacturer's Data roperty damage of	d this pressure v ected to a hydro or nor his emplo Report. Further or a loss of any b	ressel in accordar static test of oyer makes any w more, neither the	arranty, expressed or implied Inspector nor his employer or connected with this inspec	ion VIII, Division 2. , concerning the pressure shall be liable in any manner tion.
Date	_ Signed	43 prized Inspector	_ Commissions		44) Inspector Commission number
(07/17)	Auth				

		As	Require	ed by the			EAT EXCI		-	n VIII, Divis		e of
	Manufactur	ed and ce	ertified by.				1					
						(Namo a	nd address of Ma	aufacturor)				
								(2)				
	Manufactur	ed for					(Name and a	ddress of Purchas	ser)			
								(3)				
	Location of	installati	on				(N	ame and address	3)			
							G	\ \				
	Туре	lorizontal or	vertical)	(Gaskete	ed, semiweld, br	azed)	(7 (Manufacture)	·		(8) (CRN)	(Drawing	j no.)
			iysical proj design, cor		and workm		rements of m form to ASM		ifications		BOILER AND PI	RESSURE
	Endplates:			(Fixed materia			(1 (Movable	5) material)	(c)	(Other material)	
	No. Qua	Intity	Width		Length		Thickness	Corr. Al	low.	Heat Treat	Temp.	Time
_		,					_			_		~
			55		(55)		(16)	17		21	21	(21)
	Heat transfe	r plates	(Plate model	~	(Material specifie	5	S and the compor	(Thickness)		(Minimum/maxim	56 um quantity of plate	s for frame)
		-	(Quantity o	(56) f plates pressu	ure tested)	(Mi	inimum tightening	dimension)		(Ma	ximum tightening di	mension)
).	Chamber 1,	MAWP	29	at n	nax. temp						ieu. test press.	
1.	Chamber 2,	MAWP	29	at n	nax. temp	30	,32	MDMT at	29	Hydro/pr	neu. test press.	33
2.	Nozzles, cor	nnections	, inspectio	ns, and pr	essure relie	f device ope	enings:					
,	Purpose Inlet, Outlet,		Dia. or		Mat	erial	Flange	Nozzle Th	ickness	How A	ttached	Location
	Drain, etc.)	Qty.	Size	Туре	Nozzle	Flange	Rating	Nom.	C.A.	Nozzle	Flange	(Insp./Open.
	34 35 36		35	35 50	15 61	(15)	50	16 62	17			36
_												
3.	Supports:	L	ugs	37) antity)	Legs Feet	(Quantity)	Others	(Descr) ribe)	Attached	(Where a	-
	Service: Fat	igue anal	ysis requir	ed	(Yes or No)				(Describ	39 e contents or servic	e)	
1.							21 31 40	(47)				
	Remarks:											
	Remarks:											

))
p of this
41) sentative
nployed by
, ance with ASME essed or implied, s/her employer n this inspection.
ection VIII,
ive
d employed by
rts referred to as
ef, the 2. the plate heat ble in any
ssion number
t

(**23**)

	Manufactured a	nd certified by					1					
				-		(Name and ad		facture	er)			
2.	Manufactured for	or				(Name and a	(4) address of pure	chacor)				
8.	Location of insta	allation					(3)	5118361/				
				-		(Name	e and address)					
l. 1	Туре	(5)		(7 Mfr's. Ser)			9		(1)		
		Horiz. or vert. ta	nk	Mfr's. Ser	rial No.	CRN		(9) Drawing	I No. N	lat'l Board No.	Year built	
	The chemical and construction, and						ifications of the	e ASME	E BOILER AND	PRESSURE VES	SSEL CODE. The desigr	٦,
	Year					(12) Class		-		13 Code case No		
ò.	Constructed to:	Dervice			Durin				Decemination of	(6)	·	
tem	ns 7 to 12 incl. to	Drawing f be completed		vessels, ia		ng Prepared by acketed vesse	ls. or shells d		Description of t exchangers	part inspected		
	Shell	15		(16)	,	17		(18)		(9	
	Mater	ial (Spec. No., Gra	ide) N	lom. thk.		Corr. allow.	d	diamete	r	Length	(overall)	
8.	Seams	20 Longitudi			11-	21 at traatmont			Non-	22	ation	
	23	Longitudi 21				at treatment				structive Examin 25		
	Girth	Heat treat	ment		_	ructive Examina	tion		_	No. of Courses		
).	Heads: (a) Matl.		(15	5) 20) 21) (2 bec., No., Gra			(b) Matl.			0 20 21 22 ec., No., Grade		
	Lessi (T	De: :				1						
	Location (Top, Bottom, End)	Thickness	Corrosion Allowance	Crown Radius	Knuckle Radius	Elliptical Ratio	Conical Apex	Angle	Hemispherical Radius		Side to Pressure (Convex or Concave)	
(a) (b)			(17)									
	·	· ·						(23			J	
		olts used (descr	ibe other faste	-				. No. G	rade Size Num			
	Jacket closure –		ibe other faster			r, give dimens	ions	. No. G	rade Size Num	oolted, descril		
11.	Jacket closure – MAWP(28	r. etc at max. ter		r, give dimens ③	ions 30 (external)	. No. G	rade Size Num	emp		
	Jacket closure – MAWP(Impact test	Describe as or (29) internal)	ع gee and weld, bar (external)	r. etc		-	ions 30 (external)	. No. G	rade Size Num	emp		
11.	Jacket closure – MAWP(Impact test Hydro., pneu., or	Describe as or a internal) comb test pressur	28 gee and weld, bar (39 (external) re	r. etc at max. ter		-	ions 30 (external)	. No. G	rade Size Num	emp		
11. 12. tem:	Jacket closure – MAWP (Impact test Hydro., pneu., or s 13 and 14 to be c Tubesheets	Describe as or 29 internal) comb test pressur ompleted for tube (15)	23 gee and weld, bar (9) (external) re e sections.	r. etc at max. ter (1) (18)	mp	(internal)	30 (external) At to 3	. No. G	rade Size Num If I design metal te perature of (7)	emp	_ at	
11. 12. tem:	Jacket closure – MAWP (Impact test Hydro., pneu., or s 13 and 14 to be c Tubesheets	Describe as or (29 internal) comb test pressur ompleted for tube	23 gee and weld, bar (9) (external) re e sections.	r. etc at max. ter	mp	(internal)	ions (external) At to 33 Nom. thk.	. No. G	rade Size Num design metal te perature of (7) Corr. Allow	emp		
11. 12. tem:	Jacket closure – MAWP (Impact test (Hydro., pneu., or s 13 and 14 to be c Tubesheets St	Describe as or internal) comb test pressur ompleted for tube (13) tationary matl. (Sp Grade) (15)	29 gee and weld, bar (external) re e sections. pec. No.,Di	r. etc at max. ter (31) (18) am. (Subject	mp	(internal)	ionsAt te At te 	. No. G	rade Size Num design metal te perature of (7) Corr. Allow (7)	001ted, descrii emp	_ at	
11. 12. tem: 3.	Jacket closure – MAWP Impact test Hydro., pneu., or s 13 and 14 to be c Tubesheets F	Describe as or internal) comb test pressur ompleted for tube (is) tationary matl. (Spe Grade) (is) cloating matl. (Spe Grade)	29 gee and weld, bar (external) re e sections. pec. No.,Di	r. etc at max. ter (1) (18)	mp	(internal)	ions (external) At to 33 Nom. thk.	. No. G	rade Size Num design metal te perature of (7) Corr. Allow	001ted, descrii emp	_ at	
11. 12. 13.	Jacket closure – MAWP Impact test Hydro., pneu., or s 13 and 14 to be c Tubesheets F Tubes	Describe as or internal) comb test pressur ompleted for tube Grade) (13) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	(a) (a) (a) (a) (external) (a) (external) (a) (a) (a) (b) (a) (b) (a) (a) (a)	r. etc at max. ter (3) (Bam. (Subject (Diam 0.D	np t to pressu 1.)	(internal)	(external) (external) (external) (is Nom. thk. (ib) Nom. thk. Nom. thk.	. No. G	rade Size Num design metal te perature of (7) Corr. Allow (7)	2001ted, descril 2000 200 30 7. Att 7. Att 7. Att	_ at	
11. 12. tem: 3. 4. tem:	Jacket closure – MAWP	Describe as or internal) comb test pressur ompleted for tube Grade) (13) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	(a) (a) (a) (a) (external) (a) (external) (a) (a) (a) (b) (a) (b) (a) (a) (a)	r. etc at max. ter (3) (Bam. (Subject (Diam 0.D	np t to pressu 1.)	(internal)	(external) (external) (external) (is Nom. thk. (ib) Nom. thk. Nom. thk.	. No. G	rade Size Num lf b design metal te perature of (7) Corr. Allow (7) Corr. Allow	2001ted, descril 2000 200 30 7. Att 7. Att 7. Att	_ at	
11. 12. tem: 3. 4. tem:	Jacket closure – MAWP (Impact test (Hydro., pneu., or s 13 and 14 to be c Tubesheets Si 	Describe as or internal) comb test pressur ompleted for tube (is) tationary matl. (Spe Grade) (is) (ioating matl. (Spe Grade) (ii) (ii) (iii) ((29) (20) (external) (external)	r. etc at max. ter (3) (b) am. (Subject (Diam 0.D jacketed ves	np t to pressu 1.)	(internal)	ions	. No. G	rade Size Num lf b design metal te perature of (7) Corr. Allow (7) Corr. Allow Number	2001ted, descril 2000 200 30 7. Att 7. Att 7. Att	_ at tach. (wld., bolted) ttach. (wld., bolted) e (straight or "U")	
11. 12. 12. 3. 4. 5.	Jacket closure – MAWP (Impact test (Hydro., pneu., or s 13 and 14 to be c Tubesheets Si 	Describe as or internal) comb test pressur ompleted for tube (is) comb test pressur ompleted for tube (is)	(a) (a) (a) (a) (a) (a) (a) (b) (b) (c) (r. etc at max. ter 3) (Biam (Diam 0.D jacketed ves (B)	np t to pressu 1.) sels, or cha	(internal)	ions	. No. G	rade Size Num design metal te perature of (7) Corr. Allow (7) Number r	2001ted, descril 2007 200 2007 200 2007 200 2007 200 2007 200 2007 2007	_ at	
11. 12. 12. 3. 4. 5.	Jacket closure – MAWP(Impact test Hydro., pneu., or s 13 and 14 to be c Tubesheets Tubes s 15 to 18 incl. to b Shell	Describe as or (a) internal) comb test pressur ompleted for tube (f) (f) (f) (f) (f) (f) (f) (f)	(a) (a) (a) (a) (a) (a) (a) (b) (b) (c) (r. etc at max. ter 3) (Biam (Diam 0.D jacketed ves (B)	np t to pressu 1.) sels, or cha	(internal)	ions	. No. G	rade Size Num design metal te perature of (7) Corr. Allow (7) Number r	2001ted, descril 2000 200 300 300 300 300 300 300 300 300 300	_ at	
11. 12. 12. 3. 4. 5.	Jacket closure – MAWP(Impact test Hydro., pneu., or s 13 and 14 to be c Tubesheets Tubes s 15 to 18 incl. to b Shell	Describe as or internal) comb test pressur ompleted for tube (is) comb test pressur ompleted for tube (is)	gee and weld, bar gee and weld, bar (external) e e e ec. No., Di frade) frade) None chambers of nal	r. etc at max. ter (3) (b) am. (Subject (Diarr (Diarr (Diarr (b) jacketed ves (6) Iom. thk.	np t to pressu n.) Heat	(internal)	ions	. No. G	rade Size Num design metal te perature of Corr. Allow (7) Corr. Allow (7) Number r Number	2001ted, descril 2007 200 2007 200 2007 200 2007 200 2007 200 2007 2007	_ at	
11. 12. 12. 3. 4. 5. 6.	Jacket closure – MAWP(Impact test Hydro., pneu., or s 13 and 14 to be c Tubesheets r Tubes s 15 to 18 incl. to b Shell Seams <u>(23)</u>	Describe as or internal) comb test pressur ompleted for tube (is) comb test pressur ompleted for tube (is) comb test pressur (is) comb test pressur (is)	gee and weld, bar gee and weld, bar (external) e e e ec. No., Di frade) frade) None chambers of nal	r. etc at max. ter (3) (b) am. (Subject (Diarr (Diarr (Diarr (b) jacketed ves (6) Iom. thk.	np t to pressu 1.)	(internal) (internal) re) (internal) re) (internal) (internal) (internal) (internal) (internal) (internal) (internal) (internal) (internal)	ions	. No. G	rade Size Num design metal te perature of Corr. Allow (7) Corr. Allow (7) Number r Number	colted, descril mp. 2 (3) . Att w. A . Type (1) . Length (2) ructive Examina	_ at	
11. 12. 12. 3. 4. 5. 6.	Jacket closure – MAWP(Impact test Hydro., pneu., or s 13 and 14 to be c Tubesheets F Tubes s 15 to 18 incl. to b Shell Seams 	Describe as or internal) comb test pressur ompleted for tube (is) comb test pressur ompleted for tube (is) comb test pressur (is) comb test pressur (is)	gee and weld, bar gee and weld, bar (external) e e e ec. No., Di frade) frade) None chambers of nal	r. etc at max. ter (i) am. (Subject (Diarr (Diarr (Diarr (Diarr) (Diar	np t to pressu 1.)	(internal)	ions	No. G	rade Size Num design metal te perature of	x Att x	_ at	
11. 12. 12. 3. 4. 5. 6.	Jacket closure – MAWP(Impact test Hydro., pneu., or s 13 and 14 to be c Tubesheets r Tubes s 15 to 18 incl. to b Shell Seams <u>(23)</u>	Describe as or internal) comb test pressur ompleted for tube Grade) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	gee and weld, bar gee and weld, bar (external) e e sections. ec. No., indep nuer chambers of , hal Spec., No., Gr Corrosion	r. etc at max. ter (i) am. (Subject (Diarr (Diarr (Diarr (Diarr) (Diar	np t to pressu 1.)	(internal) (internal) re) (internal) re) (internal) (internal) (internal) (internal) (internal) (internal) (internal) (internal) (internal)	ions	No. GMinest tem	rade Size Num design metal te perature of Corr. Allow (7) Corr. Allow (7) Number r Number r Nondestu	oolted, descril	_ at	
11. 12. 12. 3. 4. 5. 6.	Jacket closure – MAWP(Impact test Hydro., pneu., or s 13 and 14 to be c Tubesheets Tubes F Tubes St 5t o 18 incl. to b Shell Seams <u>(23)</u> Girth Heads: (a) Matl.	Describe as or internal) comb test pressur ompleted for tube Grade) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(a) (a) (a) (a) (a) (a) (a) (b) (c) (r. etc at max. ter (i) (biarr (Diarr (Diarr (Diarr (biarr (biarr)) (c) (c) (c) (c) (c) (c) (c) (c) (c) (np t to pressu 	(internal) (internal) re) (internal) re) (internal) (internal) (internal) (internal) (internal) (internal) (internal) (internal) (internal)	ions	No. GMinest tem	rade Size Num design metal te perature of	oolted, descril	_ at	
111. 12. 12. 3. 4. 5. 6.	Jacket closure – MAWP (Impact test – Hydro., pneu., or s 13 and 14 to be c Tubesheets St r Tubes – s 15 to 18 incl. to b Shell Mater Seams – (3) Girth – Heads: (a) Matl.	Describe as or (a) internal) comb test pressur ompleted for tube (f) (f) (f) (f) (f) (f) (f) (f)	gee and weld, bar gee and weld, bar (external) e e sections. ec. No., indep nuer chambers of , hal Spec., No., Gr Corrosion	r. etc at max. ter (3) (b) am. (Subject (Diam (Diam (Diam (Diam)	np t to pressu n.) Heat Nondestruc (b)	(internal) (internal) re) annels of heat ex (7) Corr. allow. (2) treatment (2) stive Examinatio Matl.	ions	No. GMinest tem	rade Size Num If t design metal te perature of Corr. Allow (7) Corr. Allow (7) Corr. Allow (7) Number r Nondeste Spec., No., Gra Hemispherical	oolted, descril	_ at	
 11. 12. 13. 14. 15. 15. 16. 17. (a) (b) 	Jacket closure – MAWP (Impact test – Hydro., pneu., or s 13 and 14 to be c Tubesheets St r Tubes – s 15 to 18 incl. to b Shell Mater Seams – (3) Girth – Heads: (a) Matl.	Describe as or internal) comb test pressur ompleted for tube Grade) tationary matl. (Spe Grade) (B) dati. (Spec. No Grade) (B) dati. (Spec. No Grade) (B) dati. (Spec. No Grade) (B) Heat treati (B)	(a) (a) (external)	r. etc at max. ter (3) (Diarr (Diarr (Diarr (Diarr (Diarr (Diarr) (Dia	np t to pressu n.) Heat Nondestruc (b)	(internal)	ions	No. GMin	rade Size Num lf l design metal te perature of Corr. Allow (7) Corr. Allow (7) Corr. Allow (7) Number Number r Nondestu Nondestu Hemispherical Radius	oolted, descril	_ at	
 11. 12. 13. 14. 15. 15. 16. 17. (a) (b) 	Jacket closure – MAWP Impact test Hydro., pneu., or s 13 and 14 to be c Tubesheets St Tubes F Tubes S 15 to 18 incl. to b Shell Mater Seams Girth Heads: (a) Matl. Location (Top, Bottom, End)	Describe as or internal) comb test pressur ompleted for tube (is) tationary matl. (Spe Grade) (ii) (iii) (iii) (Spec. No., Gra (iii) (iii) (Spec. No., Gra (iii)	(a) (a) (external)	r. etc at max. ter 3) (biar (Diar (Diar (Diar (Diar (Diar (Diar)	np t to pressu n.) Heat Nondestruc (b)	(internal)	ions	No. GMin	rade Size Num lf l design metal te perature of Corr. Allow (7) Corr. Allow (7) Corr. Allow (7) Number Number r Nondestu Nondestu Hemispherical Radius	oolted, descril	_ at	

								FOF	RM A-2	2			F	°age	of
Man	ufacture	d by						4							
Man	ufacture	r's Serial	No		7		_ CRN		8		National Boa	rd No		(11)	
ltem	s below	to be co	mpleted	d for all v	essels wł	nere ap	plicable								
20. 1			n and p	ressure r	elief devi	ce ope	nings					1			
(Inle	Purp t, Outlet	ose Drain, e	tc) No	b. Diam	or Size	Туре	Materia	I	Nom. Th	k. Rein	forcement Ma	terial How A	Attached	Locati	on
	34			_	35	35	(15)		(16)					36	
	35					(50)	(51)		(52)						
	36														
	(48)														
			_	_				-							
21. B	ody Flar	ges													
Body	Flanges	on She	lls	. <u>.</u>		-		-					Deltiere		
No.	Туре	ID	OD	Flange Thk	Min Hub Th	ık	Material	Hov	v Attached	Location	Num & Size	Bolting Mater	Bolting	Washer DD, ID, thk)	Washer Mater
							(15)				27	(15)			(15)
Body	Flanges	on Hea	ds	1				1					Bolting		
No.	Туре	ID	OD	Flange Thk	Min Hub Th	ık	Material	Hov	v Attached	Location	Num & Size	Bolting Mater	ial (C	Washer DD, ID, thk)	Washer Mater
								-							
							(15)				(27)	(15)	1		15
											Describe				

			FORM A-2			Page	of
Manufactured by			(41)				
Manufacturer's Serial No	7	CRN	8	National Bo	oard No	(11)	
42			TIFICATION OF D	ESIGN			
User's Design Specification							
Manufacturer's Design Rep	oort on file at						
User's Design Specification	n certified by			PE State	(42) (49)		
Manufacturer's Design Re	oort certified by		I	PE State	(42) (49)	Reg. N	0
				OMPLIANCE			
We certify that the stateme		correct and that all	I details of design,		ruction, and worki	manship of this	vessel confor
We certify that the stateme to the ASME Code for Pres	sure Vessels, Section	correct and that all on VIII, Division 2.	I details of design,	material, const			
We certify that the statement to the ASME Code for Present "U2" or "PRT VIII-2" Certifie	sure Vessels, Section	correct and that all on VIII, Division 2. No41	I details of design,	material, const		(41)	
We certify that the statements to the ASME Code for Presented "U2" or "PRT VIII-2" Certific Date	sure Vessels, Section	correct and that all on VIII, Division 2. No	I details of design, expires 	material, const		·	
We certify that the stateme to the ASME Code for Pre: (U2" or "PRT VIII-2" Certifi Date	sure Vessels, Section cate of Authorization Co. nar g a valid commissio a pressure vessel of of my knowledge ar s certificate neither urer's' Data Report.	correct and that all on VIII, Division 2. No	I details of design, expires	Signed	t in accordance w	etors and emploited for the second se	oyed by , , Section VIII rning the par
We certify that the statement to the ASME Code for Present "U2" or "PRT VIII-2" Certifie Date	sure Vessels, Section cate of Authorization Co. nar g a valid commission a pressure vessel of of my knowledge ar s certificate neither urer's' Data Report. or a loss of any kind	correct and that all on VIII, Division 2. No 41 me 2007 CERTIFIC n issued by the Na described in this Mand belief, the Manu the Inspector nor Furthermore, neith d arising from or co	I details of design, expires anufacturer CATE OF SHOP IN ational Board of B anufacturer's Data ufacturer has cons his employer ma her the Inspector r innected with this	Signed	t in accordance w	etors and emploited for the second se	oyed by , , Section VIII rning the par

	and certified by	(N =	1 and address of man						
			and address of man	lutacturer)					
 Manufacture 	ed for	(Name and address of purchaser)							
3. Location of i	nstallation								
	(5)	(Name and address) (7) (8) (9) (1)							
4. Туре	Horiz. or vert. tank	Mfr's. Serial No.	CRN	9 Drawing No.	Nat'l Board No.	Year buil			
Data Report Item Number			Remarks						
(46)			(47)						
Date	Co. name	(B) Manufacture	Si	gned	(3) (4) Representative				
		Manufacture	ər	gned	Representative				
	Co. name Signed	Manufacture	er Si			ion number			
		Manufacture (43) (46)	ər		Representative	ion number			
		Manufacture (43) (46)	ər		Representative	ion number			
		Manufacture (43) (46)	ər		Representative	ion number			

	-					ction VIII, Divis				
1. Manufactur	ed and certified by		(Name and address of manufacturer)							
				-		1				
2. Manufactur	ed for			2						
			(Name	e and addres	ss of purchaser)					
3. Location of	installation ③									
	(Name and address)									
4 Turne	(5)	(7)	(7)		(9)	(11)	1)			
4. Type	Horiz. or vert. tank	Mfr's. Ser	ial No.	CRN	Drawing No	D. Nat'l Board N	Vo. Year bui			
Data Ranaut										
Data Report Item Number										
(46)				emarks 🤇						
Item 6 or 7	(a) layered construct									
(Shell)	Location	Mat'l.	Layer	Thk.	Nom. Thk.Tot.	No. Courses	NDE			
	(b) Inner Shell									
	(c) Dummy Layer	(15)	F)	(16)	25	0			
	(d) Layers:									
Item 8	(e) Overwraps: (a) Layered Construc	tion Type: //arma-d	Machinad C.	amonto'	ata l					
(Heads)	(a) Layered Construct	tion Type: (Formea,	Iviacninea, Se	egmental, i	etc.)					
(neaus)	(c) Dummy Layer	(15)	(F)		(16)	(E) (20)	(0)			
	(d) Layers:									
	(a) Layered Construc	tion Type:								
	(1) Inner Head									
	(2) Dummy Layer									
	(3) Layers:									
ltem 21		Diam Hole	Staggered	Layers or	Radial Through					
(Vent holes in layers)	(a) Layered Shell		Э							
	(b) Layered Head	6								
	<u> </u>									
Item 24 (Remarks)	Gaps Have Been Cor (See 4.13.12.1, 14.13			is of Parag	iraph:					
	1366 4.13.12.1, 14.1	5.12.2, and 14.13.12.	.0/							
				() (IJ					
					<u></u>					
				~						
				B	1					
Date	Co. nam	ie	Signed			Poprocenteting				
			wanutacturer			Representative				
Date	Signe	d	nenosto-	Commis	sions	(44) Authorized Inspector Cor	mainting sumber			
		Authorized I	rispector		National Board	Authorized Inspector Commission number				

		-		s of the A							
1. Manufactured	and certified	l by			(1)	1					
				(Name and address of manufacturer)							
2. Manufactured	for		(Name and address of purchaser)								
3. Location of ins	tallation					3					
			(Name and address)								
4. Type	5			7		<u> </u>	9		(1)		
Horizontal, vertical, or slope		al, or sloped	Mfr's. Serial No.		CRN Drav		Drawing No.	Nat'l	Board No.	Year buil	
			FIXED	TUBESHEET		HANGERS					
	Dooio	n/Operating	Propouro Pr	200				araturaa	Allowable Axial Differential Thermal		
	Shell		Pressure Ranges Tube Side		Design/Operating Metal				Expansion Rang		
	Min.	Max.	Min.	Max.	Shell	Channel	Tubes	Tubesheet	Min.	Max.	
Name of Condition	(units)	(units)	(units)	(units)	(units)	(units)	(units)	(units)	(units)	(units)	
Design	29	29	29	29	30	30	30	30	30	30	
(53)	53	53	53	53	53	53	53	53	53	53	
								1		1	
										l	
Data Repor Item Numbe						Remarks	6			<u> </u>	
				I		Remarks	5			I	
Item Numbe							5			<u> </u>	
Item Numbe							3			I	
Item Numbe							3			I	
Item Numbe							5			I	
Item Numbe							3			I	
Item Numbe							3			I	
Item Numbe							5				
Item Numbe							3				
Item Numbe							3				
Item Numbe							3				
Item Numbe							5				
Item Numbe							5				
Item Numbe							5				
Item Numbe							5				
Item Numbe	er			(3) Man.	(6)		s		(3) (46) Representativ	e	

41

ANNEX 2-E QUALITY CONTROL SYSTEM

(Normative)

2-E.1 GENERAL

2-E.1.1 The Manufacturer shall have and maintain a Quality Control System that will establish that all Code requirements, including material, design, fabrication, examination (by the Manufacturer), and inspection of vessels and vessel parts (by the Inspector), will be met. Provided that Code requirements are suitably identified, the system may include provisions for satisfying any requirements by the Manufacturer or user that exceed minimum Code requirements and may include provisions for quality control of non-Code work. In such systems, the Manufacturer of vessels and vessel parts may make changes in parts of the system that do not affect the Code requirements without securing acceptance by the Inspector (see 2.1.1).

2-E.1.2 The system that the Manufacturer uses to meet the requirements of this Division shall be one suitable for the Manufacturer's circumstances. The necessary scope and detail of the system shall depend on the complexity of the work performed and on the size and complexity of the Manufacturer's organization. A written description of the system the Manufacturer will use to produce a Code item shall be available for review. Depending upon the circumstances, the description may be brief or extensive.

2-E.1.3 The written description may contain information of a proprietary nature relating to the Manufacturer's processes. Therefore, the Code does not require any distribution of this information except for the Inspector's or ASME designee's copy as covered by 2-E.15.3. It is intended that information learned about the system in connection with the evaluation will be treated as confidential and that all loaned descriptions will be returned to the Manufacturer upon completion of the evaluation.

2-E.2 OUTLINE OF FEATURES INCLUDED IN THE QUALITY CONTROL SYSTEM

The following is a guide to some of the features which should be covered in the written description of the Quality Control System and is equally applicable to both shop and field work.

(a) The information associated with 2.3 and Annex 7-A.

(b) The complexity of the work includes factors such as design simplicity versus complexity, the types of materials and welding procedures used, the thickness of materials, the types of nondestructive examinations applied, and whether heat treatments are applied.

(c) The size and complexity of the Manufacturer's organization includes factors such as the number of employees, the experience level of employees, the number of vessels produced, and whether the factors defining the complexity of the work cover a wide or narrow range.

2-E.3 AUTHORITY AND RESPONSIBILITY

The authority and responsibility of those in charge of the Quality Control System shall be clearly established. Persons performing quality control functions shall have sufficient and well-defined responsibility, the authority, and the organizational freedom to identify quality control problems and to initiate, recommend, and provide solutions.

2-E.4 ORGANIZATION

An organization chart showing the relationship between management and engineering, purchasing, manufacturing, field construction, inspection, and quality control is required to reflect the actual organization. The purpose of this chart is to identify and associate the various organizational groups with the particular function for which they are responsible. The Code does not intend to encroach on the Manufacturer's right to establish, and from time to time to alter, whatever form of organization the Manufacturer considers appropriate for its Code work.

2-E.5 DRAWINGS, DESIGN CALCULATIONS, AND SPECIFICATION CONTROL

2-E.5.1 The Manufacturer's Quality Control System shall provide procedures which will ensure that the latest applicable drawings, design calculations, specifications, and instructions, required by the Code, as well as authorized changes, are used for manufacture, assembly, examination, inspection, and testing. The system shall ensure that authorized changes are included, when appropriate, in the User's Design Specification and/or in the Manufacturer's Design Report.

2-E.5.2 The Manufacturer's or Assembler's Quality Control System shall provide procedures that will ensure Certifying Engineers and Designers performing design activities are competent for each activity they perform (see Annex 2-J).

2-E.6 MATERIAL CONTROL

The Manufacturer shall include a system of receiving control that will ensure that the material received is properly identified and has documentation including required material certifications or material test reports to satisfy Code requirements as ordered. The system material control shall ensure that only the intended material is used in Code construction.

2-E.7 EXAMINATION AND INSPECTION PROGRAM

The Manufacturer's Quality Control System shall describe the fabrication operations, including examination, sufficiently to permit the Inspector or ASME designee to determine at what stages specific inspections are to be performed.

2-E.8 CORRECTION OF NONCONFORMITIES

There shall be a system agreed upon with the Inspector for correction of nonconformities. A nonconformity is any condition which does not comply with the applicable rules of this Division. Nonconformities must be corrected or eliminated in some way before the completed component can be considered to comply with this Division.

2-E.9 WELDING

The Quality Control System shall include provisions for indicating that welding conforms to requirements of Section IX as supplemented by this Division.

2-E.10 NONDESTRUCTIVE EXAMINATION

The Quality Control System shall include provisions for identifying nondestructive examination procedures the Manufacturer or Assembler will apply to conform to the requirements of this Division.

2-E.11 HEAT TREATMENT

The Quality Control System shall provide controls to ensure that heat treatments as required by the rules of this Division are applied. Means shall be indicated by which the Inspector or ASME designee will be ensured that these Code heat treatment requirements are met. This may be by review of furnace time-temperature records or by other methods as appropriate.

2-E.12 CALIBRATION OF MEASUREMENT AND TEST EQUIPMENT

The Manufacturer shall have a system for the calibration of examination, measuring, and test equipment used in fulfillment of requirements of this Division.

2-E.13 RECORDS RETENTION

The Manufacturer shall have a system for the maintenance of Data Reports and records as required by this Division. Requirements for maintenance of records are given in 2-C.3. Additionally, retained records as required by this Division and the Quality Control System shall be made available to the Authorized Inspector Supervisors or to review teams designated by ASME.

2-E.14 SAMPLE FORMS

The forms used in this Quality Control System and any detailed procedures for their use shall be available for review. The written description shall make necessary references to these forms.

2-E.15 INSPECTION OF VESSELS AND VESSEL PARTS

2-E.15.1 Inspection of vessels and vessel parts shall be by the Inspector as defined in 2.4.

2-E.15.2 The written description of the Quality Control System shall include reference to the Inspector.

2-E.15.3 The Manufacturer shall make available to the Inspector, at the Manufacturer's plant or construction site, a current copy of the written description of the Quality Control System.

2-E.15.4 The Manufacturer's Quality Control System shall provide for the Inspector at the Manufacturer's plant to have access to the User's Design Specification, the Manufacturer's Design Report, and all drawings, calculations, specifications, procedures, process sheets, repair procedures, records, test results, and other documents as necessary for the Inspector to perform his duties in accordance with this Division. The Manufacturer may provide such access either to his own files of such documents or by providing copies to the Inspector.

(23) 2-E.16 INSPECTION OF PRESSURE RELIEF VALVES

DELETED

ANNEX 2-F CONTENTS AND METHOD OF STAMPING

(Normative)

2-F.1 REQUIRED MARKING FOR VESSELS

Each pressure vessel to which the Certification Mark with the U2 Designator and class is applied shall be marked with the following:

(*a*) The official Certification Mark with the U2 Designator and class, as shown in Figure 2-F.1, sketch (a), which shall be stamped on vessels certified in accordance with this Division.

(b) The name of the Manufacturer of the pressure vessel as it is shown on the Certificate of Authorization or an abbreviation accepted by ASME, preceded by "Certified by." A trademark is not considered to be sufficient identification for vessels or parts constructed to this Division.

(c) The Manufacturer's serial number (MFG SER).

(*d*) The MAWP (Maximum Allowable Working Pressure), internal or external, at the coincident maximum design metal temperature. When a vessel is specified to operate at more than one pressure and temperature condition, such values of coincident pressure and design temperature shall be added to the required markings. The maximum allowable working pressure (external) is required only when specified as a design condition.

(e) The MDMT (minimum design metal temperature) at coincident MAWP in accordance with Part 3.

(f) The year built.

(g) Code Edition (see 2.1.3).

(*h*) The construction type, i.e., all of the applicable construction types shall be marked under the Certification Mark and U2 Designator and class or, if marking is by a fabricator of pressure vessel parts only, under the Certification Mark and PRT VIII-2 Designator. WL (welded layered) is the only construction type that is required to be marked on the vessel.

(i) Heat treatment markings shall be as follows:

(1) The letters HT shall be applied under the Certification Mark and U2 Designator and class and under the Certification Mark and PRT VIII-2 Designator, as applicable, when the complete vessel has been postweld heat treated in accordance with Part 3.

(2) The letters PHT shall be applied under the Certification Mark and U2 Designator and class or under the Certification Mark and PRT VIII-2 Designator, as applicable, when only part of the complete vessel has been postweld heat treated in accordance with Part 3.

(*j*) When the complete vessel or vessel parts are inspected by a user's Inspector as provided in 2.4.1, the word USER shall be marked above the

(1) Certification Mark and U2 Designator and class for complete pressure vessels or vessel parts, as applicable, or

(2) Certification Mark and PRT VIII-2 Designator for parts only, which have been fabricated by a Manufacturer holding a valid PRT VIII-2 Certificate of Authorization

2-F.2 REQUIRED MARKING FOR COMBINATION UNITS

(*a*) Those chambers included within the scope of this Division shall be marked. The marking shall include the name of each chamber (e.g., process chamber, jacket, tubes, channel) and its corresponding data. The markings shall be grouped in one location on the combination unit or applied to each individual chamber. Each detachable chamber shall be marked to identify it with the combination unit. When required, the marking shall include the following:

(1) for differential pressure design, the maximum differential design pressure for each common element and the name of the higher pressure chamber

(2) for mean metal temperature design, the maximum mean metal design temperature for each common element

(3) for a common element adjacent to a chamber not included within the scope of this Division, the common element design conditions from that chamber

(b) It is recommended that the design conditions for those chambers not included within the scope of this Division be marked on the combination unit. The markings may be on the applicable chamber or grouped as described in 2-F.2(a), provided they are not included in the markings covered by the Certification Mark.

(23) 2-F.3 APPLICATION OF STAMP

The Certification Mark with the U2 Designator and class or the Certification Mark with the PRT VIII-2 Designator shall be applied by the Manufacturer only with the approval of the Inspector, and after the hydrostatic test and all other required inspection and testing has been satisfactorily completed. Such application of the Certification Mark with the U2 Designator and class or the Certification Mark with the PRT VIII-2 Designator, together with final certification in accordance with the rules of this Division, shall confirm that all applicable requirements of this Division and the User's Design Specification have been satisfied.

2-F.4 PART MARKING

(23) **2-F.4.1** Parts of pressure vessels for which Partial Data Reports are required shall be marked by the parts Manufacturer with the following:

(a) the official Certification Mark with, as applicable, the

(1) U2 Designator and class, as shown in Figure 2-F.1, above the word "PART," or

(2) PRT VIII-2 Designator, as shown in Figure 2-F.1

(*b*) the name of the Manufacturer of the part, preceded by the words "Certified by"

(c) the Manufacturer's serial number assigned to the part

(d) the MAWP and coincident maximum design metal temperature (see Part 2)

(e) the MDMT (minimum design metal temperature) at the MAWP (see Part 3)

When stamping with the Certification Mark with the PRT VIII-2 Designator, the word "PART" may be eliminated from the stamping.

2-F.4.2 The requirements for part marking in accordance with 2-F.4.1(d) and 2-F.4.1(e) do not apply for the following:

(a) parts for which the parts Manufacturer does not prepare a Manufacturer's Design Report

(b) overpressure relief devices that are covered in Part 9

(23) 2-F.5 APPLICATION OF MARKINGS

Markings required in 2-F.1 through 2-F.4 shall be applied by one of the following methods:

(a) Nameplate – A separate metal nameplate, of a metal suitable for the intended service, at least 0.5 mm (0.02 in.) thick, shall be permanently attached to the vessel or to a bracket that is permanently attached to the vessel. The nameplate and attachment shall be such that removal shall require willful destruction of the nameplate or its attachment system. The attachment weld to the vessel shall not adversely affect the integrity of the vessel. Attachment by welding shall not be permitted on materials enhanced by heat treatment or on vessels that have been pre-stressed.

(1) Only the Certification Mark need be stamped on the nameplate.

(2) All other data may be stamped, etched, or engraved on the nameplate (see 2-F.7).

(3) The nameplate or a bracket to which the nameplate is affixed may be attached to a component other than the pressure-retaining shell under the following conditions:

(-*a*) The User's Design Specification shall state the need for not directly attaching the nameplate on the vessel shell.

(-b) The nameplate or a bracket to which the nameplate is affixed shall be located in a clearly visible and accessible location and welded to the vessel skirt or other component that is permanently attached to the vessel.

(-c) The nameplate location shall be indicated in the remarks on the Manufacturer's Data Report.

(b) Directly on Vessel Shell

(1) Markings shall be stamped, with low stress type stamps, directly on the vessel, located on an area designated as a low stress area by the Manufacturer in the Manufacturer's Design Report (see 2.3.3).

(2) Markings, including the Certification Mark, may be electrochemically etched on the external surfaces on the vessel under the following conditions:

(-a) The markings are acceptable to the user as indicated in the User's Design Specification.

(-b) The data shall be in characters not less than 8 mm $\binom{5}{16}$ in.) high.

(-c) The materials shall be limited to high alloy steels and nonferrous materials.

(-*d*) The process controls for electrochemical etching shall be described in the Quality Control System and shall be acceptable to the Authorized Inspector. The process controls shall be established so that it can be demonstrated that the characters will be at least 0.1 mm (0.004 in.) deep.

(-e) The external vessel surface condition where electrochemical etching is acceptable shall be clean, uncoated, and unpainted.

(-f) The electrochemical etching shall not result in any detrimental effect to the materials of the vessel.

(*c*) Adhesive Attachment – Nameplates may be attached with pressure-sensitive acrylic adhesive systems in accordance with the following requirements:

(1) Adhesive systems for the attachment of nameplates are permitted under the following conditions:

(-*a*) The adhesive used is a pressure-sensitive acrylic adhesive that has been preapplied by the nameplate manufacturer to a nominal thickness of at least 0.13 mm (0.005 in.).

(-b) The adhesive is protected with a moisture-stable liner.

(-c) The vessel(s) to which the nameplate is being attached has a design temperature within the range of -40° C to 150° C (-40° F to 300° F), inclusive.

(-*d*) The nameplate is applied to a clean, bare metal surface with attention being given to removal of anti-weld-spatter compound that may contain silicone.

(-e) The nameplate application procedure is qualified as outlined in (2).

(-f) The preapplied adhesive is used within 2 yr after initial adhesive application.

(2) Nameplate Application Procedure Qualification

(-*a*) The Manufacturer's Quality Control System (see Annex 2-E) shall define that written procedures, acceptable to the Inspector, for the application of adhesive-backed nameplates shall be prepared and qualified.

(-b) The application procedure qualification shall include the following essential variables, using the adhesive and nameplate manufacturers' recommendations where applicable:

(-1) Description of the pressure-sensitive acrylic adhesive system employed, including generic composition

(-2) The qualified temperature range, the cold box test temperature shall be -40° C (-40° F) for all applications

(-3) Materials of nameplate and substrate when the mean coefficient of expansion at design temperature of one material is less than 85% of that for the other material

(-4) Finish of the nameplate and substrate surfaces

(-5) The nominal thickness and modulus of elasticity at application temperature of the nameplate when nameplate preforming is employed — a change of more than 25% in the quantity: [(nameplate nominal thickness)² × nameplate modulus of elasticity at application temperature] will require requalification

(-6) The qualified range of preformed nameplate and companion substrate contour combinations when preforming is employed

(-7) Cleaning requirements for the substrate

(-8) Application temperature range and application pressure technique

(-9) Application steps and safeguards

(-c) Each procedure used for nameplate attachment by pressure-sensitive acrylic adhesive systems shall be qualified for outdoor exposure in accordance with Standard UL-969, Marking and Labeling Systems, with the following additional requirements.

(-1) Width of nameplate test strip shall not be less than 25 mm (1 in.).

(-2) Nameplates shall have an average adhesion of not less than 1.4 N/mm (8 lb/in.) of width after all exposure conditions, including low temperature.

(-3) Any change in (-b) shall require requalification.

(-4) Each lot or package of nameplates shall be identified with the adhesive application date.

2-F.6 DUPLICATE NAMEPLATE

A duplicate nameplate may be attached on the support, jacket, or other permanent attachment to the vessel. All data on the duplicate nameplate, including the Certification Mark with U2 Designator and class, shall be cast, etched, engraved, or stamped. The Inspector need not witness this marking. The duplicate nameplate shall be marked "DUPLI-CATE." The use of duplicate nameplates, and the stamping of the Certification Mark on the duplicate nameplate, shall be controlled as described in the Manufacturer's Quality Control System.

2-F.7 SIZE AND ARRANGEMENTS OF CHARACTERS FOR NAMEPLATE AND DIRECT STAMPING OF VESSELS

2-F.7.1 The data shall be arranged substantially as shown in Figure 2-F.1. The characters for direct stamping of the vessel shall be not less than 8 mm ($\frac{5}{16}$ in.) high. The characters for nameplate stamping shall be not less than 4 mm ($\frac{5}{32}$ in.) high. The characters shall be either indented or raised at least 0.10 mm (0.004 in.) and shall be legible and readable.

2-F.7.2 Where space limitations do not permit the requirements of 2-F.7.1 to be met, such as for parts with outside diameters of 89 mm (3.5 in.) or smaller, the required character size to be stamped directly on the vessel may be 3 mm $\binom{1}{8}$ in.).

2-F.8 ATTACHMENT OF NAMEPLATE OR TAG

If all or part of the data is marked on the nameplate or tag before it is attached to the vessel, the Manufacturer shall ensure that the nameplate with the correct marking has been attached to the vessel to which it applies as described in their Quality Control System. The Inspector shall verify that this has been done.

2-F.9 FIGURES

(2) The maximum allowable working pressure (external) required only when specified as a design condition.

(23)

ANNEX 2-G OBTAINING AND USING CERTIFICATION MARK STAMPS

(Normative)

(23) 2-G.1 CERTIFICATION MARK

A Certificate of Authorization to use the Certification Mark with the U2 or PRT VIII-2 Designator (see https://www.as-me.org/shop/certification-accreditation) shown in Annex 2-F will be granted by ASME pursuant to the provisions of the following paragraphs. Stamps for applying the Certification Mark shall be obtained from ASME.

2-G.2 APPLICATION FOR CERTIFICATE OF AUTHORIZATION

Any organization desiring a Certificate of Authorization shall apply to ASME in accordance with the certification process of ASME CA-1. Authorization to use Certification Marks may be granted, renewed, suspended, or withdrawn as specified in ASME CA-1.

2-G.3 ISSUANCE OF AUTHORIZATION

A Certificate of Authorization shall be issued in accordance with ASME CA-1.

2-G.4 DESIGNATED OVERSIGHT

The Manufacturer shall comply with the requirements of ASME CA-1 for designated oversight by use of an Authorized Inspection Agency.

2-G.5 QUALITY CONTROL SYSTEM

Any Manufacturer holding or applying for a Certificate of Authorization shall demonstrate a Quality Control System that meets the requirements of ASME CA-1 and Annex 2-E.

2-G.6 EVALUATION OF THE QUALITY CONTROL SYSTEM

2-G.6.1 The issuance or renewal of a Certificate of Authorization is based upon ASME's evaluation and approval of the Quality Control System, and shall be in accordance with ASME CA-1.

(23) 2-G.6.2 Before issuance or renewal of a Certificate of Authorization for use of the Certification Mark with the U2 Designator and class or the Certification Mark with the PRT VIII-2 Designator, the Manufacturer's facilities and organization are subject to a joint review by a representative of his Authorized Inspection Agency and an individual certified as an ASME designee who is selected by the concerned legal jurisdiction. For those areas where there is no jurisdiction or where a jurisdiction does not choose to select an ASME designee to review a Manufacturer's facility, an ASME designee selected by ASME shall perform that function. Where the jurisdiction is the Manufacturer's Inspection Agency, the jurisdiction and the ASME designee shall make the joint review and joint report.

2-G.7 CODE CONSTRUCTION BEFORE RECEIPT OF CERTIFICATE OF AUTHORIZATION

A Manufacturer may start fabricating Code items before receipt of a Certificate of Authorization to use a Certification Mark and Designator under the conditions specified in ASME CA-1.

ANNEX 2-I ESTABLISHING GOVERNING CODE EDITIONS AND CASES FOR PRESSURE VESSELS AND PARTS

(Normative)

2-I.1 GENERAL

(*a*) After Code revisions are approved by ASME, they may be used beginning with the date of issuance shown on the Code. Except as noted below, revisions become mandatory six months after the date of issuance. Code Cases are permissible and may be used beginning with the date of approval by ASME. Only Code Cases that are specifically identified as being applicable to this Section may be used. At the time a Code Case is applied, only the latest revision may be used. Code Cases that have been incorporated into this Section or have been annulled shall not be used.

(b) Changes in the Code and Code Cases that have been published prior to completion of the pressure vessel or part may include details critical to the intended service conditions of the pressure vessel, which should be considered by the Manufacturer. Application of such changes shall be a matter of agreement between the Manufacturer and the user. Specific incorporated Code provisions from later editions that have been applied to construction shall be noted in the "Remarks" section of the Manufacturer's Data Report.

2-I.2 CONSTRUCTION

(a) The Manufacturer of any complete vessel or part that is to be stamped with the ASME Certification Mark required by this Section (see Annex 2-C) has the responsibility of ensuring through proper Code certification that all work performed complies with the effective Code Edition as follows:

(1) Vessels. The Code Edition used for construction of a pressure vessel shall be either the Edition that is mandatory on the date the pressure vessel is contracted for by the Manufacturer, or a published Edition issued by ASME prior to the contract date that is not yet mandatory [see 2-I.1(a)].

(2) Subcontracted Parts. When a vessel Manufacturer subcontracts some of the construction to another Certificate Holder, the part Manufacturer shall construct the part to the Code Edition established for the entire pressure vessel.

(3) Parts Built for Stock. Parts built for stock shall be constructed to either the Edition that is mandatory at the time of Code certification or a published Edition issued by ASME prior to Code certification that is not yet mandatory [see 2-l.1(a)].

(4) Parts Used From Stock. When a vessel Manufacturer uses a part from stock, the vessel Manufacturer shall ensure that the part fully satisfies all applicable Code requirements for the Code Edition used for construction of the complete vessel.

(*b*) It is permitted to use overpressure protection requirements from the Edition in effect when the vessel is placed in service.

2-I.3 MATERIALS

For parts subject to stress due to pressure, the Manufacturer shall use material conforming to one of the specifications listed as approved for use in the Edition specified for construction, or listed as approved for use in the Guideline for Acceptable ASTM Editions or in the Guideline for Acceptable Non-ASTM Editions in Section II, Part A or Part B.

ANNEX 2-J QUALIFICATIONS AND REQUIREMENTS FOR CERTIFYING ENGINEERS AND DESIGNERS

(Normative)

2-J.1 INTRODUCTION

(*a*) Persons engaged in design activity shall be competent in the topic of each design activity performed and shall be able to show evidence of this competency as described in 2-J.2.

(b) When a Certifying Engineer is required by 2.3.3.1 to certify the Manufacturer's Design Report, it is permissible for an engineer or designer to perform the design activity, provided all the following requirements are met:

(1) The individual has evidence of competence in the topic of design under consideration.

(2) The individual is working under the responsible charge¹ of a Certifying Engineer.

2-J.2 COMPETENCY REQUIREMENTS

(a) The engineer or designer may engage in any activity required by this Division or any supplemental requirements from the User's Design Specification except for Code activities listed in Table 2-J.1, unless the requirements of 2-J.1(b) are met.

(b) The Certifying Engineer may engage in any design activity required by this Division or any supplemental requirements from the User's Design Specification.

2-J.3 QUALIFICATION REQUIREMENTS

2-J.3.1 GENERAL

(*a*) One or more persons within the Manufacturer's organization shall be qualified to perform design work in accordance with the requirements of this Annex for any design activity listed in the Manufacturer's Quality Control System (see 2-E.5).

(*b*) The qualifications of 2-J.3.2 and 2-J.3.3 shall also apply to Certifying Engineers, engineers, and designers that are engaged by the Manufacturer by contract or agreement for their services.

2-J.3.2 CERTIFYING ENGINEERS

(*a*) The Certifying Engineer shall attest in writing that they understand and meet the requirements of the ASME Code of Ethics and shall meet the requirements of (b) and (c).

(*b*) The Certifying Engineer may perform any design activity required by this Division for which the engineer has a minimum of 4 yr of experience in the design of pressure vessels.

(1) For Certifying Engineers who certify the Manufacturer's Design Report, this experience shall be demonstrated through documentation certified by a Manufacturer.

(2) For Certifying Engineers who certify the User's Design Specification, this experience shall be demonstrated through documentation maintained by the Certifying Engineer.

(c) The Certifying Engineer shall be chartered, registered, or licensed in accordance with one or more of the following: (1) a registered Professional Engineer in at least one state of the United States or province of Canada

(2) the International Register of Professional Engineers by an authorized member of the International Professional Engineers Agreement (IPEA)

¹ For further information regarding responsible charge, see the National Society of Professional Engineers Position Statement No. 1778.

Table 2-J.1 Design Activities Requiring a Certifying Engineer	
Design Activities	Code Location
Performance of numerical analysis	5.1.2
Fatigue assessments	
Elastic stress analysis	5.5.3
Elastic–plastic stress analysis	5.5.4
Elastic analysis and structural stress	5.5.5
Design due to seismic reactions	
Linear response history procedure	5.1.3
Nonlinear response history procedure	5.1.3
Quick-actuating closures	4.8

(3) an authorized member of the Asia Pacific Economic Cooperation (APEC)

(4) an authorized member of the European Federation of National Engineering Associations (FEANI)

2-J.3.3 ENGINEERS AND DESIGNERS

(a) Education

(1) The engineer shall have a degree from an accredited university or college in engineering, science, or technology requiring an equivalent of 4 yr of full-time study of higher education.

(2) The designer shall have completed an accredited engineering technician or associates degree, requiring the equivalent of at least 2 yr of study.

(b) Personnel Experience

(1) An engineer engaged in and/or having responsible oversight for pressure vessel design shall as a minimum hold the qualification described in (c)(1)(-b).

(2) A designer meeting the education requirements of (a)(2) engaged in and/or having responsible oversight for pressure vessel design shall as a minimum hold the qualification described in (c)(1)(-c).

(3) A designer that does not meet the minimum education requirements of (a)(2) engaged in and/or having responsible oversight for pressure vessel design shall as a minimum hold the qualification described in (c)(1)(-d).

(4) The engineer or designer may also hold any of the additional qualifications described in (c)(2) through (c)(4).(c) Practical Experience

(1) General Pressure Vessel Design

(-*a*) This qualification includes all design activity required for this Division that the individual engages in, or as listed in the Manufacturer's Quality Control System, except as provided for in (2) through (4).

(-*b*) The engineer shall be able to demonstrate through documentation that he or she has a minimum of 4 yr of experience in pressure vessel design.

(-c) A designer meeting the education requirements of (a)(2) shall be able to demonstrate through documentation that he or she has a minimum of 6 yr of experience in pressure vessel design.

(-d) A designer that does not meet the minimum education requirements of (a)(2) shall be able to demonstrate that he or she has a minimum of 10 yr of experience in pressure vessel design.

(2) *Heat Exchanger Design.* The engineer or designer shall be able to demonstrate through documentation that he or she has a minimum of 2 yr of experience in each of the following design Code activities for heat exchangers that they practice:

(-a) tubesheets (see 4.18)

(-b) bellows expansion joints (see 4.19)

(-c) flexible shell element expansion joints (see 4.20)

(3) Numerical Analysis

(-a) The engineer or designer shall be able to demonstrate through documentation that he or she has a minimum of 2 yr of experience performing design calculations not specifically addressed in this Division, including numerical analysis.

(-b) An engineer or designer engaged in the performance of numerical analysis shall be able to demonstrate through documentation that he or she has received instruction in the use and understanding of any numerical analysis computer program(s). This documentation shall be provided to the engineer or designer by one of the following:

- (-1) the developer of the computer program (e.g., the software vendor)
- (-2) a training course acceptable to or licensed by the developer

(-3) a Certifying Engineer with requisite knowledge of the computer program and qualifications to train others on its use

(4) *Quick-Actuating Closures.* The engineer or designer shall be able to demonstrate through documentation that he or she has a minimum of 2 yr of experience in design activity for quick-actuating closures (see 4.8).

(5) The experience requirements of (2) through (4) may be acquired concurrently.

(6) The engineer or designer's qualification(s) remain valid if the individual can demonstrate through documentation design activity completed within a continuous period of 36 months for each of their qualifications in (1), (2), (3), or (4).

2-J.4 CERTIFICATION REQUIREMENTS

2-J.4.1 CERTIFYING ENGINEERS

(*a*) The Manufacturer who employs (directly or by contract) the engineer who certifies the Manufacturer's Design Report shall prepare a statement, in conjunction with 2-J.3.2(b)(1), that the Certifying Engineer is qualified to perform the design activities used.

(b) Certifying Engineers who certify the User's Design Specification shall indicate their qualification as shown in 2-J.3.2(b)(2).

(c) Unless otherwise modified by the Manufacturer as stated in their Quality Control Manual, certification of pressure vessel design competence qualification expires for all design activities when no single design activity has occurred within a continuous period of 36 months.

2-J.4.2 ENGINEERS AND DESIGNERS

(*a*) The Manufacturer who employs (directly or by contract) the engineer or designer who certifies the Manufacturer's Design Report shall prepare a statement that the individual is qualified to perform the design activities used.

(b) Unless otherwise modified by the Manufacturer as stated in their Quality Control Manual, certification of pressure vessel design competence qualification expires for all Code activities when no single design activity has occurred within a continuous period of 36 months.

2-J.4.3 REACTIVATION

Certification may be reactivated by either of the following methods:

(*a*) continuity of the design activity for a 6-month period

(b) completion of eight or more professional development hours (PDHs) consisting of one or more of the following activities:

(1) taught or attended an appropriate course, training program, or seminar covering the design topic

(2) attended a technical society meeting related to the topic

PART 3 MATERIALS REQUIREMENTS

3.1 GENERAL REQUIREMENTS

The requirements for materials used in the construction of pressure vessel parts according to the rules of this Division are defined in this Part. General rules and supplemental requirements are defined for different material types and product forms. In cases of conflicts, the requirements stipulated in the paragraphs containing "Supplemental Requirements" shall govern.

3.2 MATERIALS PERMITTED FOR CONSTRUCTION OF VESSEL PARTS

3.2.1 MATERIALS FOR PRESSURE PARTS

3.2.1.1 Materials used for the construction of pressure parts shall conform to one of the specifications given in Section II, and shall be limited to those material specifications shown in the allowable design stress tables in Annex 3-A unless specifically allowed by other rules of this Division.

3.2.1.2 Materials outside the limits of size, thickness, or weight limits stipulated in the title or scope clause of the material specification given in Section II and permitted by 3.2.1.1 may be used if the material is in compliance with the other requirements of the specification and a size, thickness, or weight limitation is not given in the allowable design stress table (see Annex 3-A) or in Table 7.2. For specifications in which chemical composition or mechanical properties vary with size or thickness, materials outside the range shall be required to conform to the composition and mechanical properties shown for the nearest specified range.

3.2.1.3 Materials shall be proven of weldable quality. Satisfactory qualification of the welding procedure under Section IX is considered as proof.

3.2.1.4 Materials for which fatigue curves are provided (see 3.15) shall be used in construction of vessels or vessel parts subject to fatigue unless the fatigue analysis exemption criteria of 5.5.2 are satisfied.

3.2.1.5 Materials other than those allowed by this Division shall not be used unless data therein are submitted to and approved by the Boiler and Pressure Vessel Committee in accordance with Section II, Part D, Mandatory Appendix 5.

3.2.1.6 The rules in this Division do not provide detailed requirements for selection of an alloy suitable for the intended service or the amount of corrosion allowance to be provided. It is required that the user or his designated agent assure the materials used for the construction of vessels or vessel parts are suitable for the intended service conditions with respect to mechanical properties, resistance to corrosion, erosion, oxidation, and other damage mechanisms anticipated during service life. Informative and nonmandatory guidance regarding metallurgical phenomena that occur in material subject to certain process environments is provided in Section II, Part D, Nonmandatory Appendix A.

3.2.1.7 The material specifications listed in Annex 3-A of this Division include a column of UNS (Unified Numbering System) numbers assigned to identify the various alloy compositions. These numbers are used in the rules of this Division whenever reference is made to materials of approximately the same chemical composition that are furnished under more than one approved specification or in more than one product form.

3.2.2 MATERIALS FOR ATTACHMENTS TO PRESSURE PARTS

3.2.2.1 Except as permitted in 3.2.2.2, materials for non-pressure parts which are welded to pressure parts shall meet all the requirements of 3.2.1 and all supplemental requirements stipulated in this Part [see 2.2.3.1(g)].

3.2.2.2 Except as limited in 3.5 for quenched and tempered steels, or by 6.7 for forged vessel construction where welding is not permitted, minor attachments may be of a non-ASME material and may be welded directly to the pressure part, provided the criteria listed below are satisfied. In this context, minor attachments are parts of small size [i.e., not over 10 mm (${}^{3}_{/8}$ in.) thick or 80 cm³ (5 in.³) volume] that support no load or insignificant loads (i.e., stress calculations are not required in the Manufacturer's judgment), such as name plates, insulation supports, and locating lugs.

(*a*) The material is identified and is suitable for welding. Satisfactory qualification of welding procedure under Section IX is considered as proof.

(b) The material is compatible insofar as welding is concerned with that to which the attachment is to be made.

(c) The welds are postweld heat treated when required by 6.4.2 of this Division.

3.2.3 WELDING MATERIALS

3.2.3.1 Welding materials used for the construction of pressure parts shall comply with the requirements of this Division, those of Section IX, and the applicable qualified welding procedure specification.

3.2.3.2 When the welding materials comply with one of the specifications in Section II, Part C, the marking or tagging of the material, containers, or packages as required by the applicable Section II specification may be adopted for identification in lieu of a Test Report or a Certificate of Compliance. When the welding materials do not comply with one of the specifications of Section II, the marking or tagging shall be identifiable with the welding materials set forth in the welding procedure specification, and may be acceptable in lieu of a Test Report or a Certificate of Compliance.

3.2.4 DISSIMILAR MATERIALS

3.2.4.1 The user or his designated agent shall ensure that the coupling of dissimilar materials will not have a detrimental effect on the corrosion rate or service life of the vessel (see Section II, Part D, Nonmandatory Appendix A).

3.2.4.2 The requirements for the base metals, heat-affected zones (HAZ), and weld metals of weldments between metals having different impact testing requirements and acceptance criteria shall be applied in accordance with the rules of this Division.

3.2.5 PRODUCT SPECIFICATIONS

3.2.5.1 The term plate as used in this Division also includes sheet and strip.

3.2.5.2 See below.

(a) Rods and Bars Used for Pressure Parts. Rods and bars may be used in pressure vessel construction for pressure parts such as flange rings [see 4.16.4.3(a)], stiffening rings, frames for reinforced openings, stays and staybolts, and similar parts.

(b) Parts Machined From Rod and Bar. Pressure parts such as hollow, cylindrically shaped parts, heads, caps, flanges, elbows, return bends, tees, and header tees may be machined directly from rod or bar as provided below.

(1) Examination by the magnetic particle or liquid penetrant method in accordance with the requirements of Part 7 shall be as follows:

(-a) for flanges: the back of the flange and outer surface of the hub

(-b) for heads, caps, elbows, return bends, tees, and header tees: all surfaces

(-c) for hollow, cylindrically shaped parts: no surface examination needed

(2) Parts may be machined from rod or bar having a hot-worked diameter not greater than 140 mm (5.50 in.), provided that the axial length of the part is approximately parallel to the metal flow lines of the stock.

(3) Parts may be machined from rod or bar having a hot-worked diameter greater than 140 mm (5.50 in.), but not greater than 205 mm (8.00 in.), provided the axial length of the part is approximately parallel to the metal flow lines of the stock, and the minimum required thickness of the component is calculated following the rules of this Division using 50% of the specified allowable stress.

(4) As an alternative to (3) and for rod or bar having a hot-worked diameter greater than 205 mm (8.00 in.), parts may be machined from such rod or bar if the following requirements are met:

(-*a*) The longitudinal axis of the part shall be parallel to the longitudinal axis of the rod or bar.

(-b) In addition to the tension test specimens required by the material specification, at least two transverse tension test specimens shall be taken from each lot (as defined in the material specification) of rod or bar material, and having the same diameter.

(-1) The second specimen shall be taken at 90 deg around the perimeter from the first specimen.

(-2) The axis of the tension test specimen shall be located, as nearly as practicable, midway between the center thickness and the surface of the rod or bar.

(-3) Both specimens shall meet the mechanical property requirements of the material specification.

(-4) For Table 3-A.1 materials, the reduction of area shall be not less than 30%.

(-c) Each rod or bar, before machining, shall be 100% ultrasonically examined perpendicular to the longitudinal axis by the straight beam technique in accordance with SA-388. The rod or bar shall be unacceptable if either of the following occurs:

(-1) The examination results show one or more indications accompanied by loss of back reflection larger than 60% of the reference back reflection.

(-2) The examination results show indications larger than 40% of the reference back reflection when accompanied by a 40% loss of back reflection.

(-d) For heads and the flat portion of caps, the examinations of (-c) shall also be performed in the axial direction.

(-e) Before welding, the cut surfaces of the part adjacent to the weld shall be examined by magnetic particle or liquid penetrant methods in accordance with Part 7.

3.2.5.3 When a material specification is not listed in this Division covering a particular wrought product of a grade, but there is an approved specification listed in this Division covering some other wrought product of that grade, the product for which there is no specification listed may be used, provided:

(*a*) The chemical and mechanical properties, heat treating requirements, and requirements for deoxidation, or grain size requirements conform to the approved specification listed in this Division. The stress values for that specification given in Annex 3-A shall be used.

(b) The material specification is published Section II and covers that grade.

(c) For the case of welded product forms without the addition of filler metal, the appropriate stress intensity values are multiplied by 0.85.

(*d*) The product is not fabricated by fusion welding with the addition of filler metal unless it is fabricated in accordance with the rules of this Division as a pressure part.

(e) The mill test reports reference the specifications used in producing the material and in addition make reference to this paragraph.

3.2.5.4 Forgings certified to SA-105, SA-181, SA-182, SA-350, SA-403, and SA-420 may be used as tubesheets and hollow cylindrical forgings for pressure vessel shells that otherwise meet all the rules of this Division, provided that the following additional requirements are met:

(*a*) Forgings certified to SA-105 or SA-181 shall be subject to one of the austenitizing heat treatments permitted by these specifications.

(*b*) One tension test specimen shall be taken from each forging weighing more than 2 250 kg (5,000 lb). The largest obtainable tension test specimen as specified by the test methods referenced in the applicable specification shall be used. Except for upset-disk forgings, the longitudinal axis of the test specimen shall be taken parallel to the direction of major working of the forging. For upset-disk forgings, the longitudinal axis of the test specimen shall be taken parallel to the direction of major working of the forging. For upset-disk forgings, the longitudinal axis of the test specimen shall be taken in the tangential direction. When agreed to by the Manufacturer, and when not prohibited by the material specification, test specimens may be machined from specially forged test blocks meeting the provisions for such as provided in SA-266 or other similar specifications for large forgings.

(c) For quenched and tempered forgings weighing more than 4 500 kg (10,000 lb) at the time of heat treatment, two tension test specimens shall be taken from each forging. These shall be offset 180 deg from each other, except if the length of the forging, excluding test prolongations, exceeds 3.7 m (12 ft); then one specimen shall be taken from each end of the forging.

3.2.6 CERTIFICATION

3.2.6.1 Certificate of Compliance and Material Test Report.

(*a*) The Manufacturer shall ensure all requirements of the material specification, and all special requirements of Part 3 of this Division, that are to be fulfilled by the materials manufacturer have been complied with. The Manufacturer shall accomplish this by obtaining Certificates of Compliance or Material Test Reports. These documents shall include results of all required tests and examinations, evidence of compliance with the material specifications and additional requirements as applicable. When the specification permits certain specific requirements to be completed later, those incomplete items shall be noted on the material documentation. When these specific requirements have been completed by someone other than the material manufacturer, this completion shall be documented and attached to the material documentation.

(b) For plates, the Manufacturer shall receive a copy of the test report or reports as prepared by the material manufacturer or by the material manufacturer and subsequent processors, if any, responsible for the data, and shall maintain the reports as part of his construction records.

(c) For all other product forms, the Manufacturer shall receive a copy of the test report as prepared by the material manufacturer. When preparing a test report, a material manufacturer may transcribe data produced by other organizations, provided he accepts responsibility for the accuracy and authenticity of the data.

(*d*) All conflicts between the material specification and the supplemental requirements stipulated in this Part shall be noted, and compliance with the supplemental requirements shall be certified.

3.2.6.2 Certificate of Compliance and Material Test Reports by Other Than Materials Manufacturer.

(*a*) Except as otherwise provided in 3.2.5.3 and 3.2.7, if the requirements in a material specification listed in Annex 3-A have been completed by other than the materials manufacturer, then the vessel Manufacturer shall obtain supplementary material test reports and the Inspector shall examine these documents and determine that they represent the material and meet the requirements of the material specification.

(b) The vessel Manufacturer shall certify compliance with all the supplemental requirements stipulated in this Part for any of the treatments or examinations specified herein. The certification shall include certified reports of results of all tests and examinations performed on the materials by the vessel Manufacturer.

3.2.7 PRODUCT IDENTIFICATION AND TRACEABILITY

(23) 3.2.7.1 General Requirements.

(*a*) Material for pressure parts shall be organized so that when the vessel is completed, one complete set of the original identification markings required in the specifications for all materials of construction will be clearly visible. In case the original identification markings are unavoidably cut out or the material is divided into two or more parts, the vessel Manufacturer shall assure identification of each piece of material during fabrication and subsequent identification of the markings on the completed vessel by using the methods listed below.

(1) Accurate transfer of the original identification markings to a location where the markings will be visible on the completed vessel.

(2) Identification by coded marking, described in the Quality System Manual, acceptable to the Inspector and traceable to the original required marking.

(*b*) An as-built sketch or tabulation of materials shall be made, identifying each piece of material with a test report or, where permitted by this Part, with a Certificate of Compliance and the coded marking that ensure identification of each piece of material during fabrication and subsequent identification in the completed vessel.

(c) When plate specification heat treatments are not performed by the material manufacturer, they shall be performed by, or under the control of, the vessel Manufacturer who shall then place the letters "MT" (denoting material treatment) following the letter "G" denoting green) in the Mill plate marking (see SA-20) to indicate that the heat treatments required by the material specification have been performed. The fabricator shall also document in accordance with 3.2.6.2(b) that the specified heat treatments have been performed in accordance with the material manufacturer's recommendation.

3.2.7.2 Method of Transferring Markings by the Manufacturer.

(*a*) Transfer of markings shall be made prior to cutting except that the Manufacturer may transfer markings immediately after cutting, provided the control of these transfers is described in the Manufacturer's written Quality Control System. The Inspector need not witness the transfer of the marks but shall be satisfied that it has been done correctly.

(b) The material may be marked by any method acceptable to the Inspector; however, all steel stamping shall be done with commercially available "low stress" dies.

(c) Where the service conditions prohibit die-stamping for material identification, and when so specified by the user, the material manufacturer and the vessel Manufacturer shall mark the required data on the plates in a manner which will allow positive identification upon delivery. The markings must be recorded so that each plate will be positively identified in its position in the completed vessel to the satisfaction of the Inspector.

3.2.7.3 Transfer of Markings by Other Than the Manufacturer.

(*a*) When material is to be formed into shapes by anyone other than the Manufacturer of the completed pressure vessel and the original markings as required by the applicable material specification are unavoidably cut out, or the material is divided into two or more parts, the manufacturer of the shape shall either:

(1) Transfer the original identification markings to another location on the shape.

(2) Provide for identification by the use of a coded marking traceable to the original required marking, using a marking method agreed upon and described in the Quality Control System of the Manufacturer of the completed pressure vessel.

(*b*) The mill certification of the mechanical and chemical properties requirements of the material formed into shapes, in conjunction with the above modified marking requirements, shall be considered sufficient to identify these shapes. Manufacturer's Partial Data Reports and parts stamping are not required unless there has been fabrication of the shapes that include welding, except as exempted by 3.2.8.2.

3.2.7.4 Marking of Plates. The material manufacturer's identification marking required by the material specification shall not be stamped on plate material less than 6 mm ($\frac{1}{4}$ in.) in thickness unless the following requirements are met.

(a) The materials shall be limited to P-No. 1 Group Nos. 1 and 2.

(b) The minimum nominal plate thickness shall be 5 mm $\binom{3}{16}$ in.) or the minimum nominal pipe wall thickness shall be 4 mm (0.154 in.).

(c) The MDMT shall be no colder than $-29^{\circ}C$ ($-20^{\circ}F$).

3.2.8 PREFABRICATED OR PREFORMED PRESSURE PARTS FURNISHED WITHOUT A CODE STAMP

3.2.8.1 General Requirements.

(*a*) Prefabricated or preformed pressure parts for pressure vessels that are subject to stresses due to pressure and that are furnished by others or by the Manufacturer of the completed vessel shall conform to all applicable requirements of this Division except as permitted in 3.2.8.2, 3.2.8.3, 3.2.8.4, and 3.2.8.5.

(*b*) When the prefabricated or preformed parts are furnished with a nameplate that contains product identifying marks and the nameplate interferes with further fabrication or service, and where stamping on the material is prohibited, the Manufacturer of the completed vessel, with the concurrence of the Authorized Inspector, may remove the nameplate. The removal of the nameplate shall be noted in the "Remarks" section of the vessel Manufacturer's Data Report. The nameplate shall be destroyed.

(c) The rules of 3.2.8.2, 3.2.8.3, 3.2.8.4, and 3.2.8.5 below shall not be applied to welded shells or heads or to quick-actuating closures (see 4.8).

(*d*) Parts furnished under the provisions of 3.2.8.2, 3.2.8.3, or 3.2.8.4 need not be manufactured by a Certificate of Authorization Holder.

(e) Prefabricated or preformed pressure parts may be supplied as follows:

(1) cast, forged, rolled, or die-formed nonstandard pressure parts

(2) cast, forged, rolled, or die-formed standard pressure parts, either welded or nonwelded, that comply with an ASME product standard

(3) cast, forged, rolled, or die-formed standard pressure parts, either welded or nonwelded, that comply with a standard other than an ASME product standard

3.2.8.2 Cast, Forged, Rolled, or Die-Formed Nonstandard Pressure Parts.

(*a*) Pressure parts such as shells, heads, removable doors, and pipe coils that are wholly formed by casting, forging, rolling, or die forming may be supplied basically as materials. All such parts shall be made of materials permitted under this Division, and the Manufacturer of the part shall furnish identification in accordance with 3.2.6.1.

Such parts shall be marked with the name or trademark of the parts manufacturer and with such other markings as will serve to identify the particular parts with accompanying material identification.

(b) The Manufacturer of the completed vessel shall be satisfied that the part is suitable for the design conditions specified for the completed vessel in accordance with the rules of this Division.

3.2.8.3 Cast, Forged, Rolled, or Die-Formed Standard Pressure Parts, Either Welded or Nonwelded, That Comply With an ASME Product Standard.

(*a*) Pressure parts that comply with an ASME product standard accepted by reference in 4.1.11. The ASME product standard establishes the basis for the pressure-temperature rating and marking unless modified in 4.1.11.

(*b*) Flanges and flanged fittings may be used at the pressure-temperature ratings specified in the appropriate standard listed in this Division.

(c) Materials for standard pressure parts shall be as follows:

(1) as permitted by this Division or

(2) as specifically listed in the ASME product standard

(d) When welding is performed it shall meet the following:

(1) the requirements of 6.2.2.1(a) and 6.2.2.2 through 6.2.2.5, or;

(2) the welding requirements of SA-234

(e) Pressure parts, such as welded standard pipe fittings, welding caps, and flanges that are fabricated by one of the welding processes recognized by this Division do not require inspection, material certification in accordance with 3.2.6, or Partial Data Reports, provided the requirements of 3.2.8.3 are met.

(f) If postweld heat treatment is required by the rules of this Division, it may be performed either in the location of the parts manufacturer or in the location of the Manufacturer of the vessel to be marked with the Certification Mark.

(g) If radiography or other volumetric examination is required by the rules of this Division, it may be performed at one of the following locations:

(1) the location of the Manufacturer of the completed vessel

(2) the location of the pressure parts manufacturer

(h) Parts made to an ASME product standard shall be marked as required by the ASME product standard.

(i) The Manufacturer of the completed vessels shall have the following responsibilities when using standard pressure parts that comply with an ASME product standard:

ASME BPVC.VIII.2-2023

(1) Ensure that all standard pressure parts comply with applicable rules of this Division.

(2) Ensure that all standard pressure parts are suitable for the design conditions of the completed vessel.

(3) When volumetric examination is required by the rules of this Division, obtain the completed radiographs, properly identified, with a radiographic inspection report, and any other applicable volumetric examination report.

(*j*) The Manufacturer shall fulfill these responsibilities by obtaining when necessary, documentation as provided below, provide for retention of this documentation, and have such documentation available for examination by the Inspector when requested. The documentation shall contain at a minimum:

(1) material used

(2) the pressure-temperature rating of the part

(3) The basis for establishing the pressure-temperature rating

3.2.8.4 Cast, Forged, Rolled, or Die-Formed Standard Pressure Parts, Either Welded or Nonwelded, That Comply With a Standard Other Than an ASME Product Standard.

(*a*) Standard pressure parts that are either welded or nonwelded and comply with a manufacturer's proprietary standard or a standard other than an ASME product standard may be supplied by

(1) a Certificate of Authorization holder

(2) a pressure parts manufacturer

(*b*) Parts of small size falling within this category for which it is impossible to obtain identified material or that may be stocked and for which material certification in accordance with 3.2.6 cannot be obtained and are not customarily furn-ished, may be used for parts as described in 3.2.2.2.

(c) Materials for these parts shall be as permitted by this Division only.

(d) When welding is performed, it shall meet the requirements of 6.2.2.1(a) and 6.2.2.2 through 6.2.2.5.

(e) Pressure parts, such as welded standard pipe fittings, welding caps, and flanges that are fabricated by one of the welding processes recognized by this Division do not require inspection, material certification in accordance with 3.2.6, or Partial Data Reports provided the requirements of 3.2.8.4 are met.

(f) If postweld heat treatment is required by the rules of this Division, it may be performed either in the location of the parts manufacturer or in the location of the Manufacturer of the completed vessel.

(g) If radiography or other volumetric examination is required by the rules of this Division, it may be performed at one of the following locations:

(1) The location of the Manufacturer of the completed vessel

(2) The location of the parts Manufacturer

(3) The location of the pressure parts manufacturer

(*h*) Marking for these parts shall be as follows:

(1) with the name or trademark of the Certificate Holder or the pressure part manufacturer and any other markings as required by the proprietary standard or other standard used for the pressure part.

(2) with a permanent or temporary marking that will serve to identify the part with the Certificate Holder or the pressure parts manufacturer's written documentation of the particular items, and that defines the pressure-temperature rating of the part.

(i) The Manufacturer of the completed vessels shall have the following responsibilities when using standard pressure parts:

(1) Ensure that all standard pressure parts comply with applicable rules of this Division

(2) Ensure that all standard pressure parts are suitable for the design conditions of the completed vessel.

(3) When volumetric examination is required by the rules of this Division, obtain the completed radiographs, properly identified, with a radiographic inspection report, and any other applicable volumetric examination report.

(*j*) The Manufacturer of the completed vessel shall fulfill the responsibilities of (*i*) by one of the following methods:

(1) Obtain when necessary, documentation as provided below, provide for retention of this documentation, and have such documentation available for examination by the Inspector when requested or

(2) Perform an analysis of the pressure part in accordance with the rules of this Division. This analysis shall be included in the documentation and shall be made available for examination by the Inspector when requested.

(*k*) The documentation shall contain at a minimum the following:

(1) material used

(2) the pressure-temperature rating of the part

(3) the basis for establishing the pressure-temperature rating

(4) a written certification by the pressure parts manufacturer that all welding complies with Code requirements

3.2.8.5 The Code recognizes that a Certificate of Authorization Holder may fabricate parts in accordance with 3.2.8.4, and that are marked in accordance with 3.2.8.4(h). In lieu of the requirement in 3.2.8.4(d), the Certificate of Authorization Holder may subcontract to an individual or organization not holding an ASME Certificate of Authorization standard pressure parts that are fabricated to a standard other than an ASME product standard, provided all the following conditions are met:

(*a*) The activities to be performed by the subcontractor are included within the Certificate Holder's Quality Control System.

(b) The Certificate Holder's Quality Control System provides for the following activities associated with subcontracting of welding operations, and these provisions shall be acceptable to the Manufacturer's Authorized Inspection Agency.

(1) The welding processes permitted by this Division that are permitted to be subcontracted.

(2) Welding operations

(3) Authorized Inspection activities

(4) Placement of the Certificate of Authorization Holders marking in accordance with (d).

(*c*) The Certificate Holder's Quality Control System provides for the requirements of 7.2.2 to be met at the subcontractor's facility.

(*d*) The Certificate Holder shall be responsible for reviewing and accepting the Quality Control Programs of the subcontractor.

(e) The Certificate Holder shall ensure that the subcontractor uses written procedures and welding operations that have been qualified as required by this Division.

(f) The Certificate Holder shall ensure that the subcontractor uses personnel that have been qualified as required by this Division.

(g) The Certificate Holder and the subcontractor shall describe in their Quality Control Systems the operational control of procedure and personnel qualifications of the subcontracted welding operations.

(*h*) The Certificate Holder shall be responsible for controlling the quality and ensuring that all materials and parts that are welded by subcontractors and submitted to the Inspector for acceptance, conform to all applicable requirements of this Division.

(i) The Certificate Holder shall describe in their Quality Control Systems the operational control for maintaining traceability of materials received from the subcontractor.

(*j*) The Certificate Holder shall receive approval for subcontracting from the Authorized Inspection Agency prior to commencing of activities.

3.2.9 DEFINITION OF PRODUCT FORM THICKNESS

3.2.9.1 The requirements in this Division make reference to thickness. When the material specification does not specify thickness, the following definitions of nominal thickness apply.

(a) Plate – the thickness is the dimension of the short transverse dimension.

(b) Forgings – the thickness is the dimension defined as follows:

(1) Hollow Forgings – the nominal thickness is measured between the inside and the outside surfaces (radial thickness).

(2) Disk Forgings- the nominal thickness is the axial length (axial length \leq outside the diameter).

(3) Flat Ring Forgings – for axial length less than or equal to 50 mm (2 in.), the axial length is the nominal thickness; for axial length greater than 50 mm (2 in.), the radial thickness is the nominal thickness (axial length less than the radial thickness).

(4) Rectangular Solid Forgings – the least rectangular dimension is the nominal thickness.

(5) Round, Hexagonal and Octagonal Solid Forgings - the nominal thickness is the diameter or distance across the flats (axial length > diameter or distance across the flats).

(c) Castings – for castings of the general shapes described for forgings, the same definitions apply. For other castings, the maximum thickness between two cast coincidental surfaces is the nominal thickness.

3.2.9.2 The definition of nominal thickness for postweld heat treat requirements is covered in 6.4.2.7.

3.2.10 PRODUCT FORM TOLERANCES

3.2.10.1 Plate. Plate material shall be ordered not thinner than the design thickness. Vessels made of plate furnished with an undertolerance of not more than the smaller value of 0.3 mm (0.01 in.) or 6% of the ordered thickness may be used at the full design pressure for the thickness ordered if the material specification permits such an undertolerance. If the specification to which the plate is ordered allows a greater undertolerance, the ordered thickness of the material shall be sufficiently greater than the design thickness so that the thickness of the material furnished is not more than the smaller of 0.3 mm (0.01 in.) or 6% under the design thickness.

3.2.10.2 Pipe and Tube. If pipe or tube is ordered by its nominal wall thickness, the manufacturing undertolerance on wall thickness shall be taken into account. After the minimum required wall thickness is determined, it shall be increased by an amount sufficient to provide the manufacturing undertolerance allowed in the pipe or tube specification.

3.2.11 PURCHASE REQUIREMENTS

3.2.11.1 A summary of the pertinent requirements in 3.2 through 3.8 is provided in Annex 3-B.

3.2.11.2 Special chemical compositions, heat treatment procedures, fabrication requirements, and supplementary tests may be required to assure that the vessel will be in the most favorable condition for the intended service.

3.2.12 MATERIAL IDENTIFIED WITH OR PRODUCED TO A SPECIFICATION NOT PERMITTED BY THIS DIVISION

3.2.12.1 Identified Material With Complete Certification From the Material Manufacturer. Material identified with a specification not permitted by this Division and identified to a single production lot as required by a permitted specification may be accepted as satisfying the requirements of a specification permitted by this Division, provided the following conditions are satisfied:

(*a*) Documentation is provided to the Certificate Holder demonstrating that all applicable requirements (including, but not limited to, melting method, melting practice, deoxidation, chemical analysis, mechanical properties, quality, and heat treatment) of the specification permitted by this Division to which the material is to be recertified, including the requirements of this Division (see 3.2.6), have been met.

(b) The material has marking, acceptable to the Inspector, for identification to the documentation.

(c) When the conformance of the material with the permitted specification has been established, the material shall be marked as required by the permitted specification.

3.2.12.2 Identified Material Recertification. Only the vessel or Part Manufacturer is permitted to recertify material per 3.2.12.1.

3.3 SUPPLEMENTAL REQUIREMENTS FOR FERROUS MATERIALS

3.3.1 GENERAL

All forms of ferrous products listed in Table 3-A.1 and Table 3-A.3 shall meet the supplemental requirements of 3.3. The high strength quenched and tempered steels listed in Table 3-A.2, shall meet the supplemental requirements of 3.4.

3.3.2 CHEMISTRY REQUIREMENTS

Carbon and low alloy steel having carbon content of more than 0.35% by heat analysis shall not be used in welded construction or be shaped by oxygen cutting (except as provided elsewhere in this Division).

3.3.3 ULTRASONIC EXAMINATION OF PLATES

3.3.3.1 Except as permitted in 3.3.3.2, all plate 50 mm (2 in.) and over in nominal thickness shall be ultrasonically examined in accordance with the requirements of SA-578. The acceptance standard shall be Level B of SA-578.

3.3.2 When the design rules permit credit for thickness of cladding on plate conforming to SA-263, SA-264, and SA-265, ultrasonic examination shall be made of the base plate and the bond between the cladding and the base plate in accordance with the requirements of SA-578. The acceptance standard shall be at least Level B of SA-578. Alternatively, the acceptance standard of Level C may be used to satisfy this requirement.

3.3.4 ULTRASONIC EXAMINATION OF FORGINGS

3.3.4.1 All forgings 50 mm (2 in.) and over in nominal thickness shall be examined ultrasonically as follows:

(*a*) Rings, flanges, and other hollow forgings shall be examined using the angle beam technique. For other forgings, the straight beam technique shall be used.

(*b*) Reference specimens shall have the same nominal thickness, composition, and P-number grouping as the forgings to be examined in order to have substantially the same structure.

(c) Tables 3.1, 3-A.1, and 3-A.2 steels shall be examined in accordance with Section V, SA-388.

(d) Table 3-A.3 steels shall be examined in accordance with Section V, SA-388 or Section V, SA-745, as applicable.

3.3.4.2 Forgings are unacceptable if:

(*a*) The straight beam examination results show one or more discontinuities which produce indications accompanied by a complete loss of back reflection not associated with or attributable to the geometric configuration.

(*b*) Angle beam examination results show one or more discontinuities which produce indications exceeding in amplitude the indication from the calibration notch.

3.3.4.3 In the case of straight beam examination, the following conditions shall be reported to the purchaser for his consideration and approval prior to shipment of the forging:

(a) Forgings containing one or more indications with amplitudes exceeding adjacent back reflections.

(b) Forgings containing one or more discontinuities which produce traveling indications accompanied by reduced back reflections. A traveling indication is defined as an indication that displays sweep movement of the oscilloscope screen at constant amplitudes as the transducer is moved.

3.3.4.4 In the case of angle beam examination, the following conditions shall be reported to the purchaser for his consideration and approval prior to shipment of the forging:

(a) Indications having an amplitude exceeding 50% of the calibration block amplitude.

(b) Clusters of indications located in a small area of the forging with amplitudes less than 50% of the calibration notch amplitude. A cluster of indications is defined as three or more indications exceeding 10% of the standard calibration notch amplitude and located in any volume approximately a 50 mm (2 in.) or smaller cube.

3.3.4.5 Additional nondestructive examination procedures or trepanning may be employed to resolve questions of interpretation of ultrasonic indications.

3.3.5 MAGNETIC PARTICLE AND LIQUID PENETRANT EXAMINATION OF FORGINGS

3.3.5.1 Following final machining by the manufacturer, all accessible surfaces of forgings having a nominal thickness greater than 100 mm (4 in.), such as contour and variable-thickness nozzles, integrally hubbed tubesheets, standard or custom flanges, and other forgings that are contour shaped or machined to essentially the finished product configuration prior to heat treatment, shall be examined by the magnetic particle method in accordance with ASTM A275/A275M or by the liquid penetrant method in accordance with ASTM E165. The evaluation of indications detected by the magnetic particle method or by the liquid penetrant method and the acceptance standards shall be in accordance with Part 7 of this Division.

3.3.5.2 Unacceptable imperfections shall be removed and the areas shall be reexamined to ensure complete removal of the unacceptable imperfection. Unless prohibited by the material specification, the forgings may be repair welded with the approval of the vessel Manufacturer. Repairs shall be made utilizing welding procedures that have been qualified in accordance with Section IX. The repaired forging shall meet all requirements of this Division.

3.3.6 INTEGRAL AND WELD METAL OVERLAY CLAD BASE METAL

3.3.6.1 Applied Linings. Material used for applied corrosion resistant lining may be any metallic material of weldable quality, provided all applicable requirements of this Division are satisfied.

3.3.6.2 Design Calculations Based on Total Thickness.

(*a*) Base material with corrosion resistant integral or weld metal overlay cladding used in construction in which the design calculations are based on total thickness including cladding (see 4.1.9) shall consist of base plate listed in one of the material tables in Part 3 and shall conform to one of the following specifications or utilize weld metal overlay cladding meeting the requirements of this Division.

(1) SA-263, Specification for Corrosion-Resisting Chromium-Steel Clad Plate, Sheet and Strip;

(2) SA-264, Specification for Corrosion-Resisting Chromium-Nickel Steel Clad Plate, Sheet and Strip; or

(3) SA-265, Specification for Nickel and Nickel-Base Alloy Clad Steel Plate.

(b) Base material with corrosion resistant integral cladding in which any part of the cladding is included in the design calculations, as permitted in (a), that is constructed of multiple cladding plates welded together prior being bonded to the base material shall have the cladding-alloy-to-cladding-alloy welding that is performed prior to bonding to the base material:

(1) performed by a Manufacturer holding a Certificate of Authorization.

(2) radiographically examined for their full length in the manner prescribed in 7.5.3. In place of radiographic examination, welds may be ultrasonically examined for their full length (see 7.5.5).

(3) be supplied with a Partial Data Report if that welding is not performed by the vessel Manufacturer.

3.3.6.3 Design Calculations Based on Base-Plate Thickness. Clad plate used in constructions in which the design calculations are based on the base-plate thickness, exclusive of the thickness of the cladding material, may consist of any base-plate material satisfying the requirements of Part 3 and any metallic integral or weld metal overlay cladding material of weldable quality that meets the requirements of 6.5 of this Division.

3.3.6.4 Shear Strength of Bond of Integrally Clad Plates. Integrally clad plates in which any part of the cladding is included in the design calculations, as permitted in 4.1.9, shall show a minimum shear strength of 140 MPa (20 ksi) when tested in the manner described in the plate specification. One shear test shall be made on each such clad plate and the results shall be reported on the test report. A shear or bond strength test is not required for weld metal overlay cladding.

3.3.6.5 Removal of Cladding for Mill Tension Tests. When any part of the cladding thickness is specified an allow-ance for corrosion, such added thickness shall be removed before mill tension tests.

(23) **3.3.6.6** Low-Temperature Operations.

(a) When an applied corrosion-resistant lining is used (see 4.1.10), the impact test exemption temperature of the component shall consider the base material only.

(*b*) When a corrosion-resistant integral cladding is used in accordance with 3.3.6.2 or 3.3.6.3, the impact test exemption temperature of the component shall be the warmer of the two values determined for the base material and the integral cladding material. The impact test exemption temperature for the integral cladding material shall be determined in accordance with 3.11.4.3 or 3.11.5, as applicable.

3.3.7 CLAD TUBESHEETS

3.3.7.1 Tube-to-tubesheet welds in the cladding of either integral or weld metal overlay clad tubesheets may be considered strength welds (full or partial), provided the welds meet the design requirements of 4.2.1. In addition, when the strength welds are to be made in the clad material of integral clad tubesheets, the integral clad material to be used for tubesheets shall meet the requirements in (a) and (b) for any combination of clad and base materials. The shear strength test and ultrasonic examination specified in (a) and (b) are not required for weld metal overlay clad tubesheets.

(*a*) Integral clad material shall be shear strength tested in accordance with SA-263. One shear test shall be made on each integral clad plate or forging, and the results shall be reported on the material test report.

(*b*) Integral clad material shall be ultrasonically examined for bond integrity in accordance with SA-578, including Supplementary Requirement S1, and shall meet the acceptance criteria given in SA-263 for Quality Level Class 1.

3.3.7.2 When the design calculations for clad tubesheets are based on the total thickness including the cladding, the clad material shall meet any additional requirements specified in 3.3.6.

3.3.7.3 When tubesheets are constructed using linings or integral cladding that does not meet the requirements of 3.3.7.1(a) and 3.3.7.1(b), the strength of the tube-to-tubesheet joint shall not be dependent upon the connection between the tubes and the lining or integral cladding, as applicable.

3.3.7.4 When the tubes are strength welded (full or partial) to integral or weld metal overlay clad tubesheets, S_t shall be the allowable stress value of the integral cladding or the wrought material whose chemistry most closely approximates that of the weld metal overlay cladding. The thickness of the integral or weld metal clad overlay material shall be sufficient to prevent any of the strength weld from extending into the base material.

3.4 SUPPLEMENTAL REQUIREMENTS FOR Cr-Mo STEELS

3.4.1 GENERAL

3.4.1.1 The rules in 3.4 include supplemental requirements for fabrication and testing for Cr-Mo steels. The materials and appropriate specifications covered by this paragraph are listed in Table 3.1.

3.4.1.2 Certification that the requirements of 3.4 have been satisfied shall be shown on the Manufacturer's Data Report Form.

3.4.2 POSTWELD HEAT TREATMENT

The final postweld heat treatment shall be in accordance with the requirements of 6.4.2 of this Division.

3.4.3 TEST SPECIMEN HEAT TREATMENT

3.4.3.1 Two sets of tension specimens and one set of Charpy impact specimens shall be tested. One set each of the tension specimens shall be exposed to heat treatment Condition A. The second set of tension specimens and the set of Charpy specimens shall be exposed to heat treatment Condition B.

(a) Condition A – Temperature shall be no lower than the actual maximum vessel-portion temperature, less 14° C (25° F). Time at temperature shall be no less than 80% of the actual holding time of the vessel portion exposed to the maximum vessel-portion temperature.

ASME BPVC.VIII.2-2023

(*b*) Condition B – Temperature shall be no higher than the actual minimum vessel-portion temperature, plus 14°C (25°F). Time at temperature shall be no more than 120% of the actual hold time of the vessel portion exposed to the minimum vessel-portion temperature.

3.4.3.2 The suggested procedure for establishing the test specimen heat treatment parameters are shown below. *(a)* Establish maximum and minimum temperatures and hold times for the vessel/component heat treatment based on experience/equipment;

(b) Determine Conditions A and B for the test specimen heat treatments;

(c) Vessel heat treatment temperature and hold time limitations, and test specimen Conditions A and B, are shown in Figure 3.1.

3.4.4 WELDING PROCEDURE QUALIFICATIONS AND WELDING CONSUMABLES TESTING

3.4.4.1 Welding procedure qualifications using welding consumables of the same classification or trade designation as those to be used in production shall be made for material welded to itself or to other materials. The qualifications shall conform to the requirements of Section IX, and the maximum tensile strength at room temperature shall be 760 MPa (110 ksi) (for heat treatment Conditions A and B).

3.4.4.2 Weld metal from each heat or lot of electrodes and filler-wire-flux combination shall be tested, unless specific heat- or lot-traceable test reports meeting the additional requirements of 3.4 related to welding consumables testing have been provided by the welding consumables manufacturer. The minimum and maximum tensile properties shall be met in postweld heat treated (PWHT) Conditions A and B. The minimum Charpy V-notch impact properties shall be met in PWHT Condition B. Testing shall be in general conformance with SFA-5.5 for covered electrodes and SFA-5.23 for filler wire-flux combinations.

3.4.4.3 Duplicate testing in PWHT Condition A and PWHT Condition B (see 3.4.3) is required. The minimum tensile strength and Charpy impact properties for the base metal shall be met. Charpy impact testing is only required for Condition B.

3.4.4.4 For $2^{1}/_{4}$ Cr-1Mo- $^{1}/_{4}$ V material, the weld metal shall meet the compositional requirements listed in Table 3.2. For all other materials, the minimum carbon content of the weld metal shall be 0.05%.

3.4.4.5 In addition for $2^{1}/_{4}$ Cr-1Mo and $2^{1}/_{4}$ Cr-1Mo- $\frac{1}/_{4}$ V material, Category A welds intended for design temperatures above 440°C (825°F), each heat of filler wire and flux combination used in production shall also be qualified by a weld metal stress-rupture test performed in accordance with ASTM E139 or other equivalent national or international test standard on specimens machined parallel (all weld metal specimens) and transverse to the weld axis (one specimen each), applying the following testing parameters and acceptance criteria:

(a) The specimen diameter within the gage length shall be 13 mm ($\frac{1}{2}$ in.) or greater. The specimen centerline shall be located at the 0.25-t thickness location (or closer to the center) for material 19 mm ($\frac{3}{4}$ in.) and greater in thickness.

(b) The gage length for the transverse specimen shall include the weld and at least 19 mm ($\frac{3}{4}$ in.) of base metal adjacent to the fusion line.

(c) The test material shall be postweld heat treated to Condition A.

(*d*) For $2^{1}/_{4}$ Cr–1Mo material, the condition of the stress-rupture test shall be 210 MPa (30 ksi) at 510°C (950°F). The time of failure shall exceed 650 hr.

(e) For 2^{1}_{4} Cr-1Mo- $^{1}_{4}$ V material, the condition of the stress-rupture test shall be 210 MPa (30 ksi) at 540°C (1000°F). The time of failure shall exceed 900 hr.

3.4.5 TOUGHNESS REQUIREMENTS

The minimum toughness requirements for base metal, weld metal, and heat-affected zone, after exposure to the simulated postweld heat treatment Condition B, are shown in Table 3.3. If the material specification or other parts of this Division have more demanding toughness requirements, they shall be met.

3.5 SUPPLEMENTAL REQUIREMENTS FOR Q&T STEELS WITH ENHANCED TENSILE PROPERTIES

3.5.1 GENERAL

3.5.1.1 The supplemental requirements in 3.5 apply to ferritic steels with tensile properties enhanced by quenching and tempering and shall be used in conjunction with the other requirements of this Division. The material specifications for these steels are shown in Table 3-A.2.

3.5.1.2 The requirements of this paragraph are not intended to apply to steels listed in Table 3-A.1 that are furnished in such thicknesses that heat treatment, involving the use of accelerated cooling, including liquid quenching, is used to obtain structures comparable to those attained by normalizing thinner sections.

3.5.2 PARTS FOR WHICH Q&T STEELS MAY BE USED

High strength quenched and tempered steels shown in Table 3-A.2, may be used for the entire vessel or for individual components of vessels that are joined to other grades of quenched and tempered steels, or to other steels conforming to specifications listed in Tables 3-A.1, 3-A.3, and 3-A.6, subject to the requirements and limitations of this Division.

3.5.3 STRUCTURAL ATTACHMENTS

3.5.3.1 Except as permitted in 3.5.3.2 below, all permanent structural attachments other than minor attachments specified in 3.5.3.3 and stiffening rings that are welded directly to pressure parts shall be made of material whose specified minimum yield strength is within $\pm 20\%$ of that of the material to which they are attached.

3.5.3.2 All permanent structural attachments welded directly to a shell or head constructed of a material conforming to SA-333, Grade 8, SA-334, Grade 8, SA-353, SA-522, SA-553, and SA-645 Grade A shall be made from a material covered by these same specifications, or nickel alloys UNS N06625 or N10276, or from wrought non-hardenable austenitic stainless steels. If an austenitic stainless steel is used, consideration should be given to the additional weld stresses resulting from the difference in thermal expansion between the attachment and the shell.

3.5.3.3 If the following conditions are met, the material of minor attachments given in 4.2.5.6(c) may be used. The definition of minor attachments is given in 4.2.5.1(h).

(*a*) The specified minimum tensile strength of quenched and tempered steel for pressure parts shall be less than 690 MPa (100 ksi).

(b) The specified minimum yield strength of minor attachments shall be within +20% and -60% of that of the material to which they are attached.

(c) If the minor attachment is welded in the area less than $2.5\sqrt{R_m t}$ from any gross structural discontinuity, where R_m is the mean radius of the shell, and t is the thickness of the shell, the stress evaluation in accordance with Part 5 shall be performed.

(d) If the continuous fillet weld is used, the leg dimension of fillet weld shall not be less than 0.25t, where t is the thickness of the minor attachment.

(e) The effect of differential thermal expansion shall be considered when the thermal expansion coefficient of the minor attachment differs from that of the pressure part to which it is attached.

(f) Welding materials with room-temperature tensile strength equivalent to that of quenched and tempered steels shall be used.

(g) The welds shall be postweld heat treated when required by Part 6.

3.6 SUPPLEMENTAL REQUIREMENTS FOR NONFERROUS MATERIALS

3.6.1 GENERAL

Nonferrous materials covered by 3.6 shall conform to one of the specifications listed in Tables 3-A.4, 3-A.5, 3-A.6, and 3-A.7, and shall be used in conjunction with the other requirements of this Division.

3.6.2 ULTRASONIC EXAMINATION OF PLATES

All plates 50 mm (2 in.) and over in nominal thickness shall be ultrasonically examined in accordance with the applicable requirements of the ASTM standards and ASME specifications listed below:

(a) SE-114, Ultrasonic Testing by Reflection Method Using Pulsed Longitudinal Waves Induced by Direct Contact;

(*b*) E214, Immersed Ultrasonic Testing by the Reflection Method Using Pulsed Longitudinal Waves;

(c) E127, Fabricating and Checking Aluminum Alloy Ultrasonic Standard Reference Blocks;

(*d*) SB-548, Ultrasonic Testing of Aluminum Plate.

3.6.3 ULTRASONIC EXAMINATION OF FORGINGS

3.6.3.1 Insofar as practicable, all solid rectangular forgings shall be examined by the straight beam technique from two directions at approximately right angles. Hollow forgings including flanges and rings 50 mm (2 in.) and over in nom-inal thickness shall be examined using the angle beam technique by either the contact method or the immersion method.

Reference specimens and acceptance criteria shall be examined from one face or surface normal to the axis in the circumferential direction unless the wall thickness or geometric configuration makes angle beam examination impracticable. Disk forgings shall be examined from one flat side and from the circumferential surface.

3.6.3.2 The entire volume of metal shall be ultrasonically examined at some state of manufacture. For heat-treated material, examination after final heat treatment is preferred, but if the contour of the forging precludes complete examination at this stage, the maximum possible volume of the forging shall be reexamined after the final heat treatment.

3.6.3.3 The method used in the examination of forgings shall conform to the following requirements.

(a) In straight beam examination, the transducers shall be 19 mm to 29 mm ($\frac{3}{4}$ in. to $1\frac{1}{8}$ in.) in diameter or 25 mm (1 in.) square. The nominal frequency shall be appropriate for the material being examined. The instrument shall be set so that the first back reflection is 75% ± 5% of the screen height when the transducer is placed on the indication-free area of the forging.

(b) In angle beam examination by the contact method, a 25 mm × 25 mm (1 in. × 1 in.) or 25 mm × 38 mm (1 in. × $1^{1}/_{2}$ in.), 45 deg. transducer shall be used at an appropriate frequency.

(c) In angle beam examination by the immersion method, a 19 mm ($\frac{3}{4}$ in.) diameter transducer oriented at an approximate angle of inclination shall be used at an appropriate frequency.

(*d*) Angle beam examination shall be calibrated with a notch of a depth equal to the smaller of 10 mm ($\frac{3}{8}$ in.) or 3% of the nominal section thickness, a length of approximately 25 mm (1 in.) and width not greater than two times the depth.

3.6.3.4 The material shall be unacceptable (unless repaired in accordance with the rules of this Division) if straight beam examination shows one or more discontinuities which produce indications accompanied by a complete loss of back reflection not associated with or attributable to the geometric configuration, or if angle beam examination results show one or more discontinuities which produce indications exceeding that of the calibration notch.

3.6.4 LIQUID PENETRANT EXAMINATION OF FORGINGS

3.6.4.1 Following final machining by the manufacturer all accessible surfaces of thick and complex forgings, such as contour nozzles, thick tubesheets, flanges, and other complex forgings that are contour shaped or machined to essentially the finished product configuration prior to heat treatment, shall be examined by the liquid penetrant method in accordance with Practice E165.

3.6.4.2 The evaluation of indications detected by the liquid penetrant method and the acceptance standards shall be in accordance with Part 7 of this Division.

3.6.4.3 Unacceptable imperfections shall be removed and the areas shall be reexamined to ensure complete removal of the unacceptable imperfection. Unless prohibited by the material specification, the forgings may be repair welded with the approval of the vessel Manufacturer. Repairs shall be made utilizing welding procedures that have been qualified in accordance with Section IX. The repaired forging shall meet all requirements of this Division.

3.6.5 CLAD PLATE AND PRODUCTS

Clad plate or products used in construction for which the design calculations are based on total thickness, including cladding, shall consist of base plate listed in one of the material tables in this Division and shall conform to one of the following specifications:

(a) SB-209, Specification for Aluminum Alloy Sheet and Plate.

(b) SB-211, Specification for Aluminum Alloy Extruded Bars, Rods, Shapes, and Tubes.

3.6.6 CLAD TUBESHEETS

Clad tubesheets that will contain strength welded tube-to-tubesheet joints in the cladding shall meet the requirements of 3.3.7 and any applicable requirements specified in 3.6.5.

3.7 SUPPLEMENTAL REQUIREMENTS FOR BOLTING

3.7.1 GENERAL

The supplemental requirements in 3.7 are required for all bolts, studs, and nuts supplied with vessels constructed to this Division.

3.7.2 EXAMINATION OF BOLTS, STUDS, AND NUTS

Bolts, studs, and nuts covered by the material specifications listed in Annex 3-A shall be subjected to the following examinations:

(*a*) All areas of threads, shanks, and heads of final machined parts shall be visually examined. Discontinuities, such as laps, seams, cracks are unacceptable.

(*b*) All bolts, studs, and nuts over 25 mm (1 in.) nominal bolt size shall be examined by the magnetic particle method or by the liquid penetrant method in accordance with Part 7 of this Division. This examination shall be performed on the finished component after threading or on the material stock at approximately the finished diameter before threading and after heading (if involved). Linear non-axial indications are unacceptable. Linear indications greater than 25 mm (1 in.) in length are unacceptable.

(c) All bolts, studs, and nuts greater than 50 mm (2 in.) nominal bolt size shall be ultrasonically examined over the entire surface prior to threading in accordance with the following requirements:

(1) Examination shall be carried out by the straight beam, radial scan method.

(2) Examination shall be performed at a nominal frequency of 2.25 MHz with the search unit not to exceed 645 mm^2 (1 in.²) in area.

(3) Calibration sensitivity shall be established by adjustment of the instrument so that the first back screen reflection is 75% to 90% of full screen height.

(4) Any discontinuity which causes an indication in excess of 20% of the height of the first back reflection or any discontinuity which prevents the production of the first back reflection of 50% of the calibration amplitude is not acceptable.

(*d*) All bolts, studs, and nuts greater than 100 mm (4 in.) nominal bolt size shall be ultrasonically examined over an entire end surface before or after threading in accordance with the following requirements:

(1) Examination shall be carried out by the straight beam, longitudinal scan method.

(2) Examination shall be performed at a nominal frequency of 2.25 MHz with the search unit not to exceed 320 mm² (0.5 in.²) in area.

(3) Calibration shall be established on a test bar of the same nominal composition and diameter as the production part and a minimum of one half of the length. A 10 mm ($\frac{3}{18}$ in.) diameter × 76 mm (3 in.) deep flat bottom hole shall be drilled in one end of the bar and plugged to full depth. A distance amplitude correction curve shall be established by scanning from both ends of the test bar.

(4) Any discontinuity which causes an indication in excess of that produced by the calibration hole in the reference specimen as corrected by the distance amplitude correction curve is not acceptable.

3.7.3 THREADING AND MACHINING OF STUDS

3.7.3.1 Studs shall be threaded the full length, or shall be machined down to the root diameter of the thread in the unthreaded portion, provided that the threaded portions are at least 1.5 diameters in length.

3.7.3.2 Studs greater than 8 diameters in length may have an unthreaded portion which has the nominal diameter of the thread, provided the following requirements are met:

(*a*) The threaded portion shall be at least 1.5 diameters in length.

(*b*) The stud shall be machined down to the root diameter of the thread for a minimum distance of 0.5 diameters adjacent to the threaded portion.

(c) Suitable transition shall be provided between the root diameter and the unthreaded portion.

(d) Particular consideration shall be given to any dynamic loadings.

3.7.4 USE OF WASHERS

When washers are used in conjunction with torquing methods (e.g., the use of manual or hydraulic torque wrenches) for the purpose of bolt tightening, they shall be designed to provide a smooth and low-friction contact surface for the nuts, which are important considerations when torquing methods are used for bolt tightening.

NOTE: Flat washers typically should be 6 mm ($\frac{1}{4}$ in.) thick and made of through-hardened, wrought low alloy steel. See ASME PCC-1 for more information.

3.7.5 FERROUS BOLTING

3.7.5.1 Material for Ferrous Bolting.

(a) Approved specifications for ferrous bolting are given in Annex 3-A, Tables 3-A.8, 3-A.9, 3-A.10, and 3-A.11.

(*b*) High alloy steel studs, bolts, and nuts may be used with carbon and low alloy steel components, provided they are suitable for the application (see Section II, Part D, Nonmandatory Appendix A, A-300).

(c) Nonferrous nuts and washers may be used with ferrous bolts and studs, provided they are suitable for the application. Consideration shall be given to the differences in thermal expansion and possible corrosion resulting from combination of dissimilar materials.

3.7.5.2 Material for Ferrous Nuts and Washers.

(*a*) Material for nuts and washers shall conform to SA-194, SA-563, or to the requirements for nuts in the specification for the bolting material with which they are to be used.

(b) Materials for ferrous nuts and washers shall be selected as follows:

(1) Carbon or low alloy steel nuts and carbon or low alloy steel washers of approximately the same hardness as the nuts may be used for metal temperatures not exceeding 480°C (900°F).

(2) Alloy steel nuts shall be used for metal temperatures exceeding 480°C (900°F). Washers, if used, shall be of alloy steel equivalent to the nut material.

3.7.5.3 Requirements for Ferrous Nuts.

(*a*) Nuts shall be semifinished, chamfered, and trimmed. Nuts shall be threaded to Class 2B or finer tolerances according to ASME B1.1.

(*b*) For use with flanges conforming to ASME/ANSI B16.5, nuts shall conform to at least to the dimensions given in ASME/ANSI B18.2.2 for Heavy Series Nuts.

(c) For use with connections designed in accordance with rules in 4.16, nuts may be of the American National Standard Heavy Series or they may be of other dimensions provided their strength is equal to that of the bolting, giving due consideration to the bolt hole clearance, bearing area, thread form and class of it, thread shear, and radial thrust from threads.

(*d*) Nuts shall engage the threads for the full depth of the nut or, in the case of cap nuts, to a depth equivalent to the depth of a standard nut.

(e) Nuts of special design may be used, provided their strength is equal to that of the bolting.

3.7.6 NONFERROUS BOLTING

3.7.6.1 Material for Nonferrous Bolting. Approved specifications for Nonferrous bolting are given in Annex 3-A, Tables 3-A.9, 3-A.10, and 3-A.11.

3.7.6.2 Condition of Material Selected and Allowable Stress Value.

(a) When nonferrous bolts are machined from heat-treated, hot-rolled, or cold-worked material and are not subsequently hot worked or annealed, the allowable design stress values in Section II, Part D, Subpart 1, Table 3 to be used in design shall be based on the condition of material selected.

(*b*) When nonferrous bolts are fabricated by hot heading, the allowable design stress values for annealed materials in Section II, Part D, Subpart 1, Table 3 shall apply unless the manufacturer can furnish adequate control data to show that the tensile properties of hot-rolled or heat-treated bars or hot-finished or heat-treated forgings are being met, in which case the allowable stress values for the material in the hot finished condition may be used.

(c) When nonferrous bolts are fabricated by cold heading, the allowable design stress values for annealed materials in Section II, Part D, Subpart 1, Table 3 shall apply unless the manufacturer can furnish adequate control data to show that higher design stresses, as agreed upon may be used. In no case shall such stresses exceed the allowable stress values given in Section II, Part D, Subpart 1, Table 3 for cold-worked bar stock.

3.7.6.3 Materials for Nonferrous Nuts and Washers.

(a) Materials for ferrous nuts used with nonferrous bolting shall conform to 3.7.5.3.

(b) Nonferrous nuts and washers may be made of any suitable material listed in Tables 3-A.5, 3-A.6, and 3-A.7.

3.7.6.4 Requirements for Nonferrous Nuts. Nonferrous nuts shall meet the requirements in 3.7.5.3.

3.7.7 MATERIALS FOR FERROUS AND NONFERROUS NUTS OF SPECIAL DESIGN

Nuts of special design, such as wing nuts, may be made of any suitable wrought material permitted by this Division, and shall be either: hot or cold forged; or machined from hot-forged, hot-rolled, or cold-drawn bars.

3.8 SUPPLEMENTAL REQUIREMENTS FOR CASTINGS

3.8.1 GENERAL

3.8.1.1 Each casting shall be marked with the name, trademark, or other traceable identification of the manufacturer and the casting identification, including material designation. The casting manufacturer shall furnish certification that each casting conforms to all the applicable requirements in the casting specification and the requirements of this Division. The certification of castings shall also indicate the nature, location, and extent of any repairs.

3.8.1.2 All castings to be welded shall be of weldable grade.

3.8.2 REQUIREMENTS FOR FERROUS CASTINGS

3.8.2.1 Centrifugal Steel Castings. In addition to the minimum requirements of the material specification, all surfaces of centrifugal castings shall be machined after heat treatment to a finish not coarser than 6.35 μmm (250 μin.) arithmetic average deviation.

3.8.2.2 Nondestructive Examination of Ferrous Castings.

(*a*) General – Castings shall be examined by radiographic, ultrasonic, magnetic particle and liquid penetrant methods examination as provided herein and shall meet the requirements of (a) through (d), inclusive. Radiographic examination, and when required ultrasonic examination, of castings shall be made after at least one austenitizing heat treatment, except austenitic castings not requiring heat treatment may have radiographic and ultrasonic examination performed at any stage of manufacture. Magnetic particle or liquid penetrant examinations shall be made after final heat treatment and after final machining of machined areas.

(*b*) Radiographic Examination – All parts of ferrous castings regardless of thickness shall be fully radiographed in accordance with the procedures of Section V, Article 2. The radiographs shall be compared to the appropriate Radiographic Standard listed below, and the maximum acceptable severity levels for imperfection shall be as follows:

(1) For castings having radiographed thickness of less than 50 mm (2 in.), ASTM E446, Standard Reference Radiographs for Steel Castings up to 2 in. (50 mm) in Thickness, and with maximum severity levels as shown in Table 3.9.

(2) For castings having radiographed thickness from 50 mm to 305 mm (2 in. to 12 in.), ASTM E186, Standard Reference Radiographs for Heavy-Walled [2 to $4^{1}/_{2}$ in. (50.8 to 114 mm)] Steel Castings, or ASTM E280, Standard Reference Radiographs for Heavy-Walled [$4^{1}/_{2}$ to 12 in. (114 to 305 mm)] Steel Castings, as appropriate, and with maximum severity levels as shown in Table 3.10.

(c) Ultrasonic Examination – All parts of ferrous castings over 305 mm (12 in.) thick shall be examined by ultrasonic methods in accordance with the procedures of Section V, Article 5. Castings with imperfections shown by discontinuities whose reflections exceed the height equal to 20% of the normal back reflection, or which reduce the height of the back reflections by more than 30% during movement of the transducer 50 mm (2 in.) in any direction are unacceptable unless other methods of nondestructive testing, such as radiographic examination, demonstrate to the satisfaction of the vessel Manufacturer and the Inspector that the indications are acceptable or unless such imperfections are removed and the casting is repaired.

(*d*) Magnetic Particle Examination – Castings of ferromagnetic material shall be examined on all surfaces by a magnetic particle method in accordance with Part 7 of this Division. Castings with imperfections shown by Type I indications or by indications exceeding Degree I of Types II, III, IV, and V of ASTM E125, Reference Photographs for Magnetic Particle Indications on Ferrous Castings, are unacceptable unless the imperfections are removed and casting is repaired.

(e) Liquid Penetrant Examination – Castings of nonferromagnetic material shall be examined on all surfaces by a liquid penetrant method in accordance with Part 7 of this Division. Castings with cracks and linear imperfections exceeding the following limits are unacceptable:

(1) Linear indications resulting in more than six indications in any 40 mm × 150 mm ($1^{1}/_{2}$ in. × 6 in.) rectangle or 90 mm (3.5 in.) diameter circle with these taken in the most unfavorable location relative to the indications being evaluated.

(2) Linear imperfections resulting in indications more than 6 mm ($\frac{1}{4}$ in.) in length for thicknesses up to 19 mm ($\frac{3}{4}$ in.), one third of the thickness in length for thicknesses from 19 mm ($\frac{3}{4}$ in.) to 57 mm (2.25 in.), and 19 mm ($\frac{3}{4}$ in.) in length for thicknesses over 57 mm (2.25 in.). Aligned acceptable imperfections separated from one another by a distance equal to the length of the longer imperfection are acceptable.

(3) All nonlinear imperfections which are indicated to have any dimension which exceeds 2.5 mm (0.0938 in.).

3.8.2.3 Repairing of Ferrous Castings.

(a) Castings with unacceptable imperfections may be repaired. Whenever an imperfection is removed and subsequent repair by welding is not required, the affected area shall be blended into the surrounding surface so as to avoid sharp notches, crevices, or corners.

(b) Repairing of Ferrous Castings by Welding – Castings having imperfections in excess of the maximum sizes permitted in 3.8.2.2 may be repaired by welding if the imperfections are removed and providing prior approval is obtained from the vessel Manufacturer. To ensure complete removal of such imperfections prior to making repairs the base metal shall be reexamined by either magnetic particle or liquid penetrant examination, if it is ferromagnetic, or by liquid penetrant examination, if it is nonferromagnetic.

(1) Requirements for Examining Repairs in Castings – All weld repairs of depth exceeding 10 mm ($\frac{3}{8}$ in.) or 20% of the section thickness, whichever is the lesser, shall be examined by radiography and by magnetic particle examination or liquid penetrant examination, if the material is magnetic, or by liquid penetrant examination, if it is nonferromagnetic, in accordance with 3.8.2.2. Where the depth of the repairs is less than 20% of the section thickness or 25 mm (1 in.), whichever is the lesser, and where the repaired section cannot be radiographed effectively, the first layer of each 6 mm ($\frac{1}{4}$ in.)

thickness of deposited weld metal and the finished weld surface shall be examined, as indicated previously by magnetic particle or liquid penetrant examination. The finished surface examination shall be made after any heat treating operations that are applied to the casting. Weld repairs resulting from ultrasonic examination shall be examined by ultrasonic methods.

(2) Postweld Heat Treatment of Repaired Castings – When repair welding is done after heat treatment of the casting, the casting shall be postweld heat treated after repair welding of the casting.

(3) Required Welding Procedure and Welder Qualifications – All welding shall be performed with a welding procedure qualified in accordance with Section IX. The procedure qualification tests shall be performed on specimens of cast material of the same specification and subject to the same heat treatment before and after welding as will be applied to the work. All welders and operators performing this welding shall also be qualified in accordance with Section IX.

(4) Certification of Weld Repairs – The location and extent of the weld repairs together with the repair procedure and examination results shall be recorded and transmitted as part of the certification.

3.8.3 REQUIREMENTS FOR NONFERROUS CASTINGS

3.8.3.1 Examination of Nonferrous Castings. All nonferrous castings shall be examined in accordance with the following:

(a) Each casting shall be subjected to 100% visual examination and to liquid penetrant examination on all surfaces in accordance with 3.8.2.2(e). These examinations shall be performed following the final heat treatment applied to the casting.

(b) All parts of castings shall be subjected to complete radiographic examination and the radiographs shall be compared with the radiographic standards of ASTM E272, Reference Radiographs for Inspection of High Strength Copper Base and Nickel-Copper Castings. Acceptable castings shall meet Class 1 standards, if the wall thickness is less than 25 mm (1 in.) or Class 2 standards if the wall thickness is greater than or equal to 25 mm (1 in.) as defined in the Specification.

(c) All parts of castings with a thickness greater than 305 mm (12 in.) shall be ultrasonically examined in accordance with the procedures given in SE-114. Any imperfections whose reflections do not exceed a height equal to 20% of the normal back reflection or do not reduce the height of the back reflection by more than 30% during movement of the transducer 50 mm (2 in.), in any direction, shall be considered acceptable. The above limits are established for the use of transducers having approximately 645 mm² (1 in.²) of area.

3.8.3.2 Repairing of Nonferrous Castings by Welding. Upon approval by the vessel Manufacturer, castings subject to rejection because of these examinations may be repaired in accordance with the following requirements.

(*a*) Castings having imperfections in excess of the maximum sizes permitted in 3.8.3.1 may be repaired by welding, if the imperfections are removed and provided prior approval is obtained from the vessel Manufacturer. To assure complete removal of such imperfections, prior to making repairs, the base metal shall be reexamined by liquid penetrant examination.

(b) All weld repairs of depth exceeding 10 mm ($\frac{3}{48}$ in.), or 20% of the section thickness, whichever is the lesser, shall be examined by radiography and by liquid penetrant examination in accordance with 3.8.3.1. Where the depth of repairs is less than 20% of the section thickness or 25 mm (1 in.), whichever are the lesser, and where the repaired section cannot be radiographed effectively, the first layer of each 6 mm ($\frac{3}{44}$ in.) thickness of deposited weld metal and the finished weld surface shall be examined, as indicated previously, by liquid penetrant examination. The finished surface examination shall be made after any heat treating operation that is applied to the casting. Weld repairs resulting from ultrasonic examination shall be examined by ultrasonic methods.

(c) When repair welding is done after heat treatment of the casting, the casting shall be postweld heat treated after repair welding.

(*d*) All welding shall be performed using welding procedures qualified in accordance with Section IX. The procedure qualifications shall be performed on test specimens of cast material of the same specification and subject to the same heat treatments before and after welding as will be applied to the work. All welders and welding operators performing this welding shall be qualified in accordance with Section IX.

(e) The location and extent of the weld repairs together with the repair procedure and examination results shall be recorded and transmitted as part of the certification.

3.9 SUPPLEMENTAL REQUIREMENTS FOR HUBS MACHINED FROM PLATE

3.9.1 GENERAL

The supplemental requirements of 3.9 are required for plate materials that are used in the fabrication of hubs for tubesheets, lap joint stub ends, and flat heads machined from plate when the hub length is in the through thickness direction of the plate.

3.9.2 MATERIAL REQUIREMENTS

3.9.2.1 Plate shall be manufactured by a process that produces material having through thickness properties which are at least equal to those specified in the material specification. Such plate can be but is not limited to that produced by methods such as electroslag (ESR) and vacuum arc remelt (VAR). The plate must be tested and examined in accordance with the requirements of the material specification and the additional requirements specified in the following paragraphs.

3.9.2.2 Test specimens, in addition to those required by the material specifications, shall be taken in a direction parallel to the axis of the hub and as close to the hub as practical, as shown in Figure 3.2. At least two tensile test specimens shall be taken from the plate in the proximity of the hub, with one specimen taken from the center third of the plate width as rolled, and the second specimen taken at 90 deg around the circumference from the other specimen. Both specimens shall meet the mechanical property requirements of the material specification. For carbon and low alloy steels, the reduction of area shall not be less than 30%; for those materials for which the material specification requires a reduction of area value greater than 30%, the higher value shall be met.

3.9.2.3 Subsize test specimens conforming to the requirements of SA-370, Figure 5 may be used if necessary, in which case the value for percent elongation in 50 mm (2 in.), required by the material specification, shall apply to the gage length specified in SA-370, Figure 5.

3.9.2.4 Tension test specimen locations are shown in Figure 3.2.

3.9.3 EXAMINATION REQUIREMENTS

3.9.3.1 After machining the part, regardless of thickness, shall be ultrasonically examined by the straight beam technique in accordance with SA-388. The examination shall be in two directions approximately at right angles, i.e., from the cylindrical or flat rectangular surfaces of the hub and in the axial direction of the hub. The part shall be unacceptable if

(*a*) the examination results show one or more indications accompanied by loss of back reflection larger than 60% of the reference back reflection, and

(*b*) the examination results show indications larger than 40% of the reference back reflection when accompanied by a 40% loss of back reflection.

3.9.3.2 Before welding the hub of the tubesheet flange or flat head to the adjacent shell, the hub shall be examined by magnetic particle or liquid penetrant methods in accordance with Part 7.

3.9.3.3 After welding, the weld and the area of the hub for at least 13 mm $\binom{1}{2}$ in.) from the edge of the weld shall be 100% radiographed in accordance with Part 7. As an alternate, the weld and hub area adjacent to the weld may be ultrasonically examined in accordance with Part 7.

3.9.4 DATA REPORTS AND MARKING

Whenever the provisions of this supplemental requirement are used, they shall be indicated on the Data Report. Special markings are not required.

3.10 MATERIAL TEST REQUIREMENTS

3.10.1 GENERAL

Material tests required by this Division shall be performed in accordance with 3.10.

3.10.2 REQUIREMENTS FOR SAMPLE TEST COUPONS

3.10.2.1 Heat Treatment. Heat treatment as used in this Division shall include all thermal treatments during fabrication at 480°C (900°F) and above.

3.10.2.2 Provisions of Sample Test Coupons. When material is subjected to heat treatment during fabrication, the test specimens required by this Division shall be obtained from sample coupons which have been heat treated in the same manner as the material, including such heat treatments as were applied by the material producer before shipment. The required tests may be performed by the material producer or the fabricator.

3.10.2.3 Heat Treating of Sample Test Coupons.

(*a*) The material used in the vessel shall be represented by test specimens that have been subjected to the same manner of heat treatment, including postweld heat treatment. The kind and number of tests and test results shall be as required by the material specification. The vessel Manufacturer shall specify the temperature, time, and cooling rates to which the material will be subject during fabrication. Material from which the specimens are prepared shall be heated at the specified temperature within the tolerance established by the manufacturer for use in actual fabrication. The total time at temperature shall be within at least 80% of the total time at temperature during actual heat treatment of the product and may be performed in a single cycle. Simulation of postweld heat treatment may be applied to the test specimen blanks.

(*b*) Heat treatment of material is not intended to include such local heating as flame or arc cutting, preheating, welding, or heating below the critical range of tubing or pipe for bending or sizing.

3.10.3 EXEMPTIONS FROM REQUIREMENT OF SAMPLE TEST COUPONS

3.10.3.1 Standard Pressure Parts. An exception to the requirements of 3.10.2.2 and 3.10.2.3 shall apply to standard nonwelded items such as described in 3.2.8.3 and 3.2.8.4. These may be subjected to postweld heat treatment with the vessel or vessel part without the same treatment being required of the test specimens. This exception shall not apply to castings that are specially designed or to cast wrought fittings.

3.10.3.2 For Materials When PWHT to Table 6.16. Materials listed in Section IX, Table QW/QB-422 as P-No. 1 Group 3 and P-No. 3, Groups 1 and 2 that are certified in accordance with 3.10.2.2 and 3.10.2.3 from test specimens subjected to the PWHT requirements of Table 6.8 or Table 6.9 need not be recertified if subjected to the alternative PWHT conditions permitted in Table 6.16.

3.10.3.3 Re-Austenitized Materials. All thermal treatments which precede a thermal treatment that fully austenitizes the material need not be accounted for by the specimen heat treatments, provided the austenitizing temperature is at least as high as any of the preceding thermal treatments.

3.10.4 PROCEDURE FOR OBTAINING TEST SPECIMENS AND COUPONS

3.10.4.1 Plates.

(a) Unless otherwise specified, test specimens shall be taken in accordance with the requirements of the applicable material specification, except for the provisions in (b), (c), and (d) below. Tension test specimens and Charpy V-notch specimens shall be orientated in the direction perpendicular to the final direction of the plate rolling.

(b) When the plate is heat treated with a cooling rate faster than still-air cooling from the austenitizing temperature, the specimens shall be taken in accordance with requirements of applicable material specifications and 1t from any heat-treated edge, where t is the nominal thickness of the material.

(c) Where a separate test coupon is used to represent the vessel material, it shall be of sufficient size to ensure that the cooling rate of the region from which the test specimens are removed represents the cooling rate of the material at least $\frac{1}{4}t$ deep and 1t from any edge of the product. Unless cooling rates applicable to the bulk pieces or product are simulated in accordance with 3.10.5, the dimensions of the coupon shall be not less than $3t \times 3t \times 1t$, where t is the nominal thickness of the material.

(*d*) When flat heads, tubesheets, and flanges with integral hubs for butt welding are to be machined from plate, additional specimens shall be taken in the locations as shown in Figure 3.2.

3.10.4.2 Forgings.

(*a*) Test specimens shall be taken in accordance with the applicable material specification, except for the provisions in (b), (c), and (d) below.

(b) When the forging is heat treated with a cooling rate faster than still-air cooling from the austenitizing temperature the specimens shall be taken at least $\frac{1}{4}t$ of the maximum heat-treated thickness from one surface and 1t from a second surface. This is normally referred to as $\frac{1}{4}t \times 1t$, where t is the maximum heat-treated thickness. A thermal buffer may be used to achieve these conditions unless cooling rates applicable to the bulk forgings are simulated in accordance with 3.10.5.

(c) For thick and complex forgings, such as contour nozzles, thick tubesheets, flanges, and other complex forgings that are contour shaped or machined to essentially the finished product configuration prior to heat treatment, the registered engineer who prepares the Design Report shall designate the surfaces of the finished product subject to high tensile stresses in service. Test specimens for these products shall be removed from prolongations or other stock provided on the product. The specimens shall be removed as follows:

(1) The distance from the longitudinal axis of the specimen to the nearest heat-treated surface shall be no less than the distance from the location where the maximum tensile stress is expected to the nearest heat-treated surface. This distance shall be at least 19 mm $\binom{3}{4}$ in.).

(2) The distance from the mid-length of the specimen to a second heat-treated surface shall be at least twice the distance in (1). This distance shall be at least 38 mm (1.5 in.).

(*d*) With prior approval of the vessel Manufacturer, test specimens for flat ring and simple ring forgings may be taken from a separately forged piece under the following conditions.

(1) The separate test forging shall be of the same heat of material and shall be subjected to substantially the same reduction and working as the production forgings it represents.

(2) The separate test forging shall be heat treated in the same furnace charge and under the same conditions as the production forgings.

(3) The separate test forging shall be of the same nominal thickness as the production forgings. Test specimen material shall be removed as required in (a) and (b).

3.10.4.3 Tubular Products. Specimens shall be taken in accordance with the requirements of the applicable material specification.

3.10.4.4 Bars and Bolting Materials.

(*a*) Test specimens shall be taken in accordance with the requirements of the applicable material specification, except for the provisions of (b) below.

(b) Test specimens shall be at least $\frac{1}{4t}$ from the outside or rolled surface and with the end of the specimen no closer than one diameter or thickness from the heat-treated end.

(c) For bolting, the specimens shall be taken in conformance with the applicable material specification and with the end of the specimen no closer than one diameter or thickness from a heat-treated end.

3.10.4.5 Castings.

(a) The conventional separately cast test coupon meets the intent of 3.10.5 where normalizing or accelerated cooling heat treatments are employed on castings having a maximum thickness of less than 50 mm (2 in.).

(b) For castings having a thickness of 50 mm (2 in.) and over, the specimens shall be taken from the casting (or the extension of it) at least $\frac{1}{4}t$ of the maximum heat-treated thickness from one surface and 1t from a second surface. A thermal buffer may be used.

(c) For massive castings that are cast or machined to essentially the finished product configuration prior to heat treatment, the registered engineer who prepares the Design Report shall designate the surfaces of the finished product subject to high tensile stresses in service. Test specimens for these products shall be removed from prolongations or other stock provided on the product. The specimens shall be removed as follows:

(1) The distance from the longitudinal axis of the specimen to the nearest heat-treated surface shall be no less than the distance from the location where the maximum tensile stress is expected to the nearest heat-treated surface. This distance shall be at least 19 mm $\binom{3}{4}$ in.).

(2) The distance from the mid-length of the specimen to a second heat-treated surface shall be at least twice the distance in (1). This distance shall be at least 38 mm (1.5 in.).

(*d*) With prior approval of the vessel Manufacturer, test specimens may be taken from a separately cast test coupon under the following conditions:

(1) The separate test coupon shall be of the same heat of material and shall be subjected to substantially the same casting practices as the production casting it represents.

(2) The separate test coupon shall be heat treated in the same furnace charge and under the same conditions as the production casting, unless cooling rates applicable to bulk castings are simulated in accordance with 3.10.5.

(3) The separate test coupon shall be of the same nominal thickness as the production casting. Test specimen material shall be removed from the region midway between mid-thickness and the surface and shall not be nearer than on thickness to a second surface.

3.10.5 PROCEDURE FOR HEAT TREATING TEST SPECIMENS FROM FERROUS MATERIALS

3.10.5.1 General requirements for heat treating of sample test coupons are covered in 3.10.2.3.

3.10.5.2 When ferritic steel products are subjected to normalizing or accelerated cooling from the austenitizing temperature, the test specimens representing those products shall be cooled at a rate similar to and no faster than the main body of the product except in the case of certain forgings and castings [see 3.10.4.2(c) and 3.10.4.5(c)]. This rule shall apply for specimens taken directly from the product as well as those taken from separate test coupons representing the product. The following general techniques may be applied to all product forms or test coupons representing the product.

(a) Any procedure may be applied which can be demonstrated to produce a cooling rate in the test specimen that matches the cooling rate of the main body of the product at the region midway between mid-thickness and surface $(\frac{1}{4}t)$ and no nearer any heat-treated edge than a distance equal to the nominal thickness, *t*, being cooled within 14°C (25°F) and 20 sec at all temperatures after cooling begins from the austenitizing temperature.

(b) Faster cooling rates at product edges may be compensated for by:

(1) Taking the test specimens at least 1t from a quenched edge where t equals the product thickness.

(2) Attaching a steel pad at least 1t wide by a partial penetration weld to the product edge where specimen are to be removed.

(3) Using thermal buffers or insulation at the product edge where specimens are to be removed.

(c) If cooling rate data for the product and cooling rate device control devices for the test specimens are available, the test specimens may be heat treated in the device to represent the product, provided that the provisions of (a) are met.

(*d*) When the material is clad or weld deposit overlayed by the product prior to normalizing or accelerated cooling from the austenitizing temperature, the full thickness samples shall be clad or the weld deposit overlayed before such heat treatments.

3.10.6 TEST COUPON HEAT TREATMENT FOR NONFERROUS MATERIALS

3.10.6.1 Fabrication heat treatments of nonferrous material are normally not necessary. If heat treatment is performed, it shall be by agreement between the user and the vessel Manufacturer.

3.10.6.2 Materials where the mechanical properties are affected by fabrication heat treatments shall be represented by test specimens that have been subjected to the simulated fabrication heat treatments. The vessel Manufacturer shall specify the pertinent fabrication heat treatment parameters to the material manufacturer.

3.10.6.3 The requirements of 3.10.6.2 above exclude annealing and stress relieving.

3.11 MATERIAL TOUGHNESS REQUIREMENTS

3.11.1 **GENERAL**

3.11.1.1 Charpy V-notch impact tests shall be made for materials used for shells, heads, nozzles, and other pressurecontaining parts, as well as for the structural members essential to structural integrity of the vessel, unless exempted by the rules of **3.11**.

(*a*) Toughness requirements for materials listed in Table 3-A.1 (carbon and low alloy steel materials except bolting materials) are given in 3.11.2.

(*b*) Toughness requirements for materials listed in Table 3-A.2 (quenched and tempered steels with enhanced tensile properties) are given in 3.11.3.

(c) Toughness requirements for materials listed in Table 3-A.3 (high alloy steels except bolting materials) are given in 3.11.4.

(*d*) Toughness requirements for materials listed in Tables 3-A.4 through 3-A.7 (nonferrous alloys) are given in 3.11.5. (*e*) Toughness requirements for all bolting materials are given in 3.11.6.

3.11.1.2 Toughness testing procedures and requirements for impact testing of welds and vessel test plates of ferrous materials are given in 3.11.7 and 3.11.8, respectively.

3.11.1.3 Throughout 3.11, reference is made to the Minimum Design Metal Temperature (MDMT). The MDMT is part of the design basis of the vessel and is defined in 4.1.5.2(e). The rules in 3.11 are used to establish an acceptable MDMT for the material based on the materials of construction, product form, wall thickness, stress state, and heat treatment.

3.11.2 CARBON AND LOW ALLOY STEELS EXCEPT BOLTING

3.11.2.1 Toughness Requirements for Carbon and Low Alloy Steels.

(*a*) Impact tests shall be performed on carbon and low alloy materials listed in Table 3-A.1 for all combinations of materials and MDMTs except as exempted by 3.11.2.3, 3.11.2.4, 3.11.2.5, or 3.11.2.8.

(b) When impact testing is necessary, the following toughness values are required.

(**23**)

(1) If the specified minimum tensile strength is less than 655 MPa (95 ksi), then the required minimum energy for all specimen sizes shall be that shown in Figures 3.3 and 3.4 for welded vessel parts not subject to postweld heat treatment (PWHT) and welded vessels parts subject to PWHT or nonwelded parts, respectively, multiplied by the ratio of the actual specimen width along the notch to the width of a full-size specimen, except as otherwise provided in 3.11.7.2(b).

(2) If the specified minimum tensile strength is greater than or equal to 655 MPa (95 ksi), then the minimum lateral expansion (see Figure 3.5) opposite the notch for all specimen sizes shall not be less than the values shown in Figure 3.6.

3.11.2.2 Required Impact Testing Based on the MDMT, Thickness, and Yield Strength.

(*a*) If the governing thickness (see 3.11.2.3(b) at any welded joint or of any nonwelded part exceeds 100 mm (4 in.) and the MDMT is colder than 43°C (110°F), then impact testing is required.

(b) Materials having a specified minimum yield strength greater than 450 MPa (65 ksi) shall be impact tested.

(23) 3.11.2.3 Exemption From Impact Testing Based on the MDMT, Thickness, and Material Specification.

(*a*) Figure 3.7 for welded parts not subject to PWHT or Figure 3.8 for welded parts subject to PWHT shall be used to establish impact testing exemptions based on the impact test exemption curve for the subject material specification and grade or class of the steel, MDMT, and governing thickness of a welded part. If an MDMT and thickness combination for the subject material is on or above the applicable impact test exemption curve in Figure 3.7 or Figure 3.8, then impact testing is not required except as required by 3.11.8 for weld metal and heat-affected zones.

(b) The governing thickness, t_g , of a welded part is determined using the following criteria. Examples of the governing thickness for some typical vessel details are shown in Figures 3.9, 3.10, and 3.11.

(1) For all product forms except castings:

(-*a*) For butt joints except those in flat heads and tubesheets, the nominal thickness of the thickest welded joint [see Figure 3.9, sketch (a)],

(-*b*) For corner, fillet, or lap-welded joints, including attachments as defined in 3.11.1.1, the thinner of the two parts joined,

(-c) For flat heads or tubesheets, the larger of (-b) above or the flat component thickness divided by 4.

(2) The governing thickness of a casting shall be its largest nominal thickness.

(3) The governing thickness of flat nonwelded parts, such as bolted flanges, tubesheets, and flat heads, is the flat component thickness divided by 4.

(4) The governing thickness of a nonwelded dished head is the greater of the flat flange thickness divided by 4 or the minimum thickness of the dished portion.

(c) Components such as shells, heads, nozzles, manways, reinforcing pads, stiffening rings, flanges, tubesheets, flat cover plates, backing strips, and attachments that are essential to the structural integrity of the vessel when welded to pressure-retaining components shall be treated as separate components. Each component shall be evaluated for impact test requirements based on its individual material classification, governing thickness [see (b)], and the MDMT. For welded assemblies comprised of more than two components (e.g., nozzle-to-shell joint with reinforcing pad), the governing thickness and permissible MDMT of each of the individual welded joints of the assembly shall be determined, and the warmest MDMT shall be used as the permissible MDMT of the welded assembly.

(d) Figure 3.7 limits the maximum nominal governing thickness for welded parts not subject to postweld heat treatment to 38 mm $(1^{1}/_{2} \text{ in.})$. Some vessels may have welded non-postweld-heat-treated pressure parts whose thickness exceeds the nominal governing thickness of 38 mm $(1^{1}/_{2} \text{ in.})$. Examples of such welded and non-postweld-heat-treated pressure parts are thick tubesheets, flat heads, and thick insert plates (with beveled edges) with nozzles or load-carrying structural attachments. Such welded non-postweld-heat-treated pressure parts shall be impact tested and shall meet the impact test requirements of this Division.

(e) Impact testing is not required for materials with a thickness of 2.5 mm (0.099 in.) and thinner, but such exempted materials shall not be used at design metal temperatures colder than -48° C (-55° F). For components made from DN 100 (NPS 4) pipe or smaller and for equivalent size of tubes of P-No. 1 materials, the following exemptions from impact testing are also permitted as a function of the specified minimum yield strength (SMYS) of the material for metal temperatures of -104° C (-155° F) and warmer:

(1) For SMYS between 140 MPa and 240 MPa (20 ksi and 35 ksi), inclusive, the thickness exemption for impact testing is 6 mm ($\frac{1}{4}$ in.).

(2) For SMYS between 250 MPa and 310 MPa (36 ksi and 45 ksi), inclusive, the thickness exemption for impact testing is 3.2 mm ($\frac{1}{8}$ in.).

(3) For SMYS higher than 315 MPa (46 ksi), inclusive, the thickness exemption for impact testing is 2.5 mm (0.099 in.).

(f) Note that the rules in this paragraph for the exemption of impact testing do not provide assurance that all test results for these materials will satisfy the impact test acceptance criteria of 3.11.2.1(b).

3.11.2.4 Exemption From Impact Testing Based on Material Specification and Product Form.

(a) Impact testing is not required for the ferritic steel flanges shown below when produced to fine grain practice and supplied in heat-treated condition (normalized, normalized and tempered, or quenched and tempered after forging) when used at design temperatures no colder than -29° C (-20° F) and no colder than -18° C (0° F) when supplied in the as-forged condition. A certification statement on a Material Test Report or Certificate of Compliance attesting to production to fine grain practice is sufficient.

(1) ASME B16.5 flanges.

(2) ASME B16.47 flanges.

(3) Long weld neck flanges, defined as forged nozzles that meet the dimensional requirements of a flanged fitting given in ASME B16.5 but have a straight hub/neck. The neck inside diameter shall not be less than the nominal size of the flange, and the outside diameter of the neck and any nozzle reinforcement shall not exceed the diameter of the hub as specified in ASME B16.5.

(b) Materials produced and impact tested in accordance with the requirements of the specifications shown below are exempt from impact testing by the rules of this Division at MDMTs not more than 3°C (5°F) colder than the test temperature required by the specification.

(1) SA-333 (2) SA-334 (3) SA-350 (4) SA-352 (5) SA-420 (6) SA-765

3.11.2.5 Exemption From Impact Testing Based on Design Stress Values.

(*a*) A colder MDMT for a component than that derived from 3.11.2.2 or 3.11.2.3 may be determined in accordance with the procedure outlined below.

Step 1. For the welded part under consideration, determine the nominal thickness of the part, t_n , and the required governing thickness of the part, t_g , using 3.11.2.3(b).

Step 2. Determine the applicable material toughness curve to be used in Figure 3.7 for welded parts not subject to PWHT or Figure 3.8 for welded parts subject to PWHT. See 3.11.2.2(b) for materials having a specified minimum yield strength greater than 450 MPa (65 ksi).

Step 3. Determine the MDMT from Figure 3.7 for welded parts not subject to PWHT or Figure 3.8 for welded parts subject to PWHT based on the applicable toughness curve and the governing thickness, t_g . For materials having a specified minimum yield strength greater than 450 MPa (65 ksi), the MDMT shall be determined by impact testing per 3.11.2.2(b).

Step 4. Based on the design loading conditions at the MDMT, determine the stress ratio, R_{ts} , using one of the equations below. For pressure vessel attachments that are exposed to tensile stresses from internal pressure (e.g., nozzle reinforcement pads, horizontal vessel saddle attachments, and stiffening rings), the coincident ratio shall be that of the shell or head to which each component is attached. Note that this ratio can be computed in terms of required design thickness and nominal thickness, applied stress and allowable design stress, or applied pressure and maximum allowable working pressure based on the design rules in this Division or ASME/ANSI pressure-temperature ratings.

$$R_{ts} = \frac{t_r E^*}{t_n - CA}$$
 (Thickness Basis) (3.1)

$$R_{ts} = \frac{S^* E^*}{SE}$$
 (Stress Basis) (3.2)

$$R_{ts} = \frac{P_a}{P_{\text{rating}}} \qquad (\text{Pressure-Temperature Rating Basis}) \tag{3.3}$$

Step 5. Determine the final value of the MDMT and evaluate results.

(a) If the computed value of the R_{ts} ratio from Step 4 is less than or equal to 0.3 for Class 1, or 0.24 for Class 2, then set the MDMT to -104° C (-155° F).

(b) If the computed value of the R_{ts} ratio from Step 4 is greater than 0.3 for Class 1, or 0.24 for Class 2, then determine the temperature reduction, T_R . If the specified minimum yield strength is less than or equal to 450 MPa (65 ksi), then determine T_R from Figure 3.12 for parts not subject to PWHT or Figure 3.13 for parts subject to PWHT based on the R_{ts} ratio from Step 4. If the specified minimum yield strength is greater than 450 MPa (65 ksi) for parts subject to PWHT, then determine the temperature reduction, T_R from eq. (3.4). The final computed value of the MDMT is determined

(23)

(23)

using eq. (3.5). The reduction in the MDMT given by eq. (3.5) shall not exceed 55°C (100°F). Impact testing is not required if the specified MDMT is warmer than the computed MDMT. However, if the specified MDMT is colder than -48°C (-55°F), impact testing is required.

$$T_{R} = \frac{\begin{pmatrix} -27.20656 - 76.98828R_{ts} + \\ 103.0922R_{ts}^{2} + 7.433649(10)^{-3}S_{y} \end{pmatrix}}{\begin{pmatrix} 1 - 1.986738R_{ts} - 1.758474(10)^{-2}S_{y} + \\ 6.479033(10)^{-5}S_{y}^{2} \end{pmatrix}}$$
(°F, ksi) (3.4)

$$MDMT = MDMT_{STEP3} - T_R$$
(3.5)

(*b*) The procedure in 3.11.2.5(a) above is repeated for each welded part, and the warmest MDMT of all welded parts is the MDMT for the vessel.

(c) For a flange attached by welding, the procedure in 3.11.2.5(a) above can be used by determining the temperature reduction as determined for the neck or shell to which the flange is attached. The bolt-up condition need not be considered when determining the temperature reduction for flanges.

(*d*) For components not stressed in general primary membrane tensile stress such as flat heads, covers, tubesheets, and flanges, the MDMT shall not be colder than the MDMT derived from 3.11.2.3, 3.11.2.4(a), or the impact test temperature less the allowable temperature reduction as determined in 3.11.2.5(a). The ratio used in 3.11.2.5(a) shall be the ratio of the maximum design pressure at the MDMT to the maximum allowable pressure (MAP) of the component at the MDMT.

(e) Longitudinal tensile stress in the vessel due to net-section bending that results in general primary membrane tensile stress (e.g., due to wind or earthquake in a vertical vessel, at mid-span and in the plane of the saddles of a saddle-supported horizontal vessel) shall be considered when calculating the R_{ts} ratio in (a), Step 4.

3.11.2.6 Adjusting the MDMT for Impact Tested Materials.

(*a*) For components that are impact tested, the components may be used at a MDMT colder than the impact test temperature, provided the stress ratio defined in 3.11.2.5(a), Step 4 is less than one and the MDMT is not colder than $-104^{\circ}C$ ($-155^{\circ}F$). For such components, the MDMT shall not be colder than the impact test temperature less the allowable temperature reduction as determined from 3.11.2.5 (i.e., the starting point for the MDMT calculation in 3.11.2.5(a), Step 3, is the impact test temperature). For pressure vessel attachments that are exposed to tensile stresses from internal pressure (e.g., nozzle reinforcement pads, horizontal vessel saddle attachments, and stiffening rings), the coincident ratio shall be that of the shell or head to which each component is attached. [See 3.11.2.4(b)].

(b) One common usage of the exemptions in 3.11.2.5 and 3.11.2.6 will be for vessels in which the pressure is dependent on the vapor pressure of the contents (e.g., vessels in refrigeration, or hydrocarbon processing plants with operating systems that do not permit immediate repressurization). For such services, the primary thickness calculations (shell and head) normally will be made for the maximum design pressure coincident with the design (MDMT) temperature expected. The ratio of required thickness/nominal thickness as defined in 3.11.2.5(a), Step 4, for the design condition is then calculated. Thickness calculations are also made for other expected pressures at coincident temperature, along with the ΔT difference from the MDMT [see 3.11.2.5(a), Step 3], and the thickness ratio defined in 3.11.2.5(a), Step 4. Ratio/ ΔT points that are on or below the line in Figure 3.12 (for as-welded parts) or Figure 3.13 (for PWHT or nonwelded parts), as applicable, are acceptable, but in no case may the operating temperature be colder than -104° C (-155°F). Comparison of pressure-temperature coincident ratios or stress coincident ratios may also be used as illustrated in 3.11.2.5(a), Step 4.

3.11.2.7 Vessel or Components Operating Below the MDMT. Vessels or components may be operated at temperatures colder than the MDMT stamped on the nameplate if:

(a) The provisions of 3.11.2 are met when using the reduced (colder) operating temperature as the MDMT, but in no case shall the operating temperature be colder than -104°C (-155°F); or

(b) For vessels or components whose thicknesses are based on pressure loading only, the coincident operating temperature may be as cold as the MDMT stamped on the nameplate less the allowable temperature reduction as determined from 3.11.2.5. The ratio used in 3.11.2.5(a), Step 4, of the procedure in 3.11.2.5 shall be the ratio of maximum pressure at the coincident operating temperature to the design pressure of the vessel at the stamped MDMT, but in no case shall the operating temperature be colder than -104°C (-155°F).

3.11.2.8 Establishment of the MDMT Using a Fracture Mechanics Methodology.

(*a*) In lieu of the procedures in 3.11.2.1 through 3.11.2.7, the MDMT may be established using a fracture mechanics approach. The fracture mechanics procedures shall be in accordance with API 579-1/ASME FFS, Part 9, Level 2 or Level 3.

(b) The assessment used to determine the MDMT shall include a systematic evaluation of all factors that control the susceptibility to brittle fracture, e.g., stresses from the applied loadings including thermal stresses, flaw size, fracture toughness of the base metal and welded joints, heat treatment, and the loading rate.

(c) The reference flaw size used in the fracture mechanics evaluation shall be a surface flaw with a depth of $a = \min[t/4, 25 \text{ mm (1 in.)}]$ and a length of 2c = 6a where t is the thickness of the plate containing the reference flaw. If approved by the user, an alternative reference flaw size may be used based on the weld joint geometry and the NDE that will be used and demonstrated for qualification of the vessel (see Part 7).

(*d*) The material fracture toughness shall be established using the exemption curve for the material (see Notes to Figures 3.7 and 3.8) and MPC Charpy impact energy correlation described in API 579-1/ASME FFS-1, Appendix F, F.4. If approved by the user, an alternative material fracture toughness may be used based on fracture toughness test results.

(e) The MDMT established using a fracture mechanics approach shall not be colder than that given in 3.11.2.3(e).

3.11.2.9 Postweld Heat Treatment Requirements for Materials in Low Temperature Service.

(*a*) If the MDMT is colder than -48°C (-55°F) and the stress ratio defined in 3.11.2.5(a), Step 4 is greater than or equal to 0.3 for Class 1, or 0.24 for Class 2, then welded joints shall be subject to PWHT in accordance with the requirements of 6.4.2.

(*b*) The requirement in (a) above does not apply to the welded joints listed in (1) and (2) below in vessel or vessel parts fabricated of P-No. 1 materials that are impact tested at the MDMT or colder in accordance with 3.11.2.1. The minimum average energy requirement for base metal, weld metal, and heat-affected zones shall be 41 J (30 ft-lb) instead of the values shown in Figure 3.3 for welded parts not subject to PWHT or Figure 3.4 for welded parts subject to PWHT or for nonwelded parts.

(1) Type 1 Category A and B joints, not including cone-to-cylinder junctions, that have been 100% radiographed. Category A and B joints attaching sections of unequal thickness shall have a transition with a slope not exceeding 3:1.

(2) Fillet welds having leg dimensions not exceeding 10 mm ($\frac{3}{8}$ in.) attaching lightly loaded attachments, provided the attachment material and the attachment weld meet the requirements of 3.11.2 and 3.11.8. Lightly loaded attachments, for this application, are defined as attachments in which the stress in the attachment weld does not exceed 25% of the allowable stress. All such welds shall be examined by liquid penetrant or magnetic particle examination in accordance with Part 7 of this Division.

3.11.2.10 Impact Tests of Welding Procedures.

(*a*) For welded construction, the welding procedure qualification shall include impact testing of weld metals in accordance with 3.11.2.1 when required by (b) or (c).

(b) Welds made with filler metal shall be deposited using welding procedures qualified with impact testing when

(1) either base metal is required to be impact tested by the rules of this Division; or

(2) any individual weld pass exceeds 13 mm ($\frac{1}{2}$ in.) in thickness and the MDMT is colder than 21°C (70°F); or

(3) joining base metals exempt from impact testing by 3.11.2.3, 3.11.2.4, and 3.11.2.5 when the MDMT is colder than -48°C (-55°F); or

(4) joining base metals from Figure 3.7 or Figure 3.8, Curves C or D, or metals exempted from impact testing by 3.11.2.4(b), and the MDMT is colder than -29° C (-20° F) but not colder than -48° C (-55° F). Qualification of the welding procedure with impact testing is not required when no individual weld pass in the fabrication weld exceeds 6 mm ($\frac{1}{4}$ in.) in thickness, and each heat and/or lot of filler metal or combination of heat and/or lot of filler metal and batch of flux has been classified by their manufacturer through impact testing per the applicable SFA specification at a temperature not warmer than the MDMT. Additional testing beyond the scope of the SFA specification may be performed by the filler metal and/or flux manufacturer to expand their classification for a broader range of temperatures.

(c) Except for welds made as part of the material specification, welds made without the use of filler metal shall be completed using welding procedures qualified with impact testing when

(1) either base metal is required to be impact tested by the rules of this Division; or

(2) the thickness at the weld exceeds 13 mm ($\frac{1}{2}$ in.) for all MDMTs, or 8 mm ($\frac{5}{16}$ in.) when the MDMT is colder than 10°C (50°F); or

(3) joining base metals exempt from testing by 3.11.2.4(b) when the MDMT is colder than -48° C (-55° F).

(23)

3.11.3 QUENCHED AND TEMPERED STEELS

3.11.3.1 Toughness Requirements for Quenched and Tempered Ferritic Steels.

(*a*) All quenched and tempered steels listed in Table 3-A.2 shall be subject to Charpy V-notch testing.

(*b*) Impact tests shall be conducted at a temperature not warmer than the MDMT determined in 4.1.5.2(d). However, in no case shall the impact test temperature be warmer than 0°C (32°F).

(c) Materials may be used at temperatures colder than the MDMT as permitted below.

(1) When the stress ratio defined in 3.11.2.5(a), Step 4 is 0.3 or less for Class 1, or 0.24 or less for Class 2, the corresponding MDMT shall not be colder than $-104^{\circ}C$ ($-155^{\circ}F$).

(2) When the stress ratio defined in 3.11.2.5(a), Step 4 is greater than 0.3 for Class 1, or 0.24 for Class 2, the corresponding MDMT shall not be colder than the impact test temperature less the allowable temperature reduction as determined in 3.11.2.5(a) and shall in no case be colder than $-104^{\circ}C$ ($-155^{\circ}F$).

3.11.3.2 Impact Testing.

(*a*) Preparation of Test Specimens – All test specimens shall be prepared from the material in its final heat-treated condition according to the requirements of 3.11.7.2.

(b) Number of Impact Tests and Test Specimens – One Charpy V-notch impact test shall consist of three test specimens. For as-rolled plates, one Charpy V-notch test shall be made from each as-rolled plate. For heat-treated plates (normalized, normalized and tempered, or quenched and tempered), one Charpy V-notch test shall be made from each plateas-heat-treated. One Charpy V-notch test shall be made from each heat of bars, pipe, tubing, rolled sections, forged parts or castings included in any one heat treatment lot. The number of impact tests shall not be less than required by the material specification.

(c) Locations and Orientation of Test Specimens – The location and orientation of the specimens shall be the same as required for Charpy type impact tests by 3.11.7.2 and 3.11.7.3 except that specimens from plates shall be transverse to the final direction of rolling and for forgings and pipe, transverse to the direction of major work (see Figure 3.14).

(d) The minimum lateral expansion shall be in accordance with 3.11.2.1(b)(2).

(e) Retesting shall be in accordance with 3.11.7.6.

3.11.3.3 Drop-Weight Tests.

(a) When the MDMT is colder than -29° C (-20° F), drop-weight tests as defined by ASTM E208, Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels, shall be made on all materials listed in Table 3-A.2, with the following exceptions:

(1) SA-522 for any MDMT;

(2) SA-353 and SA-553 when the temperature is not colder than -196°C (-320°F);

(3) SA-645 Grade A when the temperature is not colder than -170° C (-275° F).

(b) Number of Tests for Plates – For plates 16 mm ($\frac{5}{8}$ in.) thick and greater, one drop-weight test (two specimens) shall be made for each plate in the as-heat-treated condition (see 3.11.3.2).

(c) Number of Tests for Forgings and Castings – For forgings and castings of all thicknesses, one drop-weight test (two specimens) shall be made for each heat in any one heat treatment lot. The sampling procedure shall comply with the requirements of ASTM E208. Specimen locations for forgings shall be the same as specified in SA-350 for location of impact test specimens (see SA-350, paragraph 7.2.3).

(*d*) Required Test Results – Each of the two test specimens shall meet the "no-break" criterion, as defined by ASTM E208, at the test temperature.

3.11.4 HIGH ALLOY STEELS EXCEPT BOLTING

3.11.4.1 Toughness Requirements for High Alloy Steels.

(*a*) Impact tests shall be performed on high alloy materials listed in Table 3-A.3 for all combinations of materials and MDMTs except as exempted by 3.11.4.3 or 3.11.4.5. Impact testing is required for UNS \$17400 materials. Impact tests shall be made from sets of three specimens: one set from the base metal, one set from the weld metal, one set from the heat-affected zone (HAZ). Specimens shall be subjected to the same thermal treatments as the part or vessel that the specimens represent.

(*b*) When the MDMT is -196°C (-320°F) and warmer, impact tests shall be conducted at the MDMT or colder, and the minimum lateral expansion opposite the notch shall be no less than 0.38 mm (0.015 in.) for MDMTs of -196°C (-320°F) and warmer.

(c) When the MDMT is colder than -196°C (-320°F), production welding processes shall be limited to shielded metal arc welding (SMAW), flux-cored arc welding (FCAW), gas metal arc welding (GMAW), submerged arc welding (SAW), plasma arc welding (PAW), and gas tungsten arc welding (GTAW). Each heat, lot, or batch of filler metal and filler

metal/flux combination shall be pre-use tested as required by 3.11.4.5(d)(1) through 3.11.4.5(d)(3). Exemption from pre-use testing as allowed by 3.11.4.5(d)(4) and 3.11.4.5(d)(5) is not applicable. Toughness testing shall be performed as specified in (1) or (2) below, as appropriate.

(1) If using Type 316L weld filler metal, or Type 308L filler metal welded with the GTAW, FCAW, or GMAW process,

(-*a*) Weld metal deposited from each heat of Type 316L filler metal shall have a Ferrite Number (FN) no greater than 10, and a weld metal deposited from each heat of Type 308L filler metal shall have a FN in the range of 4 to 14, as measured by a ferritescope or magna gauge calibrated in accordance with AWS A4.2, or as determined by applying the chemical composition from the test weld to Figure 3.15.

(-b) Toughness tests shall be conducted at -196° C (-320° F) on three sets of three specimens: one set from the base metal, one set from the weld metal, one set from the HAZ.

(-c) Each of the three specimens from each test set shall have a lateral expansion opposite the notch not less than 0.53 mm (0.021 in.).

(2) When the qualifying conditions of (1) cannot be met:

(-*a*) Weld metal deposited from each heat or lot of austenitic stainless steel filler metal used in production shall have a FN no greater than the FN determined for the test weld.

(-b) Toughness tests shall be conducted at -196° C (-320° F) on a set of three specimens from the base metal. Each of three specimens shall have a lateral expansion opposite the notch no less than 0.53 mm (0.021 in.).

(-c) ASTM E1820 J_{Ic} tests shall be conducted on two sets of two specimens: one set from the HAZ, one set from the weld metal, at a test temperature no warmer than MDMT. The HAZ specimen orientation shall be T-L. A K_{Ic} (J) value no less than 132 MPa \sqrt{m} (120 ksi \sqrt{in}) is required for all specimens tested.

(3) When the required toughness test specimens do not meet the lateral expansion requirements in (1)(-c) or (2)(-b), ASTM E1820 J_{Ic} tests shall be conducted on an additional set of two specimens representing the failed set of toughness test specimens at a test temperature no warmer than MDMT. The specimen orientation for the base metal and HAZ shall be T-L. A K_{Ic} (J) value no less than 132 MPa \sqrt{m} (120 ksi \sqrt{in} .) is required for all specimens tested.

3.11.4.2 Required Impact Tests When Thermal Treatments Are Performed. Impact tests are required at the test temperature in accordance with 3.11.4.1 but no warmer than 21°C (70°F) whenever thermal treatments within the temperature ranges listed for the following materials are applied.

(a) Austenitic stainless steels thermally treated between 480°C and 900°C (900°F and 1,650°F), except for Types 304, 304L, 316, and 316L which are thermally treated at temperatures between 480°C and 705°C (900°F and 1,300°F), are exempt from impact testing, provided the MDMT is -29°C (-20°F) and warmer and vessel production impact tests of the thermally treated weld metal are performed for Category A and B joints.

(b) Austenitic-ferritic duplex stainless steels thermally treated at temperatures between 315°C and 955°C (600°F and 1,750°F).

(c) Ferritic chromium stainless steels and martensitic chromium stainless steels thermally treated at temperatures between 425°C and 730°C (800°F and 1,350°F).

Thermal treatments of materials do not include thermal cutting.

3.11.4.3 Exemptions From Impact Testing for Base Materials and HAZs. Impact testing is not required for the following combinations of base metals and HAZs (if welded) and MDMT, except as modified in 3.11.4.2.

(a) For austenitic chromium-nickel stainless steels as follows:

(1) Those having a carbon content not exceeding 0.10% at MDMTs of $-196^{\circ}C$ ($-320^{\circ}F$) and warmer. (The value of the carbon content may be specified by the purchaser, or must be within the limits of the material specification.);

(2) Those types having a carbon content exceeding 0.10% (the value of the carbon content may be as specified by the purchaser) at MDMTs of -48° C (-55° F) and warmer;

(3) For castings at MDMTs of -29° C (-20° F) and warmer.

(b) For austenitic chromium-manganese-nickel stainless steels (200 series) as follows:

(1) Having a carbon content not exceeding 0.10% at MDMTs of -196°C (-320°F) and warmer;

(2) Having a carbon content exceeding 0.10% at MDMTs of -48°C (-55°F) and warmer;

(3) For castings at MDMTs of -29° C (-20° F) and warmer.

(c) For the following steels in all product forms at MDMTs of -29°C (-20°F) and warmer:

(1) Austenitic-ferritic duplex steels with a nominal material thickness of 10 mm ($\frac{3}{8}$ in.) and thinner;

(2) Ferritic chromium stainless steels with a nominal material thickness of 3 mm ($\frac{1}{8}$ in.) and thinner;

(3) Martensitic chromium stainless steels with a nominal material thickness of 6 mm $\binom{1}{4}$ in.) and thinner.

(*d*) Impact tests are not required where the maximum obtainable Charpy specimen has a width along the notch less than 2.5 mm (0.099 in.).

ASME BPVC.VIII.2-2023

(e) Impact testing of materials is not required, except as modified by 3.11.4.2, when the coincident ratio of applied stress in tension to allowable tensile stress is less than 0.3 for Class 1, or 0.24 for Class 2. The applied stress is the stress from pressure and non-pressure loadings, including those listed in Table 4.1.1 which result in general primary membrane tensile stress.

3.11.4.4 Exemptions From Impact Testing for Welding Procedure Qualifications. For welding procedure qualifications, impact testing is not required for the following combinations of weld metals and MDMT except as modified by 3.11.4.2.

(a) For austenitic chromium-nickel stainless steel base materials having a carbon content not exceeding 0.10%, welded without the addition of filler metal, at MDMTs of $-104^{\circ}C$ ($-155^{\circ}F$) and warmer.

(b) For austenitic weld metal:

(1) Having a carbon content not exceeding 0.10% and produced with filler metals conforming to SFA-5.4, SFA-5.9, SFA-5.11, SFA-5.14, and SFA-5.22 at MDMTs of $-104^{\circ}C$ ($-155^{\circ}F$) and warmer;

(2) Having a carbon content exceeding 0.10% and produced with filler metals conforming, to SFA- 5.4, SFA-5.9, SFA-5.11, SFA-5.14, and SFA-5.22 at MDMTs of -48° C (-55° F) and warmer.

(c) For the following weld metal, if the base metal of similar chemistry is exempt as stated in 3.11.4.3(c) above, then the weld metal shall also be exempt at MDMTs of -29° C (-20° F) and warmer:

(1) Austenitic-ferritic duplex steels;

(2) Ferritic chromium stainless steels; and

(3) Martensitic chromium stainless steels.

(23) **3.11.4.5** Required Impact Testing for Austenitic Stainless Steel Welding Consumables With MDMT Colder Than -104°C (-155°F). For production welds at MDMTs colder than -104°C (-155°F), all of the following conditions shall be satisfied:

(a) The welding processes are limited to SMAW, SAW, FCAW, GMAW, GTAW, and PAW;

(*b*) The applicable Welding Procedure Specifications (WPSs) are supported by Procedure Qualification Records (PQRs) with impact testing in accordance with the requirements of 3.11.7 and 3.11.4.1, or when the applicable PQR is exempted from impact testing by other provisions of this Division;

(c) The weld metal (produced with or without filler metal) has a carbon content not exceeding 0.10%, except when using ER310 or SFA-5.4 E310-15 or E310-16.

(*d*) The weld metal is produced by filler metal conforming to Section II, Part C, SFA-5.4, SFA-5.9, SFA-5.11, SFA-5.14, and SFA-5.22 as modified below.

(1) Each heat and/or lot of welding consumables to be used in production welding with the SMAW, FCAW, and GMAW processes shall be pre-use tested by conducting impact tests in accordance with 3.11.4.1. Test coupons shall be prepared in accordance with Section II, Part C, SFA-5.4, A9.3.5 utilizing the WPS to be used in production welding.

(2) Each heat of filler metal and batch of flux combination to be used in production welding with the SAW process shall be pre-use tested by conducting impact tests in accordance with 3.11.4.1. Test coupons shall be prepared in accordance with Section II, Part C, SFA-5.4, A9.3.5 utilizing the WPS to be used in production welding.

(3) Combining more than one welding process or more than one heat, lot, and/or batch of welding material into a single test coupon is unacceptable. Pre-use testing in accordance with 3.11.4.1 may be conducted by the welding consumable manufacturer, provided mill test reports are furnished with the consumables.

(4) The following filler metals may be used without pre-use testing of each heat, lot, and/or batch provided that the procedure qualification impact testing in accordance with 3.11.8 at the MDMT or colder is performed using the same manufacturer brand and type filler metal: ENiCrFe-2; ENiCrFe-3; ENiCrMo-3; ENiCrMo-4; ENiCrMo-6; ERNiCr-3; ERNiCrMo-3; ERNiCrMo-4; SFA-5.4, E310-15 or 16.

(5) The following filler metals may be used without pre-use testing of each heat and/or lot provided that procedure qualification impact testing in accordance with 3.11.8 at the MDMT or colder is performed: ER308L, ER316L, and ER310 used with the GTAW or PAW processes.

3.11.4.6 Required Impact Testing for Vessel Production Test Plates.

(*a*) For welded construction, of duplex stainless steels, ferritic stainless steels and martensitic stainless steels, vessel production impact tests in accordance with 3.11.8.4 are required if the welding procedure qualification requires impact testing, unless otherwise exempted by the rules of this Division.

(*b*) For welded construction of austenitic stainless steels, vessel (production) impact tests in accordance with 3.11.8.4 are required unless exempted as follows in (1) and (2):

(1) At MDMTs of -104°C (-155°F) and warmer, vessel (production) impact tests are exempted, provided the impact test exemption requirements for the applicable Weld Procedure Qualification in 3.11.4.4 are satisfied.

(2) At MDMTs colder than -104°C (-155°F) but no colder than -196°C (-320°F), vessel (production) impact tests are exempted, provided the pre-use test requirements in 3.11.4.5 are satisfied.

(23)

(3) At MDMTs colder than -196° C (-320° F), vessel (production) impact tests or ASTM E1820 J_{Ic} tests shall be conducted in accordance with 3.11.4.1(c).

(c) Vessel Production Impact Testing for Autogeneous Welds in Austenitic Stainless Steels – For autogenous welds (welded without filler metal) in austenitic stainless steels, vessel (production) impact tests are not required when all of the following conditions are satisfied:

(1) The material is solution annealed after welding.

(2) The MDMT is not colder than $-196^{\circ}C$ ($-320^{\circ}F$).

3.11.5 NONFERROUS ALLOYS

3.11.5.1 Nonferrous materials listed in Tables 3-A.4 through 3-A.7, together with deposited weld metal within the range of composition for material in that Table, do not undergo a marked drop in impact resistance at subzero temperature. Therefore, additional requirements are not specified for:

(a) Wrought aluminum alloys when they are used at temperature down to $-269^{\circ}C$ ($-452^{\circ}F$);

(b) Copper and copper alloys, nickel and nickel alloys, and cast aluminum alloys when they are used at temperatures down to -198° C (-325° F); and

(c) Titanium or zirconium and their alloys used at temperatures down to -59° C (-75° F).

3.11.5.2 The nonferrous materials listed in Tables 3-A.4 through 3-A.7 may be used at lower temperatures than those specified herein and for other weld metal compositions, provided the user satisfies himself by suitable test results such as determinations of tensile elongation and sharp-notch tensile strength (compared to unnotched tensile strength) that the material has suitable ductility at the design temperature.

3.11.6 BOLTING MATERIALS

3.11.6.1 Bolting Materials for Use With Flanges Designed to 4.16.

(*a*) Impact tests are not required for bolting materials listed in Tables 3.4, 3.5, 3.6, and 3.7 when used at MDMTs equal to or warmer than those shown in these Tables.

(b) Bolting materials produced and impact tested in accordance with the requirements of the specifications in (1) through (4) are exempt from impact testing by the rules of this Division at MDMTs not more than 3°C (5°F) colder than the test temperature required by the specification.

(1) SA-320

(2) SA-437

(3) SA-508 Grade 5 Class 2

(4) SA-540, except for materials produced under Table 2, note 4 in this specification

(*c*) Bolting materials to be used for colder temperatures than those shown in Tables 3.4 and 3.5 shall be impact tested. When impact testing is performed

(1) for materials listed in Table 3.4, Charpy V-notch acceptance criteria in accordance with 3.11.2.1(b) shall be applied

(2) for materials listed in Table 3.5, Charpy V-notch acceptance criteria in accordance with 3.11.4.1(b) shall be applied

3.11.6.2 Bolting Materials for Use With Flanges Designed to Part 5 of This Division. Impact testing is required for the ferrous bolting materials listed in Table 3-A.11 for use with flanges designed in accordance with Part 5 of this Division. The average for three Charpy V-notch impact specimens shall be at least 41 J (30 ft-lb), with the minimum value for any individual specimen not less than 34 J (25 ft-lb).

3.11.7 TOUGHNESS TESTING PROCEDURES

3.11.7.1 Test Procedures.

(*a*) Impact test procedures and apparatus shall conform to the applicable paragraphs of SA-370 or ISO 148 (Parts 1, 2, and 3).

(b) The impact test temperature shall not be warmer than the MDMT [see 4.1.5.2(e)].

3.11.7.2 Test Specimens.

(a) Each set of impact tests shall consist of three specimens.

(b) The impact test specimens shall be of the Charpy V-notch type and shall conform in all respects to the specimen requirements of SA-370 (for Type A specimens). The standard full-size ($10 \text{ mm} \times 10 \text{ mm}$) specimen, when obtainable, shall be used, except that for materials that normally have absorbed energy in excess of 244 J (180 ft-lb) when tested

ASME BPVC.VIII.2-2023

using full size specimens at the specified testing temperature, subsize $(10 \text{ mm} \times 6.7 \text{ mm})$ specimens may be used in lieu of full-size specimens. However, when this option is used, the acceptance value shall be 102 J (75 ft-lb) minimum for each specimen.

(c) For material from which full-size specimens cannot be obtained, either due to the material shape or thickness, the specimens shall be either the largest possible subsize specimen obtainable or specimens of full material thickness which may be machined to remove surface irregularities [the test temperature criteria of 3.11.7.5 shall apply for carbon and low alloy materials having a specified minimum tensile strength less than 655 MPa (95 ksi) when the width along the notch is less than 80% of the material thickness]. Alternatively, such material may be reduced in thickness to produce the largest possible Charpy subsize specimen. Toughness tests are not required where the maximum obtainable Charpy specimen has a width along the notch less than 2.5 mm (0.099 in.), but carbon steels too thin to impact test shall not be used for design temperatures colder than -48° C (-55° F), subject to the exemptions provided by 3.11.2.9.

3.11.7.3 Product Forms.

(*a*) Impact test specimens of each product form shall be located and oriented in accordance with the requirements of 3.10.4.

(*b*) The manufacturer of small parts, either cast or forged, may certify a lot of not more than 20 duplicate parts by reporting the results of one set of impact specimens taken from one such part selected at random, provided the same specification and heat of material and the same process of production, including heat treatment, were used for all of the lot. When the part is too small to provide the three specimens of at least minimum size indicated in 3.11.7.2, then impact test do not need to be performed [see 3.11.7.2(c)].

3.11.7.4 Certification of Compliance With Impact Test Requirements.

(*a*) Certified reports of impact tests by the materials manufacturer will be acceptable evidence that the material meets the requirements of this paragraph, provided:

(1) The specimens taken are representative of the material delivered [see 3.11.7.3(a)] and the material is not subjected to heat treatment during or following fabrication that will materially reduce its impact properties; or

(2) The materials from which the specimens are removed are heat treated separately such that they are representative of the material in the finished vessel.

(b) The Manufacturer of the vessel may have impact tests made to prove the suitability of a material which the materials manufacturer has not impact tested, provided the number of tests and the method of taking the test specimens shall be as specified for the materials manufacturer.

3.11.7.5 Impact Test Temperature Criteria. For all Charpy impact tests, the following test temperature criteria shall be observed.

(*a*) Materials of Thickness Equal to or Greater Than 10 mm (0.394 in.) – Where the largest obtainable Charpy V-notch specimen has a width along the notch of at least 8 mm (0.315 in.), the Charpy test of such a specimen shall be conducted at a temperature not warmer than the MDMT. Where the largest possible test specimen has a width along the notch less than 8 mm (0.315 in.), the test shall be conducted at a temperature colder than the MDMT by the amount shown in Table 3.11 for the specimen width. Note that this requirement does not apply when the option of 3.11.7.2(b) is used.

(*b*) Materials With Thickness Less Than 10 mm (0.394 in.) – Where the largest obtainable Charpy V-notch specimen has a width along the notch of at least 80% of the material thickness, the Charpy test of such a specimen shall be conducted at a temperature not warmer than the MDMT. Where the largest possible test specimen has a width along the notch of less than 80% of the material thickness, the test for carbon steel and low alloy materials having a specified minimum tensile strength of less than 655 MPa (95 ksi) shall be conducted at a temperature colder than the MDMT by an amount equal to the difference, see Table 3.11, between the temperature reduction corresponding to the actual material thickness and the temperature reduction corresponding to the Charpy specimen width actually tested. This requirement does not apply when the option of 3.11.7.2(b) is used. For Table 3-A.2, carbon and low alloy materials having a specified minimum tensile strength greater than or equal to 655 MPa (95 ksi), for high alloy materials and quenched and tempered material with enhanced tensile properties, the test shall be conducted at a temperature not warmer than the MDMT.

3.11.7.6 Retests.

(*a*) Absorbed Energy Criteria – If the absorbed energy criteria are not met, retesting in accordance with the applicable procedures of SA-370 shall be permitted.

(b) Lateral Expansion Criteria – retests shall be performed as follows:

(1) Retesting is permitted if the average value for three specimens equals or exceeds the value required.

(-*a*) For materials of Table 3-A.1 (carbon and low alloy steels) having specified minimum tensile strengths of 655 MPa (95 ksi) or greater, if the measured value of lateral expansion for one specimen in a group of three is less than that required in Figure 3.6.

(-b) For materials of Table 3-A.3 (high alloy steels) for MDMTs no colder than -196 °C (-320 °F), if the measured value of lateral expansion for one specimen in a group of three is less than 0.38 mm (0.015 in.), but not less than two-thirds of the value required.

(-c) For materials of Table 3-A.3 (high alloy steels) for for MDMTs colder than -196°C (-320°F), if the value of lateral expansion for one specimen of a set is less than 0.53 mm (0.021 in.).

(-d) For materials of Table 3-A.2 (Q&T steel with enhanced strength properties), if the measured value of lateral expansion for one specimen in a group of three is less than that required in Figure 3.6 but not less than two-thirds of the required value.

(2) The retest shall consist of three additional specimens. For materials of Table 3-A.1 (carbon and low alloy steels) having specified minimum tensile strengths of 655 MPa (95 ksi) or greater and for Table 3-A.2 (Q&T steels with enhanced strength properties) materials, the retest value for each specimen must equal or exceed the value required in Figure 3.6. For materials of Table 3-A.3 (high alloy steels), the retest value for each specimen must equal or exceed 0.38 mm (0.015 in.) for MDMTs no colder than -196°C (-320°F). For MDMTs colder than -196°C (-320°F), see 3.11.2.1(b)(2) and 3.11.4.1(b).

(3) In the case of materials with properties enhanced by heat treatment, the material may be reheat treated and retested if the required values are not obtained in the retest or if the values in the initial test are less than the values required for retest. After reheat treatment, a set of three specimens shall be made; for acceptance, the lateral expansion of each of the specimens must equal or exceed the value required in Figure 3.6.

(c) When an erratic result is caused by a defective specimen or there is uncertainty in the test procedure, a retest will be allowed. When the option of 3.11.7.2(b) is used for the initial test and the acceptance of 102 J (75 ft-lb) minimum is not attained, a retest using full-size (10 mm × 10 mm) specimens will be allowed.

3.11.8 IMPACT TESTING OF WELDING PROCEDURES AND TEST PLATES OF FERROUS MATERIALS (23)

3.11.8.1 Impact Tests.

(a) For steel vessels of welded construction, the impact toughness of welds and heat-affected zones of procedure qualification test plates and vessel test plates (production impact test plates) shall be determined as required in this paragraph.

(b) All test plates shall be subjected to heat treatment, including the aggregate time at temperature or temperatures as established by the manufacturer for use in actual manufacture. Heat treatment requirements of 3.10.2, 3.10.4, and 6.4.2 shall apply to test plates, except that the provisions of 3.10.3.2 are not applicable to test plates for welds joining P-No. 3, Groups 1 and 2 materials. For P-No. 1, Groups 1, 2, and 3 materials, impact testing of the welds and heat-affected zones of the weld procedure qualification and production test plates need not be repeated when the fabrication heat treatment differs from the heat treatment applied to the test plates, provided the PWHT or simulated heat treatment cycles applied to the test plates and the production welds were applied observing the holding temperatures and times specified in Table 6.8 or the holding temperatures and times permitted in Table 6.16.

3.11.8.2 Weld Impact Testing.

(*a*) The impact specimens shall be full size or the largest subsize Charpy V-notch specimens that can be obtained from the material to be tested. The specimens shall be oriented so that the notch is perpendicular to the surface of the material. Where the maximum obtainable specimen has a width along the notch less than 2.5 mm (0.099 in.), impact tests are not required.

(b) Each set of weld metal specimens shall be tested using specimens taken transverse to the weld axis with the notch in the weld metal. One face of the specimen shall be within 1.5 mm ($\frac{1}{16}$ in.) of the surface of the material except that the specimens may be located at any depth when the weld has been postweld heat treated.

(*c*) Each set of heat-affected zone specimens shall be tested using specimens taken transverse to the axis of the weld. Specimens shall be of sufficient length to locate, after etching, the fusion line.

(1) When the material to be tested is less than 25 mm (1 in.) thick, the specimens shall be taken at the depth that maximizes the amount of the heat-affected zone at the notch centerline. When the material to be tested is 25 mm (1 in.) thick or thicker, the centerline of the specimens shall be located between one-half and one-quarter of the material thickness below the surface. See Figure 3.16.

(2) The notch shall be normal to the material surface. Where the angle of the heat-affected zone is approximately normal to the material surface, the notch centerline shall be approximately 1 mm (0.04 in.) from the fusion line. When the heat-affected zone is at an angle to the material surface, the middle of the notch centerline shall be located approximately 2 mm (0.08 in.) from the fusion line as shown in Figure 3.17.

(*d*) For welds made by a solid-state welding process, such as for electric resistance-welded (ERW) pipe, the weld impact tests shall consist only of one set of three specimens taken across the weld with the notch at the weld centerline. Each specimen shall be oriented so that the notch is normal to the surface of the material and one face of the specimen shall be within 1.5 mm ($^{1}/_{16}$ in.) of the surface of the material.

(e) The test temperature for welds and heat-affected zones shall not be higher than for the base materials.

(f) Impact values shall be at least as high as those required for the base materials (see 3.11.2, 3.11.3, and 3.11.4, as applicable).

(g) When qualifying a WPS for welding base metals having different impact testing requirements and acceptance criteria, the following shall apply:

(1) The weld metal impact test specimens shall meet the acceptance criteria for either base metal.

(2) When HAZ tests are required, separate test specimens shall be removed from the HAZ of each base metal that requires impact testing, and those specimens shall meet the acceptance criteria for the base metal from which they were removed.

3.11.8.3 Impact Tests of Welding Procedure Qualification Test Coupons.

(*a*) Welding procedure specifications shall be qualified with impact testing when base materials are required to be impact tested, except as exempted by 3.11.4.4 and 3.11.2.10.

(*b*) If impact tests are required for the weld, but the base material is exempted from impact tests, the test coupon shall be made from the same P-Number and Group number material as that of the vessel. Testing of the weld metal shall be in accordance with 3.11.8.2.

(c) Welding procedures used for fillet welds shall be qualified by a groove weld test. The qualification test plate or pipe material shall meet the requirements of 3.11.7 when impact testing is a requirement.

(*d*) When impact testing is a requirement, the supplementary essential variables in Section IX, QW-250 and the following shall apply:

(1) The weld metal and heat-affected zones of the procedure qualification test coupons shall be tested in accordance with 3.11.8.2.

(2) A joint design where only one side of the joint is beveled (i.e., a single- or double-bevel groove weld) should be used to sample as much of the heat-affected zone as possible. See Figure 3.17.

(e) For materials of Table 3-A.1 (carbon steel and low alloy steel), the test plate material shall satisfy the following requirements relative to the material to be used in production:

(1) The test coupon material shall be in the same heat-treatment condition (as-rolled, normalized, quenched and tempered, etc.) before welding as the vessel to be constructed. The heat-treatment condition shall be recorded on the PQR and specified on the WPS. This requirement does not apply to P-No. 1, Gr. Nos. 1 and 2 materials except for SA-737 and SA-841.

(2) The test coupon material shall meet the minimum toughness requirements 3.11.2, 3.11.3, and 3.11.4, as applicable for the thickest material of the range of base material qualified by the procedure.

(*f*) Each welding process shall be qualified using impact tests. More than one set of specimens may be required to satisfy this requirement and 3.11.8.2. Each process may be qualified using single- or multiprocess test coupons. If more than one set of essential or supplementary essential variables for a process is recorded on a procedure qualification record (e.g., a change in filler metal F-number), the requirements in (1) though (4) for multiprocess testing shall apply to each set of essential or supplementary essential variables as if that set were a separate welding process. When more than one welding process is included in a test coupon

(1) the specimens shall be full size or the largest subsize specimen that can be obtained based on the thickness of the test coupon. The weld metal test specimens shall contain as much of the weld metal from each process as is practical. When the test coupon contains more than two welding processes, it is not possible to locate specimens within 1.5 mm $\binom{1}{16}$ in.) of a surface. In this case, additional weld metal impact specimens shall be taken at the thickness where those processes are located.

(2) when specimens contain weld metal from more than one process, the test results apply to all those processes contained in the specimens.

(3) heat-affected zone specimens shall be prepared from material that was removed at the thickness plane associated with weld metal from each process. These specimens may contain material that was affected by the heat from more than one welding process

(4) procedure qualifications that were made in accordance with the 2017 or later Edition where subsize specimens were tested remain acceptable.

3.11.8.4 Vessel Production Weld Impact Testing.

(*a*) When the base material or welding procedure qualification requires impact testing, impact tests of welds and heataffected zones shall be made for Category A and B joints in accordance with 3.11.8.2 and 3.11.8.3 for each qualified welding procedure followed on each vessel. The test plate shall be from one of the heats of steel used for the vessel or group of vessels and shall be welded as an extension to the end of a production Category A joint where practicable, or welded as close to the start of production welding as practicable, utilizing equipment, welding materials, and procedures which are to be used on the production joint. The test plate shall also represent each welding process or welding process combination used in production on Category A joints.

(*b*) For Category B joints that are welded following a different welding procedure than used on Category A joints, a test plate shall be welded under the production welding conditions used for the vessel, using the same type of equipment and at the same location and following the same procedures as used for the joint, and it shall be welded concurrently with the production welds or as close to the start of production welding as practicable. The test plate shall also represent each welding process or welding process combination used in production on Category B joints.

(c) Number of Vessel Impact Test Plates Required

(1) For each vessel, one test plate shall be made for each welding procedure used for joints of Categories A and B, unless the vessel is one of several as defined in (2). In addition, for Category A and B joints, the following requirements shall apply:

(-*a*) If automatic, machine, or semiautomatic welding is performed, a test plate shall be made in each position employed in the vessel welding.

(-b) If manual welding is also employed, a test plate shall be made in the flat position only, except if welding is to be performed in other positions a test plate need be made in the vertical position only (where the major portions of the layers of welds are deposited in the vertical upward direction). The vertically welded test plate will qualify the manual welding in all positions.

(2) For several vessels or parts of vessels, welded within any 3 month period at one location, the plate thickness of which does not vary by more than 6 mm ($\frac{1}{4}$ in.) or 25%, whichever is greater, and of the same specification and grade of material, a test plate shall be made for each 122 m (400 ft) of joints welded by the same procedure.

(*d*) If the vessel test plate fails to meet the impact requirements, the welds represented by the test plate shall be unacceptable. Reheat treatment and retesting, or retesting only, are permitted.

3.12 ALLOWABLE DESIGN STRESSES

The design stresses for materials permitted by this Division are given in Annex 3-A.

3.13 STRENGTH PARAMETERS

The strength parameters for materials permitted by this Division are given in Annex 3-D.

3.14 PHYSICAL PROPERTIES

The following physical properties for all permissible materials of construction are given in the tables referenced in Annex 3-E.

- (a) Young's Modulus
- (b) Thermal Expansion Coefficient
- (c) Thermal Conductivity
- (d) Thermal Diffusivity

3.15 DESIGN FATIGUE CURVES

Design fatigue curves for nonwelded and for welded construction are provided in Annex 3-F. As an alternative, the adequacy of a part to withstand cyclic loading may be demonstrated by means of fatigue test following the requirements of Annex 5-F. However, the fatigue test shall not be used as justification for exceeding the allowable values of primary or primary plus secondary stresses.

3.16 DESIGN VALUES FOR TEMPERATURES COLDER THAN -30°C (-20°F)

For design temperatures colder than -30° C (-20° F), the allowable design stress values and strength parameter values to be used in design shall not exceed those given in the pertinent tables in Section II, Part D for -30° C to 40° C (-20° F to 100° F), unless specifically addressed elsewhere in this Division.

3.17 NOMENCLATURE

- a = reference flaw depth
- 2c = reference flaw length
- $E = \text{joint efficiency (see Part 7) used in the calculation of } t_r$. For castings, the quality factor or joint efficiency E, whichever governs design, shall be used.
- $E^* = E^*$ equal to E except that E^* shall not be less than 0.80, or $E^* = \max[E, 0.80]$
- CA = corrosion allowance
- MDMT = minimum design metal temperature
 - P_a = applied pressure for the condition under consideration
- P_{rating} = maximum allowable working pressure based on the design rules in this Division of ASME/ANSI pressuretemperature ratings
 - R_{ts} = stress ratio defined as the stress for the operating condition under consideration divided by the stress at the design minimum temperature. The stress ratio may also be defined in terms of required and actual thicknesses, and for components with pressure-temperature ratings, the stress ratio is computed as the applied pressure for the condition under consideration divided by the pressure rating at the MDMT.
 - S = allowable stress from Annex 3-A
 - $S_{y_{\downarrow}}$ = specified minimum yield strength
 - S^* = applied general primary stress
 - *t* = reference flaw plate thickness
 - t_g = governing thickness
 - t_n = nominal uncorroded thickness. For welded pipe where a mill undertolerance is allowed by the material specification, the thickness after mill undertolerance has been deducted shall be taken as the nominal thickness. Likewise, for formed heads, the minimum specified thickness after forming shall be used as the nominal thickness.
 - t_r = required thickness of the part under consideration in the corroded condition for all applicable loadings
 - T_R = reduction in MDMT based on available excess thickness

3.18 DEFINITIONS

The definitions for the terminology used in this Part are contained in Annex 1-B.

3.19 TABLES

Г

Nominal Composition	Type/Grade	Specification	Product Form
2 ¹ / ₄ Cr–1Mo	Grade F22, Cl. 1	SA-182	Forgings
	Grade F22, Cl. 3	SA-182	Forgings
	Grade T22	SA-213	Smls. tube
	Grade WC9	SA-217	Castings
	Grade WP22, Cl. 1	SA-234	Smls. and wld. fittings
	Grade P22	SA-335	Smls. pipe
	Grade F22, Cl. 1	SA-336	Forgings
	Grade F22, Cl. 3	SA-336	Forgings
	Grade FP22	SA-369	Forged pipe
	Grade 22, Cl. 1	SA-387	Plate
	Grade 22, Cl. 2	SA-387	Plate
	Grade 8, Cl. A	SA-487	Castings
	Grade 22, CI. 3	SA-508	Forgings
	Grade 22, CI. 3	SA-541	Forgings
	Type B, CI. 4	SA-542	Plates
	Grade B22	SA-739	Bar
	Grade 10CrMo9-10	SA/EN 10028-2	Plates
	[Note (1)]	CA /EN 10222 2	Fourings
	Grade 11CrMo9-10 [Note (1)]	SA/EN 10222-2	Forgings
1 1			
2 ¹ / ₄ Cr-1Mo- ¹ / ₄ V	Grade F22V	SA-182	Forgings
	Grade F22V	SA-336	Forgings
	Grade 22V	SA-541	Forgings
	Type D, CI. 4a	SA-542	Plates
	Grade 22V	SA-832	Plates
3Cr–1Mo–¼V–Cb–Ca	Grade F3VCb	SA-182	Forgings
	Grade F3VCb	SA-336	Forgings
	Grade 3VCb	SA-508	Forgings
	Grade 3VCb	SA-541	Forgings
	Type E, Cl. 4a	SA-542	Plates
	Grade 23V	SA-832	Plates
3Cr-1Mo- ¹ / ₄ V-Ti-B	Grade F3V	SA-182	Forgings
	Grade F3V	SA-336	Forgings
	Grade 3V	SA-508	Forgings
	Grade 3V	SA-541	Forgings
	Type C, CI. 4a	SA-542	Plates
	Grade 21 V	SA-832	Plates

Table 3.2 Composition Requirements for 2.25Cr–1Mo–0.25V Weld Metal									
Welding Process	С	Mn	Si	Cr	Мо	Р	S	v	Cb
SAW	0.05-0.15	0.50-1.30	0.05-0.35	2.00-2.60	0.90-1.20	0.015 max	0.015 max	0.20-0.40	0.010-0.04
SMAW	0.05-0.15	0.50-1.30	0.20-0.50	2.00-2.60	0.90-1.20	0.015 max	0.015 max	0.20-0.40	0.010-0.04
GTAW	0.05-0.15	0.30-1.10	0.05-0.35	2.00-2.60	0.90-1.20	0.015 max	0.015 max	0.20-0.40	0.010-0.04
GMAW	0.05-0.15	0.30 - 1.10	0.20-0.50	2.00-2.60	0.90 - 1.20	0.015 max	0.015 max	0.20-0.40	0.010-0.04

89

(**23**)

Table Toughness Requirements f	
Number of Specimens	Impact Energy, J (ft-lb)
Average of 3	54 (40)
Only one in the set	48 (35)
GENERAL NOTE: Full size Charpy V-notch, transverse, tested at the M	4DMT.

Material Specification	Material Type/Grade	Diameter, mm (in.)	MDMT Without Impact Testing, °C (°F)
opeeniewien	Material Type/ drade	Low Alloy Bolting	
	B5	Up to 102 (4), inclusive	-29 (-20)
	B7	$64 (2^{1}/_{2})$ and under	-48 (-55)
		Over 64 to 102 $(2^{1}/_{2} \text{ to 4})$, inclusive	-40 (-40)
		Over 102 to 178 (4 to 7), inclusive	-40 (-40)
SA-193	B7M	64 $(2^{1}/_{2})$ and under	-48 (-55)
	B16	$64 (2^{1}/_{2})$ and under	-29 (-20)
		Over 64 to 102 $(2^{1}/_{2} \text{ to } 4)$, inclusive	-29 (-20)
		Over 102 to 178 (4 to 7), inclusive	-29 (-20)
	L7	64 $(2^{1}/_{2})$ and under	See 3.11.6.1(b)
	L7 A	Up to 64 $(2^{1}/_{2})$, inclusive	See 3.11.6.1(b)
SA-320	L7M	64 $(2^{1}/_{2})$ and under	See 3.11.6.1(b)
	L43	25 (1) and under	See 3.11.6.1(b)
SA-325	1	13 to 38 ($\frac{1}{2}$ to $1\frac{1}{2}$), inclusive	-29 (-20)
	BC	Up to 102 (4),	-18 (0)
SA-354	BD	Up to 102 (4), inclusive	-7 (+20)
SA-437	B4B, B4C	All diameters	See 3.11.6.1(b)
SA-449		Up to 76 (3), inclusive	-29 (-20)
SA-508	5 CI. 2	All diameters	See 3.11.6.1(b)
	B21	All diameters	Impact test is required
	B23 CI. 1 & 2	All diameters	Impact test is required
	B23 CI. 3 & 4	Up to 152 (6), inclusive	See 3.11.6.1(b)
		Over 152 to 241 (6 to $9^{1}/_{2}$), inclusive	Impact test is required
	B23 CI. 5	Up to 203 (8), inclusive	See 3.11.6.1(b)
		Over 203 to 241 (8 to $9^{1}/_{2}$), inclusive	Impact test is required
CA 540	B24 CI. 1	Up to 152 (6), inclusive	See 3.11.6.1(b)
SA-540		Over 152 to 203 (6 to 8), inclusive	Impact test is required
	B24 CI. 2	Up to 178 (7), inclusive	See 3.11.6.1(b)
		Over 178 to 241 (7 to 9^{1}_{2}), inclusive	Impact test is required
	B24 CI. 3 & 4	Up to 203 (8), inclusive	See 3.11.6.1(b)
		Over 203 to 241 (8 to $9^{1}/_{2}$), inclusive	Impact test is required
	B24 CI. 5	Up to 241 $(9\frac{1}{2})$, inclusive	See 3.11.6.1(b)
	B24V CI. 3	All diameters	See 3.11.6.1(b)
		Low Alloy Steel Nuts	
SA-194	2, 2H, 2HM, 3, 4, 7, 7M, 16	All diameters	-48 (-55)
SA-540	B21, B23, B24, B24V	All diameters	-48 (-55)

(**23**)

Material Specification	Material Type/Grade	Diameter, mm (in.)	MDMT Without Impact Testing, °C (°F)
SA-193	B6	102 (4) and under	-29 (-20)
011 170	B8 CI. 1	All diameters	-254 (-425)
	B8 CI. 2	Up to 38 $(1^{1}/_{2})$, inclusive	Impact test is required
	B8C CI. 1	All diameters	-254 (-425)
	B8C CI. 2	19 to 38 (0.75 to 1^{1}_{2}), inclusive	Impact test is required
SA-193	B8M CI. 1	All diameters	-254 (-425)
	B8M2	51 to 64 (2 to $2^{1}/_{2}$), inclusive	Impact test is required
	B8MNA CI. 1A	All diameters	-196 (-320)
	B8NA CI. 1A	All diameters	-196 (-320)
	B8P CI. 1	All diameters	Impact test is required
	B8P CI. 2	Up to 38 $(1^{1}/_{2})$, inclusive	Impact test is required
	B8S, 88SA	All diameters	Impact test is required
	B8T CI. 1	All diameters	-254 (-425)
	B8T CI, 2	19 to 25 ($\frac{3}{4}$ to 1), inclusive	Impact test is required
SA-320	B8 CI. 1	All diameters	See 3.11.6.1(b)
	B8 CI. 2	Up to 25 (1), inclusive	See 3.11.6.1(b)
	B8A CI. 1A	All diameters	See 3.11.6.1(b)
	B8C CI. 1 & 1A	All diameters	See 3.11.6.1(b)
	B8C CI. 2	Up to 25 (1), inclusive	See 3.11.6.1(b)
	B8CA CI. 1A	All diameters	See 3.11.6.1(b)
	B8F CI. 1	All diameters	See 3.11.6.1(b)
	B 8FA CI. 1A	All diameters	See 3.11.6.1(b)
	B8M CI. 1	All diameters	See 3.11.6.1(b)
	B8M CI. 2	Up to 38 $(1^{1}/_{2})$, inclusive	See 3.11.6.1(b)
	B8MA CI. 1A	All diameters	See 3.11.6.1(b)
	B8T CI. 1	All diameters	See 3.11.6.1(b)
	B8T CI. 2	Up to 38 $(1^{1}/_{2})$, inclusive	See 3.11.6.1(b)
	B8TA CI. 1A	All diameters	See 3.11.6.1(b)
SA-453	651 CI. A & B	All diameters	Impact test is required
	660 CI. A & B	All diameters	-196 (-320)
SA-479	XM-19	Up to 8 (203), inclusive	Impact test is required
SA-564	630	Up to 8 (203), inclusive.	Impact test is required
SA-705	630	Up to 8 (203), inclusive.	Impact test is required

(**23**)

3.19

SB-187	C10200, C11000
SB-211	A92014, A92024, A96061
GENERAL NOTE: The MDMT for all bolting material listed	in this Table is −196°C (-320°F).
¥	\$ £

UNS

C65100, C65500, C66100

C61400, C62300, C63000, C64200

91

Table 3.6 Aluminum Alloy, Copper, and Copper Alloy Bolting Materials for Use With Flanges Designed to 4.16

Material Specification

SB-98

SB-150

Table 3.7 Nickel and Nickel Alloy Bolting Materials for Use With Flanges Designed to 4.16					
Material Specification	UNS				
SB-160	N02200, N02201				
SB-164	N04400 N04405				
SB-166	N06600				
SB-335	N10001, N10665				
SB-408	N08800, N08810				
SB-425	N08825				
SB-446	N06625				
SB-572	N06002, R30556				
SB-573	N10003				
SB-574	N06022, N06455, N10276				
SB-581	N06007, N06030, N06975				
SB-621	N08320				
SB-637	N07718, N07750				

GENERAL NOTE: The MDMT for all bolting material listed in this Table is -196°C (-320°F).

Bolting Mat	Table 3.8 Bolting Materials for Use With Flanges Designed to Part 5					
Material Specification Material Grade						
SA-193	B5, B6, B7, B7M, B8, B8C, B8M, B8MNA, B8NA, B8R, B8RA, B8S, B8SA, B8T, B16					
SA-320	L43					
SA-437	B4B, B4C					
SA-453	651, 660					
SA-540	B21, B22, 823, B24, B24V					
SA-564	630					
SA-705	630					
SB-164	N04400, N04405					
SB-637	N07718, N07750					

GENERAL NOTE: See 3.11.6.2 for impact testing requirements.

Table 3.9 Maximum Severity Levels for Castings With a Thickness of Less Than 50 mm (2 in.)									
Imperfection Category	Thickness <25 mm (1 in.)	Thickness 25 mm < 50 mm (1 in. < 2 in.)							
A – Gas porosity	1	2							
B – Sand and slag	2	3							
C – Shrinkage (four types)	1	3							
D – Cracks	0	0							
E – Hot tears	0	0							
F - Inserts	0	0							
G – Mottling	0	0							

Table 3.10 Maximum Severity Levels for Castings With a Thickness of 50 mm to 305 mm (2 in. to 12 in.)								
Imperfection Category	Thickness 50 mm to 115 mm (2 in. to $4\frac{1}{2}$ in.)	Thickness >115 mm to 305 mm (>4 ¹ / ₂ in. to 12 in.)						
A - Gas porosity	2	2						
B – Sand and slag inclusions	2	2						
C – Shrinkage – Type 1	1	2						
C – Shrinkage – Type 2	2	2						
C – Shrinkage – Type 3	3	2						
D – Cracks	0	0						
E – Hot tears	0	0						

Table 3.11 harpy Impact Test Temperature Reduction Below the Minimum Design Metal Temperature								
Actual Material Thickness [See 3.3 Specimen Width Al		Temperatur	e Reduction					
mm	in.	°C	°F					
10 (full-size standard bar)	0.394	0	0					
9	0.354	0	0					
8	0.315	0	0					
7.5 $\binom{3}{4}$ size bar)	0.295	3	5					
7	0.276	4	8					
6.65 ($^{2}/_{3}$ size bar)	0.262	6	10					
6	0.236	8	15					
5 $\binom{1}{2}$ size bar)	0.197	11	20					
4	0.158	17	30					
3.33 (¹ / ₃ size bar)	0.131	19	35					
3	0.118	22	40					
2.5 $(\frac{1}{4}$ size bar)	0.099	28	50					

GENERAL NOTES:

(a) Straight line interpolation for intermediate values is permitted.

(b) For carbon and low alloy materials having a specified minimum tensile strength of less than 655 MPa (95 ksi) when the subsize Charpy impact width is less than 80% of the material thickness.

Table 3.12

Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels as a Function of the Minimum Specified Yield Strength — Welded Parts Not Subject to PWHT (See Figures 3.3 and 3.3M)

_			CVN, (J)			_			CVN, (ft-lb))	
Thickness,	Specified Minimum Yield Strength, MPa					Thickness,	Specified Minimum Yield Strength, ksi				ksi
mm	205	260	345	450	550	in.	30	38	50	65	80
6	27	27	27	27	27	0.25	20	20	20	20.	20
10	27	27	27	27	31	0.375	20	20	20	20	23
13	27	27	27	27	36	0.5	20	20	20	20	27
16	27	27	27	29	43	0.625	20	20	20	21	32
19	27	27	27	34	51	0.75	20	20	20	25	37
25	27	27	27	45	62	1	20	20	20	33	46
32	27	27	34	53	72	1.25	20	20	25	39	53
38	27	27	40	61	82	1.5	20	20	30	45	60

GENERAL NOTE: The Charpy V-notch values given in this table represent a smooth curve in Figures 3.3 and 3.3M.

(23)

Table 3.13 Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels as a Function of the Minimum Specified Yield Strength — Welded Parts Subject to PWHT or Nonwelded Parts (See Figures 3.4 and 3.4M)

		a d Mini	CVN, J	J W-1J C:		4	CVN, ft-lb Specified Minimum Specified Yield Strength, k				
Thickness,	-			l Yield Strength, MPa	Thickness,					-	
mm	205	260	345	450	550	in.	30	38	50	65	80
6	27	27	27	27	27	0.25	20	20	20	20	20
10	27	27	27	27	27	0.375	20	20	20	20	20
13	27	27	27	27	27	0.5	20	20	20	20	20
16	27	27	27	27	27	0.625	20	20	20	20	20
19	27	27	27	27	27	0.75	20	20	20	20	20
25	27	27	27	27	27	1	20	20	20	20	20
32	27	27	27	27	34	1.25	20	20	20	20	25
38	27	27	27	27	40	1.5	20	20	20	20	30
44	27	27	27	31	47	1.75	20	20	20	23	35
51	27	27	27	35	52	2	20	20	20	26	38
57	27	27	27	40	56	2.25	20	20	20	29	41
64	27	27	27	43	60	2.5	20	20	20	32	44
70	27	27	29	46	64	2.75	20	20	21	34	47
76	27	27	31	49	68	3	20	20	23	36	50
83	27	27	33	52	71	3.25	20	20	25	38	52
89	27	27	35	54	74	3.5	20	20	26	40	54
95	27	27	37	56	76	3.75	20	20	27	42	56
102	27	27	38	58	78	4	20	20	28	43	58
108	27	27	39	59	80	4.25	20	20	29	44	59
114	27	27	40	60	81	4.5	20	20	29	45	60
121	27	27	40	61	82	4.75	20	20	30	45	60
127	27	27	41	61	82	5	20	20	30	45	61
133	27	27	41	61	82	5.25	20	20	30	45	61
140	27	27	41	61	82	5.5	20	20	30	45.	61
146	27	27	41	61	82	5.75	20	20	30	45	61
152	27	27	41	61	82	6	20	20	30	45	61
159	27	27	41	61	82	6.25	20	20	30	45	61
165	27	27	41	61	82	6.5	20	20	30	45	61
171	27	27	41	61	82	6.75	20	20	30	45	61
178	27	27	41	61	82	7	20	20	30	45	61

Thickness		Exemption	n Curve, °C		Thickness.	ess. Exemption Curve, °F			
mm	Α	В	С	D	in.	А	В	С	D
0	20.5	-0.6	-21.7	-36.1	0	68.9	30.9	-7.1	-33.1
10	20.5	-0.6	-21.7	-36.1	0.394	68.9	30.9	-7.1	-33.1
13	22.9	1.8	-19.3	-33.7	0.5	73.3	35.3	-2.7	-28.7
16	26.3	5.1	-16.0	-30.4	0.625	79.3	41.3	3.3	-22.7
19	29.6	8.5	-12.6	-27.1	0.75	85.3	47.3	9.3	-16.7
25	35.2	14.1	-7.0	-21.4	1	95.4	57.4	19.4	-6.6
32	39.7	18.6	-2.6	-17.0	1.25	103.4	65.4	27.4	1.4
38	43.4	22.3	1.2	-13.2	1.5	110.2	72.2	34.2	8.2

GENERAL NOTE: The Charpy V-notch values given in this table represent a smooth curve in Figures 3.7 and 3.7M.

Table 3.15
Impact Test Exemption Curves — Parts Subject to PWHT and Nonwelded Parts (See Figures 3.8 and
3.8M)

Thickness,		Exemption	n Curve, °C		Thickness, .	Exemption Curve, °F			
mm	Α	В	С	D	in.	Α	В	С	D
0	0.6	-20.5	-41.6	-48.3	0	33.2	-4.8	-42.8	-55.0
10	0.6	-20.5	-41.6	-48.3	0.394	33.2	-4.8	-42.8	-55.0
13	3.8	-17.3	-38.4	-48.3	0.5	38.9	0.9	-37.1	-55.0
16	7.9	-13.2	-34.3	-48.3	0.625	46.2	8.2	-29.8	-55.0
19	11.7	-9.4	-30.5	-45.0	0.75	53.0	15.0	-23.0	-49.0
25	17.5	-3.6	-24.7	-39.2	1	63.5	25.5	-12.5	-38.5
32	21.7	0.5	-20.6	-35.0	1.25	71.0	33.0	-5.0	-31.0
38	24.9	3.8	-17.3	-31.8	1.5	76.8	38.8	0.8	-25.2
44	27.7	6.6	-14.6	-29.0	1.75	81.8	43.8	5.8	-20.2
51	30.1	9.0	-12.1	-26.5	2	86.2	48.2	10.2	-15.8
57	32.4	11.3	-9.9	-24.3	2.25	90.3	52.3	14.3	-11.7
64	34.4	13.3	-7.8	-22.3	2.5	93.9	55.9	17.9	-8.1
70	36.2	15.1	-6.0	-20.5	2.75	97.2	59.2	21.2	-4.8
76	37.8	16.7	-4.4	-18.9	3	100.0	62.0	24.0	-2.0
83	39.2	18.1	-3.0	-17.5	3.25	102.6	64.6	26.6	0.6
89	40.4	19.3	-1.8	-16.3	3.5	104.7	66.7	28.7	2.7
95	41.4	20.3	-0.8	-15.3	3.75	106.5	68.5	30.5	4.5
102	42.2	21.1	-0.1	-14.5	4	107.9	69.9	31.9	5.9

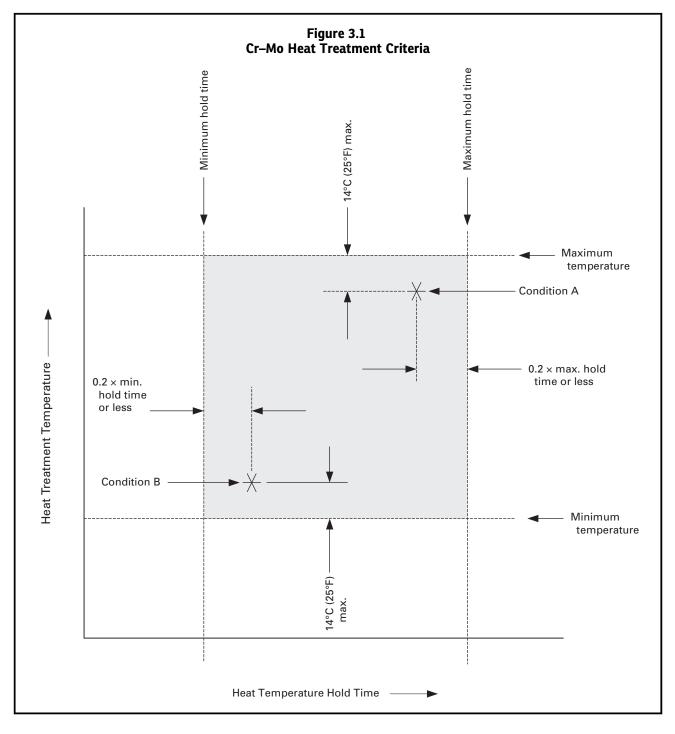
	T _R	,, °C	<i>T_R</i> , °F			
	Specified Minimum	Yield Strength, MPa	Specified Minimum Yield Strength, ks			
Stress or Thickness		>345 MPa		>50 ksi		
Ratio	≤345 MPa	≤450 MPa	≤50 ksi	≤65 ksi		
1.000	0.0	0.0	0.0	0.0		
0.940	2.7	2.5	4.9	4.5		
0.884	5.2	4.7	9.3	8.4		
0.831	7.3	6.6	13.2	11.9		
0.781	9.3	8.4	16.7	15.1		
0.734	11.1	10.0	20.0	18.1		
0.690	12.8	11.5	23.0	20.8		
0.648	14.3	13.0	25.8	23.3		
0.610	15.8	14.3	28.5	25.7		
0.573	17.2	15.5	31.0	27.9		
0.539	18.5	16.7	33.3	30.0		
0.506	19.7	17.7	35.5	31.9		
0.476	20.9	18.8	37.6	33.8		
0.447	22.0	19.7	39.6	35.5		
0.421	23.1	20.6	41.5	37.1		
0.395	24.0	21.5	43.3	38.7		
0.372	25.0	22.3	45.0	40.1		
0.349	25.9	23.1	46.6	41.5		
0.328	26.7	23.8	48.1	42.8		
0.309	27.5	24.5	49.6	44.0		
0.2908	28.3	25.1	50.9	45.2		
0.273	29.0	25.7	52.2	46.3		
0.256	29.7	26.3	53.5	47.3		
0.241	30.4	26.8	54.6	48.3		

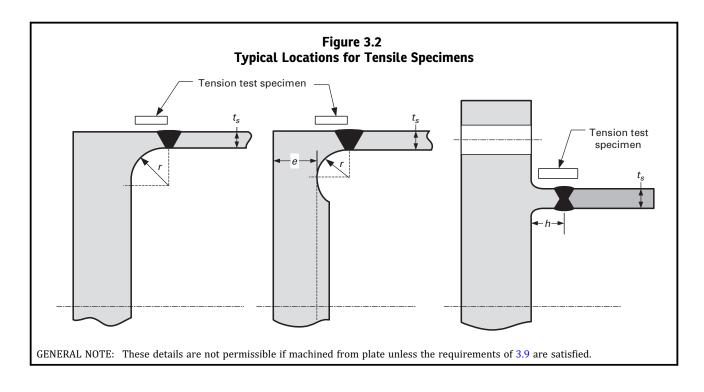
Table 3.16

GENERAL NOTE: The temperature reduction values given in this table represent a smooth curve in Figures 3.12 and 3.12M.

	TR	,, °C	.13M)			
-		Yield Strength, MPa	Specified Minimum Yield Strength, ks			
Stress or Thickness		>345 MPa		>50 ksi		
Ratio	≤345 MPa	≤450 MPa	≤50 ksi	≤65 ksi		
1.000	0.0	0.0	0.0	0.0		
0.940	3.0	2.6	5.4	4.6		
0.884	5.9	5.0	10.6	8.9		
0.831	8.7	7.3	15.6	13.1		
0.781	11.5	9.5	20.7	17.2		
0.734	14.3	11.7	25.8	21.1		
0.690	17.3	13.9	31.1	25.0		
0.648	20.3	16.1	36.5	29.0		
0.610	23.5	18.3	42.2	32.9		
0.573	26.9	20.5	48.4	36.8		
0.539	30.6	22.7	55.0	40.9		
0.506	34.7	25.0	62.5	45.0		
0.476	39.5	27.3	71.1	49.2		
0.447	45.3	29.8	81.6	53.6		
0.421	52.9	32.3	95.2	58.1		
0.395		35.0		62.9		
0.372		37.8		68.1		
0.349		40.9		73.6		
0.328		44.3		79.7		
0.309		48.0		86.4		
0.290		52.3		94.2		
0.273						
0.256						
0.241						

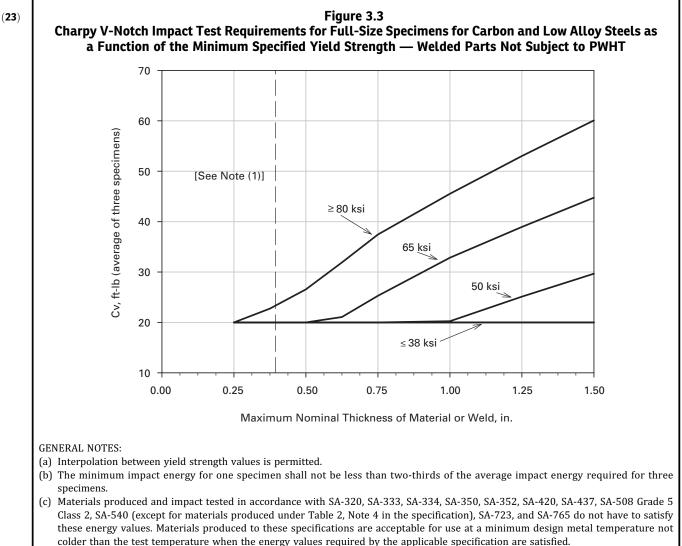
Table 2 17


GENERAL NOTE: The temperature reduction values given in this table represent a smooth curve in Figures 3.13 and 3.13M.


Table 3.18 Required HAZ Impact Test Specimen Set Removal

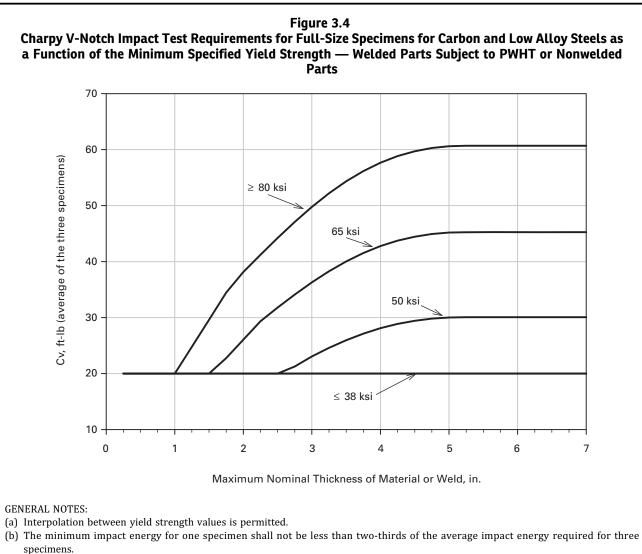
DELETED

3.19

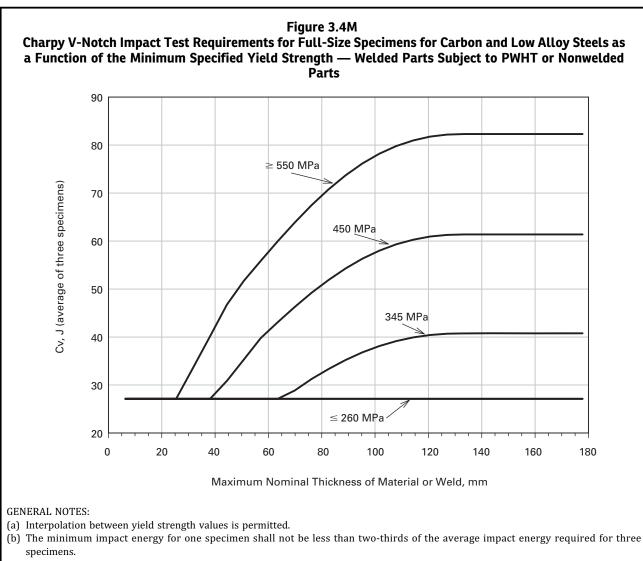

3.20 FIGURES

3.20

(d) If the material specified minimum tensile strength is greater than or equal to 655 MPa (95 ksi), then the material toughness requirements shall be in accordance with 3.11.2.1(b)(2).

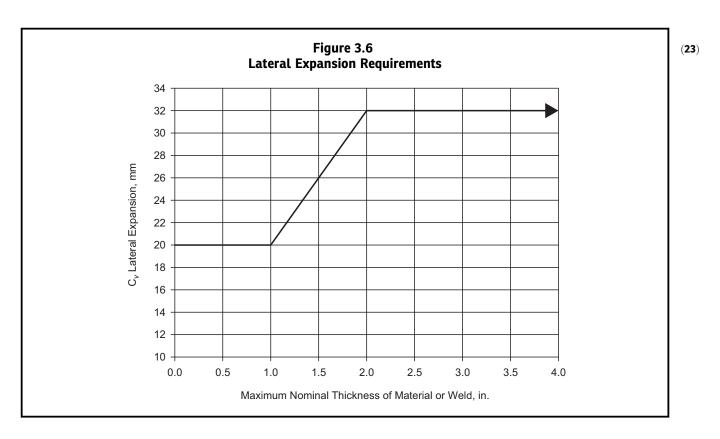

(e) Data of Figures 3.3 and 3.3M are shown in Table 3.12.

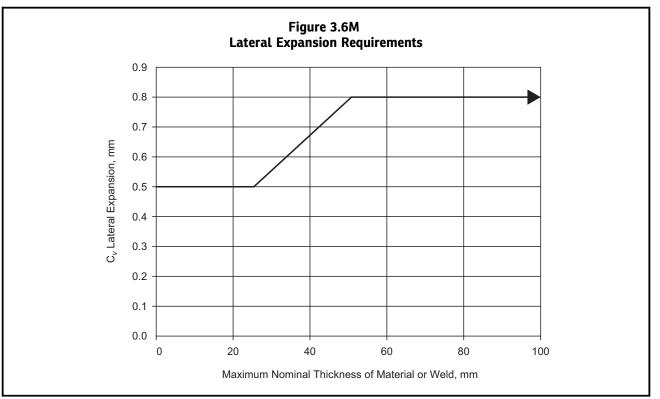
NOTE:


(1) See 3.11.2.1(b)(1) for Charpy V-notch specimen thicknesses less than 10 mm (0.394 in.).

(23)

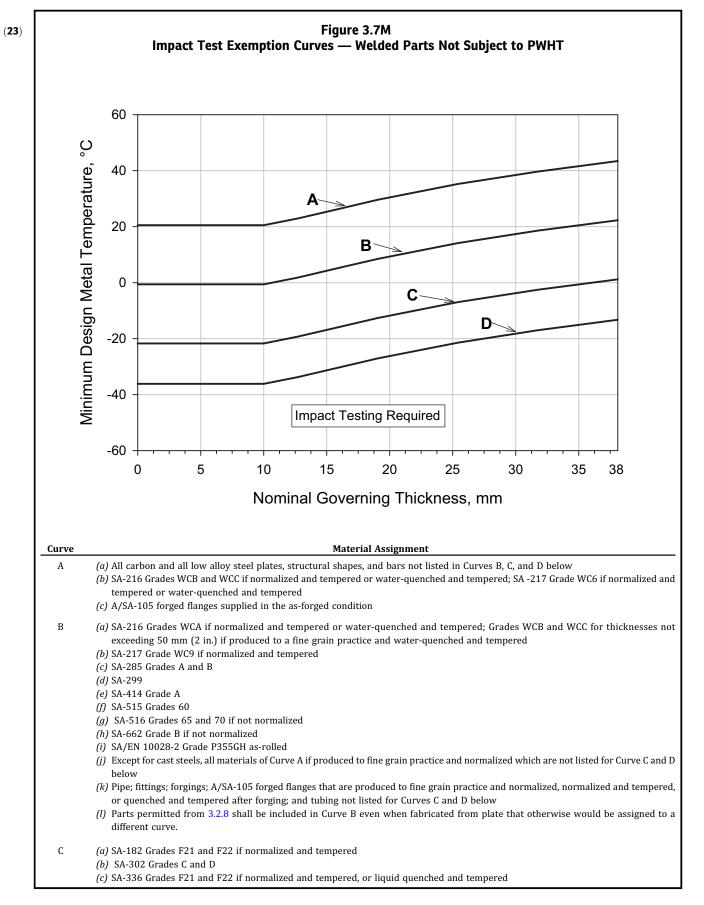



- (c) Materials produced and impact tested in accordance with SA-320, SA-333, SA-334, SA-350, SA-352, SA-420, SA-437, SA-508 Grade 5 Class 2, SA-540 (except for materials produced under Table 2, Note 4 in the specification), SA-723, and SA-765 do not have to satisfy these energy values. Materials produced to these specifications are acceptable for use at a minimum design metal temperature not colder than the test temperature when the energy values required by the applicable specification are satisfied.
- (d) If the material specified minimum tensile strength is greater than or equal to 655 MPa (95 ksi), then the material toughness requirements shall be in accordance with 3.11.2.1(b)(2).
- (e) Data of Figures 3.4 and 3.4M are shown in Table 3.13.
- (f) See 3.11.2.1(b)(1) for Charpy V-notch specimen thicknesses less than 10 mm (0.394 in.).



- (c) Materials produced and impact tested in accordance with SA-320, SA-333, SA-334, SA-350, SA-352, SA-420, SA-437, SA-508 Grade 5 Class 2, SA-540 (except for materials produced under Table 2, Note 4 in the specification), SA-723, and SA-765 do not have to satisfy these energy values. Materials produced to these specifications are acceptable for use at a minimum design metal temperature not colder than the test temperature when the energy values required by the applicable specification are satisfied.
- (d) If the material specified minimum tensile strength is greater than or equal to 655 MPa (95 ksi), then the material toughness requirements shall be in accordance with 3.11.2.1(b)(2).
- (e) Data of Figures 3.4 and 3.4M are shown in Table 3.13.
- (f) See 3.11.2.1(b)(1) for Charpy V-notch specimen thicknesses less than 10 mm (0.394 in.).

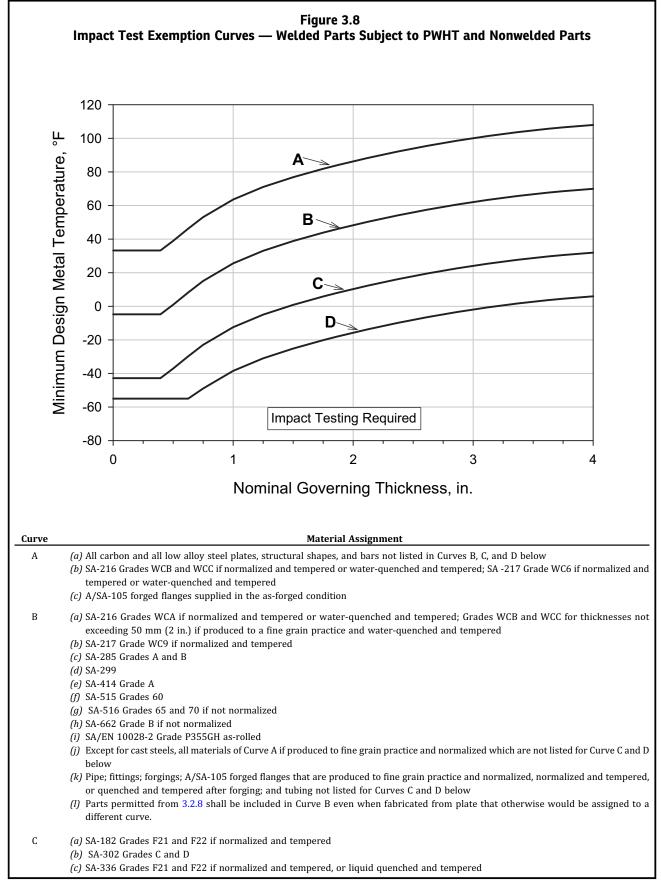
3.20



3.20

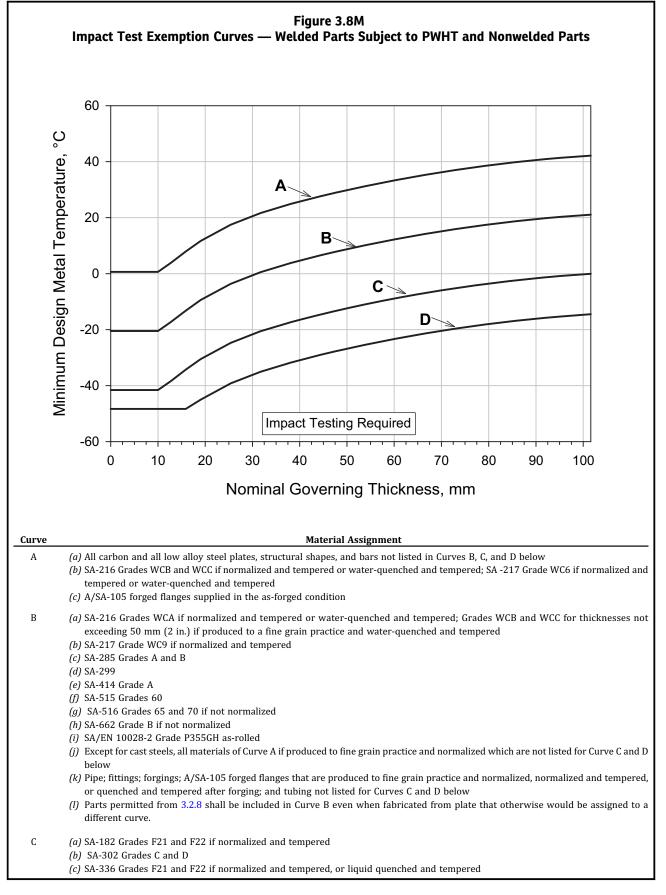
Figure 3.7 Impact Test Exemption Curves — Welded Parts Not Subject to PWHT (Cont'd)

Curve	Material Assignment
	 (e) SA-516 Grades 55 and 60 if not normalized (f) SA-533 Types B and C, Class 1 (g) SA-662 Grade A (h) SA/EN 10028-2 Grade 10CrMo9-10 if normalized and tempered (i) All materials listed in (a) through (i) and in (k) for Curve B if produced to fine grain practice and normalized, normalized and tempered, or liquid quenched and tempered as permitted in the material specification, and not listed for Curve D below
D	 (a) SA-203 (b) SA-299 if normalized (c) SA-508 Class 1 (d) SA-516 if normalized (e) SA-524 Classes 1 and 2 (f) SA-537 Classes 1, 2, and 3 (g) SA-612 if normalized; except that the increased Cb limit in the footnote of Table 1 of SA-20 is not permitted (h) SA-662 if normalized (i) SA-738 Grade A (j) SA-738 Grade A with Cb and V deliberately added in accordance with the provisions of the material specification, not colder than -29°C (-20°F) (k) SA-738 Grade B not colder than -29°C (-20°F) (l) SA/EN 10028-2 Grade P355GH if normalized [See General Note (d)(3)]
(b) For b (c) When (d) The f (1) equiv (2) (3)	L NOTES: ngs not listed as Curve A and B shall be impact tested. bolting see 3.11.6. n a class or grade is not shown in a material assignment, all classes and grades are indicated. following apply to all material assignments:) Cooling rates faster than those obtained in air, followed by tempering, as permitted by the material specification, are considered valent to normalizing and tempering heat treatments.) Fine grain practice is defined as the procedures necessary to obtain a fine austenitic grain size as described in SA-20.) Normalized rolling condition is not considered as being equivalent to normalizing. of Figures 3.7 and 3.7M are shown in Table 3.14.

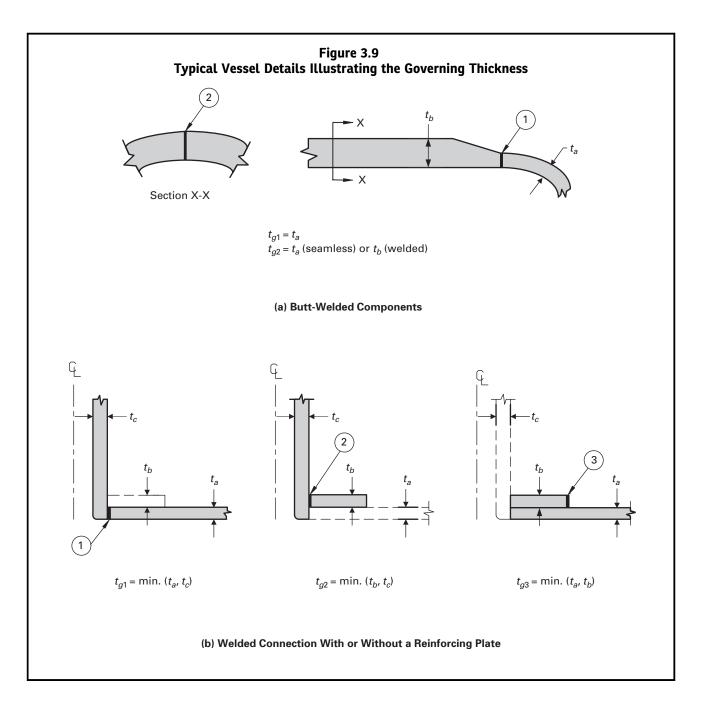

Figure 3.7M Impact Test Exemption Curves — Welded Parts Not Subject to PWHT (Cont'd)

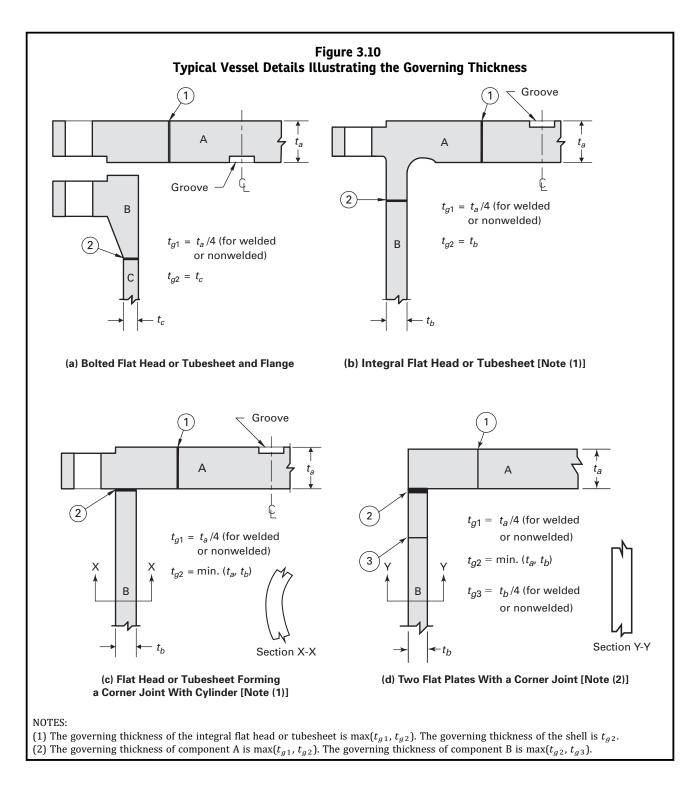
Curve	Material Assignment
	(d) SA-387 Grades 21 and 22 if normalized and tempered, or liquid quenched and tempered
	(e) SA-516 Grades 55 and 60 if not normalized
	(f) SA-533 Types B and C, Class 1
	(g) SA-662 Grade A
	(h) SA/EN 10028-2 Grade 10CrMo9-10 if normalized and tempered
	(i) All materials listed in (a) through (i) and in (k) for Curve B if produced to fine grain practice and normalized, normalized and tempered, or liquid quenched and tempered as permitted in the material specification, and not listed for Curve D below
D	(a) SA-203
	(b) SA-299
	(c) SA-508 Class 1
	(d) SA-516 if normalized
	(e) SA-524 Classes 1 and 2
	(f) SA-537 Classes 1, 2, and 3
	(g) SA-612 if normalized; except that the increased Cb limit in the footnote of Table 1 of SA-20 is not permitted
	(h) SA-662 if normalized
	(i) SA-738 Grade A
	(j) SA-738 Grade A with Cb and V deliberately added in accordance with the provisions of the material specification, not colder than -29°C (-20°F)
	(k) SA-738 Grade B not colder than -29° C (-20° F)
	(I) SA/EN 10028-2 Grade P355GH if normalized [See General Note (d)(3)]
	Nome
GENERAL	
	ngs not listed as Curve A and B shall be impact tested.
	5
	0 1 0
(c) Wher (d) The f <i>(1)</i> equiv <i>(2)</i>	olting see 3.11.6. a class or grade is not shown in a material assignment, all classes and grades are indicated. ollowing apply to all material assignments: Cooling rates faster than those obtained in air, followed by tempering, as permitted by the material specification, are considered alent to normalizing and tempering heat treatments. Fine grain practice is defined as the procedures necessary to obtain a fine austenitic grain size as described in SA-20. Normalized rolling condition is not considered as being equivalent to normalizing.

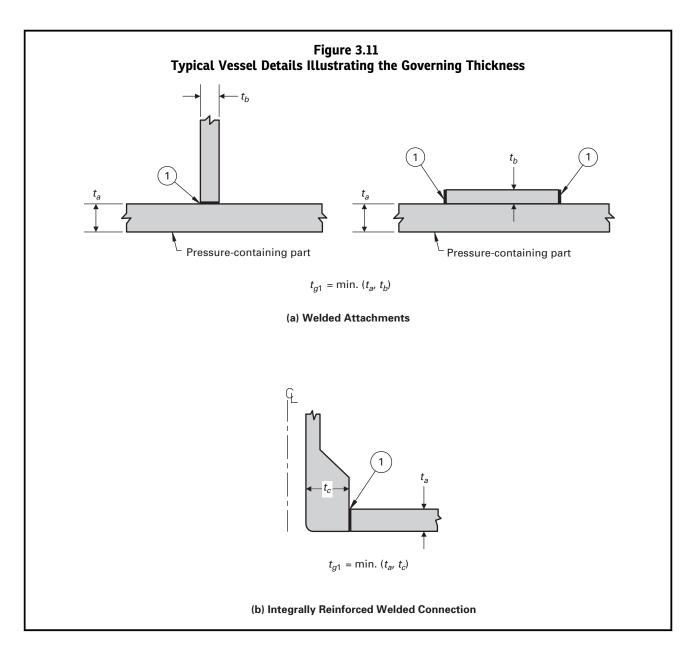
(e) Data of Figures 3.7 and 3.7M are shown in Table 3.14.

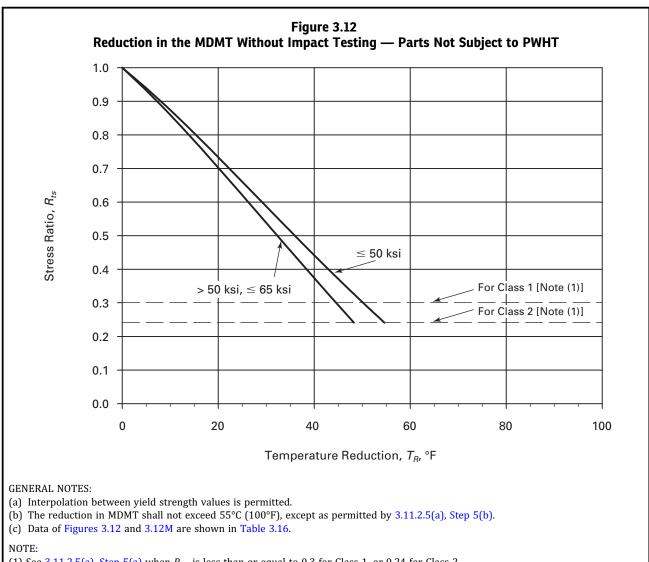

3.20

li	Figure 3.8 mpact Test Exemption Curves — Welded Parts Subject to PWHT and Nonwelded Parts (Cont'd)
Curve	Material Assignment
	 (d) SA-387 Grades 21 and 22 if normalized and tempered, or liquid quenched and tempered (e) SA-516 Grades 55 and 60 if not normalized (f) SA-533 Types B and C, Class 1 (g) SA-662 Grade A (h) SA/EN 10028-2 Grade 10CrMo9-10 if normalized and tempered (i) All materials listed in (a) through (i) and in (k) for Curve B if produced to fine grain practice and normalized, normalized and tempered, or liquid quenched and tempered as permitted in the material specification, and not listed for Curve D below
D	 (a) SA-203 (b) SA-299 if normalized (c) SA-508 Class 1 (d) SA-516 if normalized (e) SA-524 Classes 1 and 2 (f) SA-537 Classes 1, 2, and 3 (g) SA-612 if normalized; except that the increased Cb limit in the footnote of Table 1 of SA-20 is not permitted (h) SA-662 if normalized (i) SA-738 Grade A (j) SA-738 Grade A with Cb and V deliberately added in accordance with the provisions of the material specification, not colder than -29°C (-20°F)
	(k) SA-738 Grade B not colder than -29°C (-20°F) (l) SA/EN 10028-2 Grade P355GH if normalized [See General Note (d)(3)]
(a) Cast (b) For	L NOTES: ings not listed as Curve A and B shall be impact tested. bolting see 3.11.6.
(d) The (1) equi (2)	 en a class or grade is not shown in a material assignment, all classes and grades are indicated. following apply to all material assignments: <i>C</i> Cooling rates faster than those obtained in air, followed by tempering, as permitted by the material specification, are considered valent to normalizing and tempering heat treatments. Fine grain practice is defined as the procedures necessary to obtain a fine austenitic grain size as described in SA-20. Normalized rolling condition is not considered as being equivalent to normalizing.

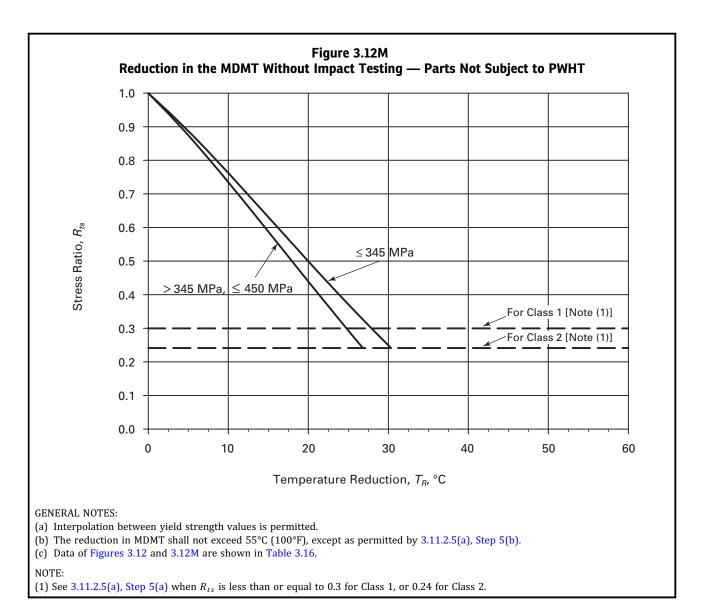

(e) Data of Figures 3.8 and 3.8M are shown in Table 3.15.

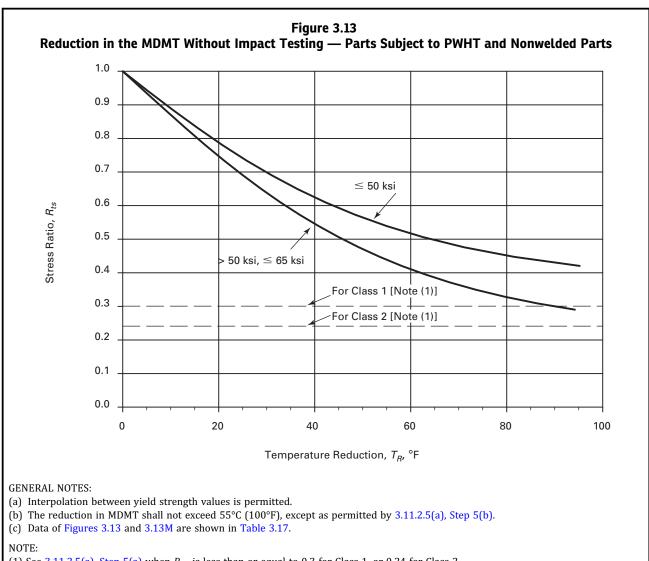


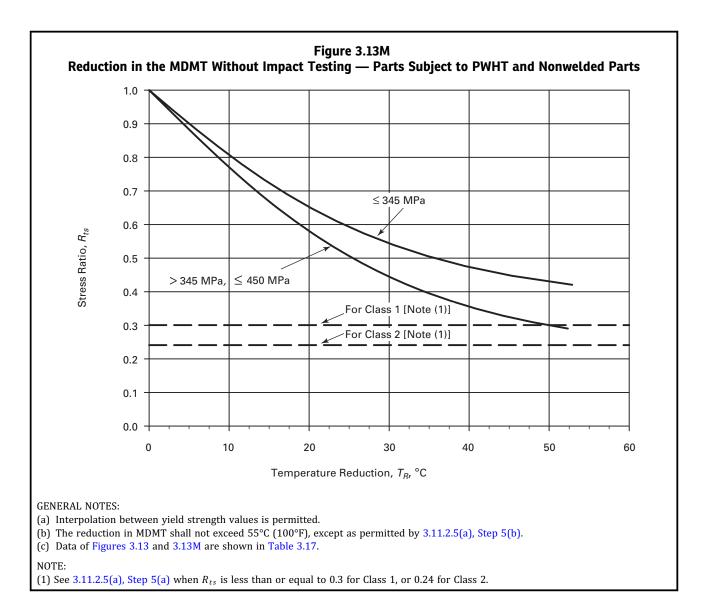


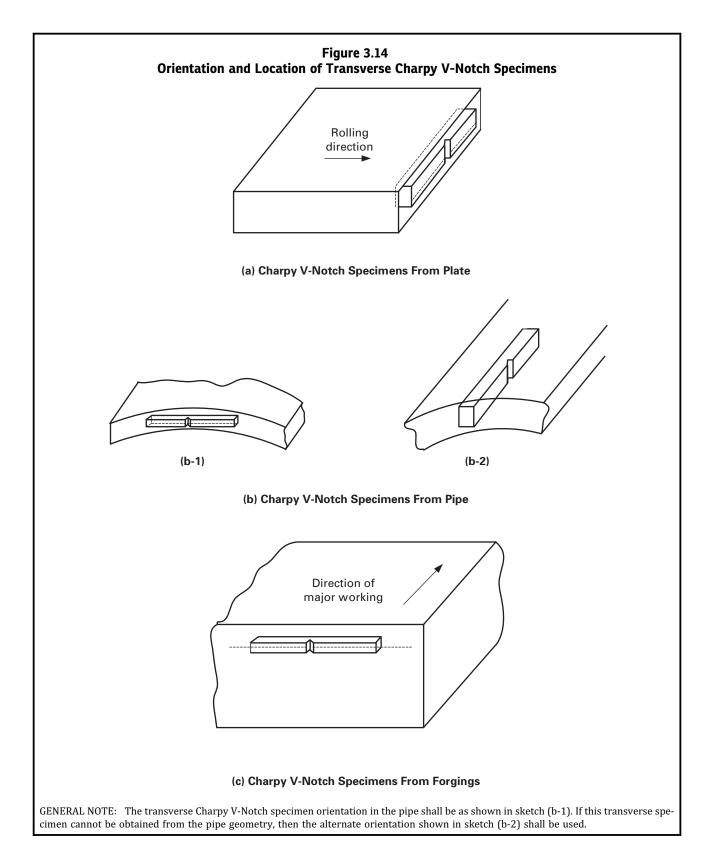

Figure 3.8M Impact Test Exemption Curves — Welded Parts Subject to PWHT and Nonwelded Parts (Cont'd)

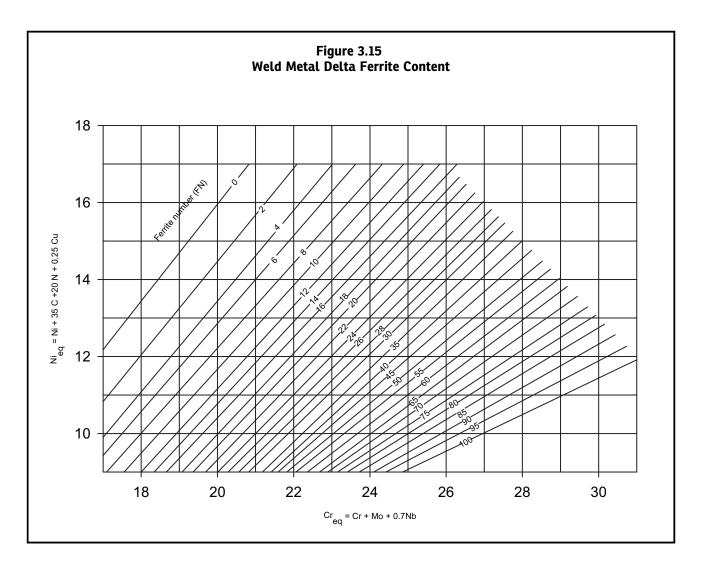
Curve	Material Assignment
Cuive	
	(d) SA-387 Grades 21 and 22 if normalized and tempered, or liquid guenched and tempered
	(e) SA-516 Grades 55 and 60 if not normalized
	(f) SA-533 Types B and C, Class 1
	(g) SA-662 Grade A
	(h) SA/EN 10028-2 Grade 10CrMo9–10 if normalized and tempered
	(i) All materials listed in (a) through (i) and in (k) for Curve B if produced to fine grain practice and normalized, normalized and
	tempered, or liquid quenched and tempered as permitted in the material specification, and not listed for Curve D below
D	(a) SA-203
	(b) SA-299 if normalized
	(c) SA-508 Class 1
	(d) SA-516 if normalized
	(e) SA-524 Classes 1 and 2
	(f) SA-537 Classes 1, 2, and 3
	(g) SA-612 if normalized; except that the increased Cb limit in the footnote of Table 1 of SA-20 is not permitted
	(h) SA-662 if normalized
	(i) SA-738 Grade A
	(j) SA-738 Grade A with Cb and V deliberately added in accordance with the provisions of the material specification, not colder than
	-29°C (-20°F)
	(k) SA-738 Grade B not colder than –29°C (–20°F)
	(1) SA/EN 10028-2 Grade P355GH if normalized [See General Note (d)(3)]
GENERAL	NOTES:
(a) Castin	gs not listed as Curve A and B shall be impact tested.
	olting see 3.11.6.
(c) When	a class or grade is not shown in a material assignment, all classes and grades are indicated.
	ollowing apply to all material assignments:
(1)	Cooling rates faster than those obtained in air, followed by tempering, as permitted by the material specification, are considered
	alent to normalizing and tempering heat treatments.
(2)	Fine grain practice is defined as the procedures necessary to obtain a fine austenitic grain size as described in SA-20.
(3)	Normalized rolling condition is not considered as being equivalent to normalizing.
(e) Data o	of Figures 3.8 and 3.8M are shown in Table 3.15.

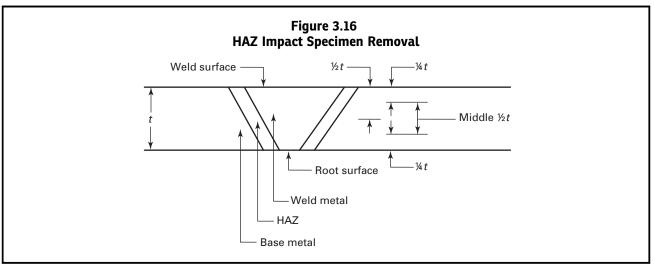


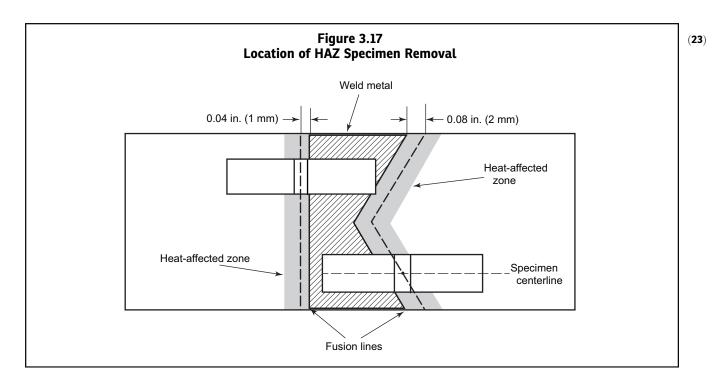



(1) See 3.11.2.5(a), Step 5(a) when R_{ts} is less than or equal to 0.3 for Class 1, or 0.24 for Class 2.






(1) See 3.11.2.5(a), Step 5(a) when R_{ts} is less than or equal to 0.3 for Class 1, or 0.24 for Class 2.


119

ANNEX 3-A ALLOWABLE DESIGN STRESSES

(Normative)

3-A.1 ALLOWABLE STRESS BASIS — ALL MATERIALS EXCEPT BOLTING **3-A.1.1**

The materials that may be used in this Division for all product forms except bolting are shown below.

(a) Carbon Steel and Low Alloy Steel - Table 3-A.1

(b) Quenched and Tempered High Strength Steels - Table 3-A.2

(c) High Alloy Steel – Table 3-A.3

(d) Aluminum and Aluminum Alloys - Table 3-A.4

(e) Copper and Copper Alloys – Table 3-A.5

(f) Nickel and Nickel Alloys - Table 3-A.6

(g) Titanium and Titanium Alloys – Table 3-A.7

3-A.1.2

The allowable stresses to be used in this Division for all product forms except bolting are provided in the following tables of Section II, Part D.

(a) Carbon Steel and Low Alloy Steel

(1) Class 1 – Section II, Part D, Subpart 1, Table 2A

(2) Class 2 – Section II, Part D, Subpart 1, Table 5A

(b) Quenched and Tempered High Strength Steels

(1) Class 1 – Section II, Part D, Subpart 1, Table 2A

(2) Class 2 – Section II, Part D, Subpart 1, Table 5A

(c) High Alloy Steel

(1) Class 1 - Section II, Part D, Subpart 1, Table 2A

(2) Class 2 – Section II, Part D, Subpart 1, Table 5A

(d) Aluminum and Aluminum Alloys

(1) Class 1 - Section II, Part D, Subpart 1, Table 2B

(2) Class 2 – Section II, Part D, Subpart 1, Table 5B (e) Copper and Copper Alloys

(1) Class 1 – Section II, Part D, Subpart 1, Table 2B

(2) Class 2 – Section II, Part D, Subpart 1, Table 5B

(f) Nickel and Nickel Alloys

(1) Class 1 – Section II, Part D, Subpart 1, Table 2B

(2) Class 2 – Section II, Part D, Subpart 1, Table 5B (g) Titanium and Titanium Alloys

(1) Class 1 – Section II, Part D, Subpart 1, Table 2B

(2) Class 2 - Section II, Part D, Subpart 1, Table 5B

3-A.2 ALLOWABLE STRESS BASIS — BOLTING MATERIALS

3-A.2.1

The materials that may be used in this Division for bolting are shown below.

(a) Ferrous Bolting Materials for Design in Accordance With Part 4 of this Division – Table 3-A.8

(b) Aluminum Alloy and Copper Alloy Bolting Materials for Design in Accordance With Part 4 of this Division – Table 3-A.9

(c) Nickel and Nickel Alloy Bolting Materials Bolting Materials for Design in Accordance With Part 4 of this Division – Table 3-A.10

(d) Bolting Materials for Design in Accordance With Part 5 of this Division - Table 3-A.11

3-A.2.2

The allowable stresses to be used in this Division for bolting are provided in the following tables of Section II, Part D. (a) Ferrous Bolting Materials for Design in Accordance With Part 4 of this Division – Section II, Part D, Subpart 1, Table 3

(b) Aluminum Alloy and Copper Alloy Bolting Materials for Design in Accordance With Part 4 of this Division – Section II, Part D, Subpart 1, Table 3

(c) Nickel and Nickel Alloy Bolting Materials Bolting Materials for Design in Accordance With Part 4 of this Division – Section II, Part D, Subpart 1, Table 3

(d) Bolting Materials for Design in Accordance With Part 5 of this Division – Section II, Part D, Subpart 1, Table 4

3-A.3 TABLES

Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form
SA-36		K02600	Carbon steel	Str. plate
SA-105		K03504	Carbon steel	Forgings
SA-106	А	K02501	Carbon steel	Smls. pipe
SA-106	В	K03006	Carbon steel	Smls. pipe
SA-106	С	K03501	Carbon steel	Smls. pipe
SA-178	С	K03503	Carbon steel	Wld. tube
SA-181	60	K03502	Carbon steel	Forgings
SA-181	70	K03502	Carbon steel	Forgings
SA-182	F1	K12822	C-1/2Mo	Forgings
SA-182	F2	K12122	¹ / ₂ Cr- ¹ / ₂ Mo	Forgings
SA-182	F3VCb	K31390	3Cr-1Mo- ¹ / ₄ V-Cb-Ca	Forgings
SA-182	F3V	K31830	3Cr-1Mo- ¹ / ₄ V-Ti-B	Forgings
SA-182	F5	K41545	$5Cr - \frac{1}{2}Mo$	Forgings
SA-182	F5a	K42544	5Cr- ¹ / ₂ Mo	Forgings
SA-182	F9	K90941	9Cr-1Mo	Forgings
SA-182	F12, Cl. 1	K11562	1Cr- ¹ / ₂ Mo	Forgings
SA-182	F12, Cl. 2	K11564	1Cr- ¹ / ₂ Mo	Forgings
SA-182	F11, Cl. 1	K11597	1 ¹ / ₄ Cr- ¹ / ₂ Mo-Si	Forgings
SA-182	F11, Cl. 2	K11572	1 ¹ / ₄ Cr- ¹ / ₂ Mo-Si	Forgings
SA-182	F21	K31545	3Cr-1Mo	Forgings
SA-182	F22, Cl. 1	K21590	2 ¹ / ₄ Cr-1Mo	Forgings
SA-182	F22, Cl. 3	K21590	2 ¹ / ₄ Cr–1Mo	Forgings
SA-182	F22V	K31835	$2^{1}/_{4}Cr-1Mo-^{1}/_{4}V$	Forgings
SA-182	F91	K90901	9Cr-1Mo-V	Forgings
SA-182	FR	K22035	2Ni-1Cu	Forgings
SA-203	А	K21703	2 ¹ / ₂ Ni	Plate
SA-203	В	K22103	$2 \frac{1}{2}$ Ni	Plate
SA-203	D	K31718	$3^{1}/_{2}$ Ni	Plate
SA-203	Е	K32018	3 ¹ / ₂ Ni	Plate

 $(\mathbf{23})$

Material Specification SA-203 SA-204	Type/Grade/Class			
SA-203		UNS No.	Nominal Composition	Product Form
\$4-204	F		3 ¹ / ₂ Ni	Plate
	А	K11820	C-1/2Mo	Plate
			$C - \frac{1}{2}Mo$	Plate
SA-204	В	K12020		
SA-204	C	K12320	C-1/2Mo	Plate
SA-209	T1	K11522	C- ¹ / ₂ Mo	Smls. tube
SA-209	T1a	K12023	C−¹⁄₂Mo	Smls. tube
SA-209	T1b	K11422	C-1/2Mo	Smls. tube
SA-210	A-1	K02707	Carbon steel	Smls. tube
	C		Carbon steel	Smls. tube
SA-210		K03501		
SA-213	T2	K11547	$\frac{1}{2}Cr - \frac{1}{2}Mo$	Smls. tube
SA-213	T5	K41545	5Cr-1/2Mo	Smls. tube
SA-213	T5b	K41545	5Cr- ¹ / ₂ Mo-Si	Smls. tube
SA-213	T5c	K41245	$5Cr - \frac{1}{2}Mo - Ti$	Smls. tube
SA-213	T9	K90941	9Cr-1Mo	Smls. tube
SA-213	T11	K11597	$1^{1}_{4}Cr^{-1}_{2}Mo-Si$	Smls. tube
SA-213	T12	K11562	1Cr- ¹ / ₂ Mo	Smls. tube
SA-213	T21	K31545	3Cr-1Mo	Smls. tube
SA-213	T22	K21590	2 ¹ / ₂ Cr-1Mo	Smls. tube
SA-213	T91	K90901	9Cr-1Mo-V	Smls. tube
SA-216	WCA	J02502	Carbon steel	Castings
SA-216	WCB	J03002	Carbon steel	Castings
SA-216	WCC	K02503	Carbon steel	Castings
SA-217	C5	J42045	5Cr- ¹ / ₂ Mo	Castings
SA-217	C12	J82090	9Cr-1Mo	Castings
		,	$C^{-1}/_{2}Mo$	•
SA-217 SA-217	WC1 WC4	J12524 J12082	$1Ni^{-1}/_{2}Cr^{-1}/_{2}Mo$	Castings Castings
	WGI	-		0
SA-217	WC5	J22000	³ / ₄ Ni-1Mo- ³ / ₄ Cr	Castings
SA-217	WC6	J12072	1 ¹ / ₄ Cr- ¹ / ₂ Mo	Castings
SA-217	WC9	J21890	$2^{1}/_{4}Cr-1Mo$	Castings
SA-225	C	K12524	$Mn^{-1}/_2Ni-V$	Plate
SA-225 SA-234	WPB	K03006	Carbon steel	Fittings
				i ittings
SA-234	WPC	K03501	Carbon steel	Fittings
SA-234	WP1	K12821	C-1/2Mo	Fittings
SA-234	WP5	K41515	$5Cr-\frac{1}{2}Mo$	Fittings
SA-234	WP9	K90941	9Cr-1Mo	Fittings
SA-234	WP11, Cl. 1		$1^{1}/_{4}Cr^{-1}/_{2}Mo-Si$	Fittings
			$1Cr - \frac{1}{2}Mo$	-
SA-234	WP12, Cl. 1	K12062		Fittings
SA-234	WP22, Cl. 1	K21590	2 ¹ / ₄ Cr-1Mo	Fittings
SA-266	1	K03506	Carbon steel	Forgings
SA-266	2	K03506	Carbon steel	Forgings
SA-266	3	K05001	Carbon steel	Forgings
SA-266	4	K03017	Carbon steel	Forgings
				0 0
SA-283	D		Carbon steel	Str. plate
SA-285	А	K01700	Carbon steel	Plate
SA-285	В	K02200	Carbon steel	Plate
SA-285	С	K02801	Carbon steel	Plate
SA-299	А	K02803	Carbon steel	Plate
SA-299 [Note (1)]	В	K02803	Carbon steel	Plate
SA-302 SA-302	A B	K12021 K12022	Mn- ¹ / ₂ Mo Mn- ¹ / ₂ Mo	Plate Plate
SA-302	С	K12039	$Mn - \frac{1}{2}Mo - \frac{1}{2}Ni$	Plate
SA-302	D	K12054	$Mn - \frac{1}{2}Mo - \frac{3}{4}Ni$	Plate
SA-333	1	K03008	Carbon steel	Smls. pipe
SA-333	3	K31918	$3^{1}/_{2}$ Ni	Smls. pipe

Table 3-A.1 Carbon Steel and Low Alloy Materials (Cont'd)					
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form	
SA-333	4	K11267	³ / ₄ Cr- ³ / ₄ Ni-Cu-Al	Smls. pipe	
SA-333	6	K03006	Carbon steel	Smls. pipe	
SA-333	9	K22035	2Ni-1Cu	Smls. pipe	
SA-333	1	K03008	Carbon steel	Wld. pipe	
SA-334	1	K03008	Carbon steel	Wld. tube	
SA-334	1	K03008	Carbon steel	Smls. tube	
SA-334	3	K31918	3 ¹ / ₂ Ni	Smls. tube	
SA-334	9	K22035	2Ni-1Cu	Smls. tube	
SA-335	P1	K11522	$C^{-1/2}Mo$	Smls. pipe	
SA-335	P2	K11522 K11547	$\frac{1}{2}Cr - \frac{1}{2}Mo$	Smls. pipe	
SA-335	P5	K41545	$5Cr - \frac{1}{2}Mo$	Smls. pipe	
SA-335	P5b	K51545	5Cr- ¹ / ₂ Mo-Si	Smls. pipe	
SA-335	P5D P5c	K41245	$5Cr - \frac{1}{2}Mo - Ti$	Smls. pipe	
				• •	
SA-335	P9	K90941	9Cr-1Mo	Smls. pipe	
SA-335	P11	K11597	1 ¹ / ₄ Cr- ¹ / ₂ Mo-Si	Smls. pipe	
SA-335	P12	K11562	1Cr- ¹ / ₂ Mo	Smls. pipe	
SA-335	P21	K31545	3Cr-1Mo	Smls. pipe	
SA-335	P22	K21590	2 ¹ / ₄ Cr–1Mo	Smls. pipe	
SA-335	P91	K90901	9Cr-1Mo-V	Smls. pipe	
SA-336	F1	K11564	1Cr- ¹ / ₂ Mo	Forgings	
SA-336	F3VCb	K31390	3Cr-1Mo- ¹ / ₄ V-Cb-Ca	Forgings	
SA-336	F3V	K31830	3Cr-1Mo- ¹ / ₄ V-Ti-B	Forgings	
SA-336	F5	K41545	5Cr-1Mo	Forgings	
SA-336	F5A	K42544	5Cr-1Mo	Forgings	
SA-336	F9	K90941	9Cr-1Mo	Forgings	
SA-336	F11, Cl. 2	K11572	$1^{1}/_{4}Cr^{-1}/_{2}Mo^{-Si}$	Forgings	
SA-336	F11, Cl. 3	K11572	1 ¹ / ₄ Cr- ¹ / ₂ Mo-Si	Forgings	
SA-336	F12	K11564	$1/4$ Cr $-\frac{1}{2}$ Mo	Forgings	
	F21, Cl. 1		3Cr-1Mo		
SA-336		K31545		Forgings	
SA-336 SA-336	F21, Cl. 3 F22, Cl. 1	K31545 K21590	3Cr–1Mo 2 ¹ / ₄ Cr–1Mo	Forgings Forgings	
				0 0	
SA-336	F22, Cl. 3	K21590	$2\frac{1}{4}$ Cr-1Mo	Forgings	
SA-336	F22V	K31835	$2^{1}/_{4}$ Cr-1Mo- $^{1}/_{4}$ V	Forgings	
SA-336 [Note (1)]	F91	K90901	9Cr-1Mo-V	Forgings	
SA-350	LF1	K03009	Carbon steel	Forgings	
SA-350	LF2	K03011	Carbon steel	Forgings	
SA-350	LF3	K32025	3 ¹ / ₂ Ni	Forgings	
SA-350	LF9	K22036	2Ni–1Cu	Forgings	
SA-352	LCB	J03003	Carbon steel	Castings	
SA-352	LC1	J12522	C- ¹ / ₂ Mo	Castings	
SA-352	LC2	J22500	2 ¹ / ₂ Ni	Castings	
SA-352	LC3	J31550	3 ¹ / ₂ Ni	Castings	
SA-369	FP1	K11522	C- ¹ / ₂ Mo	Forged pipe	
SA-369	FP2	K11547	$\frac{1}{2}Cr - \frac{1}{2}Mo$	Forged pipe	
SA-369	FP5	K41545	$5Cr - \frac{1}{2}Mo$	Forged pipe	
SA-369	FP9	K90941	9Cr-1Mo	Forged pipe	
SA-369	FP11	K11597	1 ¹ / ₄ Cr- ¹ / ₂ Mo-Si	Forged pipe	
SA-369	FP12	K11562	$1Cr^{-1}/_{2}Mo$	Forged pipe	
SA-369	FP21	K31545	3Cr-1Mo	Forged pipe	
SA-369	FP22	K21590	$2^{1}/_{4}$ Cr-1Mo	Forged pipe	
SA-372	A	K03002	Carbon steel	Forgings	
SA-372	В	K04001	Carbon steel	Forgings	
SA-372	C	K04801	Carbon steel	Forgings	
SA-372	D	K10508	Mn ⁻¹ / ₄ Mo	Forgings	

Table 3-A.1 Carbon Steel and Low Alloy Materials (Cont'd)				
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form
SA-387	2, Cl. 1	K12143	¹ / ₂ Cr- ¹ / ₂ Mo	Plate
SA-387	2, Cl. 2	K12143	ⁱ / ₂ Cr- ⁱ / ₂ Mo	Plate
SA-387	5, Cl. 1	K41545	5Cr- ¹ / ₂ Mo	Plate
SA-387	5, Cl. 2	K41545	$5Cr-\frac{1}{2}Mo$	Plate
SA-387	11, Cl. 1	K11789	1 ¹ / ₄ Cr- ¹ / ₂ Mo-Si	Plate
SA-387	11, Cl. 2	K11789	$1^{1}/_{4}Cr - ^{1}/_{2}Mo - Si$	Plate
SA-387	12, Cl. 1	K11757	1Cr- ¹ / ₂ Mo	Plate
SA-387	12, Cl. 2	K11757	1Cr- ¹ / ₂ Mo	Plate
SA-387	21, Cl. 1	K31545	3Cr-1Mo	Plate
SA-387	21, Cl. 2	K31545	3Cr-1Mo	Plate
SA-387	22, Cl. 1	K21590	2 ¹ / ₄ Cr-1Mo	Plate
SA-387	22, Cl. 2	K21590	2 ¹ / ₄ Cr-1Mo	Plate
SA-387	91	K90901	9Cr-1Mo-V	Plate
SA-420	WPL3		3 ¹ / ₂ Ni	Fittings
SA-420	WPL6		Carbon steel	Fittings
SA-420	WPL9	K22035	2Ni-Cu	Fittings
SA-423	1	K11535	¹ / ₄ Cr- ¹ / ₂ Ni-Cu	Smls. tube
SA-423	2	K11540	³ / ₄ Ni- ³ / ₄ Cu-Mo	Smls. tube
SA-487	1, Cl. A	J13002	Mn-V	Castings
SA-487	4, Cl. A	J13047	$\frac{1}{2}$ Ni- $\frac{1}{2}$ Cr- $\frac{1}{4}$ Mo-V	Castings
SA-487	8, Cl. A	J22091	$2^{1}/_{2}$ Cr-1Mo	Castings
SA-508	1	K13502	Carbon steel	Forgings
SA-508	1A	K13502	Carbon steel	Forgings
SA-508	2, Cl. 1	K12766	³ / ₄ Ni- ¹ / ₂ Mo- ¹ / ₃ Cr-V	Forgings
SA-508	2, Cl. 2	K12766	$\frac{3}{4}$ Ni $-\frac{1}{2}$ Mo $-\frac{1}{3}$ Cr $-$ V	Forgings
SA-508	3, Cl. 1	K12042	$^{3}/_{4}Ni - ^{1}/_{2}Mo - Cr - V$	Forgings
SA-508	3, Cl. 2	K12042	$^{3}_{4}\text{Ni}-^{1}_{2}\text{Mo-Cr-V}$	Forgings
SA-508	3VCb	K31390	3Cr-1Mo- ¹ / ₄ V-Cb-Ca	Forgings
SA-508	3V	K31830	3Cr-1Mo- ¹ / ₄ V-Ti-B	Forgings
SA-508	4N, Cl. 3	K22375	3 ¹ / ₂ Ni-1 ³ / ₄ Cr- ¹ / ₂ Mo-V	Forgings
SA-508	22, Cl. 3	K215909	$2^{1}/_{4}$ Cr-1Mo	Forgings
SA-515	60	K02401	Carbon steel	Plate
SA-515	65	K02800	Carbon steel	Plate
SA-515	70	K03101	Carbon steel	Plate
SA-516	55	K01800	Carbon steel	Plate
SA-516	60	K02100	Carbon steel	Plate
SA-516	65	K02403	Carbon steel	Plate
SA-516	70	K02700	Carbon steel	Plate
SA-524	Ι	K02104	Carbon steel	Smls. pipe
SA-524	II	K02104	Carbon steel	Smls. pipe
SA-533	A, Cl. 1	K12521	Mn- ¹ / ₂ Mo	Plate
SA-533	A, Cl. 2	K12521	$Mn - \frac{1}{2}Mo$	Plate
SA-533	B, Cl. 1	K12539	Mn- ¹ / ₂ Mo- ¹ / ₂ Ni	Plate
SA-533	B, Cl. 2	K12539	$Mn - \frac{1}{2}Mo - \frac{1}{2}Ni$	Plate
SA-533	C, Cl. 1	K12554	$Mn - \frac{1}{2}Mo - \frac{3}{4}Ni$	Plate
SA-533	C, Cl. 2	K12554	$Mn - \frac{1}{2}Mo - \frac{3}{4}Ni$	Plate
SA-533	D, Cl. 2	K12529	$Mn - \frac{1}{2}Mo - \frac{1}{4}Ni$	Plate
SA-533 [Note (1)]	E, Cl. 1	K12554	$Mn - \frac{1}{2}Mo - \frac{3}{4}Ni$	Plate
SA-533 [Note (1)]	E, Cl. 2	K12554	$Mn - \frac{1}{2}Mo - \frac{3}{4}Ni$	Plate
SA-537	Cl. 1	K12437	Carbon steel	Plate
SA-537	Cl. 2	K12437	Carbon steel	Plate
SA-537	Cl. 3	K12437	Carbon steel	Plate
SA-541	1	K03506	Carbon steel	Forgings
SA-541	1A	K03020	Carbon steel	Forgings

3-A.3

Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form
A-541	2, Cl. 1	K12765	$^{3}/_{4}Ni - ^{1}/_{2}Mo - ^{1}/_{3}Cr - V$	Forgings
A-541	2, Cl. 2	K12765	$\frac{3}{4}$ Ni $-\frac{1}{2}$ Mo $-\frac{1}{3}$ Cr $-$ V	Forgings
A-541	3, Cl. 1	K12045	¹ / ₂ Ni- ¹ / ₂ Mo-V	Forgings
A-541	3, Cl. 2	K12045	¹ / ₂ Ni- ¹ / ₂ Mo-V	Forgings
A-541	3VCb	K31390	$3Cr-1Mo-\frac{1}{4}V-Cb-Ca$	Forgings
A-541	3V	K31830	$3Cr-1Mo-\frac{1}{4}V-Ti-B$	Forgings
A-541	22, Cl. 3	K21390	$2^{1}/_{4}$ Cr-1Mo	Forgings
A-541	22V	K31835	$2^{1}/_{4}$ Cr-1Mo- $^{1}/_{4}$ V	Forgings
A-542	B, Cl. 4		2 ¹ / ₄ Cr-1Mo	Plate
A-542	E, Cl. 4a	K31390	3Cr-1Mo- ¹ / ₄ V-Cb-Ca	Plate
A-542	C, Cl. 4a		$3Cr-1Mo-\frac{1}{4}V-Ti-B$	Plate
A-542	D, Cl. 4a		$2^{1}/_{4}Cr-1Mo^{-1}/_{4}V$	Plate
A-612		K02900	Carbon steel	Plate
A-662	А	K10701	Carbon steel	Plate
A-662	В	K02203	Carbon steel	Plate
A-662	С	K02007	Carbon steel	Plate
A-675	45		Carbon steel	Bar, shapes
A-675	50		Carbon steel	Bar, shapes
A-675	55		Carbon steel	Bar, shapes
A-675	60		Carbon steel	Bar, shapes
A-675	65		Carbon steel	Bar, shapes
A-675	70		Carbon steel	Bar, shapes
A-727		K02506	Carbon steel	Forgings
A-737	В	K12001	C-Mn-Si-Cb	Plate
A-737	C	K12202	C-Mn-Si-V	Plate
A-738	А	K12447	Carbon steel	Plate
A-738	В	K12007	Carbon steel	Plate
A-738	С		Carbon steel	Plate
A-739	B11	K11797	1 ¹ / ₄ Cr- ¹ / ₂ Mo	Bar
A-739	B22	K21390	2 ¹ / ₄ Cr–1Mo	Bar
A-765	Ι	K03046	Carbon steel	Forgings
A-765	II	K03047	Carbon steel	Forgings
A-765	III	K32026	3 ¹ / ₂ Ni	Forgings
A-765	IV	K02009	Carbon steel	Forgings
A-832	23V	K31390	3Cr-1Mo- ¹ / ₄ V-Cb-Ca	Plate
A-832	21V	K31830	$3Cr-1Mo-\frac{i}{4}V-Ti-B$	Plate
A-832	22V	K31835	2 ¹ / ₄ Cr-1Mo-V	Plate
A-841 [Note (1)]	A, Cl. 1		Carbon steel	Plate
A-841 [Note (1)]	B, Cl. 2		Carbon steel	Plate
A/EN 10028-2 [Note (1)]	P355GH		Carbon steel	Plate
A/EN 10028-2 [Note (1)]	13CrMo4-5		$1Cr - \frac{1}{2}Mo$	Plate
A/EN 10028-2 [Note (1)]	10CrMo9-10		$2^{1}/_{4}$ Cr-1Mo	Plate
A/EN 10028-2 [Note (1)]	13CrMoSi5–5 +QT		1 ¹ / ₄ Cr- ¹ / ₂ Mo-Si	Plate
A/EN 10222-2 [Note (1)]	P280GH		Carbon steel	Forgings
A/EN 10222-2 [Note (1)]	P30SGH		Carbon steel	Forgings
A/EN 10222-2 [Note (1)]	13CrMo4-5		$1Cr - \frac{1}{2}Mo$	Forgings
SA/EN 10222-2 [Note (1)]	11CrMo9-10		$2^{1}/_{4}Cr-1Mo$	Forgings

Table 3-A.2 Quenched and Tempered High Strength Steels					
Iaterial Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form	
SA-333	8	K81340	9Ni	Smls. pipe	
SA-334	8	K81340	9Ni	Smls. tube	
SA-354 SA-353		K81340	9Ni	Plate	
	 D	K14508	$Mn^{-1}/_4Mo$		
SA-372	D E, Cl. 70		$1Cr - \frac{1}{5}Mo$	Forgings	
SA-372	E, CI. 70	K13047	1Cr- /5M0	Forgings	
SA-372	F, Cl. 70	G41350	1Cr- ¹ / ₅ Mo	Forgings	
SA-372	G, Cl. 70	K13049	¹ / ₂ Cr- ¹ / ₅ Mo	Forgings	
SA-372	H, Cl. 70	K13547	$\frac{1}{2}Cr - \frac{1}{5}Mo$	Forgings	
SA-372	J, Cl. 70	K13548	$1Cr-\frac{1}{5}Mo$	Forgings	
SA-372	J, Cl. 110	G41370	1Cr- ¹ / ₅ Mo	Forgings	
64 420		V01240		Carle arises	
SA-420	WPL8	K81340	9Ni	Smls. pipe	
SA-508	4N, Cl. 1	K22375	$3\frac{1}{2}$ Ni- $1\frac{3}{4}$ Cr- $\frac{1}{2}$ Mo-V	Forgings	
SA-508	4N, Cl. 2	K22375	$3\frac{1}{2}Ni-1\frac{3}{4}Cr-\frac{1}{2}Mo-V$	Forgings	
SA-517	A	K11856	$\frac{1}{2}Cr - \frac{1}{4}Mo - Si$	Plate	
SA-517	В	K11630	¹ / ₂ Cr- ¹ / ₅ Mo-V	Plate	
SA-517	Е	K21604	1 ³ / ₄ Cr- ¹ / ₂ Mo-Ti	Plate	
SA-517	F	K11576	$^{3}/_{4}Ni^{-1}/_{2}Cr^{-1}/_{2}Mo^{-V}$	Plate	
SA-517	I	K11625	$C^{-1}/_{2}Mo$	Plate	
SA-517	P	K21650	1^{1}_{4} Ni-1Cr- $1/_{2}$ Mo	Plate	
SA-522	I	K81340	9Ni	Forgings	
SA-533	B, Cl. 3	K12554	$Mn - \frac{1}{2}Mo - \frac{3}{4}Ni$	Plate	
SA-533	D, Cl. 3	K12529	$Mn - \frac{1}{2}Mo - \frac{1}{4}Ni$	Plate	
SA-543	B, Cl. 1	K42339	$3Ni-1\frac{3}{4}Cr-\frac{1}{2}Mo$	Plate	
SA-543	B, Cl. 2	K42339	$3Ni-1^{3}/_{4}Cr-1^{1}/_{2}Mo$	Plate	
SA-543	B, Cl. 3	K42339	$3Ni - 1^{3}/_{4}Cr - \frac{1}{2}Mo$	Plate	
CA 542			23121: 1110 1124		
SA-543	C, Cl. 1		$2^{3}_{4}Ni-1^{1}_{2}Cr-1^{1}_{2}Mo$	Plate	
SA-543	C, CL. 2		2^{3}_{4} Ni-1 ¹ / ₂ Cr- ¹ / ₂ Mo	Plate	
SA-543	C, CL. 3		2 ³ / ₄ Ni-1 ¹ / ₂ Cr- ¹ / ₂ Mo	Plate	
SA-553	I	K81340	9Ni	Plate	
SA-553	III	K61365	7Ni	Plate	
SA-592	А	K11856	¹ / ₂ Cr- ¹ / ₄ Mo-Si	Forgings	
SA-592	E	K11695	$1^{3}/_{4}Cr - \frac{1}{2}Mo - Cu$	Forgings	
SA-592	F	K11576	$\frac{3}{4}$ Ni $-\frac{1}{2}$ Cr $-\frac{1}{2}$ Mo-V	Forgings	
SA-645	A	K41583	$5Ni^{1/4}Mo$	Plate	
SA-723	1, Cl. 1	K23550	2Ni-1 ¹ / ₂ Cr- ¹ / ₄ Mo-V	Forgings	
SA-723	1, Cl. 2	K23550	2Ni-1 ¹ / ₂ Cr- ¹ / ₄ Mo-V	Forginge	
				Forgings	
SA-723	2, Cl. 1	K34035	2^{3}_{4} Ni- 1^{1}_{2} Cr- $\frac{1}{2}$ Mo-V 2^{3}_{4} Ni 1^{1}_{4} Cr- $\frac{1}{4}$ Mo-V	Forgings	
SA-723	2, Cl. 2	K34035	$2^{3}/_{4}$ Ni-1 ¹ / ₂ Cr- ¹ / ₂ Mo-V	Forgings	
SA-723	3, Cl. 1	K44045	$4Ni-1\frac{1}{2}Cr-\frac{1}{2}Mo-V$	Forgings	
SA-723	3, Cl. 2	K44045	$4Ni-1^{1}/_{2}Cr-^{1}/_{2}Mo-V$	Forgings	
SA-724	А	K11831	Carbon steel	Plate	
SA-724	В	K12031	Carbon steel	Plate	
SA-724	С	K12037	Carbon steel	Plate	

Table 3-A.3 High Alloy Steel				
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form
SA-182	FXM-11	S21904	21Cr-6Ni-9Mn	Forgings
SA-182	FXM-19	S20910	22Cr-13Ni-5Mn	Forgings
SA-182	F6a, Cl. 1	S41000	13Cr	Forgings
SA-182	F6a, Cl. 2	S41000	13Cr	Forgings
SA-182	F51	S31803	22Cr-5Ni-3Mo-N	Forgings
SA-182	F58	S31266	24Cr-22.5Ni-5.7Mo-Cu-W	Forgings
A-182 [Note (1)]	F60	S32205	22Cr-5.5Ni-3Mo-N	Forgings
SA-182	F304	S30400	18Cr-8Ni	Forgings
SA-182	F304H	S30409	18Cr-8Ni	Forgings
SA-182	F304L	S30403	18Cr-8Ni	Forgings
SA-182	F310	S31000	25Cr-20Ni	Forgings
SA-182 [Note (1)]	F310MoLN	S31050	25Cr-22Ni-2Mo-N	Forgings
SA-182	F316	S31600	16Cr-12Ni-2Mo	Forgings
SA-182	F316H	S31609	16Cr-12Ni-2Mo	Forgings
SA-182	F316L	S31603	16Cr-12Ni-2Mo	Forgings
SA-182	F321	S32100	18Cr–10Ni–Ti	Forgings
SA-182	F321H	S32109	18Cr–10Ni–Ti	Forgings
SA-182	F347	S34700	18Cr–10Ni–Cb	Forgings
SA-182	F347H	S34909	18Cr–10Ni–Cb	Forgings
SA-182	F348	S34800	18Cr–10Ni–Cb	Forgings
SA-182	F348H	S34809	18Cr–10Ni–Cb	Forgings
SA-213	TP304	S30400	18Cr–8Ni	Smls. tube
SA-213	TP304H	S30409	18Cr–8Ni	Smls. tube
SA-213	TP304L	S30403	18Cr–8Ni	Smls. tube
SA-213	TP304N	S30451	18Cr-8Ni-N	Smls. tube
SA-213	TP309Cb	S30940	23Cr-12Ni-Cb	Smls. tube
SA-213	ТР309Н	S30909	23Cr-12Ni	Smls. tube
SA-213	TP309S	S30908	23Cr-12Ni	Smls. tube
SA-213	TP310H	S31009	25Cr-20Ni	Smls. tube
SA-213	TP310MoLN	S31050	25Cr-22Ni-2Mo-N	Smls. tube
SA-213	TP310S	S31008	25Cr-20Ni	Smls. tube
SA-213	TP316	S31600	16Cr-12Ni-2Mo	Smls. tube
SA-213	TP316H	S31609	16Cr-12Ni-2Mo	Smls. tube
SA-213	TP316L	S31603	16Cr-12Ni-2Mo	Smls. tube
SA-213	TP316N	S31651	16Cr-12Ni-2Mo-N	Smls. tube
SA-213	TP321	S32100	18Cr–10Ni–Ti	Smls. tube
SA-213	TP321H	S32109	18Cr–10Ni–Ti	Smls. tube
SA-213	TP347	S34700	18Cr-10Ni-Cb	Smls. tube
SA-213	TP347H	S34709	18Cr–10Ni–Cb	Smls. tube
SA-213	TP348	S34800	18Cr–10Ni–Cb	Smls. tube
SA-213	TP348H	S34809	18Cr–10Ni–Cb	Smls. tube
SA-213	XM-15	S38100	18Cr-18Ni-2Si	Smls. tube
SA-217	CA15	J91150	13Cr	Castings
SA-240	XM-15	S38100	18Cr-18Ni-2Si	Plate
SA-240	XM19	S20910	22Cr-13Ni-5Mn	Plate
SA-240	XM-29	S24000	18Cr-3Ni-12Mn	Plate
SA-240	XM-29	S24000	18Cr-3Ni-12Mn	Sheet and strip
SA-240	201LN	S20153	16Cr-4Ni-6Mn	Plate
SA-240 [Note (1)]	255	S32550	25Cr-5Ni-3Mo-2Cu	Plate
SA-240	302	S30200	18Cr-8Ni	Plate

Table 3-A.3 High Alloy Steel (Cont'd)					
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form	
SA-240	304	S30400	18Cr–8Ni	Plate	
SA-240	304H	S30409	18Cr-8Ni	Plate	
SA-240	304L	S30403	18Cr-8Ni	Plate	
SA-240	304N	S30451	18Cr-8Ni-N	Plate	
SA-240		S30601	17.5Cr-17.5Ni-5.3Si	Plate	
SA-240		S31266	24Cr-22.5Ni-5.7Mo-Cu-W	Plate	
SA-240	309Cb	S30940	23Cr-12Ni-Cb	Plate	
SA-240	309H	S30909	23Cr-12Ni	Plate	
SA-240	309S	S30908	23Cr-12Ni	Plate	
SA-240	310H	S31009	25Cr-20Ni	Plate	
SA-240	310MoLN	S31050	25Cr-22Ni-2Mo-N	Plate	
SA-240	310S	S31030	25Cr-20Ni	Plate	
SA-240 SA-240	3105	S31608	16Cr-12Ni-2Mo	Plate	
			16Cr-12Ni-2Mo 16Cr-12Ni-2Mo		
SA-240 SA-240	316L 316N	S31603 S31651	16Cr-12Ni-2Mo 16Cr-12Ni-2Mo-N	Plate Plate	
SA-240	317	S31700	18Cr-13Ni-3Mo	Plate	
SA-240	317L	S31703	18Cr-13Ni-3Mo	Plate	
SA-240	321	S32100	18Cr010Ni-Ti	Plate	
SA-240	321H	S32109	18Cr-10Ni-Ti	Plate	
SA-240	347	S34700	18Cr–10Ni–Cb	Plate	
SA-240	347H	S34709	18Cr-10Ni-Cb	Plate	
SA-240	348	S34800	18Cr–10Ni–Cb	Plate	
SA-240	405	S40500	13Cr–1Al	Plate	
SA-240	410	S41000	13Cr	Plate	
SA-240	410S	S41008	13Cr	Plate	
SA-240	429	S42900	15Cr	Plate	
SA-240	430	S43000	17Cr	Plate	
SA-240		S31803	22Cr-5Ni-3Mo-N	Plate	
SA-240 [Note (1)]	2205	S32205	22Cr-5.5Ni-3Mo-N	Plate	
SA-240	26-3-3	S44660	26Cr-3Ni-3Mo	Plate	
SA-240 [Note (1)]		S32906	29Cr-6.5Ni-2Mo-N	Plate, sheet, and strip	
SA-249	TPXM-15	S38100	18Cr-18Ni-2Si	Wld. tube	
SA-249	TPXM-19	S20910	22Cr-13Ni-5Mn	Wld. tube	
SA-249	TP304	S30400	18Cr-8Ni	Wld. tube	
SA-249	ТР304Н	S30409	18Cr-8Ni	Wld. tube	
SA-249	TP304L	S30403	18Cr-8Ni	Wld. tube	
SA-249	TP304N	S30455	18Cr-8Ni-N	Wld. tube	
SA-249	TP309Cb	S30940	23Cr-12Ni-Cb	Wld. tube	
SA-249	ТР309Н	S30909	23Cr-12Ni	Wld. tube	
SA-249	TP309S	S30908	23Cr-12Ni	Wld. tube	
SA-249	TP310Cb	\$31040	25Cr_20Ni_Cb	Wld_tube	
	TP310Cb	S31040	25Cr-20Ni-Cb	Wld. tube	
SA-249	TP310H TP310MoLN	S31009	23Cr-12Ni 25Cr 22Ni 2Mo N	Wld. tube	
SA-249	TP310MoLN	S31050	25Cr-22Ni-2Mo-N	Wld. tube	
SA-249	TP310S	S31008	23Cr-12Ni 24Cr-22Ni (Ma-2W) (m N	Wld. tube	
SA-249 SA-249	 TP316	S31266 S31600	24Cr-22Ni-6Mo-2W-Cu-N 16Cr-12Ni-2Mo	Wld. tube Wld. tube	
SA-249	ТР316Н	S31609	16Cr-12Ni-2Mo	Wld. tube	
SA-249	TP316L	S31603	16Cr-12Ni-2Mo	Wld. tube	
SA-249	TP316N	S31651	16Cr-12Ni-2Mo-N	Wld. tube	
SA-249	TP317	S31700	18Cr–3Ni–3Mo	Wld. tube	

High Alloy Steel (Cont'd)					
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form	
SA-249	TP321H	S32109	18Cr–10Ni–Ti	Wld. tube	
SA-249	TP347	S34700	18Cr–10Ni–Cb	Wld. tube	
SA-249	TP347H	S34709	18Cr–10Ni–Cb	Wld. tube	
SA-249	TP348	S34800	18Cr-10Ni-Cb	Wld. tube	
SA-249	ТР348Н	S34809	18Cr-10Ni-Cb	Wld. tube	
SA-268	TP405	S40500	12Cr–1Al	Smls. tube	
SA-268	TP410	S41000	13Cr	Smls. tube	
SA-268	TP429	S42900	15Cr	Smls. tube	
SA-268	TP430	S43000	17Cr	Smls. tube	
SA-268	26-3-3	S44660	26Cr-3Ni-3Mo	Smls. tube	
SA-268	26-3-3	S44660	26Cr-3Ni-3Mo	Wld. tube	
SA-312	TPXM-11	S21904	21Cr-6Ni-9Mn	Smls. pipe	
SA-312	TPXM-11 TPXM-15	S38100	18Cr-18Ni-2Si	Smls. pipe	
SA-312	TPXM-15 TPXM-19	S20910	22Cr-13Ni-5Mn	Smls. pipe	
SA-312	TP304	S20910 S30400	18Cr-8Ni	Smls. pipe	
N 212	TD204U	\$20400	10Cn 0N;		
SA-312	TP304H	S30409	18Cr-8Ni	Smls. pipe	
SA-312	TP304L	S30403	18Cr-8Ni	Smls. pipe	
SA-312	TP304N	S30451	18Cr-8Ni-N	Smls. pipe	
SA-312	TP309Cb	S30940	23Cr-12Ni-Cb	Smls. pipe	
SA-312	ТР309Н	S30909	23Cr-12Ni	Smls. pipe	
SA-312	TP309S	S30908	23Cr-12Ni	Smls. pipe	
SA-312	TP310H	S31009	23Cr-12Ni	Smls. pipe	
SA-312	TP310S	S31008	23Cr-12Ni	Smls. pipe	
SA-312	TP316	S31600	16Cr-12Ni-2Mo	Smls. pipe	
SA-312	TP316H	S31609	16Cr-12Ni-2Mo	Smls. pipe	
SA-312	TP316L	S31603	16Cr-12Ni-2Mo	Smls. pipe	
SA-312	TP316N	S31651	16Cr-12Ni-2Mo-N	Smls. pipe	
SA-312	TP317	S31700	18Cr-3Ni-3Mo	Smls. pipe	
SA-312	TP321	S32100	18Cr-10Ni-Ti	Smls. pipe	
SA-312	TP321	S32100	18Cr–10Ni–Ti	Smls. pipe	
SA-312	TP321H	S32109	18Cr–10Ni–Ti	Smls. pipe	
SA-312	TP321H	S32109	18Cr-10Ni-Ti	Smls. pipe	
SA-312	TP347	S34700	18Cr-10Ni-Cb	Smls. pipe	
SA-312	ТР347Н	S34709	18Cr-10Ni-Cb	Smls. pipe	
SA-312	TP348	S34800	18Cr-10Ni-Cb	Smls. pipe	
SA-312	ТР348Н	S34809	18Cr–10Ni–Cb	Smls. pipe	
SA-312	TPXM-11	S21904	21Cr-6Ni-9Mn	Wld. pipe	
SA-312	TPXM-11 TPXM-15	S38100	18Cr-18Ni-2Si	Wld. pipe	
SA-312	TPXM-19	S20910	22Cr-13Ni-5Mn	Wld. pipe	
SA-312	TP304	S30400	18Cr-8Ni	Wld. pipe	
SA-312	TP304H	S30409	18Cr-8Ni	Wld. pipe	
SA-312	TP304L	S30403	18Cr-8Ni	Wld. pipe	
SA-312	TP304N	S30451	18Cr-8Ni-N	Wld. pipe	
SA-312	TP309Cb	S30940	23Cr-12Ni-Cb	Wld. pipe	
SA-312	ТР309Н	S30909	23Cr-12Ni	Wld. pipe	
SA-312	TP309S	S30908	23Cr-12Ni	Wld. pipe	
SA-312	TP310Cb	S31040	25Cr-20Ni-Cb	Wld. pipe	
SA-312	TP310H	S31009	23Cr-12Ni	Wld. pipe	
SA-312	TP310MoLN	S31050	25Cr-22Ni-2Mo-N	Wld. pipe	
SA-312	TP310MoLN	S31050	25Cr-22Ni-2Mo-N	Wld. pipe	

Table 3-A.3 High Alloy Steel (Cont'd)					
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form	
SA-312	TP310S	S31008	23Cr-12Ni	Wld. pipe	
SA-312	TP316	S31600	16Cr-12Ni-2Mo	Wld. pipe	
SA-312	TP316H	S31609	16Cr-12Ni-2Mo	Wld. pipe	
SA-312	TP316L	S31603	16Cr-12Ni-2Mo	Wld. pipe	
SA-312	TP316N	S31651	16Cr-12Ni-2Mo-N	Wld. pipe	
SA-312	TP317	S31700	18Cr-3Ni-3Mo	Wld. pipe	
SA-312	TP321	S32100	18Cr–10Ni–Ti	Wld. pipe	
SA-312	TP321H	S32109	18Cr–10Ni–Ti	Wld. pipe	
SA-312	TP347	S34700	18Cr-10Ni-Cb	Wld. pipe	
SA-312	TP347H	S34709	18Cr–10Ni–Cb	Wld. pipe	
SA-312	TP348	S34800	18Cr–10Ni–Cb	Wld. pipe	
SA-312 SA-312	TP348H	S34800	18Cr-10Ni-Cb	Wld. pipe	
SA-312 SA-336	FXM-11	S21904	21Cr-6Ni-9Mn	Forgings	
SA-336 SA-336	FXM-11 FXM-19	S21904 S20910	22Cr-13Ni-5Mn	Forgings	
SA-336	F6	S41000	13Cr	Forgings	
SA-336	F304	S30400	18Cr-8Ni	Forgings	
	F304 F304H				
SA-336		S30409	18Cr–8Ni 18Cr–8Ni	Forgings	
SA-336	F304L	S30403		Forgings	
SA-336 SA-336	F304N F310	S30451 S31000	18Cr–8Ni–N 25Cr–20Ni	Forgings	
SA-330	F310	551000	25CF-20MI	Forgings	
SA-336	F316	S31600	16Cr-12Ni-2Mo	Forgings	
SA-336	F316H	S31609	16Cr-12Ni-2Mo	Forgings	
SA-336	F316L	S31603	16Cr-12Ni-2Mo	Forgings	
SA-336	F316N	S31651	16Cr-12Ni-2Mo-N	Forgings	
SA-336	F321	S32100	18Cr–10Ni–Ti	Forgings	
SA-336	F321H	S32109	18Cr–10Ni–Ti	Forgings	
SA-336	F347	S34700	18Cr-10Ni-Cb	Forgings	
SA-336	F347H	S34709	18Cr–10Ni–Cb	Forgings	
SA-351	CF3	J92500	18Cr-8Ni	Castings	
SA-351	CF8	J92600	18Cr-8Ni	Castings	
SA-351	CF8C	J92710	18Cr–10Ni–Cb	Castings	
SA-351	CF8M	J92900	18Cr-12Ni-2Mo	Castings	
SA-351 SA-351	CF10	J92590	19Cr-9Ni-0.5Mo	Castings	
SA-351	CH8	J93400	25Cr-12Ni	Castings	
SA-351	CH20	J93402	25Cr-12Ni	Castings	
SA-351	CK20	194202	25Cr-20Ni	Castings	
SA-376	TP304	S30400	18Cr-8Ni	Smls. pipe	
SA-376	ТР304Н	S30400	18Cr-8Ni	Smls. pipe	
SA-376	TP304N	S30409	18Cr-8Ni-N	Smls. pipe	
SA-376	TP316	S31600	16Cr-12Ni-2Mo	Smls. pipe	
SA-376	ТР316Н	S31609	16Cr-12Ni-2Mo	Smls. pipe	
SA-376	TP316N	S31609 S31651	16Cr-12Ni-2Mo-N	Smls. pipe	
SA-376 SA-376	TP321	S31651 S32100			
SA-376 SA-376	TP321 TP321	S32100 S32100	18Cr-10Ni-Ti 18Cr 10Ni Ti	Smls. pipe	
SA-376 SA-376	TP321 TP321H	S32100 S32109	18Cr–10Ni–Ti 18Cr–10Ni–Ti	Smls. pipe Smls. pipe	
	TD221U	\$22100	10Cn 10N; T;		
SA-376	TP321H	S32109	18Cr-10Ni-Ti	Smls. pipe	
SA-376	TP347	S34700	18Cr-10Ni-Cb	Smls. pipe	
SA-376	TP347H	S34709	18Cr-10Ni-Cb	Smls. pipe	
SA-376 SA-403	TP348 XM-19	S34800 S20910	18Cr–10Ni–Cb 22Cr–13Ni–5Mn	Smls. pipe Fittings	

High Alloy Steel (Cont'd)					
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form	
SA-403	304	S30400	18Cr–8Ni	Fittings	
SA-403	304H	S30409	18Cr-8Ni	Fittings	
SA-403	304L	S30403	18Cr-8Ni	Fittings	
SA-403	304N	S30451	18Cr-8Ni-N	Fittings	
SA-403	309	S30900	23Cr-12Ni	Fittings	
SA-403	310	S31000	25Cr-20Ni	Fittings	
SA-403	316	S31600	16Cr-12Ni-2Mo	Fittings	
SA-403	316L	S31603	16Cr-12Ni-2Mo	Fittings	
SA-403	316N	S31651	16Cr-12Ni-2Mo-N	Fittings	
SA-403 SA-403	317	S31700	18Cr-13Ni-3Mo	Fittings	
SA-403	317L	S31700	18Cr-13Ni-3Mo	Fittingo	
				Fittings	
SA-403	321	S32100	18Cr-10Ni-Ti	Fittings	
SA-403	321H	S32109	18Cr-10Ni-Ti	Fittings	
SA-403	347	S34700	18Cr-10Ni-Cb	Fittings	
SA-403	347H	S34709	18Cr–10Ni–Cb	Fittings	
SA-403	348	S34800	18Cr-10Ni-Cb	Fittings	
SA-403	348H	S34809	18Cr-10Ni-Cb	Fittings	
SA-403	XM-19	S20910	22Cr-13Ni-5Mn	Wld. fittings	
SA-403	304	S30400	18Cr-8Ni	Wld. fittings	
SA-403	304H	S30409	18Cr-8Ni	Wld. fittings	
SA-403	304N	S30451	18Cr-8Ni-N	Wld. fittings	
SA-403	309	S30900	23Cr-12Ni	Wld. fittings	
SA-403	310	S31000	25Cr-20Ni	Wld. fittings	
SA-403	316L	S31603	16Cr-12Ni-2Mo	Wld. fittings	
SA-403	316N	S31651	16Cr-12Ni-2Mo-N	Wld. fittings	
SA-403	321	S32100	18Cr–10Ni–Ti	Wld. fittings	
SA-403	321H	S32109	18Cr-10Ni-Ti	Wld. fittings	
SA-403	347	S34700	18Cr-10Ni-Cb	Wld. fittings	
SA-403	347H	S34709	18Cr-10Ni-Cb	Wld. fittings	
SA-403	348	S34800	18Cr–10Ni–Cb	Wld. fittings	
SA-403	348H	S34809	18Cr–10Ni–Cb	Wld. fittings	
SA-403 SA-479 [Note (1)]		S32906	29Cr-6.5Ni-2Mo-N	Bar	
SA-479 [Note (1)]	 XM-19	S20910	22Cr-13Ni-5Mn	Bar	
SA-479	309H	S30909	23Cr-12Ni	Bar	
SA-564	630	S17400	17Cr-4Ni-4Cu	Bar	
SA (((VM 11	\$21004	210- (N: 0M-	Plate	
SA-666 SA-688	XM-11 TP304	S21904 S30400	21Cr-6Ni-9Mn	Wld. tube	
	TP304L	S30400	18Cr-8Ni	Wld. tube	
SA-688 SA-688	TP316		18Cr-8Ni 16Cr 12Ni 2Mo	Wld. tube	
SA-688	TP316L	S31600 S31603	16Cr-12Ni-2Mo 16Cr-12Ni-2Mo	Wld. tube	
			170- AN: 40-		
SA-693 SA-705	630 630	S17400	17Cr-4Ni-4Cu 17Cr-4Ni-4Cu	Plate, sheet, and str	
		S17400	17Cr-4Ni-4Cu	Forgings	
SA-789		S31500	18Cr-5Ni-3Mo-N	Smls. tube	
SA-789 SA-789		S31803 S31500	22Cr-5Ni-3Mo-N 18Cr-5Ni-3Mo-N	Smls. tube Wld. tube	
SA-789		S31803	22Cr-5Ni-3Mo-N	Wld. tube	
SA-789 [Note (1)]		S32205	22Cr-5.5Ni-3Mo-N	Smls. tube	
SA-789 [Note (1)]		S32205	22Cr-5.5Ni-3Mo-N	Wld. tube	
SA-789 [Note (1)]		S32906	29Cr-6.5Ni-2Mo-N	Smls. tube	
SA-790 [Note (1)]		S32205	22Cr-5.5Ni-3Mo-N	Smls. tube	

Table 3-A.3 High Alloy Steel (Cont'd)					
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form	
SA-790 [Note (1)]		S32205	22Cr-5.5Ni-3Mo-N	Wld. pipe	
SA-790 [Note (1)]		S32906	29Cr-6.5Ni-2Mo-N	Smls. tube	
SA-790		S31500	18Cr-5Ni-3Mo-N	Smls. pipe	
SA-790		S31803	22Cr-5Ni-3Mo-N	Smls. pipe	
A-790		S31500	18Cr-5Ni-3Mo-N	Wld. pipe	
SA-790		S31803	22Cr-5Ni-3Mo-N	Wld. pipe	
SA-790		S32906	29Cr-6.5Ni-2Mo-N	Smls. pipe	
SA-803	26-3-3	S44660	26Cr-3Ni-3Mo	Wld. tube	
SA-813	TP309Cb	S30940	23Cr-12Ni-Cb	Wld. pipe	
SA-813	TP309S	S30908	23Cr-12Ni	Wld. pipe	
SA-813	TP310Cb	S31040	25Cr-20Ni-Cb	Wld. pipe	
SA-813	TP310S	S31008	25Cr-20Ni	Wld. pipe	
SA-814	TP309Cb	S30940	23Cr-12Ni-Cb	Wld. pipe	
SA-814	TP309S	S30908	23Cr-12Ni	Wld. pipe	
SA-814	TP310Cb	S31040	25Cr-20Ni-Cb	Wld. pipe	
SA-814	TP310S	S31008	25Cr-20Ni	Wld. pipe	
SA-965	FXM-11	S21904	21Cr-6Ni-9Mn	Forgings	
SA-965	FXM-19	S20910	22Cr-13Ni-5Mn	Forgings	
SA-965	F6	S41000	13Cr	Forgings	
SA-965	F304	S30400	18Cr-8Ni	Forgings	
SA-965	F304H	S30409	18Cr–8Ni	Forgings	
SA-965 [Note (1)]	F304L	S30403	18Cr–8Ni	Forgings	
SA-965	F304N	S30451	18Cr-8Ni-N	Forgings	
SA-965	F310	S31000	25Cr-20Ni	Forgings	
SA-965	F316	S31600	16Cr-12Ni-2Mo	Forgings	
A-965	F316H	S31609	16Cr-12Ni-2Mo	Forgings	
SA-965	F316L	S31603	16Cr-12Ni-2Mo	Forgings	
SA-965	F316N	S31651	16Cr-12Ni-2Mo-N	Forgings	
SA-965	F321	S32100	18Cr-10Ni-Ti	Forgings	
SA-965	F321H	S32109	18Cr–10Ni–Ti	Forgings	
SA-965	F347	S34700	18Cr-10Ni-Cb	Forgings	
SA-965	F347H	S34909	18Cr–10Ni–Cb	Forgings	
SA/EN 10028-7 [Note (2)]	X2CrNi18-9		18Cr- 8Ni	Plate and strip	
SA/EN 10028-7 [Note (2)]	X2CrNiMo17-12-2		16Cr-12Ni-2Mo	Plate and strip	
SA/EN 10028-7 [Note (2)]	X2CrNiMoN17-11-2		16Cr-12Ni-2Mo-N	Plate and strip	
SA/EN 10028-7 [Note (2)]	X2CrNiMoN17-13-3		16Cr-12Ni-2Mo-N	Plate and strip	
SA/EN 10028-7 [Note (2)]	X2CrNiN18-10		18Cr-8Ni-N	Plate and strip	
SA/EN 10028-7 [Note (2)]	X5CrNi18-10		18Cr-8Ni	Plate and strip	
SA/EN 10028-7 [Note (2)]	X5CrNiMo17-12-2		16Cr-12Ni-2Mo	Plate and strip	
SA/EN 10028-7 [Note (2)]	X5CrNiN19-9		18Cr-8Ni-N	Plate and strip	
SA/EN 10028-7 [Note (2)]	X6CrNiTi18-10		18Cr-8Ni-Ti	Plate and strip	

NOTES:

(1) For Class 2 construction only.

(2) SA/EN 10028-7 materials shall be considered as SA-240 materials with the following corresponding grades:
 (a) Grade X2CrNi18-9 shall be considered as Type 304L.

(b) Grade X2CrNiMo17-12-2 shall be considered as Type 316L.

(c) Grades X2CrNiMoN17-11-2 and X2CrNiMoN17-13-3 shall be considered as Type 316LN.

(d) Grade X2CrNiN18-10 shall be considered as Type 304LN.

(e) Grade X5CrNi18-10 shall be considered as Type 304.

(f) Grade X5CrNiMo17-12-2 shall be considered as Type 316.

(g) Grade X5CrNiN19-9 shall be considered as Type 304N.

(h) Grade X6CrNiTi18-10 shall be considered as Type 321.

Table 3-A.4 Aluminum Alloys					
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form	
SB-209	3003	A93003	Al-Mn-Cu	Plate, sheet	
SB-209	3004	A93004	Al-Mn-Mg	Plate, sheet	
SB-209	5052	A95052	Al-2.5Mg	Plate, sheet	
SB-209	5083	A95083	Al-4.4Mg-Mn	Plate, sheet	
SB-209	5086	A95086	Al-4.0Mg-Mn	Plate, sheet	
SB-209	5454	A95454	Al-2.7Mg-Mn	Plate, sheet	
SB-209	6061	A96061	Al-Mg-Si-Cu	Plate, sheet	
SB-210	Allclad 3003		Al-Mn-Cu	Smls. drawn tube	
SB-210	3003	A93003	Al-Mn-Cu	Smls. drawn tube	
SB-210	6061	A96061	Al-Mg-Si-Cu	Smls. drawn tube	
SB-210	6063	A96063	Al-Mg-Si	Smls. drawn tube	
SB-221	3003	A93003	Al-Mn-Cu	Bar, rod, shapes	
SB-221	5083	A95083	Al-4.4Mg-Mn	Bar, rod, shapes	
SB-221	5454	A95454	Al-2.7Mg-Mn	Bar, rod, shapes	
SB-221	6061	A96061	Al-Mg-Si-Cu	Bar, rod, shapes	
SB-221	6063	A96063	Al-Mg-Si	Bar, rod, shapes	
SB-241	Allclad 3003		Al-Mn-Cu	Smls. extr. tube	
SB-241	3003	A93003	Al-Mn-Cu	Smls. extr. tube	
SB-241	3003	A93003	Al-Mn-Cu	Smls. pipe	
SB-241	5083	A95083	Al-4.4Mg-Mn	Smls. extr. tube	
SB-241	5454	A95454	Al-2.7Mg-Mn	Smls. extr. tube	
SB-241	6061	A96061	Al-Mg-Si-Cu	Smls. extr. tube/pip	
SB-241	6061	A96061	Al-Mg-Si-Cu	Smls. drawn pipe	
SB-241	6063	A96063	Al-Mg-Si	Smls. extr. tube/pip	
SB-308	6061	A96061	Al-Mg-Si-Cu	Shapes	

(**23**)

Table 3-A.5 Copper Alloys					
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form	
SB-96		C65500	97Cu-3.3Si	Plate, sheet	
SB-98		C65100	98.5Cu-1.5Si	Rod, bar & shapes	
SB-98		C65500	97Cu-3Si	Rod, bar & shapes	
SB-98		C66100	94Cu-3Si	Rod, bar & shapes	
SB-111		C28000	60Cu-20Zn	Smls. tube	
SB-111		C44300	71Cu-28Zn-1Sn-0.06As	Smls. tube	
SB-111		C44400	71Cu-28Zn-1Sn-0.06Sb	Smls. tube	
SB-111		C44500	71Cu-28Zn-1Sn-0.06P	Smls. tube	
SB-111		C60800	95Cu–5Al	Smls. tube	
SB-111		C70600	90Cu-10Ni	Cond. tube	
SB-111		C70620	90Cu-10Ni	Cond. tube	
SB-111		C71500	70Cu-30Ni	Cond. tube	
SB-111		C71520	70Cu-30Ni	Cond. tube	
SB-169		C61400	90Cu-7Al-3Fe	Plate, sheet	
SB-171		C46400	60Cu-39Zn-Sn	Plate	
SB-171		C70600	90Cu-10Ni	Plate	
SB-171		C70620	90Cu-10Ni	Plate	
SB-171		C71500	70Cu-30Ni	Plate	
SB-171		C71520	70Cu-30Ni	Plate	
SB-187		C10200	99.95Cu-P	Rod & bar	
SB-187		C11000	99.9Cu	Rod & bar	
SB-395		C70600	90Cu-10Ni	Smls. U-bend tube	
SB-395		C70620	90Cu-10Ni	Smls. U-bend tube	
SB-395		C71500	70Cu-30Ni	Smls. U-bend tube	
SB-395		C71520	70Cu-30Ni	Smls. U-bend tube	

Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form
SB-127		N04400	67Ni-30Cu	Plate
SB-160		N02200	99Ni	Bar, rod
SB-160		N02201	99Ni–Low C	Bar, rod
SB-161		N02200	99Ni	Smls. pipe & tube
SB-161		N02201	99Ni-Low C	Smls. pipe & tube
SB-162		N02200	99Ni	Plate, sheet, strip
SB-162		N02201	99Ni–Low C	Plate, sheet, strip
SB-163		N02200	99Ni	Smls. tube
SB-163		N02201	99Ni–Low C	Smls. tube
SB-163		N04400	67Ni-30Cu	Smls. tube
SB-163		N06600	72Ni–15Cr–8Fe	Smls. tube
SB-163		N08800	33Ni-42Fe-21Cr	Smls. tube
SB-163		N08810	33Ni-42Fe-21Cr	Smls. tube
SB-163		N08825	42Ni-21.5Cr-3Mo-2.3Cu	Smls. tube
SB-164		N04400	67Ni-30Cu	Bar, rod
SB-164		N04405	67Ni-30Cu-S	Bar, rod
SB-165		N04400	67Ni-30Cu	Smls. pipe & tube
SB-166		N06600	72Ni-15Cr-8Fe	Bar, rod
SB-167		N06600	72Ni-15Cr-8Fe	Smls. pipe & tube
SB-168		N06600	72Ni-15Cr-8Fe	Plate
SB-333		N10001	62Ni-28Mo-5Fe	Plate, strip
SB-333		N10665	65Ni-28Mo-2Fe	Plate, strip
SB-335		N10001	62Ni-28Mo-5Fe	Rod
SB-335		N10665	65Ni-28Mo-2Fe	Rod
SB-366		N06022	55Ni-21Cr-13.5Mo	Smls. & wld. fittings
SB-366		N06059	59Ni-23Cr-16Mo	Smls. fittings
SB-366		N10276	54Ni-16Mo-15Cr	Smls. fittings
SB-366		N10665	65Ni-28Mo-2Fe	Smls. fittings
SB-366		N06059	59Ni-23Cr-16Mo	Wld. fittings
SB-366		N10276	54Ni-16Mo-15Cr	Wld. fittings
SB-366		N10665	65Ni-28Mo-2Fe	Wld. fittings
SB-407		N08800	33Ni-42Fe-21Cr	Smls. pipe & tube
SB-407		N08810	33Ni-42Fe-21Cr	Smls. pipe & tube
SB-408		N08800	33Ni-42Fe-21Cr	Bar, rod
SB-408		N08810	33Ni-42Fe-21Cr	Bar, rod
SB-409		N08800	33Ni-42Fe-21Cr	Plate
SB-409		N08810	33Ni-42Fe-21Cr	Plate
SB-423		N08825	42Ni-21.5Cr-3Mo-2.3Cu	Smls. pipe & tube
SB-424		N08825	42Ni-21.5Cr-3Mo-2.3Cu	Plate, sheet, strip
SB-425		N08825	42Ni-21.5Cr-3Mo-2.3Cu	Bar, rod
SB-434		N10003	70Ni-16Mo-7Cr-5Fe	Plate, sheet, strip
SB-435		N06002	47Ni-22Cr-9Mo-18Fe	Sheet
SB-435		N06002	47Ni-22Cr-9Mo-18Fe	Plate
SB-462		N06022	55Ni-21Cr-13.5Mo	Forgings
SB-462		N06059	59Ni-23Cr-16Mo	Forgings
SB-462		N10276	54Ni-16Mo-15Cr	Forgings
SB-462		N10665	65Ni-28Mo-2Fe	Forgings
SB-511		N08330	35Ni-19Cr-1.25Si	Bar
SB-514		N08800	33Ni-42Fe-21Cr	Welded pipe
SB-514		N08810	33Ni-42Fe-21Cr	Welded pipe
SB-515		N08800	33Ni-42Fe-21Cr	Welded tube

Table 3-A 6

Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form
SB-515		N08810	33Ni-42Fe-21Cr	Welded tube
SB-516		N06600	72Ni-15Cr-8Fe	Welded tube
SB-517		N06600	72Ni-15Cr-8Fe	Welded tube
SB-535		N08330	35Ni-19Cr-1 ¹ / ₄ Si	Smls. & welded pipe
SB-536		N08330	35Ni-19Cr-1 ¹ / ₄ Si	Plate, sheet, strip
SB-564		N04400	67Ni-30Cu	Forgings
SB-564		N06022	55Ni-21Cr-13.5Mo	Forgings
SB-564		N06059	59Ni-23Cr-16Mo	Forgings
SB-564		N06600	72Ni–15Cr–8Fe	Forgings
SB-564		N08800	33Ni-42Fe-21Cr	Forgings
SB-564		N08810	33Ni-42Fe-21Cr	Forgings
SB-564 [Note (1)]		N08825	42Ni-21.5Cr-3Mo-2.3Cu	Forgings
SB-572		N06002	47Ni-22Cr-9Mo-18Fe	Rod
SB-573		N10003	70Ni-16Mo-7Cr-5Fe	Rod
SB-574		N06022	55Ni-21Cr-13.5Mo	Rod
SB-574		N06059	59Ni-23Cr-16Mo	Rod
SB-574		N06455	61Ni-16Mo-16Cr	Rod
SB-574		N10276	54Ni-16Mo-15Cr	Rod
SB-575		N06022	55Ni-21Cr-13.5Mo	Plate, sheet & strip
SB-575		N06059	59Ni-23Cr-16Mo	Plate, sheet & strip
SB-575		N06455	61Ni-16Mo-16Cr	Plate, sheet & strip
SB-575		N10276	54Ni-16Mo-15Cr	Plate, sheet & strip
SB-581		N06007	47Ni-22Cr-19Fe-6Mo	Rod
SB-582		N06007	47Ni-22Cr-19Fe-6Mo	Plate, sheet, strip
SB-619		N06002	47Ni-22Cr-9Mo-18Fe	Welded pipe
SB-619		N06007	47Ni-22Cr-19Fe-6Mo	Welded pipe
SB-619		N06022	55Ni-21Cr-13.5Mo	Welded pipe
SB-619		N06059	59Ni-23Cr-16Mo	Welded pipe
SB-619		N06455	61Ni-16Mo-16Cr	Welded pipe
SB-619		N10001	62Ni-28Mo-5Fe	Welded pipe
SB-619		N10276	54Ni-16Cr-16Mo-5.5Fe	Welded pipe
SB-619		N10665	65Ni-28Mo-2Fe	Welded pipe
SB-622		N06002	47Ni-22Cr-9Mo-18Fe	Smls. pipe & tube
SB-622		N06007	47Ni-22Cr-19Fe-6Mo	Smls. pipe & tube
SB-622		N06022	55Ni-21Cr-13.5Mo	Smls. pipe & tube
SB-622		N06059	59Ni-23Cr-16Mo	Smls. pipe & tube
SB-622		N06455	61Ni-16Mo-16Cr	Smls. pipe & tube
SB-622		N10001	62Ni-28Mo-5Fe	Smls. pipe & tube
SB-622		N10276	54Ni-16Cr-16Mo-5.5Fe	Smls. pipe & tube
SB-622		N10665	65Ni-28Mo-2Fe	Smls. pipe & tube
SB-626		N06002	47Ni-22Cr-9Mo-18Fe	Welded tube
SB-626		N06007	47Ni-22Cr-19Fe-6Mo	Welded tube
SB-626		N06022	55Ni-21Cr-13.5Mo	Welded tube
SB-626		N06059	59Ni-23Cr-16Mo	Welded tube
SB-626		N06455	61Ni-16Mo-16Cr	Welded tube
SB-626		N10001	62Ni-28Mo-5Fe	Welded tube
SB-626		N10276	54Ni-16Cr-16Mo-5.5Fe	Welded tube
SB-626		N10276	65Ni-28Mo-2Fe	Welded tube

3-A.3

Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form
SB-265	1	R50250	Ti	Plate, sheet, strip
SB-265	2	R50400	Ti	Plate, sheet, strip
SB-265	3	R50550	Ti	Plate, sheet, strip
SB-265	7	R52400	Ti–Pd	Plate, sheet, strip
SB-265	16	R52402	Ti–Pd	Plate, sheet, strip
SB-265	12	R53400	Ti-0.3Mo-0.8Ni	Plate, sheet, strip
SB-338	1	R50250	Ti	Smls. tube
SB-338	2	R50400	Ti	Smls. tube
SB-338	3	R50550	Ti	Smls. tube
SB-338	7	R52400	Ti–Pd	Smls. tube
SB-338 [Note (1)]	16	R52402	Ti–Pd	Smls. tube
SB-338	12	R53400	Ti-0.3Mo-0.8Ni	Smls. tube
SB-338	1	R50250	Ti	Wld. tube
SB-338	2	R50400	Ti	Wld. tube
SB-338	3	R50550	Ti	Wld. tube
SB-338	7	R52400	Ti–Pd	Wld. tube
SB-338 [Note (1)]	16	R52402	Ti-Pd	Wld. tube
SB-338	12	R53400	Ti-0.3Mo-0.8Ni	Wld. tube
SB-348	1	R50250	Ti	Bar, billet
SB-348	2	R50400	Ti	Bar, billet
SB-348	3	R50550	Ti	Bar, billet
SB-348	7	R52400	Ti–Pd	Bar, billet
SB-348 [Note (1)]	16	R52402	Ti–Pd	Bar, billet
SB-348	12	R53400	Ti-0.3Mo-0.8Ni	Bar, billet
SB-381	F1	R50250	Ti	Forgings
SB-381	F2	R50400	Ti	Forgings
SB-381	F3	R50550	Ti	Forgings
SB-381	F7	R52400	Ti–Pd	Forgings
B-381 [Note (1)]	F16	R52402	Ti–Pd	Forgings
SB-381	F12	R53400	Ti-0.3Mo-0.8Ni	Forgings
B-861	1	R50250	Ti	Smls. pipe
B-861	2	R50400	Ti	Smls. pipe
SB-861	3	R50550	Ti	Smls. pipe
SB-861	7	R52400	Ti–Pd	Smls. pipe
SB-861	12	R53400	Ti-0.3Mo-0.8Ni	Smls. pipe
B-862	1	R50250	Ti	Wld. pipe
SB-862	2	R50400	Ti	Wld. pipe
SB-862	3	R50550	Ti	Wld. pipe
SB-862	7	R52400	Ti–Pd	Wld. pipe
SB-862	12	R53400	Ti-0.3Mo-0.8Ni	Wld. pipe

I

Aterial Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form
faterial specification	Type/Graue/Class	Low Alloy Steel	•	FIGUALL FORM
64 102	B5	K50100	$5Cr - \frac{1}{2}Mo$	Dalting
SA-193	B5 B7		$1Cr - \frac{1}{5}Mo$	Bolting
SA-193		G41400		Bolting
SA-193	B7M	G41400	$1 \text{Cr} - \frac{1}{5} \text{Mo}$	Bolting
SA-193	B16	K14072	$1Cr - \frac{1}{2}Mo - V$	Bolting
SA-320	L7	G41400	1Cr- ¹ / ₅ Mo	Bolting
SA-320	L7A	G40370	C- ¹ / ₄ Mo	Bolting
SA-320	L7M	G41400	1Cr- ¹ / ₅ Mo	Bolting
SA-320	L43	G43400	1 ³ / ₄ Ni- ³ / ₄ Cr- ¹ / ₄ Mo	Bolting
SA-325	1	K02706	Carbon steel	Bolting
SA-354	BC	K04100	Carbon steel	Bolting
SA-354	BD	K04100	Carbon steel	Bolting
SA-437	B4B	K91352	12Cr-1Mo-V-W	Bolting
SA-437	B4C	K91352	12Cr-1Mo-V-W	Bolting
SA-449		K04200	Carbon steel	Bolting
SA-449		K04200	Carbon steel	Bolting
SA-449		K04200	Carbon steel	Bolting
SA-508	 5, Cl. 2	K42365	$3^{1}/_{2}Ni-1^{3}/_{4}Cr-1^{1}/_{2}Mo-V$	Bolting
SA-540	B21, Cl. 1	K12003	$1 Cr - \frac{1}{2} Mo - V$	Bolting
SA-540	B21, Cl. 2	K14073	$1 \text{Cr}^{-1/2} \text{Mo-V}$	Bolting
SA-540 SA-540	B21, Cl. 2 B21, Cl. 3	K14073	$1Cr - \frac{1}{2}Mo - V$	Bolting
54-540	DZ 1, Cl. 5	K1+075		Dolting
SA-540	B21, Cl. 4	K14073	1Cr- ¹ / ₂ Mo-V	Bolting
SA-540	B21, Cl. 5	K14073	$1Cr - \frac{1}{2}Mo - V$	Bolting
SA-540	B23, Cl. 1	H43400	$2Ni - \frac{3}{4}Cr - \frac{1}{4}Mo$	Bolting
SA-540	B23, Cl. 2	H43400	$2Ni - \frac{3}{4}Cr - \frac{1}{4}Mo$	Bolting
SA-540	B23, Cl. 3	H43400	2Ni- ³ / ₄ Cr- ¹ / ₄ Mo	Bolting
SA-540	B23, Cl. 4	H43400	2Ni- ³ / ₄ Cr- ¹ / ₄ Mo	Bolting
SA-540	B23, Cl. 5	H43400	2Ni- ³ / ₄ Cr- ¹ / ₄ Mo	Bolting
SA-540	B24, Cl. 1	K24064	2Ni- ³ / ₄ Cr- ¹ / ₃ Mo	Bolting
SA-540	B24, Cl. 2	K24064	2Ni- ³ / ₄ Cr- ¹ / ₃ Mo	Bolting
SA-540	B24, Cl. 3	K24064	2Ni- ³ / ₄ Cr- ¹ / ₃ Mo	Bolting
SA-540	B24, Cl. 4	K24064	$2Ni - \frac{3}{4}Cr - \frac{1}{3}Mo$	Bolting
SA-540	B24, Cl. 5	K24064	2Ni- ³ / ₄ Cr- ¹ / ₃ Mo	Bolting
SA-540	B24V, Cl. 3	K24070	2Ni- ³ / ₄ Cr- ¹ / ₃ Mo-V	Bolting
		Low Alloy Steel	Nuts	
SA-194	2			Nuts
SA-194	2H			Nuts
SA-194	2HM			Nuts
SA-194	3			Nuts
SA-194	4			Nuts
SA-194	7			Nuts
SA-194	7M			Nuts
SA-194	16			Nuts
SA-540	B21			Nuts
SA-540	B23			Nuts
SA-540	B24			Nuts
SA-540	B24V			Nuts

Aaterial Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form
		High Alloy Steel	Bolts	
SA-193	B6	S41000	13Cr	Bolting
SA-193	B8, Cl. 1	S30400	18Cr-8Ni	Bolting
SA-193	B8, Cl. 2	S30400	18Cr-8Ni	Bolting
SA-193	B8C, Cl. 1	S34700	18Cr-10Ni-Cb	Bolting
SA-193	B8C, Cl. 2	S34700	18Cr-10Ni-Cb	Bolting
SA-193	B8M, Cl. 1	S31600	16Cr-12Ni-2Mo	Bolting
SA-193	B8M2	S31600	16Cr-12Ni-2Mo	Bolting
SA-193	B8M2	S31600	16Cr-12Ni-2Mo	Bolting
SA-193	B8M2	S31600	16Cr-12Ni-2Mo	Bolting
SA-193	B8MNA, Cl. 1A	S31651	16Cr-12Ni-2Mo-N	Bolting
SA-193	B8NA, Cl. 1A	S30451	18Cr-8Ni-N	Bolting
SA-193	B8P, Cl. 1	S30500	18Cr-11Ni	Bolting
SA-193	B8P, Cl. 2	S30500	18Cr-11Ni	Bolting
SA-193	B8S	S21800	18Cr-8Ni-4Si-N	Bolting
SA-193	B8SA	S21800	18Cr-8Ni-4Si-N	Bolting
SA-193	B8T, Cl. 1	S32100	18Cr-10Ni-Ti	Bolting
SA-193	B8T, Cl. 2	S32100	18Cr-10Ni-Ti	Bolting
SA-320	B8, Cl. 1	S30400	18Cr–8Ni	Bolting
SA-320	B8, Cl. 2	S30400	18Cr-8Ni	Bolting
SA-320	B8A, Cl. 1A	S30400	18Cr-8Ni	Bolting
SA-320	B8C, Cl. 1	S34700	18Cr-10Ni-Cb	Bolting
SA-320	B8C, Cl. 2	S34700	18Cr-10Ni-Cb	Bolting
SA-320	B8CA, Cl. 1A	S34700	18Cr-10Ni-Cb	Bolting
SA-320	B8F, Cl. 1	S30323	18Cr-8Ni-S	Bolting
SA-320	B8FA, Cl. 1A	S30323	18Cr-8Ni-S	Bolting
SA-320	B8M, Cl. 1	S31600	16Cr-12Ni-2Mo	Bolting
SA-320	B8M, Cl. 2	S31600	16Cr-12Ni-2Mo	Bolting
SA-320	B8MA, Cl. 1A	S31600	16Cr-12Ni-2Mo	Bolting
SA-320	B8T, Cl. 1	S32100	18Cr-10Ni-Ti	Bolting
SA-320	B8T, CL. 2	S32100	18Cr-10Ni-Ti	Bolting
SA-320	B8TA, Cl. 1A	S32100	18Cr-10Ni-Ti	Bolting
SA-453	651, Cl. A	S63198	19Cr-9Ni-Mo-W	Bolting
SA-453	651, Cl. B	S63198	19Cr-9Ni-Mo-W	Bolting
SA-453	660, Cl. A	S66286	25Ni-15Cr-2Ti	Bolting
SA-453	660, Cl. B	S66286	25Ni-15Cr-2Ti	Bolting
SA-479	XM-19	S20910	22Cr-13Ni-5Mn	Bolting
SA-564	630	S17400	17Cr-4Ni-4Cu	Bolting
SA-705	630	S17400	17Cr-4Ni-4Cu	Bolting

Table 3-A.8

Table 3-A.9 Aluminum Alloy and Copper Alloy Bolting Materials for Design in Accordance With Part 4					
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form	
SB-211	2014	A92014		Bolting	
SB-211	2024	A92024		Bolting	
SB-211	6061	A96061		Bolting	
SB-98		C65100	98.5Cu-1.5Si	Rod	
SB-98		C65500	97Cu-3Si	Rod	
SB-98		C66100	94Cu-3Si	Rod	
SB-150		C61400	90Cu-7Al-3Fe	Bar,	
SB-150		C61400	90Cu-7Al-3Fe	Rod	
SB-150		C62300	81Cu–10Al–5Ni–3Fe	Bar	
SB-150		C63000	81Cu-10Al-5Ni-3Fe	Rod	
SB-150		C63000	81Cu–10Al–5Ni–3Fe	Bar	
SB-150		C64200	91Cu-7Al-2Si	Bar	
SB-150		C64200	91Cu-7Al-2Si	Rod	
SB-187		C10200	99.95Cu-P	Rod	
SB-187		C11000	99.9Cu	Rod	

	Table 3-A.10 Nickel and Nickel Alloy Bolting Materials for Design in Accordance With Part 4				
Iaterial Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form	
SB-160		N02200	99 Ni	Bolting	
SB-160		N02201	99Ni–Low C	Bolting	
SB-164		N04400	67Ni-30Cu	Bolting	
SB-164		N04405	67Ni-30Cu	Bolting	
SB-166		N06600	72Ni–15Cr–8Fe	Bolting	
SB-335		N10001	62Ni-28Mo-5Fe	Bolting	
SB-335		N10665	65Ni-28Mo-2Fe	Bolting	
SB-408		N08800	33Ni-42Fe-21Cr	Bolting	
SB-408		N08810	33Ni-42Fe-21Cr	Bolting	
SB-425		N08825	42Ni-21.5Cr-3Mo-2.3Cu	Bolting	
SB-446	1	N06625	60Ni-22Cr-9Mo-3.5Cb	Bolting	
SB-572		N06002	47Ni-22Cr-9Mo-18Fe	Bolting	
SB-572		R30556	21Ni-30Fe-22Cr-18Co- 3Mo-3W	Bolting	
SB-573		N10003	70Ni-16Mo-7Cr-5Fe	Bolting	
SB-574		N06022	55Ni-21Cr-13.5Mo	Bolting	
SB-574		N06455	61Ni-16Mo-16Cr	Bolting	
SB-574		N10276	54Ni-16Mo-15Cr	Bolting	
SB-581		N06007	47Ni-22Cr-19Fe-6Mo	Bolting	
SB-581		N06030	40Ni-29Cr-15Fe-5Mo	Bolting	
SB-581		N06975	49Ni-25Cr-18Fe-6Mo	Bolting	
SB-621		N08320	26Ni-43Fe-22Cr-5Mo	Bolting	
SB-637		N07718	53Ni-19Cr-19Fe-Cb-Mo	Bolting	
SB-637	2	N07750	70Ni–16Cr–7Fe–Ti–Al	Bolting	

Γ

Aaterial Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form
hater far Speemeation	Type/ drade/ class	Low Alloy Steel	•	Troduct Form
SA-193	B5	K50100	$5Cr - \frac{1}{2}Mo$	Bolting
SA-193	B7	G41400	$1Cr^{-1}/_{5}Mo$	Bolting
SA-193	B7M	G41400	$1 \text{Cr}^{-1/5} \text{Mo}$	Bolting
SA-193	B16	K14072	$1 \text{Cr}^{-1/2} \text{Mo}^{-V}$	Bolting
SA-320	L43	G43400	$1^{3}_{4}\text{Ni}-3^{3}_{4}\text{Cr}-1^{4}_{4}\text{Mo}$	Bolting
SA-437	B4B	K91352	12Cr-1Mo-V-W	Bolting
SA-437	B4C	K91352	12Cr-1Mo-V-W	Bolting
SA-540	B21 Cl. 1	K14073	1Cr- ¹ / ₂ Mo-V	Bolting
SA-540	B21 Cl. 2	K14073	$1Cr - \frac{1}{2}Mo - V$	Bolting
SA-540	B21 Cl. 3	K14073	$1Cr - \frac{1}{2}Mo - V$	Bolting
SA-540	B21 Cl. 4	K14073	1Cr- ¹ / ₂ Mo-V	Bolting
SA-540	B21 Cl. 5	K14073	1Cr- ¹ / ₂ Mo-V	Bolting
SA-540	B22 Cl. 1	K41420	$1Cr-1Mn-\frac{1}{4}Mo$	Bolting
SA-540	B22 Cl. 2	K41420	1Cr-1Mn- ¹ / ₄ Mo	Bolting
SA-540	B22 Cl. 3	K41420	$1Cr-1Mn-\frac{1}{4}Mo$	Bolting
SA-540	B22 Cl. 4	K41420	1Cr-1Mn- ¹ / ₄ Mo	Bolting
SA-540	B22 Cl. 5	K41420	$1Cr-1Mn-\frac{1}{4}Mo$	Bolting
SA-540	B23 Cl. 1	H43400	2Ni- ³ / ₄ Cr- ¹ / ₄ Mo	Bolting
SA-540	B23 Cl. 2	H43400	2Ni- ³ / ₄ Cr- ¹ / ₄ Mo	Bolting
SA-540	B23 Cl. 3	H43400	2Ni- ³ / ₄ Cr- ¹ / ₄ Mo	Bolting
SA-540	B23 Cl. 4	H43400	2Ni- ³ / ₄ Cr- ¹ / ₄ Mo	Bolting
SA-540	B23 Cl. 5	H43400	$2Ni - \frac{3}{4}Cr - \frac{1}{4}Mo$	Bolting
SA-540	B24 Cl. 1	K24064	2Ni- ³ / ₄ Cr- ¹ / ₃ Mo	Bolting
SA-540	B24 Cl. 2	K24064	$2Ni - \frac{3}{4}Cr - \frac{1}{3}Mo$	Bolting
SA-540	B24 Cl. 3	K24064	2Ni- ³ / ₄ Cr- ¹ / ₃ Mo	Bolting
SA-540	B24 Cl. 4	K24064	2Ni- ³ / ₄ Cr- ¹ / ₃ Mo	Bolting
SA-540	B24 Cl. 5	K24064	$2Ni - \frac{3}{4}Cr - \frac{1}{3}Mo$	Bolting
SA-540	B24V Cl. 3	K24070	2Ni- ³ / ₄ Cr- ¹ / ₃ Mo-V	Bolting
		High Alloy Steel	Bolts	
SA-193	B6	S41000	13Cr	Bolting
SA-193	B8 Cl. 1	S30400	18Cr-8Ni	Bolting
SA-193	B8C Cl. 1	S34700	18Cr–10Ni–Cb	Bolting
SA-193	B8M Cl. 1	S31600	16Cr-12Ni-2Mo	Bolting
SA-193	B8MNA Cl. 1A	S31651	16Cr-12Ni-2Mo-N	Bolting
SA-193	B8NA Cl. 1A	S30451	18Cr-8Ni-N	Bolting
SA-193	B8S	S21800	18Cr-8Ni-4Si-N	Bolting
SA-193	B8SA	S21800	18Cr-8Ni-4Si-N	Bolting
SA-193	B8T Cl. 1	S32100	18Cr–10Ni–Ti	Bolting
SA-193	B8R, Cl. 1C	S20910	22Cr-13Ni-5Mn	Bolting
SA-193	B8RA	S20910	22Cr-13Ni-5Mn	Bolting
SA-453	651 Cl. A	S63198	19Cr-9Ni-Mo-W	Bolting
SA-453	651 Cl. B	S63198	19Cr-9Ni-Mo-W	Bolting
SA-453	660 Cl. A	S66286	25Ni-15Cr-2Ti	Bolting
SA-453	660 Cl. B	S66286	25Ni-15Cr-2Ti	Bolting
SA-564	630	S17400	17Cr-4Ni-4Cu	Bolting
SA-564	Temper H1100	S17400	17Cr-4Ni-4Cu	Bolting
SA-705	630	S17400	17Cr-4Ni-4Cu	Bolting

В	olting Materials for	Table 3-A. Design in Acco	1 rdance With <mark>Part 5</mark> (Cont'd)
Material Specification	Type/Grade/Class	UNS No.	Nominal Composition	Product Form
		Nickel Alloy Bo	lts	
SB-164		N04400	67Ni-30Cu	Bolting
SB-164		N04405	67Ni-30Cu-S	Bolting
SB-637		N07718	53Ni-19Cr-19Fe-Cb-Mo	Bolting
SB-637	2	N07750	70Ni–16Cr–7Fe–Ti–Al	Bolting

ANNEX 3-B REQUIREMENTS FOR MATERIAL PROCUREMENT

(Currently Not Used)

ANNEX 3-D STRENGTH PARAMETERS

(Normative)

3-D.1 YIELD STRENGTH

Values for the yield strength as a function of temperature are provided in Section II, Part D, Subpart 1, Table Y-1.

If the material being used is not listed in Table Y-1, while being listed in other tables of Section II, Part D, Subpart 1, or the specified temperature exceeds the highest temperature for which a value is provided, the yield strength may be determined as in (a) and (b) for use in the design equations in Part 4. *S* is the maximum allowable stress of the material at the temperature specified (see Annex 3-A) and *f* is the factor (e.g., weld factor) used to determine the allowable stress as indicated in the notes for the stress line. If the value of *f* is not provided, set *f* equal to 1.

(*a*) If the allowable design stress is established based on the $66^{2}/_{3}\%$ yield criterion, then the yield strength, S_{Y} , shall be taken as 1.5S/f.

(b) If the allowable design stress is established based on yield criterion between $66^2/_3\%$ and 90%, then the yield strength, S_{γ} , shall be taken as 1.1S/f.

NOTE: For temperatures where the allowable stress, *S*, is based on time dependent properties, the yield strength obtained by these formulas may be overly conservative .

3-D.2 ULTIMATE TENSILE STRENGTH

Values for the ultimate tensile strength as a function of temperature are provided in Section II, Part D, Subpart 1, Table U.

3-D.3 STRESS STRAIN CURVE

The following model for the stress-strain curve shall be used in design calculations where required by this Division when the strain hardening characteristics of the stress-strain curve are to be considered. The yield strength and ultimate tensile strength in 3-D.1 and 3-D.2 may be used in this model to determine a stress-strain curve at a specified temperature.

$$\varepsilon_t = \frac{\sigma_t}{E_y} + \gamma_1 + \gamma_2 \tag{3-D.1}$$

When $\Upsilon_1 + \Upsilon_2 \le \varepsilon_p$, eq. (3-D.1) shall be reduced to

$$\varepsilon_t = \frac{\sigma_t}{E_y} \tag{3-D.2}$$

where

$$\gamma_1 = \frac{\varepsilon_1}{2} \left(1.0 - \tanh[H] \right) \tag{3-D.3}$$

$$\gamma_2 = \frac{\varepsilon_2}{2} \left(1.0 + \tanh[H] \right) \tag{3-D.4}$$

$$\varepsilon_1 = \left(\frac{\sigma_t}{A_1}\right)^{\frac{1}{m_1}} \tag{3-D.5}$$

$$A_{1} = \frac{\sigma_{ys} \left(1 + \varepsilon_{ys}\right)}{\left(\ln\left[1 + \varepsilon_{ys}\right]\right)^{m_{1}}}$$
(3-D.6)

$$m_{1} = \frac{\ln[R] + (\varepsilon_{p} - \varepsilon_{ys})}{\ln\left[\frac{\ln[1 + \varepsilon_{p}]}{\ln[1 + \varepsilon_{ys}]}\right]}$$
(3-D.7)

$$\varepsilon_2 = \left(\frac{\sigma_t}{A_2}\right)^{\frac{1}{m_2}} \tag{3-D.8}$$

$$A_2 = \frac{\sigma_{uts} \exp[m_2]}{m_2^{m_2}}$$
(3-D.9)

$$H = \frac{2\left\{\sigma_t - \left[\sigma_{ys} + K\left(\sigma_{uts} - \sigma_{ys}\right)\right]\right\}}{K\left(\sigma_{uts} - \sigma_{ys}\right)}$$
(3-D.10)

$$R = \frac{\sigma_{ys}}{\sigma_{uts}} \tag{3-D.11}$$

$$\varepsilon_{ys} = 0.002$$
 (3-D.12)

$$K = 1.5R^{1.5} - 0.5R^{2.5} - R^{3.5}$$
(3-D.13)

The parameters m_2 , and ε_p are provided in Table 3-D.1. The development of the stress strain curve should be limited to a value of true ultimate tensile stress at true ultimate tensile strain. The stress strain curve beyond this point should be perfectly plastic. The value of true ultimate tensile stress at true ultimate tensile stress at true ultimate tensile stress.

$$\sigma_{uts,t} = \sigma_{uts} \exp\left[m_2\right] \tag{3-D.14}$$

3-D.4 CYCLIC STRESS STRAIN CURVE

The cyclic stress-strain curve of a material (i.e., strain amplitude versus stress amplitude) may be represented by eq. (3-D.15). The material constants for this model are provided in Table 3-D.2.

$$\varepsilon_{ta} = \frac{\sigma_a}{E_y} + \left(\frac{\sigma_a}{K_{css}}\right)^{\frac{1}{n_{css}}}$$
(3-D.15)

The hysteresis loop stress-strain curve of a material (i.e., strain range versus stress range) obtained by scaling the cyclic stress-strain curve by a factor of two is represented by eq. (3-D.16). The material constants provided in Table 3-D.2 are also used in this equation.

$$\varepsilon_{tr} = \frac{\sigma_r}{E_y} + 2\left(\frac{\sigma_r}{2K_{css}}\right)^{\frac{1}{n_{css}}}$$
(3-D.16)

3-D.5 TANGENT MODULUS

3-D.5.1 TANGENT MODULUS BASED ON THE STRESS-STRAIN CURVE MODEL

The tangent modulus based on the stress-strain curve model in 3-D.3 is given by the following equation.

$$E_t = \frac{\partial \sigma_t}{\partial \varepsilon_t} = \left(\frac{\partial \varepsilon_t}{\partial \sigma_t}\right)^{-1} = \left(\frac{1}{E_y} + D_1 + D_2 + D_3 + D_4\right)^{-1}$$
(3-D.17)

where

$$D_1 = \frac{\sigma_t \left(\frac{1}{m_1} - 1\right)}{2m_1 A_1 \left(\frac{1}{m_1}\right)}$$
(3-D.18)

$$D_{2} = -\frac{1}{2} \left(\frac{1}{A_{1}(\frac{1}{m_{1}})} \right) \left(\sigma_{t}(\frac{1}{m_{1}}) \left\{ \frac{2}{K(\sigma_{uts} - \sigma_{ys})} \right\} \left\{ 1 - \tanh^{2}[H] \right\} + \frac{1}{m_{1}} \sigma_{t}(\frac{1}{m_{1}} - 1) \tanh[H] \right)$$
(3-D.19)

$$D_3 = \frac{\sigma_t \left(\frac{1}{m_2} - 1\right)}{2m_2 A_2 \left(\frac{1}{m_2}\right)}$$
(3-D.20)

$$D_{4} = \frac{1}{2} \left(\frac{1}{A_{2} \left(\frac{1}{m_{2}} \right)} \right) \left(\sigma_{t} \left(\frac{1}{m_{2}} \right) \left\{ \frac{2}{K \left(\sigma_{uts} - \sigma_{ys} \right)} \right\} \left\{ 1 - \tanh^{2} [H] \right\} + \frac{1}{m_{2}} \sigma_{t} \left(\frac{1}{m_{2}} - 1 \right) \tanh[H] \right)$$
(3-D.21)

The parameter K is given by eq. (3-D.13).

3-D.5.2 TANGENT MODULUS BASED ON EXTERNAL PRESSURE CHARTS

An acceptable alternative for calculating the Tangent Modulus is to use the External Pressure charts in Section II, Part D, Subpart 3, including the notes to Subpart 3. The appropriate chart for the material under consideration is assigned in the column designated External Pressure Chart Number given in Table 5A or 5B. The tangent modulus, E_t , is equal to 2B/A, where A is the strain given on the abscissa and B is the stress value on the ordinate of the chart.

3-D.6 NOMENCLATURE

- A = Section II, Part D, Subpart 3 external pressure chart A-value
- A_1 = curve fitting constant for the elastic region of the stress-strain curve
- A_2 = curve fitting constant for the plastic region of the stress-strain curve
- B = Section II, Part D, Subpart 3 external pressure chart B-value
- D_1 = coefficient used in the tangent modulus
- D_2 = coefficient used in the tangent modulus
- D_3 = coefficient used in the tangent modulus
- D_4 = coefficient used in the tangent modulus
- E_t = tangent modulus of elasticity evaluated at the temperature of interest
- E_v = modulus of elasticity evaluated at the temperature of interest, see Annex 3-E
- H = stress-strain curve fitting parameter
- *K* = material parameter for stress–strain curve model
- K_{css} = material parameter for the cyclic stress-strain curve model
- m_1 = curve fitting exponent for the stress-strain curve equal to the true strain at the proportional limit and the strain hardening coefficient in the large strain region
- m_2 = curve fitting exponent for the stress-strain curve equal to the true strain at the true ultimate stress
- n_{css} = material parameter for the cyclic stress-strain curve model
 - R = engineering yield to engineering tensile ratio
 - ε_1 = true plastic strain in the micro-strain region of the stress-strain curve
 - ε_2 = true plastic strain in the macro-strain region of the stress-strain curve

- ε_p = stress-strain curve fitting parameter
- ε_t = total true strain
- ε_{ta} = total true strain amplitude
- ε_{tr} = total true strain range
- ε_{ys} = 0.2% engineering offset strain
- γ_1 = true strain in the micro-strain region of the stress-strain curve
- γ_2 = true strain in the macro-strain region of the stress-strain curve
- σ_a = total stress amplitude
- σ_r = total stress range
- σ_t = true stress at which the true strain will be evaluated, may be a membrane, membrane plus bending, or membrane, membrane plus bending plus peak stress depending on the application
- σ_{uts} = engineering ultimate tensile stress evaluated at the temperature of interest, see 3-D.2
- $\sigma_{uts,t}$ = true ultimate tensile stress evaluated at the true ultimate tensile strain
- σ_{ys} = engineering yield stress evaluated at the temperature of interest, see 3-D.1

3-D.7 TABLES

Table 3-D.1 Stress-Strain Curve Parameters				
Material	Temperature Limit	<i>m</i> ₂	ε_p	
Ferritic steel [Note (1)]	480°C (900°F)	0.60 (1.00 - R)	2.0E-5	
Stainless steel and nickel base alloys	480°C (900°F)	0.75(1.00 - R)	2.0E-5	
Duplex stainless steel	480°C (900°F)	0.70(0.95 - R)	2.0E-5	
Precipitation-hardening, nickel-based austenitic alloys	540°C (1,000°F)	1.09 (0.93 - <i>R</i>)	2.0E-5	
Aluminum	120°C (250°F)	0.52 (0.98 - R)	5.0E-6	
Copper	65°C (150°F)	0.50 (1.00 - R)	5.0E-6	
Titanium and zirconium	260°C (500°F)	0.50 (0.98 - R)	2.0E-5	

(1) Ferritic steel includes carbon, low alloy, and alloy steels, and ferritic, martensitic, and iron-based age-hardening stainless steels.

Сус	Table 3-D.2 lic Stress-Strain Curve Data		
Material Description	Temperature, °F	n _{css}	<i>K_{css}</i> , ksi
Carbon steel (0.75 in. — base metal)	70	0.128	109.8
	390	0.134	105.6
	570	0.093	107.5
	750	0.109	96.6
Carbon steel (0.75 in. — weld metal)	70	0.110	100.8
	390	0.118	99.6
	570	0.066	100.8
	750	0.067	79.6
Carbon steel (2 in. — base metal)	70	0.126	100.5
	390	0.113	92.2
	570	0.082	107.5
	750	0.101	93.3
Carbon steel (4 in. — base metal)	70	0.137	111.0
	390	0.156	115.7
	570	0.100	108.5
	750	0.112	96.9

Cyclic Stress-Strain Curve Data (Cont'd)				
Material Description	Temperature, °F	n _{css}	K _{css} , ksi	
$Cr - \frac{1}{2}Mo$ (0.75 in. — base metal)	70	0.116	95.7	
	390	0.126	95.1	
	570	0.094	90.4	
	750	0.087	90.8	
ICr-½Mo (0.75 in. — weld metal)	70	0.088	96.9	
	390	0.114	102.7	
	570	0.085	99.1	
	750	0.076	86.9	
ICr-½Mo (0.75 in. — base metal)	70	0.105	92.5	
	390	0.133	99.2	
	570	0.086	88.0	
	750	0.079	83.7	
Cr-1Mo- ¹ / ₄ V	70	0.128	156.9	
	750	0.128	132.3	
	930	0.143	118.2	
	1,020	0.133	100.5	
	1,110	0.153	80.6	
2 ¹ / ₄ Cr-1Mo	70	0.100	115.5	
	570	0.109	107.5	
	750	0.096	105.9	
	930	0.105 0.082	94.6	
	1,110	0.082	62.1	
9Cr-1Mo	70	0.177	141.4	
	930	0.132	100.5	
	1,020	0.142	88.3	
	1,110 1,200	0.121 0.125	64.3 49.7	
Гуре 304	70	0.171	178.0	
	750	0.095	85.6	
	930 1,110	0.085 0.090	79.8 65.3	
	1,110	0.094	44.4	
Гуре 304 (Annealed)	70	0.334	330.0	
300H	70	0.070	91.5	
	930	0.085	110.5	
	1,110	0.088	105.7	
	1,290 1,470	0.092 0.080	80.2 45.7	
Aluminum (Al-4.5Zn-0.6Mn)	70	0.058	65.7	
Aluminum (Al-4.5Zn-1.5Mg)	70	0.047	74.1	
Aluminum (1100-T6)	70	0.144	22.3	
Aluminum (2014-T6)	70	0.132	139.7	
Aluminum (5086)	70	0.139	96.0	
Aluminum (6009-T4)	70	0.124	83.7	
Aluminum (6009-T6)	70	0.128	91.8	
Copper	70	0.263	99.1	

Carbon Steel (20 mm — base metal) 20 0.128 757 200 0.134 728 300 0.093 741 400 0.109 666 Carbon Steel (20 mm — weld metal) 20 0.118 667 200 0.126 693 693 200 0.126 693 606 200 0.137 6769 600 200 0.137 765 799 Carbon Steel (100 mm — base metal) 20 0.137 765 200 0.116 660 693 300 0.002 741 400 0.101 643 Carbon Steel (100 mm — base metal) 20 0.136 668 798 300 0.106 668 300 0.106 668 300 0.007 653 300 0.008 668 668 300 0.008 668 668 668 668 668 668 668 668 668 668 668		ic Stress-Strain Curve Data		
200 0.134 728 200 0.093 741 400 0.109 666 Carbon Steel (20 mm – weld metal) 20 0.118 687 300 0.066 695 693 Carbon Steel (50 mm – base metal) 20 0.126 693 200 0.137 765 700 701 200 0.137 765 700 701 600 701 200 0.137 765 700 701 600 701 668 200 0.137 765 700 701 660 700 701 660 200 0.137 765 700 701 660 700 701 660 701 701 660 700 701 660 700 701 660 700 701 705 701 705 701 701 701 705 701 701 701 701 701 701 701	Material Description	Temperature, °C	n _{css}	K _{css} , MPa
300 0.033 741 400 0.109 666 200 0.110 695 200 0.113 667 200 0.126 693 200 0.113 646 300 0.066 695 400 0.067 549 200 0.113 646 300 0.062 741 400 0.0102 741 400 0.013 765 300 0.066 695 300 0.0162 741 400 0.112 668 300 0.106 643 200 0.116 666 300 0.016 668 300 0.049 663 1Cr- ¹ // Mo (20 mm - weld metal) 20 0.016 668 200 0.016 663 600 607 200 0.016 663 607 606 607 20 <t< td=""><td>Carbon Steel (20 mm — base metal)</td><td>20</td><td>0.128</td><td>757</td></t<>	Carbon Steel (20 mm — base metal)	20	0.128	757
400 0.109 666 Carbon Steel (20 mm – weld metal) 20 0.118 667 300 0.066 655 400 0.066 659 Carbon Steel (50 mm – base metal) 20 0.126 693 741 200 0.137 765 700 743 200 0.137 765 700 748 200 0.155 7765 700 0.156 768 200 0.156 768 700 748 740 748 740 748 740 748 740 748 740 748 748 740 748 740 748 740 748 740 748 748 740 748 740 748 740 748 740 748 740 748 740 746 748 740 746 740 746 740 740 741 740 741 740 741 740 740 741 741 </td <td></td> <td>200</td> <td>0.134</td> <td>728</td>		200	0.134	728
Carbon Steel (20 mm weld metal) 20 0.110 695 200 0.113 667 200 0.126 693 Carbon Steel (50 mm base metal) 20 0.126 693 200 0.131 666 590 Carbon Steel (100 mm base metal) 20 0.137 755 200 0.136 798 798 200 0.156 798 798 200 0.156 798 798 300 0.100 748 741 200 0.156 798 798 300 0.101 6660 798 798 200 0.116 660 798 798 201 0.016 688 688 690 202 0.018 688 690 799 201 0.105 638 649 799 202 0.106 638 649 799 201 0.105 638 <				
200 0.118 667 300 0.067 549 Carbon Steel (50 mm — base metal) 20 0.126 603 200 0.013 636 300 0.007 741 400 0.101 663 200 0.137 765 200 0.116 690 200 0.116 660 200 0.116 660 200 0.116 660 200 0.116 660 200 0.088 688 10r -½Mo (20 mm — base metal) 20 0.016 656 200 0.0112 688 689 600 607 626 10r -½Mo (20 mm — weld metal) 20 0.005 638 600 607 557 10r -½Mo (50 mm — base metal) 20 0.105 638 607 577 10r -1Mo -¼W 20 0.113 644 300 0.007 577 10r -1Mo -¼W 20		400	0.109	666
200 0.118 667 300 0.067 549 Carbon Steel (50 mm — base metal) 20 0.126 603 200 0.013 636 300 0.007 741 400 0.101 663 200 0.137 765 200 0.116 690 200 0.116 660 200 0.116 660 200 0.116 660 200 0.116 660 200 0.088 688 10r -½Mo (20 mm — base metal) 20 0.016 656 200 0.0112 688 689 600 607 626 10r -½Mo (20 mm — weld metal) 20 0.005 638 600 607 557 10r -½Mo (50 mm — base metal) 20 0.105 638 607 577 10r -1Mo -¼W 20 0.113 644 300 0.007 577 10r -1Mo -¼W 20	Carbon Steel (20 mm — weld metal)	20	0.110	695
400 0.067 549 Carbon Steel (50 mm — base metal) 20 0.126 693 200 0.0102 741 400 0.0101 663 200 0.155 798 200 0.156 798 200 0.156 798 200 0.116 660 200 0.116 666 300 0.0094 623 10r - ½Mo (20 mm — base metal) 20 0.088 668 300 0.015 638 10r - ½Mo (20 mm — weld metal) 20 0.088 668 200 0.114 708 200 0.133 664 200 0.133 664 200 0.133 664 200 0.133 644 200 0.133 664 200 0.133 664 200 0.133 664 200 0.133 655 201 0.116 </td <td></td> <td></td> <td></td> <td></td>				
400 0.067 549 Carbon Steel (50 mm — base metal) 20 0.126 693 200 0.131 666 300 0.082 741 400 0.101 643 200 0.137 765 200 0.156 798 300 0.100 748 400 0.111 660 200 0.156 678 300 0.100 748 400 0.112 660 200 0.156 655 300 0.026 655 300 0.027 626 10r-½Mo (20 mm — weld metal) 20 0.088 668 200 0.133 640 300 0.076 599 10r-½Mo (50 mm — base metal) 20 0.183 668 607 200 0.133 644 300 0.076 599 10r-¼Mo (50 mm — base metal) 20 0.113 1082 1082 <		300	0.066	695
200 0.113 636 300 0.0082 741 400 0.101 643 Carbon Steel (100 mm — base metal) 20 0.137 765 200 0.116 698 300 0.100 748 400 0.112 668 10r-½M0 (20 mm — base metal) 20 0.116 660 200 0.112 668 666 200 0.114 670 668 200 0.114 708 300 0.088 668 200 0.114 708 300 0.065 683 400 0.076 539 600 0.133 684 300 0.086 607 509 107 550 6133 683 400 0.076 539 1082 1082 1082 1082 1082 1082 1082 1082 1082 155 550 0.133 693 600 0.153 1556		400		549
200 0.113 636 300 0.0082 741 400 0.101 643 Carbon Steel (100 mm — base metal) 20 0.137 765 200 0.116 698 300 0.100 748 400 0.112 668 10r-½M0 (20 mm — base metal) 20 0.116 660 200 0.112 668 666 200 0.114 670 668 200 0.114 708 300 0.088 668 200 0.114 708 300 0.065 683 400 0.076 539 600 0.133 684 300 0.086 607 509 107 550 6133 683 400 0.076 539 1082 1082 1082 1082 1082 1082 1082 1082 1082 155 550 0.133 693 600 0.153 1556	Carbon Stool (50 mm base metal)	20	0 126	602
300 0.062 741 400 0.101 643 20 0.137 765 200 0.156 798 300 0.010 748 400 0.112 668 10r-½Mo (20 mm – base metal) 20 0.116 660 200 0.026 656 300 0.094 623 10r-½Mo (20 mm – weld metal) 20 0.088 668 600 0.076 599 10r-½Mo (50 mm – base metal) 20 0.105 638 600 606 607 100 0.076 599 112 648 607 600 608 609 608 609 600 608 607 600 0.128 1082 612 128 162 162 162 162 162 162 162 162 163 163 163 163 163 163 163 163 163 163 163 163 163 163	carbon steer (50 mm – base metal)			
400 0.101 643 Carbon Steel (100 mm — base metal) 20 0.137 765 200 0.100 748 400 0.112 668 10r - ¹ / ₂ Mo (20 mm — base metal) 20 0.126 656 300 0.094 623 400 0.087 626 10r - ¹ / ₂ Mo (20 mm — weld metal) 20 0.114 708 300 0.015 638 10r - ¹ / ₂ Mo (50 mm — weld metal) 20 0.105 638 633 640 200 0.114 708 300 0.076 559 10r - ¹ / ₂ Mo (50 mm — base metal) 20 0.105 638 643 200 0.113 664 300 0.076 559 10r - ¹ / ₂ Mo (50 mm — base metal) 20 0.105 638 647 200 0.112 1082 912 1082 917 157 10r - ¹ / ₂ Mo (50 mm — base metal) 20 0.112 1082 916 1015 555				
Carbon Steel (100 mm – base metal) 20 0.137 765 200 0.156 798 300 0.100 748 400 0.112 668 200 0.126 656 300 0.094 623 10r- ¹ /2Mo (20 mm – base metal) 20 0.088 668 200 0.0114 708 300 0.005 663 10r- ¹ /2Mo (20 mm – weld metal) 20 0.088 668 668 300 0.005 663 200 0.015 638 600 607 599 107- 500 0.0133 684 300 0.006 607 100 796 100 1082 </td <td></td> <td></td> <td></td> <td></td>				
200 0.156 798 300 0.100 748 400 0.112 668 200 0.126 655 300 0.094 623 400 0.087 626 10r- ¹ / ₂ Mo (20 mm – weld metal) 20 0.088 668 200 0.014 708 300 0.095 663 10r- ¹ / ₂ Mo (20 mm – weld metal) 20 0.088 668 668 600 607 599 1Cr- ¹ / ₂ Mo (50 mm – base metal) 20 0.105 638 600 607 599 1Cr- ¹ / ₂ Mo (50 mm – base metal) 20 0.128 912 500 0.133 684 300 0.096 607 100 796 550 0.133 656 2 ¹ / ₄ V 20 0.128 912 550 0.133 656 2 ¹ / ₄ Cr-1Mo 20 0.100 796 550 600 0.092 428 9Cr-1Mo 20 0.117<				
300 0.100 748 400 0.112 668 20 0.116 660 20 0.094 623 400 0.087 626 300 0.094 623 400 0.088 668 20 0.088 668 20 0.0114 708 300 0.085 663 400 0.076 599 1Cr- ¹ / ₂ Mo (50 mm base metal) 20 0.105 638 200 0.133 664 300 0.086 607 400 0.128 1082 912 500 0.133 693 201 0.102 1082 912 500 0.133 693 202 0.100 796 300 0.103 556 21/4 Cr-1Mo 20 0.100 796 300 0.009 730 555 600 0.029 428 9Cr-1Mo 20 <td< td=""><td>Carbon Steel (100 mm — base metal)</td><td></td><td></td><td></td></td<>	Carbon Steel (100 mm — base metal)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
200 0.126 656 300 0.094 623 400 0.087 626 1Cr-½M0 (20 mm – weld metal) 20 0.0088 6688 200 0.114 708 300 0.0085 6683 400 0.076 599 509 107-½M0 (50 mm – base metal) 20 0.105 638 200 0.133 684 300 0.0086 607 200 0.133 684 300 0.0086 607 400 0.128 1082 1082 1082 200 0.128 1082 1082 1082 200 0.133 693 600 0.153 555 21/4 Cr-1Mo 20 0.1010 766 300 0.109 741 400 0.096 730 500 0.105 652 200 0.117 775 500 0.132 693 21/4 Cr-1Mo 20 0.117 775 <t< td=""><td></td><td>400</td><td>0.112</td><td>668</td></t<>		400	0.112	668
200 0.126 656 300 0.094 623 400 0.087 626 1Cr-½M0 (20 mm — weld metal) 20 0.088 668 200 0.114 708 300 0.085 683 400 0.076 599 509 10r-½M0 (50 mm — base metal) 20 0.105 638 200 0.133 684 300 0.086 607 400 0.079 577 10r-1/2 MO 0.128 1082 1Cr-1Mo-1/4 V 20 0.128 1082 1082 20 0.128 1082 1082 1082 20 0.128 1082 1082 1082 20 0.133 693 600 0.133 693 20/4 Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 1010 796 500 0.132 693 500 0.117 7975	1Cr-½Mo (20 mm — base metal)	20	0.116	660
300 0.094 623 400 0.087 626 1Cr-½Mo (20 mm - weld metal) 20 0.088 668 200 0.114 708 300 0.085 683 400 0.076 599 1Cr-½Mo (50 mm - base metal) 20 0.105 638 200 0.133 684 300 0.086 607 400 0.079 577 1Cr-1Mo-¼V 20 0.128 1082 500 0.133 693 600 0.128 912 500 0.133 693 550 0.133 693 2½Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 550 0.132 693 550 600 0.012 428 9Cr-1Mo 20 0.117 797 550 601 0.122 693 550 601 0.122 693 550	,			
400 0.087 626 1Cr-1/2M0 (20 mm - weld metal) 20 0.088 668 200 0.114 708 300 0.085 683 400 0.076 599 1Cr-1/2M0 (50 mm - base metal) 20 0.105 638 200 0.133 684 300 0.086 607 400 0.079 577 1Cr-1Mo-1/4V 20 0.128 1082 400 0.128 1082 1082 500 0.133 6593 556 600 0.128 1082 506 2/4Cr-1Mo 20 0.100 796 2/4Cr-1Mo 20 0.100 796 300 0.096 730 506 600 0.132 693 506 9Cr-1Mo 20 0.117 975 500 0.132 693 550 600 0.132 693 550				
200 0.114 708 300 0.085 683 400 0.076 599 1Gr-½M0 (50 mm — base metal) 20 0.105 638 200 0.133 684 300 0.086 607 400 0.079 577 1Gr-1Mo-¼V 20 0.128 1082 400 0.128 912 550 0.133 693 500 0.143 815 550 0.133 693 600 0.153 556 214 1082 2¼Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 500 0.105 652 600 0.082 428 907 117 775 907 131 205 0.117 795 500 0.132 693 907 101 744 650 0.125 343 343 343 343 3				
200 0.114 708 300 0.085 683 400 0.076 599 1Cr-½M0 (50 mm — base metal) 20 0.105 638 200 0.133 684 300 0.086 607 400 0.079 577 1Cr-1Mo-¼V 20 0.128 1082 400 0.128 912 500 0.133 693 500 0.133 693 600 0.153 556 2¼Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 550 0.132 652 600 0.082 428 9Cr-1Mo 20 0.117 975 550 0.132 693 550 0.132 693 550 0.142 609 600 0.121 443 650 0.125 343 7ype 304 20 0.171 1227 400 0.095 <td>$10n^{-1}$ Mo (20 mm wold motal)</td> <td>20</td> <td>0.099</td> <td>669</td>	$10n^{-1}$ Mo (20 mm wold motal)	20	0.099	669
300 0.085 683 400 0.076 599 1Cr-½Mo (50 mm — base metal) 20 0.105 638 200 0.133 684 300 0.086 607 1Cr-1Mo-¼V 20 0.128 1082 400 0.128 1082 1082 400 0.128 1082 1082 400 0.128 1082 1082 500 0.143 815 550 0.133 693 600 0.153 556 133 693 693 2½ 0.100 796 500 0.105 556 2¼ 0.100 796 500 0.105 652 600 0.082 428 609 600 0.121 443 650 0.125 343 653 550 600 0.121 443 650 0.125 343 650 600 6025 590 704	$1Cl - j_2 MO (20 \text{ mm} - \text{weid metal})$			
400 0.076 599 1Cr-½M0 (50 mm - base metal) 20 0.105 638 200 0.133 684 300 0.086 607 400 0.079 577 1Cr-1Mo-¼V 20 0.128 1082 400 0.128 912 550 550 0.133 693 600 0.153 556 2¼Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 500 0.132 693 9Cr-1Mo 20 0.117 7975 500 0.132 693 550 0.142 600 0.121 443 650 0.121 443 759 500 0.132 693 550 0.142 609 600 0.121 443 650 0.125 343 759 500 0.125 343 650				
200 0.133 684 300 0.086 607 400 0.079 577 1Cr-1Mo-¼V 20 0.128 1082 400 0.128 912 500 0.143 693 600 0.153 556 2¼Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 500 0.105 652 600 0.082 428 9Cr-1Mo 20 0.117 975 500 0.132 693 550 0.142 609 9Cr-1Mo 20 0.117 975 500 0.132 693 550 0.142 609 601 0.121 443 650 0.125 343 650 1.227 400 0.095 550 500 500 500 500 0.085 550 500 500				
200 0.133 684 300 0.086 607 400 0.079 577 1Cr-1Mo-¼V 20 0.128 1082 400 0.128 912 500 0.143 815 500 0.143 693 600 0.153 556 2¼Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 500 0.105 652 600 0.082 428 92 92 92 92 92 92 92 92 93	$1Cr - \frac{1}{2}Mo$ (50 mm — base metal)	20	0.105	638
400 0.079 577 1Cr-1Mo-¼V 20 0.128 1082 400 0.128 912 500 0.143 815 550 0.133 693 600 0.153 556 2¼Cr-1Mo 20 0.100 796 300 0.096 730 500 0.105 652 9Cr-1Mo 20 0.117 975 600 0.082 428 9Cr-1Mo 20 0.117 975 500 0.132 693 500 0.132 693 500 0.125 343 9Cr-1Mo 20 0.117 975 600 0.125 343 650 0.125 343 7ype 304 20 0.171 1.277 400 609 550 600 0.095 550 500 600 0.090 450	,	200		684
4000.0795771Cr-1Mo-¼V200.12810824000.1289125000.1438155500.1336936000.1535562¼Cr-1Mo200.1007963000.0967305000.1056526000.0824289Cr-1Mo200.1179759Cr-1Mo200.1179755000.1226095500.1426096000.1253437ype 304200.17112274000.0955506000.0855506000.0855506000.090450		300	0.086	607
400 0.128 912 500 0.143 815 550 0.133 693 600 0.153 556 2 ¹ / ₄ Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 500 0.105 652 600 0.082 428 9Cr-1Mo 20 0.117 975 609 600 0.132 693 9Cr-1Mo 20 0.117 975 600 0.132 693 9Cr-1Mo 20 0.117 975 600 0.132 693 9Cr-1Mo 20 0.117 975 500 0.142 609 600 0.121 443 650 0.125 343 Type 304 20 0.171 1227 400 0.095 590 600 0.095 590 500 0.085 550 600 0.090 450 500 50		400	0.079	
400 0.128 912 500 0.143 815 550 0.133 693 600 0.153 556 2 ¹ / ₄ Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 500 0.105 652 600 0.082 428 9Cr-1Mo 20 0.117 975 609 600 0.132 693 9Cr-1Mo 20 0.117 975 600 0.132 693 9Cr-1Mo 20 0.117 975 600 0.132 693 9Cr-1Mo 20 0.117 975 500 0.142 609 600 0.121 443 650 0.125 343 Type 304 20 0.171 1227 400 0.095 590 600 0.095 590 500 0.085 550 600 0.090 450 500 50	$1(r-1Mo^{-1}/V)$	20	0.128	1.082
500 0.143 815 550 0.133 693 600 0.153 556 2¼Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 500 0.105 652 600 0.082 428 9Cr-1Mo 20 0.117 975 500 0.132 693 550 0.142 609 600 0.121 443 650 0.125 343 Type 304 20 0.171 1227 400 0.095 590 500 0.085 550 600 0.095 590 500 0.085 550 600 0.090 450	101-11/10-74			
550 0.133 693 2 ¹ / ₄ Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 500 0.105 652 600 0.082 428 9Cr-1Mo 20 0.117 975 500 0.132 693 550 0.142 609 600 0.125 343 7ype 304 20 0.171 1227 400 0.095 590 509 500 0.085 550 550				
600 0.153 556 2 ¹ / ₄ Cr-1Mo 20 0.100 796 300 0.109 741 400 0.096 730 500 0.105 652 600 0.082 428 9Cr-1Mo 20 0.117 975 500 0.132 693 550 0.142 609 600 0.121 443 650 0.125 343 Type 304 20 0.171 1227 400 0.095 590 500 500 0.085 550 550				
2 ¹ / ₄ Cr-1Mo 20 0.100 300 0.109 741 400 0.096 730 500 0.105 622 600 0.082 428 9Cr-1Mo 20 0.117 975 500 0.132 693 550 0.142 609 600 0.121 443 650 0.125 343 7ype 304 20 0.171 1227 400 0.085 550 0.090 450 150 1227 122				
300 0.109 741 400 0.096 730 500 0.105 652 600 0.082 428 9Cr-1Mo 20 0.117 975 500 0.132 693 550 0.142 609 660 0.121 443 650 0.125 343 Type 304 20 0.171 1 227 400 0.095 590 500 0.085 550 600 0.090 450				
400 0.096 730 500 0.105 652 600 0.082 428 9Cr-1Mo 20 0.117 975 500 0.132 693 550 0.142 609 600 0.121 443 650 0.125 343 Type 304 20 0.171 1 227 400 0.095 590 500 0.085 550 600 0.090 450	Z74Cr-1M0			
500 0.105 652 600 0.082 428 9Cr-1Mo 20 0.117 975 500 0.132 693 550 0.142 609 600 0.121 443 650 0.125 343 Type 304 20 0.171 1 227 400 0.095 590 500 0.085 550 600 0.090 450				
600 0.082 428 9Cr-1Mo 20 0.117 975 500 0.132 693 550 0.142 609 600 0.121 443 650 0.125 343 Type 304 20 0.171 1 227 400 0.095 590 500 0.085 550 600 0.090 450				
9Cr-1Mo 9Cr-1Mo 20 500 0.117 975 500 0.132 609 600 0.121 443 650 0.125 343 7ype 304 20 0.171 1227 400 0.095 590 500 0.085 550 600 0.121 443 650 0.125 343 700 1227 1227 609 500 0.125 1227 125 125 125 125 125 125 125				
500 0.132 693 550 0.142 609 600 0.121 443 650 0.125 343 Type 304 20 0.171 1 227 400 0.095 590 500 550 600 0.090 450 450		600	0.082	428
550 0.142 609 600 0.121 443 650 0.125 343 Type 304 20 0.171 1 227 400 0.095 590 500 0.085 550 600 0.090 450	9Cr-1Mo			
600 0.121 443 650 0.125 343 Type 304 20 0.171 1 227 400 0.095 590 500 0.085 550 600 0.090 450				693
650 0.125 343 Type 304 20 0.171 1 227 400 0.095 590 500 0.085 550 600 0.090 450				
Type 304200.1711 2274000.0955905000.0855506000.090450				
400 0.095 590 500 0.085 550 600 0.090 450		650	0.125	343
400 0.095 590 500 0.085 550 600 0.090 450	Type 304	20	0.171	1 227
5000.0855506000.090450				
600 0.090 450				
Type 304 (annealed) 20 0.334 2.275				

Table 3-D.2M Cyclic Stress-Strain Curve Data (Cont'd)						
Material Description	Temperature, °C	n _{css}	K _{css} , MPa			
800H	20	0.070	631			
	500	0.085	762			
	600	0.088	729			
	700	0.092	553			
	800	0.080	315			
Aluminum (Al-4.5Zn-0.6Mn)	20	0.058	453			
Aluminum (Al-4.5Zn-1.5Mg)	20	0.047	511			
Aluminum (1100-T6)	20	0.144	154			
Aluminum (2014-T6)	20	0.132	963			
Aluminum (5086)	20	0.139	662			
Aluminum (6009-T4)	20	0.124	577			
Aluminum (6009-T6)	20	0.128	633			
Copper	20	0.263	683			

ANNEX 3-E PHYSICAL PROPERTIES

(Normative)

3-E.1 YOUNG'S MODULUS

Values for the Young's Modulus as a function of temperature are provided in Section II, Part D.

3-E.2 THERMAL EXPANSION COEFFICIENT

Values for the thermal expansion coefficient as a function of temperature are provided in Section II, Part D.

3-E.3 THERMAL CONDUCTIVITY

Values for the thermal conductivity as a function of temperature are provided in Section II, Part D.

3-E.4 THERMAL DIFFUSIVITY

Values for the thermal diffusivity as a function of temperature are provided in Section II, Part D.

ANNEX 3-F DESIGN FATIGUE CURVES

(Normative)

3-F.1 SMOOTH BAR DESIGN FATIGUE CURVES

3-F.1.1

Fatigue analysis performed through direct interpretation of the smooth bar fatigue curves found in 3-F.5 requires the calculated stress amplitude, S_a , be corrected for temperature by the ratio of the modulus of elasticity of the given fatigue curve to the value used in the analysis. The equations used to correct S_a for the temperature effect based upon the different material fatigue curves are provided in Table 3-F.1. The temperature-corrected stress amplitude, S_{ac} , is then used to enter the smooth bar fatigue curves to determine the number of allowable cycles, N.

NOTES:

(1) For Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for temperatures not exceeding 371°C (700°F), the fatigue curve values may be interpolated for intermediate values of the ultimate tensile strength.

(2) For Wrought 70–30 Copper–Nickel for temperatures not exceeding 371°C (700°F), the fatigue curve values may be interpolated for intermediate values of the minimum specified yield strength.

(23) **3-F.1.2**

Fatigue analysis performed using smooth bar fatigue curve models in equation form is provided below. The fatigue curves and the associated equations for different materials are also shown below.

(*a*) Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for temperatures not exceeding 371°C (700°F). The fatigue curve values may be interpolated for intermediate values of the ultimate tensile strength.

$$Y = \log\left[28.3 \text{ E3}\left(\frac{S_a}{E_T}\right)\right]$$
(3-F.1)

(1) For $\sigma_{uts} \le 552$ MPa (80 ksi) (see Figures 3-F.1M and 3-F.1) and for 48 MPa (7 ksi) $\le S_a \le 3999$ MPa (580 ksi)

$$X = -4706.5245 + 1813.6228Y + \frac{6785.5644}{Y} - 368.12404Y^2 - \frac{5133.7345}{Y^2} + 30.708204Y^3 + \frac{1596.1916}{Y^3} \text{ for } 10^Y \ge 20$$
 (3-F.2)

$$X = \frac{38.1309 - 60.1705Y^2 + 25.0352Y^4}{1 + 1.80224Y^2 - 4.68904Y^4 + 2.26536Y^6}$$
for $10^Y < 20$ (3-F.3)

(2) For σ_{uts} = 793 MPa to 892 MPa (115 ksi to 130 ksi) (see Figures 3-F.2M and 3-F.2) and for 77.2 MPa (11.2 ksi) $\leq S_a \leq 2.896$ MPa (420 ksi)

$$X = \frac{5.37689 - 5.25401Y + 1.14427Y^2}{1 - 0.960816Y + 0.291399Y^2 - 0.0562968Y^3}$$
 for $10^Y \ge 43$ (3-F.4)

$$X = \frac{-9.41749 + 14.7982Y - 5.94Y^2}{1 - 3.46282Y + 3.63495Y^2 - 1.21849Y^3}$$
 for $10^Y < 43$ (3-F.5)

(b) Series 3XX High Alloy Steels, Austenitic-Ferritic Duplex Stainless Steels, Nickel–Chromium–Iron Alloy, Nickel–Iron–Chromium Alloy, and Nickel–Copper Alloy for temperatures not exceeding 427°C (800°F) (see Figures 3-F.3M and 3-F.3) and for 93.7 MPa (13.6 ksi) $\leq S_q \leq 6000$ MPa (870 ksi)

$$Y = \log\left[28.3 \text{ E3}\left(\frac{S_a}{E_T}\right)\right]$$
(3-F.6)

$$X = \frac{17.0181 - 19.8713Y + 4.21366Y^2}{1 - 0.1720606Y - 0.633592Y^2} \text{ for } 10^Y \ge 14.4$$
(3-F.7)

$$X = \frac{1}{-0.331096 + \frac{4.3261 \ln(\gamma)}{v^2}} \text{ for } 10^{Y} < 14.4$$
(3-F.8)

(c) Wrought 70–30 Copper–Nickel for temperatures not exceeding 371°C (700°F). The fatigue curve values may be interpolated for intermediate values of the minimum specified yield strength.

$$Y = \log\left[20.0 \text{ E3}\left(\frac{S_a}{E_T}\right)\right]$$
(3-F.9)

(1) For $\sigma_{ys} \le 134$ MPa (18 ksi) (see Figures 3-F.4M and 3-F.4) and for 83 MPa (12 ksi) $\le S_a \le 1793$ MPa (260 ksi)

$$X = -2.632 + \frac{0.1186}{\ln(Y)} + \frac{15.12\ln(Y)}{Y^2} + \frac{7.087}{Y^2}$$
(3-F.10)

(2) For σ_{ys} = 207 MPa (30 ksi) (see Figures 3-F.5M and 3-F.5) and for 62 MPa (9 ksi) $\leq S_a \leq 1.793$ MPa (260 ksi)

$$X = 8.580044 - 1.889784Y - \frac{8.261383 \ln{(Y)}}{Y} \text{ for } 10^{Y} \ge 24.5$$
(3-F.11)

$$X = 5.89029 - 0.2280247Y - \frac{6.649501 \ln(Y)}{Y} \text{ for } 10^{Y} < 24.5$$
 (3-F.12)

(3) For σ_{ys} = 310 MPa (45 ksi) (see Figures 3-F.6M and 3-F.6) and for 34 MPa (5 ksi) $\leq S_a \leq 1.793$ MPa (260 ksi)

$$X = -884.9989 + \frac{8936.214}{Y} - \frac{36034.88}{Y^2} + \frac{72508.69}{Y^3} - \frac{72703.36}{Y^4} + \frac{29053.66}{Y^5} \text{ for } 10^Y \ge 46$$
(3-F.13)

$$X = -17.50197 + \frac{109.168}{Y} - \frac{236.7921}{Y^2} + \frac{257.9938}{Y^3} - \frac{137.1654}{Y^4} + \frac{28.55546}{Y^5} \text{ for } 10^Y < 46$$
(3-F.14)

(*d*) Nickel–Chromium–Molybdenum–Iron Alloys X, G, C-4, and C-276 for temperatures not exceeding 427°C (800°F) (see Figures 3-F.7M and 3-F.7) and for 103 MPa (15 ksi) $\leq S_a \leq 4.881$ MPa (708 ksi)

$$Y = \log\left[28.3 \text{ ES}\left(\frac{S_a}{E_T}\right)\right]$$
(3-F.15)

$$X = \frac{-42.08579 + 12.514054Y}{1 - 4.3290016Y + 0.60540862Y^2}$$
 for $10^Y \ge 35.9$ (3-F.16)

$$X = \frac{9.030556 - 8.1906623Y}{1 - 0.36077181Y - 0.47064984Y^2} \text{ for } 10^Y < 35.9$$
(3-F.17)

(e) High strength bolting for temperatures not exceeding 371°C (700°F)

$$Y = \log\left[30.0 \text{ E3}\left(\frac{S_a}{E_T}\right)\right]$$
(3-F.18)

(1) For a maximum nominal stress $\leq 2.7S_M$ (see Figures 3-F.8M and 3-F.8) and for 93 MPa (13.5 ksi) $\leq S_a \leq 7$ 929 MPa (1,150 ksi)

$$X = 3.75565644 - \frac{75.58638}{Y} + \frac{403.70774}{Y^2} - \frac{830.40346}{Y^3} + \frac{772.53426}{Y^4} - \frac{267.75105}{Y^5}$$
(3-F.19)

(2) For a maximum nominal stress > $2.7S_M$ (see Figures 3-F.9M and 3-F.9) and for 37 MPa (5.3 ksi) $\leq S_a \leq$ 7 929 MPa (1,150 ksi)

$$X = -9.0006161 + \frac{51.928295}{Y} - \frac{86.121576}{Y^2} + \frac{73.1573}{Y^3} - \frac{29.945507}{Y^4} + \frac{4.7332046}{Y^5}$$
(3-F.20)

3-F.1.3

The design number of design cycles, *N*, can be computed from eq. (3-F.21) based on the parameter *X* calculated for the applicable material.

$$N = 10^X$$
 (3-F.21)

3-F.2 WELDED JOINT DESIGN FATIGUE CURVES

(23) **3-F.2.1**

Subject to the limitations of 5.5.5, the welded joint design fatigue curves in 3-F.5 can be used to evaluate welded joints for the following materials and associated temperature limits:

(*a*) Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for temperatures not exceeding 371°C (700°F)

(b) Series 3XX High Alloy Steels, Austenitic-Ferritic Duplex Stainless Steels, Nickel–Chromium–Iron Alloy, Nickel–Iron–Chromium Alloy, and Nickel–Copper Alloy for temperatures not exceeding 427°C (800°F)

(c) Wrought 70 Copper-Nickel for temperatures not exceeding 371°C (700°F)

(*d*) Nickel–Chromium–Molybdenum–Iron Alloys X, G, C-4, and C-276 for temperatures not exceeding 427°C (800°F) (*e*) Aluminum Alloys

3-F.2.2

The number of allowable design cycles for the welded joint fatigue curve shall be computed as follows.

(*a*) The design number of allowable design cycles, *N*, can be computed from eq. (3-F.22) based on the equivalent structural stress range parameter, $\Delta S_{ess,k}$, determined in accordance with 5.5.5 of this Division. The constants *C* and *h* for use in eq. (3-F.22) are provided in Table 3-F.2. The lower 99% Prediction Interval (-3σ) shall be used for design unless otherwise agreed to by the Owner-User and the Manufacturer.

$$N = \frac{f_I}{f_E} \left(\frac{f_{MT} \cdot C}{\Delta S_{ess,k}} \right)^{\frac{1}{h}}$$
(3-F.22)

(b) If a fatigue improvement method is performed that exceeds the fabrication requirements of this Division, then a fatigue improvement factor, f_i , may be applied. The fatigue improvement factors shown below may be used. An alternative factor determined may also be used if agreed to by the user or user's designated agent and the Manufacturer.

(1) For burr grinding in accordance with Figure 6.2

$$f_I = 1.0 + 2.5 \cdot (10)^q \tag{3-F.23}$$

(2) For TIG dressing

$$f_I = 1.0 + 2.5 \cdot (10)^q \tag{3-F.24}$$

(3) For hammer peening

$$f_I = 1.0 + 4.0 \cdot (10)^q \tag{3-F.25}$$

In the above equations, the parameter is given by the following equation:

$$q = -0.0016 \cdot \left(\frac{\Delta S_{ess,k}}{C_{usm}}\right)^{1.6}$$
(3-F.26)

(c) The design fatigue cycles given by eq. (3-F.22) do not include any allowances for corrosive conditions and may be modified to account for the effects of environment other than ambient air that may cause corrosion or subcritical crack propagation. If corrosion fatigue is anticipated, a factor should be chosen on the basis of experience or testing by which the calculated design fatigue cycles (fatigue strength) should be reduced to compensate for the corrosion. The environmental modification factor, f_E , is typically a function of the fluid environment, loading frequency, temperature, and material variables such as grain size and chemical composition. The environmental modification factor, f_E , shall be specified in the User's Design Specification.

(*d*) A temperature adjustment is required to the fatigue curve for materials other than carbon steel and/or for temperatures above 21°C (70°F). The temperature adjustment factor is given by eq. (3-F.27).

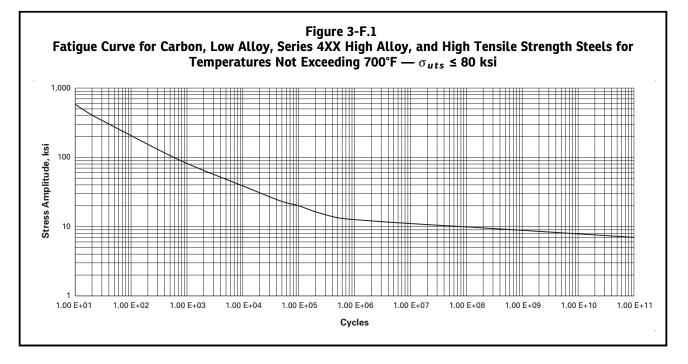
$$f_{MT} = \frac{E_T}{E_{ACS}}$$
(3-F.27)

3-F.3 NOMENCLATURE

- C_{usm} = conversion factor, C_{usm} = 1.0 for units of stress in ksi and C_{usm} = 14.148299 for units of stress in MPa
- E_{ACS} = modulus of elasticity of carbon steel at ambient temperature or 21°C (70°F)
 - E_T = modulus of elasticity of the material under evaluation at the average temperature of the cycle being evaluated
 - f_E = environmental correction factor to the welded joint fatigue curve
 - f_1 = fatigue improvement method correction factor to the welded joint fatigue curve
- f_{MT} = material and temperature correction factor to the welded joint fatigue curve
- q = parameter used to determine the effect equivalent structural stress range on the fatigue improvement factor
- N = number of allowable design cycles
- S_a = computed stress amplitude from Part 5
- S_{ac} = temperature-corrected stress amplitude
 - X = exponent used to compute the permissible number of cycles
 - *Y* = stress amplitude temperature correction factor used to compute *X*
- $\Delta S_{ess,k}$ = computed equivalent structural stress range parameter from Part 5
- σ_{uts} = minimum specified ultimate tensile strength

3-F.4 TABLES

	Temperature-Corrected Stress Amplitude, S _{ac} MPa ksi		
Fatigue Curve			
Figure 3-F.1 Figure 3-F.2 Figure 3-F.3	195.0 E3 $\left(\frac{S_a}{E_T}\right)$	28.3 E3 $\left(\frac{S_a}{E_T}\right)$	
Figure 3-F.4 Figure 3-F.5 Figure 3-F.6	138.0 E3 $\left(\frac{S_a}{E_T}\right)$	20.0 E3 $\left(\frac{S_a}{E_T}\right)$	
Figure 3-F.7	195.0 E3 $\left(\frac{S_a}{E_T}\right)$	28.3 E3 $\left(\frac{S_a}{E_T}\right)$	
Figure 3-F.8 Figure 3-F.9	206.0 E3 $\left(\frac{S_a}{E_T}\right)$	30.0 E3 $\left(\frac{S_a}{E_T}\right)$	


Table 3-F.2 Coefficients for the Welded Joint Fatigue Curves					
	Ferritic and S	tainless Steels	Alum	iinum	
Statistical Basis	С	h	С	h	
Mean Curve	1,408.7	0.31950	247.04	0.27712	
Upper 68% Prediction Interval (+1σ)	1,688.3	0.31950	303.45	0.27712	
Lower 68% Prediction Interval (-1σ)	1,175.4	0.31950	201.12	0.27712	
Upper 95% Prediction Interval $(+2\sigma)$	2,023.4	0.31950	372.73	0.27712	
Lower 95% Prediction Interval (-2σ)	980.8	0.31950	163.73	0.27712	
Upper 99% Prediction Interval (+3σ)	2,424.9	0.31950	457.84	0.27712	
Lower 99% Prediction Interval (-3σ)	818.3	0.31950	133.29	0.27712	

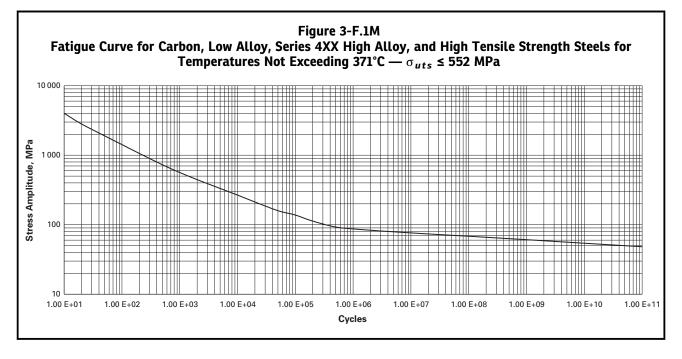
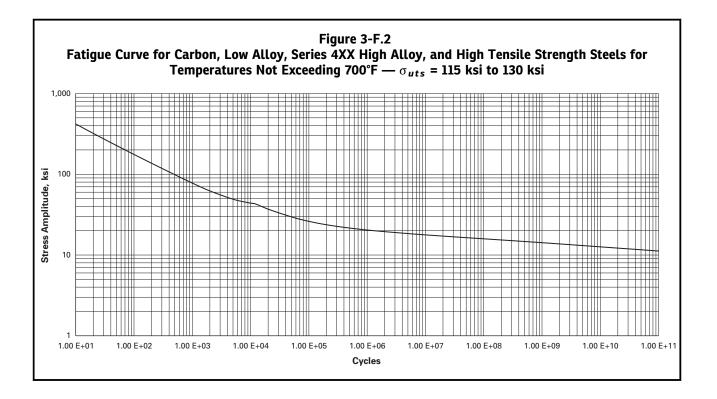
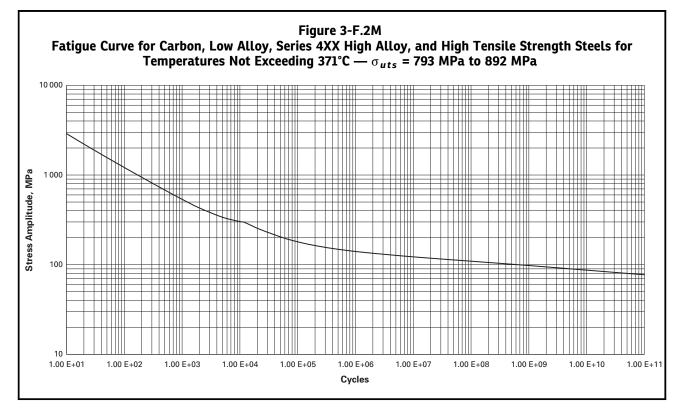
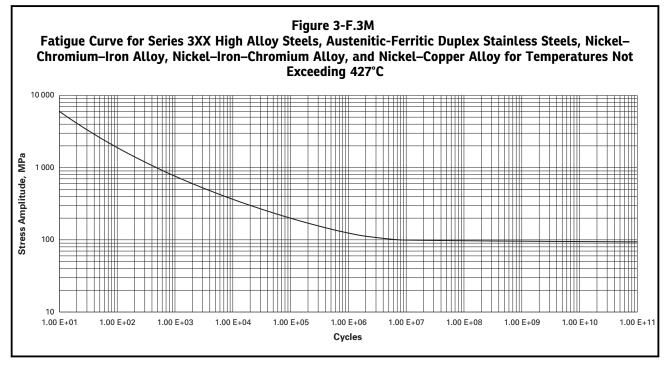

GENERAL NOTE: In U.S. Customary units, the equivalent structural stress range parameter, $\Delta S_{ess,k}$, in 3-F.2.2 and the structural stress effective thickness, t_{ess} , defined in 5.5.5 are in ksi/(inches)^{(2 - m_{ss})/2 m_{ss}} and inches, respectively. The parameter m_{ss} is defined in 5.5.5.

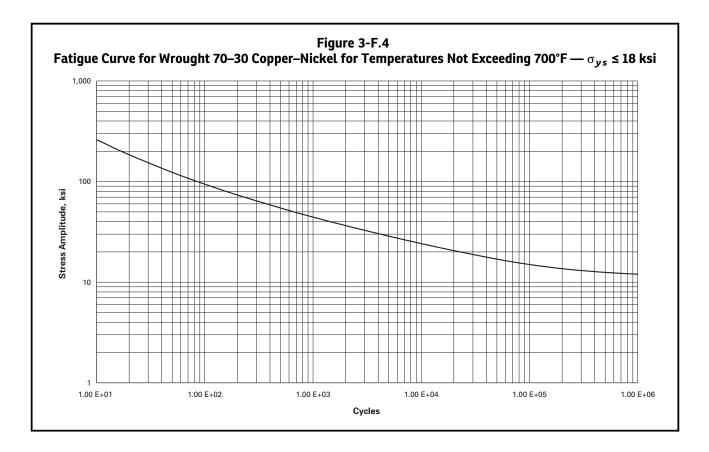
Table 3-F.2M Coefficients for the Welded Joint Fatigue Curves				
	Ferritic and S	tainless Steels	Alum	inum
Statistical Basis	С	h	С	h
Mean Curve	19 930.2	0.31950	3 495.13	0.27712
Upper 68% Prediction Interval (+1o)	23 885.8	0.31950	4 293.19	0.27712
Lower 68% Prediction Interval (-1o)	16 629.7	0.31950	2 845.42	0.27712
Upper 95% Prediction Interval (+2σ)	28 626.5	0.31950	5 273.48	0.27712
Lower 95% Prediction Interval (-2σ)	13 875.7	0.31950	2 316.48	0.27712
Upper 99% Prediction Interval (+3σ)	34 308.1	0.31950	6 477.60	0.27712
Lower 99% Prediction Interval (-3σ)	11 577.9	0.31950	1 885.87	0.27712

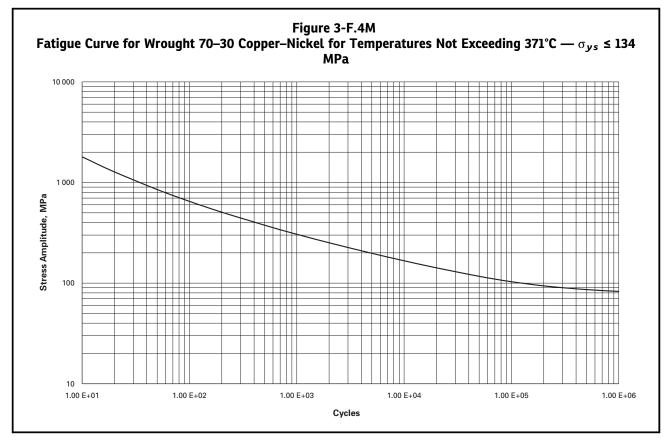

GENERAL NOTE: In SI units, the equivalent structural stress range parameter, $\Delta S_{ess,k}$, in 3-F.2.2 and the structural stress effective thickness, t_{ess} , defined in 5.5.5 are in MPa/(mm)^{(2 - m_{ss})/2 m_{ss}} and millimeters, respectively. The parameter m_{ss} is defined in 5.5.5.

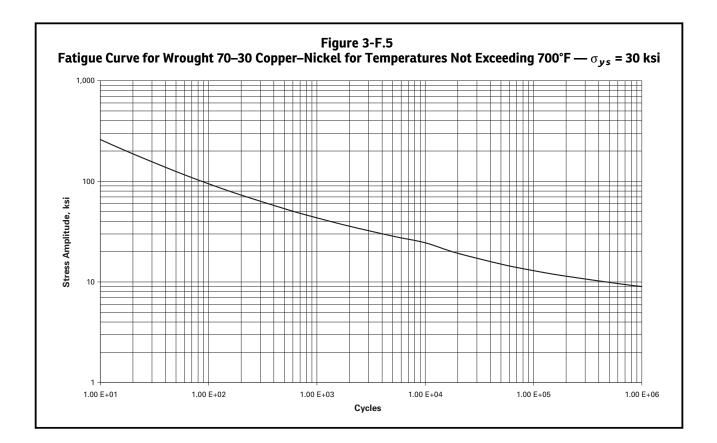

3-F.5 FIGURES



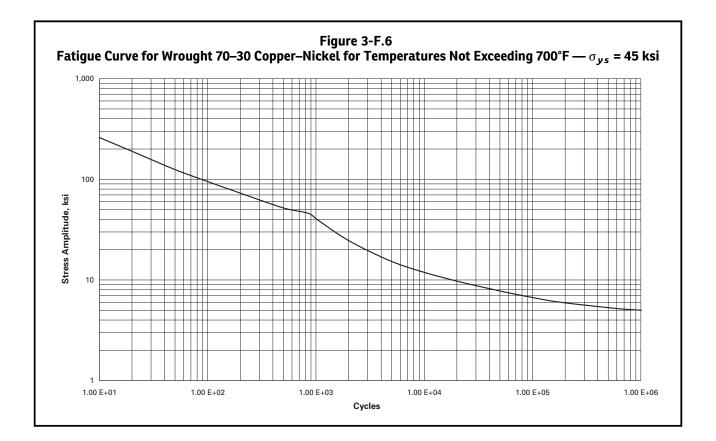
3-F.5

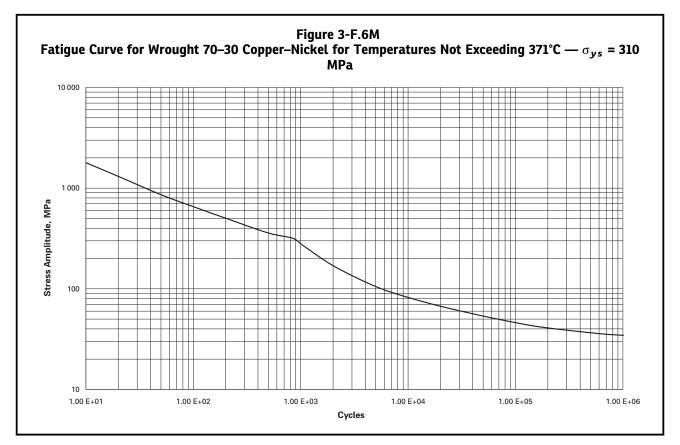


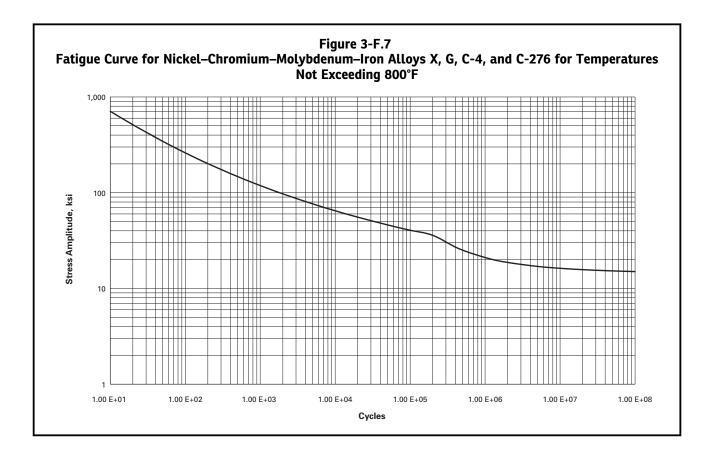


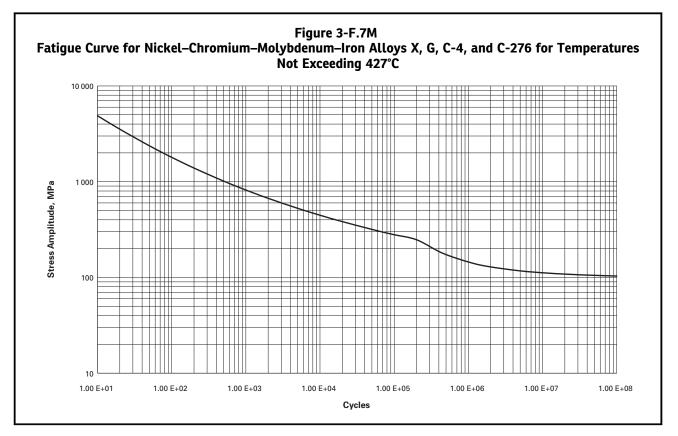


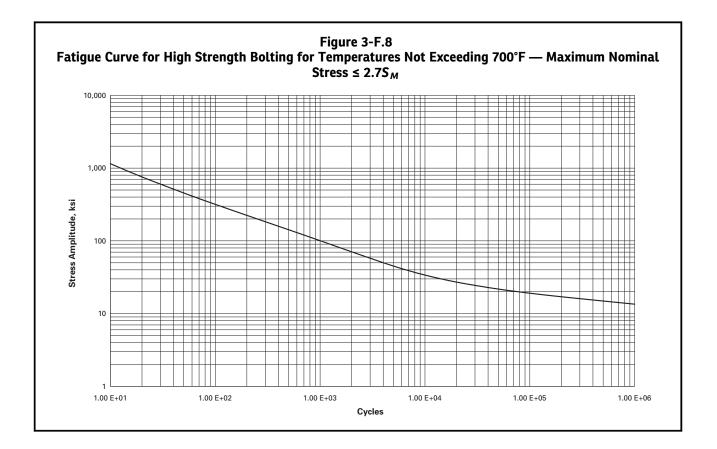
(23)

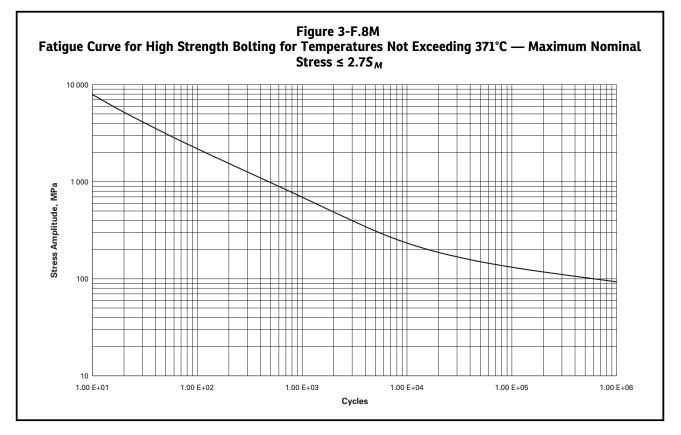

163

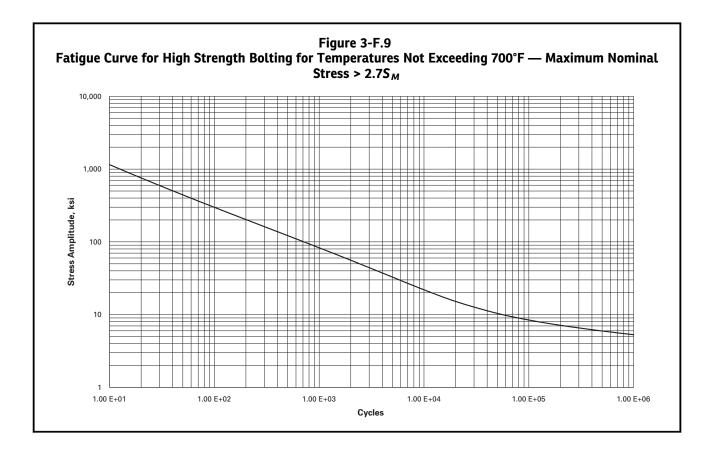


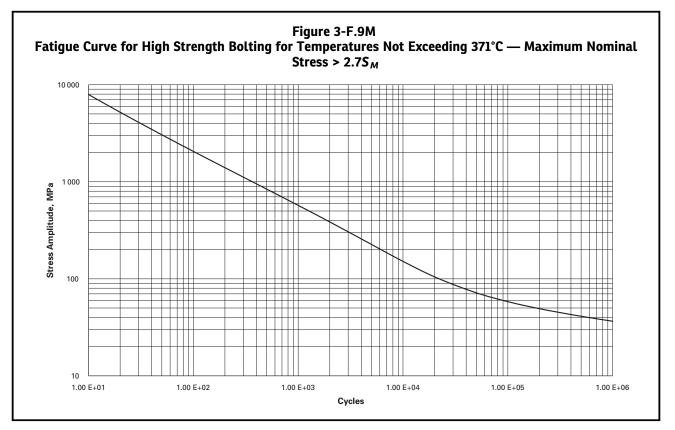












PART 4 DESIGN BY RULE REQUIREMENTS

4.1 GENERAL REQUIREMENTS

4.1.1 SCOPE

4.1.1.1 The basic requirements for application of the design-by-rules methods of this Division are described in 4.1. The requirements of Part 4 provide design rules for commonly used pressure vessel shapes under pressure loading and, within specified limits, rules or guidance for treatment of other loadings.

4.1.1.2 Part 4 does not provide rules to cover all loadings, geometries, and details. See Part 2 for User Responsibilities and User's Design Specification.

4.1.1.2.1 Class 1. When design rules are not provided in Part 4 for a vessel or vessel part, the Manufacturer shall either perform a stress analysis in accordance with Part 5 considering all of the loadings specified in the User's Design Specification, or, with acceptance by the Authorized Inspector, use a recognized and accepted design-by-rule method that meets the applicable design allowable stress criteria given in 4.1.6. If the design cannot be performed using Part 5 or a design-by-rule method (e.g., creep-fatigue), a design method consistent with the overall design philosophy of Class 1 and acceptable to the Authorized Inspector shall be used.

4.1.1.2.2 Class 2. When design rules are not provided for a vessel or vessel part, the Manufacturer shall perform a stress analysis in accordance with Part 5 considering all of the loadings specified in the User's Design Specification.

4.1.1.3 The design procedures in Part 4 may be used if the allowable stress at the design temperature is governed by time-independent or time-dependent properties unless otherwise noted in a specific design procedure. When the vessel is operating at a temperature where the allowable stress is governed by time dependent properties, the effects of joint alignment (see 6.1.6.1) and weld peaking (see 6.1.6.3) in shells and heads shall be considered.

4.1.1.4 A screening criterion shall be applied to all vessel parts designed in accordance with this Division to determine if a fatigue analysis is required. The fatigue screening criterion shall be performed in accordance with 5.5.2. If the results of this screening indicate that a fatigue analysis is required, then the analysis shall be performed in accordance with 5.5.2. If the allowable stress at the design temperature is governed by time-dependent properties, then a fatigue screening analysis based on experience with comparable equipment shall be satisfied (see 5.5.2.2).

4.1.1.5 See 4.1.1.5.1 and 4.1.1.5.2.

4.1.1.5.1 Class 1. Rules in Part 5 shall not be used in lieu of rules in Part 4.

4.1.1.5.2 Class 2. A design-by-analysis in accordance with Part 5 may be used to establish the design thickness and/or configuration (i.e., nozzle reinforcement configuration) in lieu of the design-by-rules in Part 4 for any geometry or loading conditions (see 4.1.5.1). Components of the same pressure vessel may be designed (thickness and configuration) using a combination of Part 4 design-by-rules or any of the three methods of Part 5 design-by-analysis in 5.2.1.1. Each component shall be evaluated for all of the applicable failure modes in 5.1.1.2 using the methodology of Part 4 or Part 5. If the failure mode is not addressed in Part 4 (e.g., ratcheting), then the analysis shall be in accordance with Part 5. Structural interactions between components shall be considered.

4.1.2 MINIMUM THICKNESS REQUIREMENTS

Except for the special provisions listed below, the minimum thickness permitted for shells and heads, after forming and regardless of product form and material, shall be 1.6 mm (0.0625 in.) exclusive of any corrosion allowance. Exceptions are:

(a) This minimum thickness does not apply to heat transfer plates of plate-type heat exchangers.

(b) This minimum thickness does not apply to the inner pipe of double pipe heat exchangers nor to pipes and tubes that are enclosed and protected by a shell, casing or ducting, where such pipes or tubes are DN 150 (NPS 6) and less. This exemption applies whether or not the outer pipe or shell is constructed to Code rules. All other pressure parts of these heat exchangers that are constructed to Code rules must meet the 1.6 mm (0.0625 in.) minimum thickness requirements.

(c) The minimum thickness of shells and heads used in compressed air service, steam service, and water service, made from carbon or low alloy steel materials shall be 2.4 mm (0.0938 in.) exclusive of any corrosion allowance.

(*d*) This minimum thickness does not apply to the tubes in air cooled and cooling tower heat exchangers if all of the following provisions are met:

(1) The tubes shall be protected by fins or other mechanical means.

(2) The tube outside diameter shall be a minimum of 10 mm (0.375 in.) and a maximum of 38 mm (1.5 in.).

(3) The minimum thickness used shall not be less than that calculated by the equations given in 4.3 and in no case less than 0.5 mm (0.022 in.).

4.1.3 MATERIAL THICKNESS REQUIREMENTS

4.1.3.1 Allowance for Fabrication. The selected thickness of material shall be such that the forming, heat treatment, and other fabrication processes will not reduce the thickness of the material at any point below the minimum required thickness.

4.1.3.2 Mill Undertolerance. Plate material shall be ordered not thinner than the design thickness. Vessels made of plate furnished with an undertolerance of not more than the smaller value of 0.3 mm (0.01 in.) or 6% of the ordered thickness may be used at the full maximum allowable working pressure for the thickness ordered. If the specification to which the plate is ordered allows a greater undertolerance, the ordered thickness of the materials shall be sufficiently greater than the design thickness so that the thickness of the material furnished is not more than the smaller of 0.3 mm (0.01 in.) or 6% under the design thickness.

4.1.3.3 Pipe Undertolerance. If pipe or tube is ordered by its nominal wall thickness, the manufacturing undertolerance on wall thickness shall be taken into account. After the minimum wall thickness is determined, it shall be increased by an amount sufficient to provide the manufacturing undertolerance allowed in the pipe or tube specification.

4.1.4 CORROSION ALLOWANCE IN DESIGN EQUATIONS

4.1.4.1 The dimensional symbols used in all design equations and figures throughout this Division represent dimensions in the corroded condition.

4.1.4.2 The term corrosion allowance as used in this Division is representative of loss of metal by corrosion, erosion, mechanical abrasion, or other environmental effects and shall be accounted for in the design of vessels or parts when specified in the User's Design Specification.

4.1.4.3 The user shall determine the required corrosion allowance over the life of the vessel and specify such in the User's Design Specification. The Manufacturer shall add the required allowance to all minimum required thicknesses in order to arrive at the minimum ordered material thickness. The corrosion allowance need not be the same for all parts of a vessel. If corrosion or other means of metal loss do not exist, then the user shall specify in the User's Design Specification that a corrosion allowance is not required.

4.1.5 DESIGN BASIS

4.1.5.1 Design Thickness. The design thickness of the vessel part shall be determined using the rules specified in 4.1.5.1.1 or 4.1.5.1.2 and shall not be less than the minimum thickness specified in 4.1.2 plus any corrosion allowance required by 4.1.4.

4.1.5.1.1 Class 1. The design-by-rule methods of Part 4 shall be applied using the load and load case combinations specified in 4.1.5.3 except when design rules are not provided in Part 4 (see 4.1.1.2).

4.1.5.1.2 Class 2. The design-by-rule methods of Part 4 shall be applied using the load and load case combinations specified in 4.1.5.3. Alternatively, the design thickness may be established using the design-by-analysis procedures in Part 5, even if this thickness is less than that established using Part 4 design-by-rule methods.

4.1.5.2 Definitions. The following definitions shall be used to establish the design basis of the vessel. Each of these parameters shall be specified in the User's Design Specification.

(a) Design Pressure - The pressure used in the design of a vessel component together with the coincident design metal temperature, for the purpose of determining the minimum permissible thickness or physical characteristics of the different zones of the vessel. Where applicable, static head and other static or dynamic loads shall be included in addition to the specified design pressure [see 2.2.3.1(d)(1)] in the determination of the minimum permissible thickness or physical characteristics of a particular zone of the vessel.

(b) Maximum Allowable Working Pressure - The maximum gage pressure permissible at the top of a completed vessel in its normal operating position at the designated coincident temperature for that pressure. This pressure is the least of the values for the internal or external pressure to be determined by the rules of this Division for any of the pressure

ASME BPVC.VIII.2-2023

boundary parts, considering static head thereon, using nominal thicknesses exclusive of allowances for corrosion and considering the effects of any combination of loadings specified in the User's Design Specification at the designated coincident temperature. It is the basis for the pressure setting of the pressure-relieving devices protecting the vessel. The specified design pressure may be used in all cases in which calculations are not made to determine the value of the maximum allowable working pressure.

(c) Test Pressure - The test pressure is the pressure to be applied at the top of the vessel during the test. This pressure plus any pressure due to static head at any point under consideration is used in the applicable design equations to check the vessel under test conditions.

(*d*) Design Temperature and Coincident Pressure - The design temperature for any component shall not be less than the mean metal temperature expected coincidentally with the corresponding maximum pressure (internal and, if specified, external). If necessary, the mean metal temperature shall be determined by computations using accepted heat transfer procedures or by measurements from equipment in service under equivalent operating conditions. In no case shall the metal temperature anywhere within the wall thickness exceed the maximum temperature limit in (1).

(1) A design temperature greater than the maximum temperature listed for a material specification in Annex 3-A is not permitted. In addition, if the design includes external pressure (see 4.4), then the design temperature shall not exceed the temperature limits specified in Table 4.4.1.

(2) The maximum design temperature marked on the nameplate shall not be less than the expected mean metal temperature at the corresponding MAWP.

(3) When the occurrence of different mean metal temperatures and coincident pressures during operation can be accurately predicted for different zones of a vessel, the design temperature for each of these zones may be based on the predicted temperatures. These additional design metal temperatures with their corresponding MAWP, may be marked on the nameplate as required.

(e) Minimum Design Metal Temperature and Coincident Pressure - The minimum design metal temperature (MDMT) shall be the coldest expected in normal service, except when colder temperatures are permitted by 3.11. The MDMT shall be determined by the principles described in (d). Considerations shall include the coldest operating temperature, operational upsets, auto refrigeration, atmospheric temperature, and any source of cooling.

(1) The MDMT marked on the nameplate shall correspond to a coincident pressure equal to the MAWP.

(2) When there are multiple MAWP, the largest value shall be used to establish the corresponding MDMT marked on the nameplate.

(3) When the occurrence of different MDMT and coincident pressures during operation can be accurately predicted for different zones of a vessel, the MDMT for each of these zones may be based on the predicted temperatures. These additional MDMT together with their corresponding MAWP, may be marked on the nameplate as required.

4.1.5.3 Design Loads and Load Case Combinations. All applicable loads and load case combinations shall be considered in the design to determine the minimum required wall thickness for a vessel part.

(*a*) The loads that shall be considered in the design shall include, but not be limited to, those shown in Table 4.1.1 and shall be included in the User's Design Specification.

(*b*) The load combinations that shall be considered shall include, but not be limited to, those shown in Table 4.1.2, except when a different recognized standard for wind loading is used. In that case, the User's Design Specification shall cite the Standard to be applied and provide suitable load factors if different from ASCE/SEI 7. The factors for wind loading, *W*, in Table 4.1.2, Design Load Combinations, are based on ASCE/SEI 7 wind maps and probability of occurrence. If a different recognized standard for earthquake loading is used, the User's Design Specification shall cite the Standard to be applied and provide suitable load factors if different from ASCE/SEI 7.

(c) When analyzing a loading combination, the value of allowable stress shall be evaluated at the coincident temperature.

(*d*) Combinations of loads that result in a maximum thickness shall be evaluated. In evaluating load cases involving the pressure term, *P*, the effects of the pressure being equal to zero shall be considered. For example, the maximum difference in pressure that may exist between the inside and outside of the vessel at any point or between two chambers of a combination unit or, the conditions of wind loading with an empty vertical vessel at zero pressure may govern the design.

(e) The applicable loads and load case combinations shall be specified in the User's Design Specification.

(f) If the vessel or part is subject to cyclic operation and a fatigue analysis is required (see 4.1.1.4), then a pressure cycle histogram and corresponding thermal cycle histogram shall be provided in the User's Design Specification.

4.1.6 DESIGN ALLOWABLE STRESS

4.1.6.1 Design Condition. The allowable stresses for all permissible materials of construction are provided in Annex 3-A. The wall thickness of a vessel computed by the rules of Part 4 for any combination of loads (see 4.1.5) that induce primary stress (see definition of *primary stress* in 5.12) and are expected to occur simultaneously during operation shall satisfy the equations shown below.

$$P_m \le S \tag{4.1.1}$$

$$P_m + P_b \le 1.5S$$
 (4.1.2)

4.1.6.2 Test Condition. The allowable stress for the selected test pressure, P_T , shall be established by the following requirements. In the case where the stress limit is exceeded, the selected test pressure shall be reduced, but no lower than the minimum test pressure as established in Part 8.

(a) Primary Membrane Stress. A calculated P_m shall not exceed the applicable limit given below, where β_T shall be obtained from Table 4.1.3 for the appropriate test medium (hydrostatic or pneumatic) and the applicable class.

$$P_m \le \beta_T S_V \tag{4.1.3}$$

(b) Primary Membrane Stress Plus Primary Bending Stress. A calculated $P_m + P_b$ shall not exceed the applicable limit given below, where β_T and γ_{min} shall be obtained from Table 4.1.3 for the appropriate test medium (hydrostatic or pneumatic) and the applicable class.

(1) For
$$P_m \leq \frac{1}{1.5}S_y$$

$$P_m + P_b \le \gamma_{\min} S_y \tag{4.1.4}$$

(2) For $\frac{1}{1.5}S_y < P_m \le \beta_T S_y$

$$P_m + P_b \leq \left(\frac{1 - \gamma_{\min}}{\beta_T - \frac{1}{1.5}}\right) P_m - \left[\left(\frac{1 - \gamma_{\min}}{\beta_T - \frac{1}{1.5}}\right) \beta_T - 1\right] S_y$$

$$(4.1.5)$$

4.1.6.3 Primary Plus Secondary Stress. The allowable primary plus secondary stress at the design temperature shall be computed as follows:

$$S_{PS} = \max\left[3S, 2S_{y}\right] \tag{4.1.6}$$

However, S_{PS} shall be limited to 3S if either

(*a*) the room temperature ratio of the minimum specified yield strength from Annex 3-D to the ultimate tensile strength from Annex 3-D exceeds 0.70; or,

(b) the allowable stress from Annex 3-A is governed by time-dependent properties.

4.1.6.4 Shear Stress. The maximum shear stress in restricted shear, such as dowel bolts or similar construction in which the shearing member is so restricted that the section under consideration would fail without a reduction of area, shall be limited to 0.80 times the values in Section II, Part D, Subpart 1, Table 3.

4.1.6.5 Bearing Stress. Maximum bearing stress shall be limited to 1.60 times the values in Section II, Part D, Subpart 1, Table 3.

4.1.7 MATERIALS IN COMBINATION

Except as specifically prohibited by the rules of this Division, a vessel may be designed for and constructed of any combination of materials listed in Part 3. For vessels operating at temperatures other than ambient temperature, the effects of differences in coefficients of thermal expansion of dissimilar materials shall be considered.

4.1.8 COMBINATION UNITS

4.1.8.1 Combination Unit. A combination unit is a pressure vessel that consists of more than one independent or dependent pressure chamber, operating at the same or different pressures and temperatures. The parts separating each pressure chamber are the common elements. Each element, including the common elements, shall be designed for at

least the most severe condition of coincident pressure and temperature expected in normal operation. Only the chambers that come within the scope of this Division need be constructed in compliance with its provisions. Additional design requirements for chambers classified as jacketed vessels are provided in 4.11.

(23) **4.1.8.2 Common Element Design.** It is permitted to design each common element for a differential pressure less than the maximum of the design pressures of its adjacent chambers (differential pressure design) or a mean metal temperature less than the maximum of the design temperatures of its adjacent chambers (mean metal temperature design), or both, only when the vessel is to be installed in a system that controls the common element operating conditions.

(a) Differential Pressure Design (Dependent Pressure Chamber). When differential pressure design is permitted, the common element design pressure shall be the maximum differential design pressure expected between the adjacent chambers. The common element and its corresponding differential pressure shall be indicated in the "Remarks" section of the Manufacturer's Data Report (see 2.3.4) and marked on the vessel (see Annex 2-F). The differential pressure shall be controlled to ensure the common element design pressure is not exceeded.

(b) Mean Metal Temperature Design. When mean metal temperature design is used, the maximum common element design temperature determined in accordance with 4.1.5.2(d) may be less than the greater of the maximum design temperatures of its adjacent chambers; however, it shall not be less than the lower of the maximum design temperatures of its adjacent chambers. The common element and its corresponding design temperature shall be indicated in the "Remarks" section of the Manufacturer's Data Report (see 2.3.4) and marked on the vessel (see Annex 2-F). The fluid temperature, flow and pressure, as required, shall be controlled to ensure the common element design temperature is not exceeded.

4.1.9 CLADDING AND WELD OVERLAY

4.1.9.1 The design calculations for integrally clad plate or overlay weld clad plate may be based on a thickness equal to the nominal thickness of the base plate plus S_C/S_B times the nominal thickness of the cladding, less any allowance provided for corrosion, provided all of the following conditions are met.

(*a*) The clad plate conforms to one of the specifications listed in the tables in Part 3 or is overlay weld clad plate conforming to Part 3.

(*b*) The joints are completed by depositing corrosion resisting weld metal over the weld in the base plate to restore the cladding.

(c) The allowable stress of the weaker material is at least 70% of the allowable stress of the stronger material.

4.1.9.2 When S_c is greater than S_B , the multiplier S_c/S_B shall be taken equal to unity.

4.1.10 INTERNAL LININGS

Corrosion resistant or abrasion resistant linings are those not integrally attached to the vessel wall, i.e., they are intermittently attached or not attached at all. In either case, such linings shall not be given any credit when calculating the thickness of the vessel wall.

4.1.11 FLANGES AND PIPE FITTINGS

4.1.11.1 The following standards covering flanges and pipe fittings are acceptable for use under this Division in accordance with the requirements of Part 1.

(a) ASME B16.5, Pipe Flanges and Flanged Fittings, NPS $\frac{1}{2}$ Through NPS 24 Metric/Inch Standard

(b) ASME B16.9, Factory-Made Wrought Buttwelding Fittings

(c) ASME B16.11, Forged Fittings, Socket-Welding and Threaded

(d) ASME B16.15, Cast Copper Alloy Threaded Fittings, Classes 125 and 250

(e) ASME B16.20, Metallic Gaskets for Pipe Flanges

(f) ASME B16.24, Cast Copper Alloy Pipe Flanges, Flanged Fittings, and Valves, Classes 150, 300, 600, 900, 1500, and 2500

(g) ASME B16.47, Large Diameter Steel Flanges, NPS 26 Through NPS 60 Metric/Inch Standard

4.1.11.2 Pressure-temperature ratings shall be in accordance with the applicable standard except that the pressure-temperature ratings for ASME B16.9 and ASME B16.11 fittings shall be calculated as for straight seamless pipe in accordance with the rules of this Division including the maximum allowable stress for the material.

4.1.11.3 A forged nozzle flange (i.e., long weld neck flange) may be designed using the ASME B16.5/B16.47 pressure-temperature ratings for the flange material being used, provided all of the following are met.

ASME BPVC.VIII.2-2023

(*a*) For ASME B16.5 applications, the forged nozzle flange shall meet all dimensional requirements of a flanged fitting given in ASME B16.5 with the exception of the inside diameter. The inside diameter of the forged nozzle flange shall not exceed the inside diameter of the same size and class lap joint flange given in ASME B16.5. For ASME B16.47 applications, the inside diameter shall not exceed the weld hub diameter "A" given in the ASME B16.47 tables.

(*b*) For ASME B16.5 applications, the outside diameter of the forged nozzle neck shall be at least equal to the hub diameter of the same size and class ASME B16.5 lap joint flange. For ASME B16.47 applications, the outside diameter of the hub shall at least equal the "X" diameter given in the ASME B16.47 tables. Larger hub diameters shall be limited to nut stop diameter dimensions (see 4.16).

4.1.12 VESSELS IN ELEVATED TEMPERATURE SERVICE

The user and Manufacturer are cautioned that certain fabrication details allowed by this Division may result in cracking at welds and associated heat-affected zone (HAZ) for vessels designed for use at elevated temperature.

NOTE: WRC Bulletin 470, "Recommendations for Design of Vessels for Elevated Temperature Service," has information that may prove helpful to the vessel designer. WRC Bulletin 470 contains recommended design details for use at elevated temperature service, which is for the purposes of this Division, when the allowable stresses in Section II, Part D are based on time-dependent properties. The use of these details does not relieve the Manufacturer of design responsibility with regard to primary, secondary, and peak stresses associated with both steady-state conditions and transient events, such as startup, shutdown, intermittent operation, thermal cycling, etc., as defined in the User's Design Specification.

4.1.13 NOMENCLATURE

- P_b = primary bending stress (see Part 5)
- P_m = general primary membrane stress (see Part 5)
- P_T = selected hydrostatic or pneumatic test pressure [see 8.2.1(c)]
- S = allowable stress from Annex 3-A at the design temperature
- S_B = allowable stress from Annex 3-A at the design temperature for the base plate at the design temperature
- S_c = allowable stress from Annex 3-A at the design temperature for the cladding or, for the weld overlay, the allowable stress of the wrought material whose chemistry most closely approximates that of the cladding at the design temperature
- S_{PS} = allowable primary plus secondary stress at the design temperature
- S_v = yield strength at the test temperature evaluated in accordance with Annex 3-D
- β = elastic-plastic load factor for Class 1 or Class 2 construction (see Table 4.1.3)
- β_T = test condition load factor for hydrostatic or pneumatic test and for Class 1 or Class 2 construction (see Table 4.1.3)
- γ_{\min} = minimum test condition load factor for hydrostatic or pneumatic test and for Class 1 or Class 2 construction (see Table 4.1.3)
- $\gamma_{St/S}$ = test condition load factor considering the ratio of the allowable stress at the test condition to the allowable stress at the design condition for hydrostatic or pneumatic test and for Class 1 or Class 2 construction (see Table 4.1.3)
 - Ω_P = load factor for pressure when combined with occasional load *L*, *S_s*, *W*, or *E* (see Table 4.1.1 for load parameter definitions)
 - = 1.0 unless otherwise specified in the User's Design Specification [see 2.2.3.1(e)]
- $\Omega_P P$ = maximum anticipated operating pressure (internal or external) acting simultaneously with occasional load L, S_s, W, or E

4.1.14 **TABLES**

Table 4.1.1 Design Loads				
Design Load Parameter Description				
Р	Internal or external specified design pressure [see 4.1.5.2(a)]			
P_{S}	Static head from liquid or bulk materials (e.g., catalyst)			
D	 Deadweight of the vessel, contents, and appurtenances at the location of interest, including the followir Weight of vessel including internals, supports (e.g., skirts, lugs, saddles, and legs), and appurtenant (e.g., platforms, ladders, etc.) Weight of vessel contents under design and test conditions Refractory linings, insulation Static reactions from the weight of attached equipment, such as motors, machinery, other vessels, piping Transportation loads {the static forces obtained as equivalent to the dynamic loads experienced duration ormal operation of a transport vessel [see 1.2.1.3(b)]} 			
L	 Appurtenance live loading Effects of fluid flow, steady state or transient Loads resulting from wave action 			
Ε	Earthquake loads [see 4.1.5.3(b)]			
W	Wind loads [see 4.1.5.3(b)]			
Ss	Snow loads			
F	Loads due to deflagration			

	Table	e 4.1.2
Design	Load	Combinations

Design Load Combination [Note (1)], [Note (2)]	General Primary Membrane Allowable Stress [Note (3)]		
(1) $P + P_s + D$	S		
$(2) P + P_s + D + L$	S		
$(3) P + P_s + D + S_s$	S		
(4) $\Omega_P P + P_s + D + 0.75L + 0.75S_s$	S		
(5) $\Omega_P P + P_s + D + (0.6W \text{ or } 0.7E)$	S		
(6) $\Omega_P P + P_s + D + 0.75(0.6W \text{ or } 0.7E) + 0.75L + 0.75S_s$	S		
(7) $0.6D + (0.6W \text{ or } 0.7E)$ [Note (4)]	S		
$(8) P_s + D + F$	See Annex 4-D		
(9) Other load combinations as defined in the User's Design Specification	S		

NOTES:

(1) The parameters used in the Design Load Combination column are defined in Table 4.1.1.

(2) See 4.1.5.3 for additional requirements.

(3) S is the allowable stress for the load case combination [see 4.1.5.3(c)].

(4) This load combination addresses an overturning condition for foundation design. It does not apply to design of anchorage (if any) to the foundation. Refer to ASCE/SEI 7, 2.4.1 Exception 2 for an additional reduction to W that may be applicable.

Load I	Factor, β , a	nd Pressure Tes Construction a		$\gamma_{\rm min}$, $\gamma_{\rm min}$, and $\gamma_{\rm min}$		s 1 and Class	2
		β	T	γm	in	Yst/	s
Class	β	Hydrostatic	Pneumatic	Hydrostatic	Pneumatic	Hydrostatic	Pneuma
1	3.0	0.95	0.8	$1.5\beta_T$	$1.5\beta_T$	1.25	1.15
	2.4	0.95	0.8	$1.5\beta_T$	$1.5\beta_T$	1.25	1.15

4.2 DESIGN RULES FOR WELDED JOINTS

4.2.1 SCOPE

Design requirements for weld joints are provided in 4.2. Acceptable weld joint details are provided for most common configurations. Alternative details may be used if they can be qualified by a design procedure using Part 5. Rules for sizing welds are also provided.

4.2.2 WELD CATEGORY

The term weld category defines the location of a joint in a vessel, but not the weld joint type. The weld categories established by this paragraph are for use elsewhere in this Division in specifying special requirements regarding joint type and degree of examination for certain welded pressure joints. Since these special requirements that are based on thickness do not apply to every welded joint, only those joints to which special requirements apply are included in categories. The weld categories are defined in Table 4.2.1 and shown in Figure 4.2.1. Welded joints not defined by the category designations include but are not limited to Table 4.11.1, jacket-closure-to-shell welds; Figure 4.19.11, groove and fillet welds; and Figure 4.20.1, sketches (a), (c), and (d) corner joints. Unless limited elsewhere in this Division, 4.2.5 permissible weld joint types may be used with welded joints that are not assigned a category.

4.2.3 WELD JOINT TYPE

The weld joint type defines the type of weld between pressure and/or nonpressure parts. The definitions for the weld joint types are shown in Table 4.2.2.

4.2.4 WELD JOINT EFFICIENCY

The weld joint efficiency of a welded joint is expressed as a numerical quantity and is used in the design of a joint as a multiplier of the appropriate allowable stress value taken from Annex 3-A. The weld joint efficiency shall be determined from Table 7.2.

4.2.5 TYPES OF JOINTS PERMITTED

4.2.5.1 Definitions

(*a*) Butt Joint - A butt joint is a connection between the edges of two members with a full penetration weld. The weld is a double sided or single sided groove weld that extends completely through both of the parts being joined.

(*b*) Corner Joint - A corner joint is a connection between two members at right angles to each other in the form of an L or T that is made with a full or partial penetration weld, or fillet welds. Welds in full penetration corner joints shall be groove welds extending completely through at least one of the parts being joined and shall be completely fused to each part.

(c) Angle Joint - An angle joint is a connection between the edges of two members with a full penetration weld with one of the members consisting of a transition of diameter. The weld is a double sided or single sided groove weld that extends completely through both of the parts being joined.

(d) Spiral Weld - a weld joint having a helical seam.

(e) Fillet Weld - A fillet weld is a weld that is approximately triangular in cross section that joins two surfaces at approximately right angles to each other.

(f) Gross Structural Discontinuity - A gross structural discontinuity is a source of stress or strain intensification which affects a relatively large portion of a structure and has a significant effect on the overall stress or strain pattern or on the structure as a whole. Examples of gross structural discontinuities are head-to-shell and flange-to-shell junctions, nozzles, and junctions between shells of different diameters or thicknesses.

(g) Lightly Loaded Attachments - Weld stress due to mechanical loads on attached member not over 25% of allowable stress for fillet welds and temperature difference between shell and attached member not expected to exceed 14°C (25°F) shall be considered lightly loaded.

(*h*) Minor Attachments - Parts of small size, less than or equal to 10 mm (0.375 in.) thick or 82 cm³ (5 in.³) in volume, that carry no load or an insignificant load such that a stress calculation in designer's judgment is not required; examples include nameplates, insulation supports, and locating lugs.

(i) Major Attachments - Parts that are not minor or lightly loaded as described above.

4.2.5.2 Category A Locations

(a) All joints of Category A shall be Type No. 1 butt joints.

(b) Acceptable Category A welds are shown in Tables 4.2.4 and 4.2.5.

(c) Transition Joints Between Sections of Unequal Thickness - Unless the requirements of Part 5 are shown to be satisfied, a tapered transition shall be provided at joints between sections that differ in thickness by more than one-fourth of the thickness of the thinner section or by more than 3 mm (0.125 in.). The transition may be formed by any process that will provide a uniform taper. When Part 5 is not used, the following additional requirements shall also apply.

(1) When a taper is required on any shell section intended for butt-welded attachment, the transition geometry shall be in accordance with Table 4.2.4, Details 4, 5, and 6.

(2) When a taper is required on a hemispherical head intended for butt-welded attachment, the transition geometry shall be in accordance with Table 4.2.5, Details 2, 3, 4 and 5.

(3) A hemispherical head which has a greater thickness than a cylinder of the same inside diameter may be machined to the outside diameter of the cylinder, provided the remaining thickness is at least as great as that required for a shell of the same diameter.

(4) When the transition is formed by adding additional weld metal beyond what would otherwise be the edge of the weld, such additional weld metal buildup shall be subject to the requirements of Part 6. The butt weld may be partly or entirely in the tapered section.

(5) The requirements of this paragraph do not apply to flange hubs.

(23) 4.2.5.3 Category B Locations

(a) The joints of Category B may be any of the following types:

(1) Type No. 1 butt joints,

(2) Type No. 2 butt joints except as limited in 4.2.5.8.

(3) Type No. 3 butt joints may only be used for shells having a thickness of 16 mm (0.625 in.) or less and a diameter of 610 mm (or 24 in.) and less.

(b) Acceptable Category B welds are shown in Tables 4.2.4 and 4.2.5.

(c) Backing strips shall be removed from Type No. 2 butt joints unless access conditions prevent their removal. If a fatigue analysis of Type No. 2 butt joints with a backing strip in place is required, then a stress concentration factor of 2.0 for membrane stresses and of 2.5 for bending stress shall be applied.

(*d*) Transition joints between shell sections of unequal thickness shall meet the requirements of 4.2.5.2(c) and shall be in accordance with Table 4.2.4 and Table 4.2.5. An ellipsoidal head which has a greater thickness than a cylinder of the same inside diameter may be machined to the outside diameter of the cylinder, provided the remaining thickness is at least as great as that required for a shell of the same diameter.

(e) Transition joints between nozzle necks and attached piping of unequal thickness shall be in accordance with 4.2.5.9.

(f) When butt joints are required elsewhere in this Division for Category B, an angle joint connecting a transition in diameter to a cylinder shall be considered as meeting this requirement, provided the requirements of Type No. 1 butt joints are met. All requirements pertaining to the butt joint shall apply to the angle joint.

(23) 4.2.5.4 Category C Locations

(a) The joints of Category C may be any of the following types:

(1) Type No. 1 butt joints,

(2) Full penetration corner joints except as limited in 4.2.5.8.

(3) Fillet welded joints for the attachment of loose type flanges shown in Table 4.2.9, with the following limitations: (-a) The materials of the flange and the part it is welded to are Type 1 Materials (see Table 4.2.3).

- (-b) The minimum specified yield strength of both materials is less than 552 MPa (80 ksi).
- (-c) The minimum elongation of both materials is 12% in 50 mm (2 in.) gauge length.
- (-d) The thickness of the materials to which the flange is welded does not exceed 32 mm (1.25 in.).

(-e) The fillet weld dimensions satisfy the requirements shown in Table 4.2.9.

(-f) A fatigue-screening criterion shall be performed in accordance with 5.5.2 to determine if a fatigue analysis is required. If the results of this screening indicate that a fatigue analysis is required, then the analysis shall be performed in accordance with 5.5.2.

(-g) Loose type flanges that do not conform to ASME B16.5 are only permitted when both of the following requirements are satisfied.

(-1) The material of construction for the flange satisfies the following equation.

$$\frac{S_{yT}}{S_u} \le 0.625$$
 (4.2.1)

(-2) The component is not in cyclic service, i.e., a fatigue analysis is not required in accordance with 4.1.1.4. (b) Acceptable Category C welds are shown in the following tables.

(1) Table 4.2.4 - Some acceptable weld joints for shell seams.

(2) Table 4.2.6 - Some acceptable weld joints for unstayed flat heads, tubesheets without a bolting flange, and side plates of rectangular pressure vessels

(3) Table 4.2.7 - Some acceptable weld joints with butt weld hubs.

(4) Table 4.2.8 - Some acceptable weld joints for attachment of tubesheets with a bolting flange

(5) Table 4.2.9 - Some acceptable weld joints for flange attachments.

(c) Flat Heads, Lap Joint Stub Ends, and Tubesheets with Hubs for Butt Joints

(1) Hubs for butt welding to the adjacent shell, head, or other pressure parts such as tubesheets and flat heads as shown in Table 4.2.7 shall be forged or machined from flat plate. Forged hubs shall be forged in such a manner as to provide in the hub the full minimum tensile strength and elongation specified for the material in the direction parallel to the axis of the vessel. Proof of this shall be furnished by a tension test specimen (subsize, if necessary) taken in this direction and as close to the hub as practical. Hubs machined from flat plates should satisfy the requirements of 3.9.

(2) Flanges with hubs as shown in Table 4.2.9, Details 6, 7, and 8 shall not be machined from plate.

(*d*) Corner Joints - If shells, heads, or other pressure parts are welded to a forged or rolled plate to form a corner joint as shown in Table 4.2.6 and Table 4.2.8, then the welds shall meet the following requirements.

(1) On the cross section through the welded joint, the line between the weld metal and the forged or rolled plate being attached shall be projected on planes both parallel to and perpendicular to the surface of the plate being attached, in order to determine the dimensions a and b, respectively.

(2) The dimensional requirements on *a* and *b* shall meet the applicable requirements in Tables 4.2.6 and 4.2.8.

(3) Weld joint details that have a dimension through the joint that is less than the thickness of the shell, head, or other pressure part, or that provide attachment eccentric thereto are not permitted.

(4) If an integral tubesheet is located between two shells, heads, or other pressure parts, then a weld attachment detail as shown in Table 4.2.6 shall be used for each attachment.

4.2.5.5 Category D Locations

(a) The joints of Category D may be any of the following types.

(1) Type No. 1 butt joints

(2) Full penetration corner joints except as limited in 4.2.5.8

- (3) Full penetration corner joints at the nozzle neck or fillet welds, or both
- (4) Partial penetration corner joint at the nozzle neck

(b) Acceptable Category D welds are shown in the following tables.

(1) Table 4.2.4 - Some acceptable weld joints for shell seams

(2) Table 4.2.10 - Some acceptable full penetration welded nozzle attachments not readily radiographable

- (3) Table 4.2.11 Some acceptable pad welded nozzle attachments and other connections to shells
- (4) Table 4.2.12 Some acceptable fitting-type welded nozzle attachments and other connections to shells
- (5) Table 4.2.13 Some acceptable welded nozzle attachments that are readily radiographable

(6) Table 4.2.14 - Some acceptable partial penetration nozzle attachments

(c) Requirements for nozzle welds are shown below.

(1) Type No. 1 butt joints or full penetration joints shall be used when the opening in a shell is 64 mm (2.5 in.) or more in thickness.

 $(\mathbf{23})$

ASME BPVC.VIII.2-2023

(2) Nozzle Neck Abutting the Vessel Wall Without Reinforcement - Nozzle necks abutting the vessel wall without added reinforcing element shall be attached by a full penetration groove weld. Backing strips shall be used with welds deposited from only one side or when complete joint penetration cannot be verified by visual inspection. Backing strips, when used, shall be removed after welding. Permissible types of weld attachments are shown in Table 4.2.10, Details 1, 2, and 7.

(3) Insert Nozzle Necks Without Reinforcement - Nozzle necks without added reinforcing elements inserted partially into or through a hole cut in the vessel wall shall be attached by a full penetration groove weld. Backing strips, when used, shall be removed after welding. Permissible types of weld attachments are shown in Table 4.2.10, Details 3, 4, 5, 6, and 8.

(4) Insert Nozzle Necks With Reinforcement - Inserted type necks having added reinforcement in the form of one or more separate reinforcing plates shall be attached by continuous welds at the outer edge of the reinforcement plate and at the nozzle neck periphery. A fatigue-screening criterion shall be applied to nozzles with separate reinforcement and non-integral attachment designs. The welds attaching the neck to the vessel wall and to the reinforcement shall be full penetration groove welds. Permissible types of weld attachments are shown in Table 4.2.11, Details 1, 2, and 3. [Also, see (d).]

(5) Studded Pad Type Connections - Studded connections that may have externally imposed loads shall be attached using full penetration welds in accordance with Table 4.2.11, Detail 5. Studded pad type connections on which there are essentially no external loads, such as manways and handholes used only as inspection openings, thermowell connections, etc., may be attached using fillet weld in accordance with Table 4.2.11, Detail 4.

(6) Fittings With Internal Threads - Internally threaded fittings shall be limited to NPS 2 or smaller. Permissible types of weld attachments are shown in Table 4.2.12.

(7) Nozzles With Integral Reinforcement - Nozzles having integral reinforcement may be attached using butt welds of Type No.1. Nozzles or other connections with integral reinforcement that are attached with corner welds shall be attached by means of full penetration corner welds. Permissible types of weld attachments are shown in Table 4.2.13.

(8) Nozzle Attached With Partial Penetration Welds - Partial penetration welds may be used only for nozzle attachments, such as instrumentation openings, inspection openings, etc., on which there are essentially no external mechanical loadings and on which there will be no thermal stresses greater than in the vessel itself. Permissible types of weld attachments are shown in Table 4.2.14. If Table 4.2.14, Details 3 and 4 are used, then the material in the neck shall not be included in the reinforcement area calculation (see 4.5).

(*d*) Except for nozzles at small ends of cones reinforced in accordance with the requirements of 4.3.11, 4.3.12, 4.4.13, and 4.4.14, as applicable, added reinforcement in the form of separate reinforcing plates or pads may be used, provided the vessel and nozzles meet all of the following requirements.

(1) The materials of the nozzle, pad, and vessel wall conform to those listed in Section IX, Table QW/QB-422 for Material Types 1 and 4 shown in Table 4.2.3.

(2) The specified minimum tensile strength of the nozzle, pad, and vessel wall materials does not exceed 550 MPa (80 ksi).

(3) The minimum elongation of the nozzle, pad, and vessel wall materials is 12% in 50 mm (2 in.).

(4) The thickness of the added reinforcement does not exceed 1.5 times the vessel wall thickness.

(5) The requirements of 5.5 for pads, i.e., non-integral construction, in cyclic service are met.

4.2.5.6 Category E Locations

(a) Method of Attachment - Attachment of nonpressure parts shall be in accordance with the following requirements.

(1) Nonpressure parts, supports, lugs, brackets, and stiffeners may be attached to the inside or outside wall using butt welds, full penetration groove welds, partial penetration welds, fillet welds, or stud welds as limited in the subsequent paragraphs.

(2) Resistance-welded studs may be used for minor attachments to nonpressure parts for all materials except those included in Material Type 3 (see Table 4.2.3).

(3) Supports, lugs, brackets, stiffeners, and other attachments may be attached with stud bolts to the outside or inside of a vessel wall (see 4.15.5).

(4) All attachments shall conform to the curvature of the shell to which they are to be attached.

(5) All welds joining minor attachments [see 4.2.5.1(g)] to pressure parts may be continuous or non-continuous for Material Types 1, 2, and 4 (see Table 4.2.3).

(6) All welds joining nonpressure parts to pressure parts shall be continuous for Material Type 3 (see Table 4.2.3).

(7) Some acceptable types of attachment weld and associated minimum weld sizes are shown in Figure 4.2.2. See (e) and (f) for limitations.

(8) Some acceptable methods of attaching stiffening rings are shown in Figure 4.2.3. See (e) and (f) for limitations.

(*b*) Materials for Major Attachments to Pressure Parts - Attachments welded directly to pressure parts shall be of a material listed in Annex 3-A.

(1) The material and the deposited weld metal shall be compatible with that of the pressure part.

(2) For Material Type 3 (see Table 4.2.3), all permanent structural attachments other than minor attachments described in (c) below [see 3.5.3.3 and 4.2.5.1(h)] that are welded directly to pressure parts shall be made of materials whose specified minimum yield strength is within ±20% of that of the material to which they are attached. An exception to this requirement is that lightly loaded attachments of non-hardenable austenitic stainless steels conforming to SA-240, SA-312, or SA-479 are permitted to be fillet welded to pressure parts conforming to SA-353; SA-553 Types I, II, and III; or SA-645.

(c) Materials for Minor Attachments to Pressure Parts - Except as limited by (b) or for forged fabrication (see 6.7), minor attachments made from material that does not conform to a material specification permitted in this Division may be used and may be welded directly to the pressure part, provided the requirements shown below are satisfied.

(1) The material is identified and is suitable for welding in accordance with 3.2.1.3.

(2) The material is compatible insofar as welding is concerned with that to which the attachment is to be made.

(3) The welds are postweld heat treated when required in Part 6.

(*d*) Materials for Attachments Welded to Nonpressure Parts - Attachments welded to nonpressure parts made from material that does not conform to a material specification permitted in this Division may be used, provided the material is identified, is suitable for welding, and is compatible with the material to which attachment is made.

(e) Attachment Welds to Pressure Parts of Material Types 1 and 4 (see Table 4.2.3) - Welds attaching nonpressure parts or stiffeners to pressure parts shall be one of the following:

(1) A fillet weld not over 13 mm (0.5 in.) leg dimension and the toe of the weld not closer than $\sqrt{Rt_{sh}}$ from a gross structural discontinuity

(2) A partial penetration weld plus fillet weld; this is limited to the attachment of parts not exceeding 38 mm (1.5 in.) in thickness

(3) A full penetration groove weld plus a fillet weld on each side

(4) A full penetration butt weld; the prior deposition of weld metal to provide a boss for the butt weld is permissible, provided it is checked for soundness by suitable nondestructive examination. Heat treatment for the weld build-up region shall be considered.

(5) For attachment of support skirts or other supports involving similar attachment orientation, in addition to the weld types of (3) and (4), welds of greater effective throat dimension than 90 deg fillet welds, as obtained by increased leg dimension or angle and bevel of parts joined, may be used where the effective throat is t_a (see Figure 4.2.4); however, the limitation on thickness in (2) shall apply.

(6) Stiffening rings may be stitch welded when the material of construction satisfies eq. (4.2.1) and the component is not in cyclic service, i.e., a fatigue analysis is not required in accordance with 4.1.1.4.

(*f*) Attachment Welds to Pressure Parts of Material Types 2 and 3 (see Table 4.2.3) - Welds attaching nonpressure parts or stiffeners to pressure parts shall be one of the following:

(1) Except as permitted in (2), fillet welds are permissible only for seal welds or for lightly loaded attachments with a weld size not over 10 mm (0.375 in.) leg dimension and the toe of the weld shall not be located closer than $\sqrt{Rt_{sh}}$ from a gross structural discontinuity.

(2) For materials SA-333 Grade 8, SA-334 Grade 8, SA-353, SA-522, SA-553, and SA-645, fillet welds are permissible, provided that the fillet weld leg dimension does not exceed 13 mm (0.5 in.) and the toe of the weld shall not be located closer than $\sqrt{Rt_{sh}}$ from another gross structural discontinuity.

(3) A partial penetration weld plus fillet weld; limited to the attachment of parts not exceeding 19 mm (0.75 in.) in thickness.

(4) A full penetration groove weld plus a fillet weld on each side.

(5) Full penetration butt weld (see (e)(4) for boss requirements).

(6) For attachment of support skirts or other supports involving similar attachment orientation, in addition to welds permitted by (5) above, welds of greater effective throat dimension than 90 deg fillet welds may be used where the throat is a minimum of t_a (see Figure 4.2.4). The details in this figure are limited to attachment of parts not exceeding 19 mm (0.75 in.) in thickness unless the attachment weld is double welded.

(g) Stress Values For Weld Material - Attachment weld strength shall be based on the nominal weld area and the allowable stress values in Annex 3-A for the weaker of the two materials joined, multiplied by the reduction factors, W_r , shown below.

(1) Full penetration butt or groove welds - W_r = 1.0; the nominal weld area is the depth of the weld times the length of weld.

(2) Partial penetration groove or partial penetration groove plus fillet welds - W_r = 0.75; the nominal weld area is:

ASME BPVC.VIII.2-2023

(-a) Groove welds - the depth of penetration times the length of weld.

(-b) Groove welds with fillet welds - the combined throat and depth of penetration, exclusive of reinforcement, times the length of weld.

(3) Fillet welds - W_r = 0.5; the nominal weld area is the throat area.

(h) Weld Overlay and Clad Construction

(1) Attachments may be welded directly to weld overlay deposits without restriction.

(2) For clad construction where design credit is taken is taken for cladding thickness, attachment welds may be made directly to the cladding based for loadings not producing primary stress in the attachment weld not exceeding 10% of the design allowable stress value of the attachment or the cladding material, whichever is less. As an alternative, local regions of weld overlay can be located within the cladding to provide an attachment location.

(3) For applied linings, attachments should be made directly to the base metal unless an analysis, tests, or both can be performed to establish the adequacy and reliability of an attachment made directly to the lining. Note that successful experience with similar linings in comparable service may provide a basis for judgment.

(*i*) PWHT Requirements - For heat treatment after welding, the fabrication requirements of the vessel base metal apply.

(*j*) Evaluation of Need For Fatigue Analysis - In applying the fatigue screening analysis in 5.5.2, fillet welds and nonfull-penetration welds shall be considered to be nonintegral attachments, except that the following welds need not be considered because of the limitations of their use:

(1) Welds covered by (c), (e)(1), (f)(1) and (f)(2)

(2) Welds covered by (e)(5) and (f)(6) may be considered integral

(23) 4.2.5.7 Category F Locations

Requirements for Category F locations are given in 4.21.

4.2.5.8 Special Limitations for Joints in Quenched and Tempered High Strength Steels

(*a*) In vessels and vessel parts constructed of quenched and tempered high strength steels (see Table 3-A.2) except as permitted in (b), all joints of Categories A, B, and C, and all other welded joints between parts of the pressure-containing enclosure that are not defined by the category designation shall be Type No. 1.

(1) If the shell plate thickness is 50 mm (2 in.) or less, then all Category D welds shall be Type No. 1 in accordance with Table 4.2.13.

(2) If the shell plate thickness is greater than 50 mm (2 in.), then the weld detail may be as permitted for nozzles in Table 4.2.10 or Table 4.2.13.

(*b*) For materials SA-333 Grade 8, SA-334 Grade 8, SA-353, SA-522, SA-553, and SA-645 the weld joints shall be as follows:

(1) All joints of Category A shall be Type No. 1.

(2) All joints of Category B shall be Type No. 1 or Type No. 2.

(3) All joints of Category C shall be full penetration welds extending through the entire section at the joint.

(4) All joints of Category D attaching a nozzle neck to the vessel wall and to a reinforcing pad, if used, shall be full penetration groove welds.

4.2.5.9 Nozzle-Neck-to-Piping Welds

In the case of nozzle necks that attach to piping of a lesser wall thickness [see 1.2.3(a)(1)], a tapered transition from the weld end of the nozzle may be provided to match the piping thickness although that thickness is less than otherwise required by the rules of this Division (see Table 4.2.15).

4.2.5.10 Special Criteria for Corner Welds in Flexible Shell Element Expansion Joints

Each corner joint shall be a full penetration corner weld with a covering fillet and no backing strip. The covering fillet shall be located on the inside of the corner and shall have a throat per Table 4.2.16. Note that a fatigue evaluation may require a larger weld. It is permitted for the corner weld to be full penetration through either element being joined.

4.2.6 NOMENCLATURE

- *a* = geometry parameter used to determine the length requirements for a thickness transition or a required weld size, applicable
- *b* = geometry parameter used to determine the length requirements for a thickness transition or a required weld size, applicable
- c = weld size parameter

(23)

- R = mean radius of the shell or head
- S_{yT} = minimum specified yield strength from Annex 3-D at the design temperature
- S_u = minimum specified ultimate tensile strength from Annex 3-D
- t = nominal thickness of the flexible element of a flexible shell element expansion joint
- t_a = thickness of the attached member
- t_c = throat dimension of a corner weld
- t_e = thickness of the reinforcing element
- t_h = nominal thickness of the head
- t_n = nominal thickness of the shell or nozzle, as applicable
- t_o = nominal thickness of the outer shell element of a flexible shell element expansion joint
- t_p = distance from the outside surface of a flat head, flange, or other part to either the edge or center of a weld
- t_{pipe} = minimum wall thickness of the connecting pipe
 - t_r = required thickness of the shell in accordance with the requirements of this Division
 - t_{rn} = required thickness of seamless nozzle wall in accordance with the requirements of this Division
 - t_s = nominal thickness of the shell
 - t_{sh} = nominal thickness of shell, t_s , or head, t_h
 - t_w = depth of penetration of the weld
 - t_x = two times the thickness g_0 (see 4.16) when the design is calculated as an integral flange or two times the nozzle thickness of the shell nozzle wall required for internal pressure when the design is calculated as a loose flange, but in no case less than 6 mm (0.25 in.)
 - T = minimum thickness of a flat head, cover, flange, or tubesheet, as applicable
 - W_r = weld type reduction factor

4.2.7 **TABLES**

Weld Category	Description
А	• Longitudinal and spiral welded joints within the main shell, communicating chambers [Note (1)], transitions in diameter, nozzles
	 Any welded joint within a sphere, within a formed or flat head, or within the side plates [Note (2)] of a flat-sided vesse Any butt-welded joint within a flat tubesheet
	• Circumferential welded joints connecting hemispherical heads to main shells, to transitions in diameter, to nozzles, or communicating chambers
В	• Circumferential welded joints within the main shell, communicating chambers [Note (1)], nozzles or transitions in diamet including joints between the transition and a cylinder at either the large or small end
	• Circumferential welded joints connecting formed heads other than hemispherical to main shells, to transitions in diameter to nozzles, or to communicating chambers
С	• Welded joints connecting flanges, lap joint stub ends, tubesheets or flat heads to main shell, to formed heads, to transitions diameter, to nozzles, or to communicating chambers [Note (1)]
	Any welded joint connecting one side plate [Note (2)] to another side plate of a flat-sided vessel
D	• Welded joints connecting communicating chambers [Note (1)] or nozzles to main shells, to spheres, to transitions diameter, to heads, or to flat-sided vessels
	• Welded joints connecting nozzles to communicating chambers [Note (1)] (for nozzles at the small end of a transition diameter see Category B)
Е	Welded joints attaching nonpressure parts and stiffeners
F	Welded joints connecting tubes to tubesheets

(2) Side plates of a flat-sided vessel are defined as any of the flat plates forming an integral part of the pressure-containing enclosure.

Tabl	e 4.2	.2	
Definition of \	Weld	Joint	Types

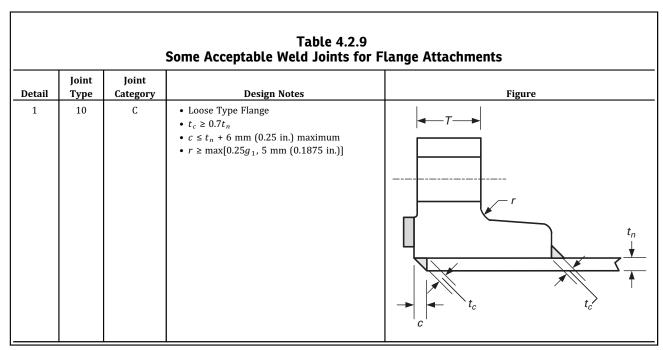
Weld Joint Type	Description		
1	Butt joints and angle joints where the cone half-apex angle is less than or equal to 30 deg produced by double welding or by ot means which produce the same quality of deposited weld metal on both inside and outside weld surfaces. Welds using back strips which remain in place do not qualify as Type No. 1 butt joints.		
2	Butt joints produced by welding from one side with a backing strip that remains in place		
3	Butt joints produced by welding from one side without a backing strip		
7	Corner joints made with full penetration welds with or without cover fillet welds		
8	Angle joints made with a full penetration weld where the cone half-apex angle is greater than 30 deg		
9	Corner joints made with partial penetration welds with or without cover fillet welds		
10	Fillet welds		

Material Type	Description
1	• P-No. 1 Groups 1, 2, and 3
	P-No. 3 Group 3 except SA-302
	• P-No. 4, Group 1, only SA-387 Grade 12 and SA/EN 10028-2 Grade 13CrMo4-5
	• P-No. 8, Groups 1 and 2
	• P-No. 9A Group 1
2	Materials not included in material Types 1, 3, and 4
3	Quenched and tempered high strength steels (see Table 3-A.2) except SA-372 Grade D and Class 70 of Grades E, F, G, H, and when used for forged bottles
4	P-No. 21 through P-No. 25 inclusive
	• P-No. 31 through P-No. 35 inclusive
	• P-No. 41 through P-No. 45 inclusive

	Table 4.2.4 Some Acceptable Weld Joints for Shell Seams					
Detail	Joint Type	Joint Category	Design Notes	Figure		
1	1	A, B, C, D				
2	2	В				

184

Detail	Joint Type	Joint Category	Design Notes	Figure
3	3	B	Design Notes	
4	1	A, B, C, D	 α ≥ 3b The length of the taper, <i>a</i>, may include the weld Joint Types 2 and 3 may be permissible, see 4.2.5.2 through 4.2.5.6 for limitations 	Taper either inside or outside
5	1	A, B, C, D		
6	1	A, B, C, D		
7	1	В	 α ≤ 30 deg see 4.2.5.3(f) Joint Types 2 and 3 may be permissible, see 4.2.5.2 through 4.2.5.6 for limitations 	t _v
8	8	В	• α > 30 deg	
9	1	В	 α ≤ 30 deg see 4.2.5.3(f) Joint Types 2 and 3 may be permissible, see 4.2.5.2 through 4.2.5.6 for limitations 	
10	8	В	• α > 30 deg	


			Table 4.2.5 Some Acceptable Weld Joints fo	r Formed Heads
Detail	Joint Type	Joint Category	Design Notes	Figure
1	1	А, В	• Joint Types 2 and 3 may be permissible, see 4.2.5.2 through 4.2.5.6 for limitations	
2	1	А, В	 α ≥ 3b when t_h exceeds t_s. t_{off} ≤ 0.5 (t_h - t_s) The skirt minimum length is min[3t_h, 38 mm (1.5 in.)] except when necessary to provide the required taper length If t_h ≤ 1.25t_s, then the length of the skirt shall be sufficient for any required taper The length of the taper a may include the width of the weld. The shell plate center line may be on either side of the head plate center line Joint Types 2 and 3 may be permissible, see 4.2.5.2 through 4.2.5.6 for limitations 	t_s t_h t_h t_h t_h t_{off} Thinner part Tangent line
3	1	А, В		t _s t _{off} Thinner part
4	1	А, В	 a ≥ 3b t_{off} ≤ 0.5(t_s - t_h) The length of the taper a may include the width of the weld. The shell plate center line may be on either side of the head plate center line Joint Types 2 and 3 may be permissible, see 4.2.5.2 through 4.2.5.6 for limitations 	t_s b a t_h t_h t_{off} Thinner part

		S	Table 4.2.5 ome Acceptable Weld Joints for Fo	rmed Heads (Cont'd)
Detail	Joint Type	Joint Category	Design Notes	Figure
5	1	A, B	• See Detail 4	t_{off} t_h t_h t_s b a a b Thinner part
6	2	В	 Butt weld and, if used, fillet weld shall be designed to take a shear load at 1.5 times the design differential pressure a ≥ min[2t_h, 25 mm (1 in.)] b, 13 mm (0.5 in.) minimum The shell thicknesses t_{s1} and t_{s2} may be different α, 15 deg ≤ α ≤ 20 deg 	Tangent point $a + a + b$ t_h ID
7	1	А, В	 <i>r</i>₁ ≥ 2<i>r</i>₂ <i>r</i>₂ ≥ min[<i>t_s</i>, <i>t_h</i>] 	Forged part

Table 4.2.6 Some Acceptable Weld Joints for Unstayed Flat Heads, Tubesheets Without a Bolting Flange, a Side Plates of Rectangular Pressure Vessels				
Detail	Joint Type	Joint Category	Design Notes	Figure
1	7	С	 <i>a</i> ≥ 2<i>t_s</i> <i>t_w</i> ≥ <i>t_s</i> 	
2	7	C	 a + b ≥ 2t_s t_w ≥ t_s t_p ≥ min[t_s, 6 mm (0.25 in.)] The dimension b is produced by the weld preparation and shall be verified after fit-up and before welding 	t_{w} t_{s}
3	7	С	 a + b ≥ 2t_s b = 0 is permissible The dimension b is produced by the weld preparation and shall be verified after fit-up and before welding 	<i>t</i> s <i>a</i> <i>b</i> <i>b</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i>

	Table 4.2.7 Some Acceptable Weld Joints With Butt Weld Hubs				
Detail	Joint Type	Joint Category	Design Notes	Figure	
1	1	C	 <i>r</i> ≥ 10 mm (0.357 in.) for <i>t_s</i> ≤ 38 mm (1.5 in.) <i>r</i> ≥ min[0.25<i>t_s</i>, 19 mm (0.75 in.)] for <i>t_s</i> > 38 mm (1.5 in.) 	Tension test specimen	
2	1	С	 <i>r</i> ≥ 10 mm (0.357 in.) for <i>t_s</i> ≤ 38 mm (1.5 in.) <i>r</i> ≥ min[0.25<i>t_s</i>, 19 mm (0.75 in.)] for <i>t_s</i> > 38 mm (1.5 in.) <i>e</i> ≥ max[<i>t_s</i>, <i>T</i>] 	Tension test specimen	
3	1	С	 <i>h</i> = max[1.5<i>t_s</i>, 19 mm (0.75 in.)] but need not exceed 51 mm (2 in.) 	Tension test specimen	

Table 4.2.8 Some Acceptable Weld Joints for Attachment of Tubesheets With a Bolting Flange					
Detail	Joint Type	Joint Category	Design Notes	Figure	
1	7	С	 a + b ≥ 2t_s b = 0 is permissible The dimension b is produced by the weld preparation and shall be verified after fit-up and before welding c ≥ min[0.7t_s, 1.4t_r] 		

 $(\mathbf{23})$

		Som	Table 4.2.9 e Acceptable Weld Joints for Flang	ge Attachments (Cont'd)
Detail	Joint Type	Joint Category	Design Notes	Figure
2	10	C	• Loose Type Flange • $t_c \ge 0.7t_n$ • $c \le t_n + 6 \text{ mm}$ (0.25 in.) maximum	$-T \rightarrow $
3	7	С	 Loose Type Flange t_c ≥ 0.7t_n c ≤ 0.5t maximum r ≥ max[0.25g₁, 5 mm (0.1875 in.)] 	
4	7	C	 Loose Type Flange t_c ≥ 0.7t_n c ≤ 0.5t maximum 	
5	7	С	 Loose Type Flange t_c ≥ 0.7t_n t_l ≥ t_n + 5 mm (0.1875 in.) 	Gasket t_n t_c t_c Full penetration weld, single or double. The full penetration weld may be through the lap (t _i) or through the wall (t _n). This weld may be machined to a corner radius to suit t_n standard lap joint flanges.

		Som	Table 4.2.9 e Acceptable Weld Joints for Flang	ge Attachments (Cont'd)
Detail	Joint Type	Joint Category	Design Notes	Figure
6	1	C	 Integral Type Flage c ≥ 1.5g₀ minimum r ≥ max[0.25g₁, 5 mm (0.1875 in.)] 	r g_0 g_1 g_1 g_1 g_1 g_1 g_2 g_3 g_1 g_1 g_2 g_3 g_1 g_2 g_3 g_4 g_1 g_2 g_3 g_4 g_4 g_5 g_6 g_1 g_1 g_2 g_3 g_4 g_4 g_5 g_6 g_1 g_1 g_2 g_3 g_4 g_4 g_5 g_6 g_6 g_1 g_2 g_3 g_4 g_6 g_6 g_1 g_2 g_3 g_4 g_5 g_6 g_6 g_6 g_1 g_2 g_3 g_6 g_6 g_1 g_2 g_3 g_6 g_1 g_2 g_3 g_4 g_6 g_6 g_1 g_2 g_2 g_3 g_4 g_6 g_6 g_1 g_2 g_2 g_3 g_6 g_1 g_2 g_2 g_3 g_4 g_6 g_6 g_1 g_2 g_2 g_3 g_6 g_1 g_2 g_2 g_3 g_1 g_2 g_2 g_2 g_3 g_3 g_1 g_2 g_2 g_3
7	1	C	 Integral Type Flange c ≥ 1.5g₀ minimum 	Slope exceeds 1:3
8	1	С	 Integral Type Flange c ≥ 1.5g₀ minimum 	Slope exceeds 1:3 Slope 1:3 max. g_0 g_0
9	7	C	 Integral Type Flange c ≥ max[0.25t_n, 6 mm (0.25 in.)] 	

	Table 4.2.9 Some Acceptable Weld Joints for Flange Attachments (Cont'd)						
Detail	Joint Type	Joint Category	Design Notes	Figure			
10	7	С	 Integral Type Flange a + b ≥ 3t_n t_p ≥ min[t_n, 6 mm (0.25 in.)] c ≥ min[t_n, 6 mm (0.25 in.)] 	$T \rightarrow T$			

Sc	Table 4.2.10 Some Acceptable Full Penetration Welded Nozzle Attachments Not Readily Radiographable					
Detail	Joint Type	Joint Category	Design Notes	Figure		
1	7	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] r₁ ≥ min[0.25t, 3 mm (0.125 in.)] 	Optional backing strip shall be removed after welding t_n t_c t_c t_c r_1		
2	7	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] r₁ ≥ min[0.25t, 3 mm (0.125 in.)] 	t t_c r_1		

٦

So	ome Ac	ceptable F	Table 4.2.10 Full Penetration Welded Nozzle Atta (Cont'd)	achments Not Readily Radiographable
Detail	Joint Type	Joint Category	Design Notes	Figure
3	7	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] r₁ ≥ min[0.25t, 3 mm (0.125 in.)] 	$\begin{array}{c c} & t_n \\ \hline \\ t_c \\ \hline \\ t \\ \end{array} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
4	7	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] r₁ ≥ min[0.25t, 3 mm (0.125 in.)] 	t
5	7	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] r₃ ≥ min[0.25t, 3 mm (0.125 in.)] alternatively, a chamfer of r₃ ≥ min[0.25t, 3 mm (0.125 in.)] at 45 deg 	t _c t r ₃ t r ₃
6	7	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] r₁ ≥ min[0.25t, 3 mm (0.125 in.)] 	t

50	ome Acc	epiable r	(Cont'd)	Attachments Not Readily Radiographable
Detail	Joint Type	Joint Category	Design Notes	Figure
7	7	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] r₁ ≥ min[0.25t, 3 mm (0.125 in.)] 	Optional backing strip shall be removed after welding t_c t_c t_n t_n

	Some	e Acceptat	Table 4.2.11 Dle Pad Welded Nozzle Attachments	and Other Connections to Shells
Detail	Joint Type	Joint Category	Design Notes	Figure
1	7	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] t_{f1} ≥ min[0.6t_e, 0.6t] r₃ ≥ min[0.25t, 3 mm (0.125 in.)] alternatively, a chamfer of r₃ ≥ min[0.25t, 3 mm (0.125 in.)] at 45 deg 	t_{f1} t_c t_e t_c t_c
2	7	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] t_{f1} ≥ min[0.6t_e, 0.6t] r₁ ≥ min[0.25t, 3 mm (0.125 in.)] 	$t_n \leftarrow t_c \\ \downarrow \\ $

Detail	Joint Type	Joint Category	Design Notes	Figure
3	7	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] t_{f1} ≥ min[0.6t_e, 0.6t] r₃ ≥ min[0.25t, 3 mm (0.125 in.)] alternatively, a chamfer of r₃ ≥ min[0.25t, 3 mm (0.125 in.)] at 45 deg 	t_n t_c t_e t_h t_c t_e t_h t_c
4	10	D	 <i>t</i>_{f2} ≥ min[0.7<i>t_e</i>, 0.7<i>t</i>] 	t_{r_2}
5	7	D	 t_{f2} ≥ min[0.7t_e, 0.7t] r₁ ≥ min[0.25t, 3 mm (0.125 in.)] 	$w \rightarrow b$

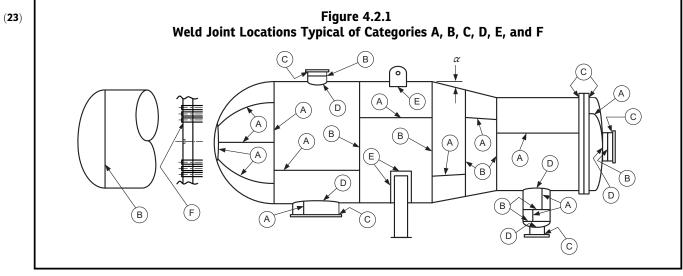
So	ome Ace	ceptable F	Table 4.2.12 itting-Type Welded Nozzle Attachm	ents and Other Connections to Shells
Detail	Joint Type	Joint Category	Design Notes	Figure
1	7	D	 Limited to DN 50 (NPS 2) and smaller t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] 	
2	7	D	 Limited to DN 50 (NPS 2) and smaller t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] 	
3	7	D	 Limited to DN 50 (NPS 2) and smaller t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] 	
4	10	D	 Limited to DN 50 (NPS 2) and smaller t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] t_{f2} ≥ min[0.7t_e, 0.7t] 	
5	9	D	 Limited to DN 50 (NPS 2) maximum The groove weld t_g shall not be less than the thickness of Schedule 160 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] 	

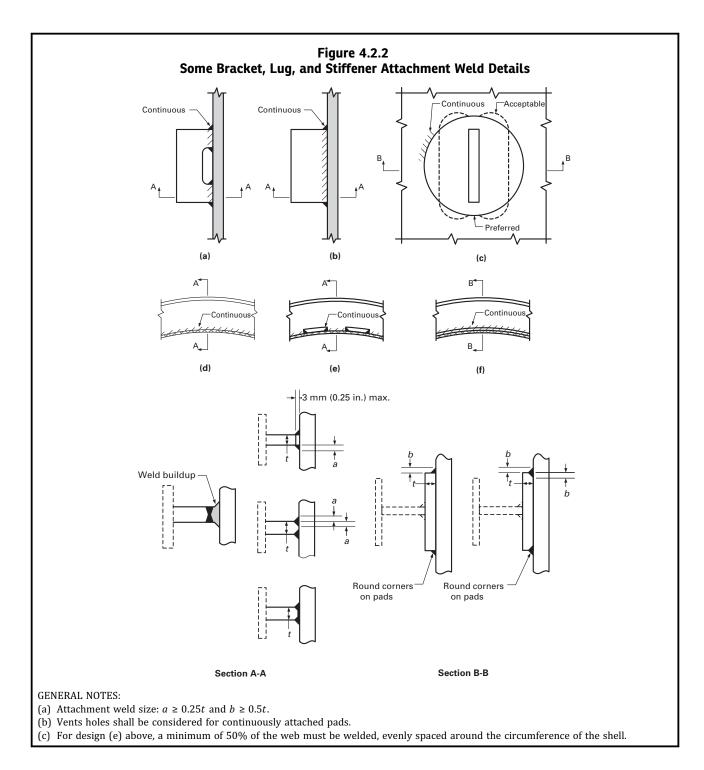
(**23**)

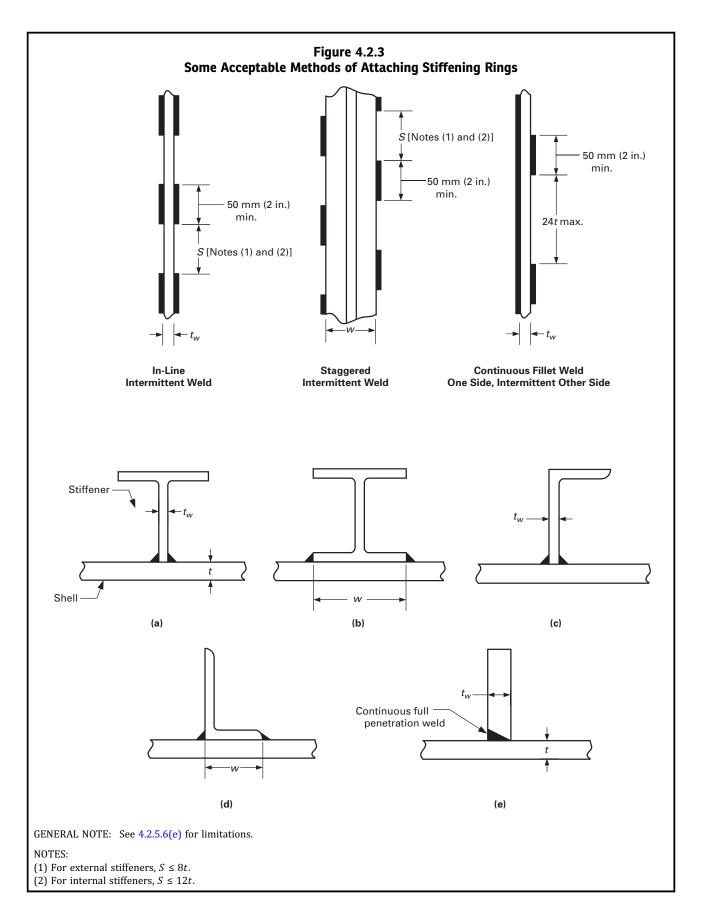
	Sor	ne Accept	Table 4.2.13 able Welded Nozzle Attachments T	hat Are Readily Radiographable
Detail	Joint Type	Joint Category	Design Notes	Figure
1	1	D	• $r_1 \ge \min[0.25t, 3 \text{ mm } (0.125 \text{ in.})]$ • $r_2 \ge \min[0.25t_n, 19 \text{ mm } (0.75 \text{ in.})]$	r_2 t r_1 a
2	1	D	 <i>r</i>₁ ≥ min[0.25<i>t</i>, 3 mm (0.125 in.)] <i>r</i>₂ ≥ min[0.25<i>t_n</i>, 19 mm (0.75 in.)] 	r_2 45° max. 30° max. r_1 r_1 r_1 r_1 r_1 r_1 r_1 r_1 r_1 r_2 r_1 r_2 r_1 r_2 r_2 r_1 r_2
3	1	D	 r₁ ≥ min[0.25t, 3 mm (0.125 in.)] r₂ ≥ min[0.25t_n, 19 mm (0.75 in.)] t₃ + t₄ ≤ 0.2t a₁ + a₂ ≤ 18.5 deg 	13 mm (0.5 in.) min. r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_3 r_4 r_4
4	1	D	 <i>r</i>₁ ≥ min[0.25<i>t</i>, 3 mm (0.125 in.)] <i>r</i>₂ ≥ min[0.25<i>t_n</i>, 19 mm (0.75 in.)] 	A r_2 $45^{\circ} \max$. $18.5^{\circ} \max$. $30^{\circ} \max$. r_2 r_2 r_1 r_2

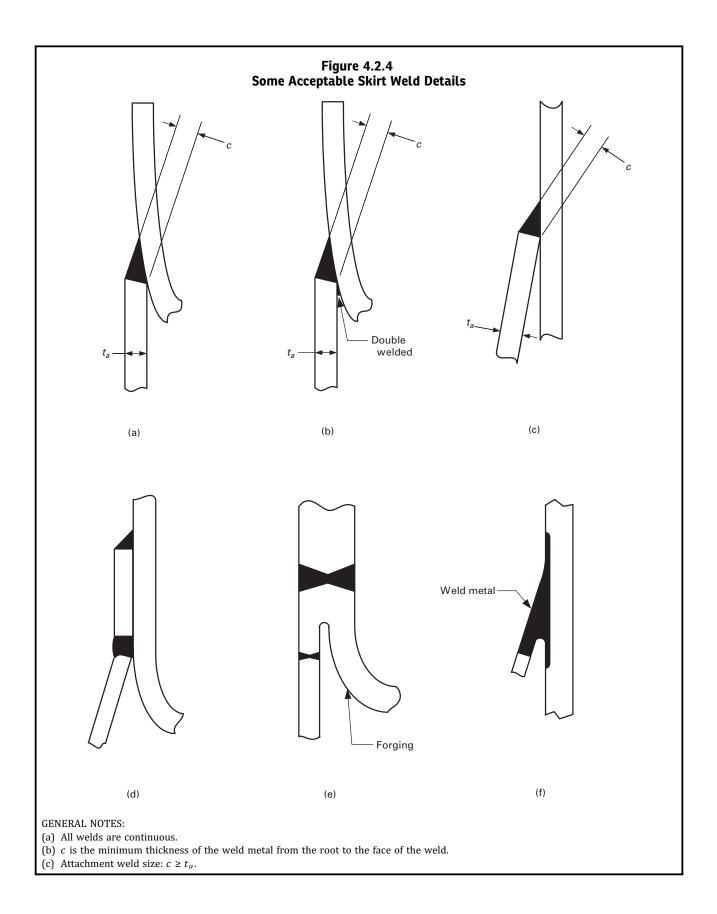
Detail	Joint Type	Joint Category	Design Notes	Figure
5	1	D	 <i>r</i>₁ ≥ min[0.25<i>t_n</i>, 3 mm (0.125 in.)] <i>r</i>₂ ≥ min[0.25<i>t_n</i>, 19 mm (0.75 in.)] 	r_2 t_n r_1 t_n
6	1	D	 <i>r</i>₁ ≥ min[0.25<i>t_n</i>, 3 mm (0.125 in.)] <i>r</i>₂ ≥ min[0.25<i>t_n</i>, 19 mm (0.75 in.)] 	Optional backing strip shall be removed after welding r_2 r_1 t
7	7	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] r₁ ≥ min[0.25t, 3 mm (0.125 in.)] r₂ ≥ 19 mm (0.75 in.) r₄ ≥ 6 mm (0.25 in.) 	A t _n t _n t _n t _o t _o

		Sc	Table 4.2.14 Table Acceptable Partial Penetration	Nozzle Attachments
Detail	Joint Type	Joint Category	Design Notes	Figure
1	9	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] t_w ≥ 1.25t_n 	1.5 mm (0.0625 in.) recess t_c t_n t_n
2	9	D	 t_c ≥ min[0.7t_n, 6 mm (0.25 in.)] t_w ≥ 1.25t_n 	t_c t_c
3	9	D	 r₁ ≥ min[0.25t, 3 mm (0.125 in.)] C_{max} defined as follows: 0.25 mm, D_o ≤ 25 mm 0.51 mm, 25 mm < D_o ≤ 102 mm 0.76 mm, D_o > 102 mm 0.01 in, D_o ≤ 1 in. 0.02 in, 1 in. < D_o ≤ 4 in. 0.03 in, D_o > 4 in. 	C_{\max} t_n D_o $1.25t_n$ r_1
4	9	D	• $t_{f2} \ge \min[0.7t_e, 0.7t]$ $r_1 \ge \min[0.25t, 3 \text{ mm } (0.125 \text{ in.})]$ C_{\max} defined as follows: $0.25 \text{ mm}, D_o \le 25 \text{ mm}$ $0.51 \text{ mm}, 25 \text{ mm} < D_o \le 102 \text{ mm}$ $0.76 \text{ mm}, D_o > 102 \text{ mm}$ $0.01 \text{ in.}, D_o \le 1 \text{ in.}$ $0.02 \text{ in.}, 1 \text{ in.} < D_o \le 4 \text{ in.}$ $0.03 \text{ in.}, D_o > 4 \text{ in.}$	$C_{\max} \leftarrow t_n$ $t_{r_2} \leftarrow U_n$ $T_{r_1} \leftarrow T_n$ $T_{r_1} \leftarrow T_n$ $T_{r_1} \leftarrow T_n$ $T_{r_1} \leftarrow T_n$


		No	Table 4.2.15 zzle Necks Attached to Piping of Le	esser Wall Thickness
Detail	Joint Type	Joint Category	Design Notes	Figure
1	1	Not applicable	 The weld bevel is shown for illustration only t₁ ≥ max[0.8t_{rn}, t_{pipe}] α ≤ 30 deg β, 14 deg ≤ β ≤ 18.5 deg r, 6 mm (0.25 in.) min. radius Joint Types 2 and 3 may be permissible; see 4.2.5.2 through 4.2.5.6 for limitations 	$f_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_$
2	1	Not applicable	 t₁ ≥ max[0.8t_{rn}, t_{pipe}] α ≤ 30 deg β, 14 deg ≤ β ≤ 18.5 deg r, 6 mm (0.25 in.) min. radius Joint Types 2 and 3 may be permissible; see 4.2.5.2 through 4.2.5.6 for limitations 	a β


Table 4.2.16 Corner Welds for Flexible Shell Element Expansion Joints						
Detail	Joint Type	Joint Category	Design Notes	Figure		
1	7	Not applicable	$t_c \ge \min[0.7t, 0.7t_o, 6 \text{ mm } (0.25 \text{ in.})]$	Full penetration t_c t_c Fillet weld required on this side of corner Flexible element		
2	7	Not applicable	$t_c \ge \min[0.7t, 0.7t_o, 6 \text{ mm } (0.25 \text{ in.})]$	Full penetration t_c Outer shell element t_c Fillet weld required on this side of corner Flexible element		
3	7	Not applicable	$t_c \ge \min[0.7t, 0.7t_s, 6 \text{ mm } (0.25 \text{ in.})]$	Fillet weld required on this side of corner t_c t_s Shell		


٦


		Corner	Table 4.2 Welds for Flexible Shell Eler	16 nent Expansion Joints (Cont'd)
Detail	Joint Type	Joint Category	Design Notes	Figure
4	7	Not applicable	$t_c \ge \min[0.7t, 0.7t_s, 6 \text{ mm } (0.25 \text{ in.})]$	Fillet weld required on this side of corner t_c t_s Shell

4.2.8 FIGURES

4.3 DESIGN RULES FOR SHELLS UNDER INTERNAL PRESSURE

4.3.1 SCOPE

4.3.1.1 4.3 provides rules for determining the required wall thickness of cylindrical, conical, spherical, torispherical, and ellipsoidal shells and heads subject to internal pressure. In this context, internal pressure is defined as pressure acting on the concave side of the shell.

4.3.1.2 The effects of supplemental loads are not included in design equations for shells and heads included in 4.3.3 to 4.3.7. Supplemental loads shall be defined in the User's Design Specification and their effects that result in combined loadings shall be evaluated in a separate analysis performed in accordance with the methods in 4.3.10.

4.3.1.3 Rules are provided for the design of cylindrical-to-conical shell transition junctions in 4.3.11 and 4.3.12. To facilitate the use of these rules, the shell wall thickness and stiffener configuration, as applicable, shall be designed using the rules in 4.3.3 through 4.3.7. After an initial design is determined, this design should then be checked and modified as required using the rules of 4.3.12 and 4.3.13.

4.3.2 SHELL TOLERANCES

4.3.2.1 The shell of a completed vessel shall satisfy the following requirements.

(*a*) The difference between the maximum and minimum inside diameters at any cross section shall not exceed 1% of the nominal diameter at the cross section under consideration. The diameters may be measured on the inside or outside of the vessel. If measured on the outside, the diameters shall be corrected for the plate thickness at the cross section under consideration.

(*b*) When the cross section passes through an opening or within one inside diameter of the opening measured from the center of the opening, the permissible difference in inside diameters given above may be increased by 2% of the inside diameter of the opening. When the cross section passes through any other location normal to the axis of the vessel, including head-to-shell junctions, the difference in diameters shall not exceed 1%.

4.3.2.2 Tolerances for formed heads shall satisfy the following requirements.

(a) The inner surface of torispherical, toriconical, hemispherical, or ellipsoidal heads shall not deviate outside of the specified shape by more than 1.25% of *D* nor inside the specified shape by more than 0.625% of *D*, where *D* is the nominal inside diameter of the vessel shell at the point of attachment. Such deviations shall be measured perpendicular to the specified shape and shall not be abrupt. The knuckle radius shall not be less than that specified

(*b*) Measurements for determining the deviations specified in (a) shall be taken from the surface of the base metal and not from welds.

(c) When the straight flange of any unstayed formed head is machined to make a lap joint connection to a shell, the thickness shall not be reduced to less than 90% of that required for a blank head or the thickness of the shell at the point of attachment. When so machined, the transition from the machined thickness to the original thickness of the head shall not be abrupt but shall be tapered for a distance of at least three times the difference between the thicknesses.

4.3.2.3 Shells that do not meet the tolerance requirements of this paragraph may be evaluated using 4.14.

4.3.3 CYLINDRICAL SHELLS

4.3.3.1 Required Thickness. The minimum required thickness of a cylindrical shell subjected to internal pressure shall be determined using the following equation.

$$t = \frac{D}{2} \left(\exp\left[\frac{P}{SE}\right] - 1 \right)$$
(4.3.1)

4.3.3.2 Combined Loadings. Cylindrical shells subject to internal pressure and other loadings shall satisfy the requirements of **4.3.10**.

4.3.4 CONICAL SHELLS

4.3.4.1 Required Thickness. The minimum required thickness of a conical shell (see Figure 4.3.1) subjected to internal pressure shall be determined using the following equation.

$$t = \frac{D}{2\cos[\alpha]} \left(\exp\left[\frac{P}{SE}\right] - 1 \right)$$
(4.3.2)

4.3.4.2 Offset Transitions. The cylinders for an offset cone shall have parallel centerlines that are offset from each other by a distance no greater than the difference of their minimum radii, as shown in Figure 4.3.2. Configurations that do not satisfy this requirement shall be evaluated per Part 5. The offset cone shall be designed as a concentric cone using the angle, α , as defined in eq. (4.3.3).

$$\alpha = \max\left[\alpha_1, \alpha_2\right] \tag{4.3.3}$$

4.3.4.3 Combined Loadings. Conical shells subject to external pressure and other loadings shall satisfy the requirements of **4.3.10**.

4.3.5 SPHERICAL SHELLS AND HEMISPHERICAL HEADS

4.3.5.1 The minimum required thickness of spherical shells and hemispherical heads shall be determined using the following equation:

$$t = \frac{D}{2} \left(\exp \left[\frac{0.5P}{SE} \right] - 1 \right)$$
(4.3.4)

4.3.5.2 Combined Loadings. Spherical shells and hemispherical heads subject to internal pressure and other loadings shall satisfy the requirements of 4.3.10.

4.3.6 TORISPHERICAL HEADS

4.3.6.1 Torispherical Heads With the Same Crown and Knuckle Thicknesses. The minimum required thickness of a (23) torispherical head (see Figure 4.3.3) subjected to internal pressure shall be calculated using the following procedure. *Step 1.* Determine the inside diameter, *D*, and assume values for the crown radius, *L*, the knuckle radius, *r*, and the wall thickness *t*.

Step 2. Compute the head L/D, r/D, and L/t ratios and determine if the following equations are satisfied. If the equations are satisfied, then proceed to Step 3; otherwise, the head shall be designed in accordance with Part 5. The lower limit of 20 for L/t does not apply to torispherical dished bolted covers designed in accordance with 4.7.

$$0.7 \le \frac{L}{D} \le 1.0$$
 (4.3.5)

$$\frac{r}{D} \ge 0.06 \tag{4.3.6}$$

$$20 \le \frac{L}{t} \le 2000$$
 (4.3.7)

Step 3. Calculate the following geometric constants:

$$\beta_{th} = \arccos\left[\frac{0.5D - r}{L - r}\right]$$
, radians (4.3.8)

$$\phi_{th} = \frac{\sqrt{Lt}}{r}$$
, radians (4.3.9)

$$R_{th} = \frac{0.5D - r}{\cos[\beta_{th} - \phi_{th}]} + r \text{ for } \phi_{th} < \beta_{th}$$

$$(4.3.10)$$

$$R_{th} = 0.5D \quad \text{for} \quad \phi_{th} \ge \beta_{th} \tag{4.3.11}$$

Step 4. Compute the coefficients C_1 and C_2 using the following equations.

$$C_1 = 9.31 \left(\frac{r}{D}\right) - 0.086 \text{ for } \frac{r}{D} \le 0.08$$
 (4.3.12)

$$C_1 = 0.692 \left(\frac{r}{D}\right) + 0.605 \text{ for } \frac{r}{D} > 0.08$$
 (4.3.13)

$$C_2 = 1.25 \text{ for } \frac{r}{D} \le 0.08$$
 (4.3.14)

$$C_2 = 1.46 - 2.6 \left(\frac{r}{D}\right) \text{ for } \frac{r}{D} > 0.08$$
 (4.3.15)

Step 5. Calculate the value of internal pressure expected to produce elastic buckling of the knuckle.

$$P_{eth} = \frac{C_1 E_7 t^2}{C_2 R_{th} \left(\frac{R_{th}}{2} - r\right)}$$
(4.3.16)

Step 6. Calculate the value of internal pressure that will result in a maximum stress in the knuckle equal to the material yield strength.

$$P_{y} = \frac{C_{3}t}{C_{2}R_{th}\left(\frac{R_{th}}{2r} - 1\right)}$$
(4.3.17)

If the allowable stress at the design temperature is governed by time-independent properties, then C_3 is the material yield strength at the design temperature, or $C_3 = S_y$. If the allowable stress at the design temperature is governed by time-dependent properties, then C_3 is determined as follows.

(a) If the allowable stress is established based on 90% yield criterion, then C_3 is the material allowable stress at the design temperature multiplied by 1.1, or $C_3 = 1.1S$.

(b) If the allowable stress is established based on 67% yield criterion, then C_3 is the material allowable stress at the design temperature multiplied by 1.5, or $C_3 = 1.5S$.

Step 7. Calculate the value of internal pressure expected to result in a buckling failure of the knuckle.

$$P_{ck} = 0.6P_{eth}$$
 for $G \le 1.0$ (4.3.18)

$$P_{ck} = \left(\frac{0.77508G - 0.20354G^2 + 0.019274G^3}{1 + 0.19014G - 0.089534G^2 + 0.0093965G^3}\right) P_y \text{ for } G > 1.0$$
(4.3.19)

where

$$G = \frac{P_{eth}}{P_y} \tag{4.3.20}$$

Step 8. Calculate the allowable pressure based on a buckling failure of the knuckle.

$$P_{ak} = \frac{P_{ck}}{1.5}$$
(4.3.21)

Step 9. Calculate the allowable pressure based on rupture of the crown.

$$P_{ac} = \frac{2SE}{\frac{L}{t} + 0.5}$$
(4.3.22)

Step 10. Calculate the maximum allowable internal pressure.

$$P_a = \min[P_{ak}, P_{ac}] \tag{4.3.23}$$

Step 11. If the allowable internal pressure computed from Step 10 is greater than or equal to the design pressure, then the design is complete. If the allowable internal pressure computed from Step 10 is less than the design pressure, then increase the head thickness and repeat Steps 2 through 10. This process is continued until an acceptable design is achieved.

4.3.6.2 Torispherical Heads With Different Crown and Knuckle Thicknesses. A torispherical head formed from several welded components as shown in Figure 4.3.4 may have a smaller thickness in the spherical crown than in the knuckle region. The transition in thickness shall be located on the inside surface of the thicker part, and shall have a taper not exceeding 1:3.

(a) The minimum required thickness of the spherical dome of the head shall be determined in accordance with 4.3.5. (b) The minimum required thickness of the knuckle region of the head shall be determined in accordance with 4.3.6.1, Step 2.

4.3.6.3 Combined Loadings. Torispherical heads subject to internal pressure and other loadings shall satisfy the requirements of **4.3.10**. In this calculation, the torispherical head shall be approximated as an equivalent spherical shell with a radius equal to *L*.

4.3.7 ELLIPSOIDAL HEADS

4.3.7.1 Required Thickness. The minimum required thickness of an ellipsoidal head (see Figure 4.3.5) subjected to internal pressure shall be calculated using the equations in 4.3.6 with the following substitutions for *r* and *L*.

$$r = D\left(\frac{0.5}{k} - 0.08\right) \tag{4.3.24}$$

$$L = D(0.44k + 0.02) \tag{4.3.25}$$

where

$$k = \frac{D}{2h} \tag{4.3.26}$$

The rules in this paragraph are applicable for elliptical heads that satisfy eq. (4.3.27). Elliptical heads that do not satisfy this equation shall be designed using Part 5.

$$1.7 \le k \le 2.2 \tag{4.3.27}$$

4.3.7.2 Combined Loadings. ellipsoidal heads subject to internal pressure and other loadings shall satisfy the requirements of 4.3.10. In this calculation, the ellipsoidal head shall be approximated as an equivalent spherical shell with a radius equal to *L*.

4.3.8 LOCAL THIN AREAS

4.3.8.1 Local Thin Areas. Rules for the evaluation of Local Thin Areas are covered in 4.14.

4.3.8.2 Local Thin Band in Cylindrical Shells. A complete local circumferential band of reduced thickness at a weld joint in a cylindrical shell as shown in Figure 4.3.6 is permitted providing all of the following requirements are met.

(*a*) The design of the local reduced thickness band is evaluated by limit-load or elastic-plastic analysis in accordance with Part 5. All other applicable requirements of Part 5 for stress analysis and fatigue analysis shall be satisfied.

(b) The cylinder geometry shall satisfy $R_m/t \ge 10$.

(c) The thickness of the reduced shell region shall not be less than two-thirds of the cylinder required thickness determined in accordance with 4.3.3.

(*d*) The reduced thickness region shall be on the outside of the vessel shell with a minimum taper transition of 3:1 in the base metal. The transition between the base metal and weld shall be designed to minimize stress concentrations.

(e) The total longitudinal length of each local thin region shall not exceed $\sqrt{R_m t}$ (see Figure 4.3.6).

(f) The minimum longitudinal distance from the thicker edge of the taper to an adjacent structural discontinuity shall be the greater of $2.5\sqrt{R_m t}$ or the distance required to assure that overlapping of areas where the primary membrane stress intensity exceeds 1.1*S* does not occur.

4.3.9 DRILLED HOLES NOT PENETRATING THROUGH THE VESSEL WALL

4.3.9.1 Design requirements for partially drilled holes that do not penetrate completely through the vessel wall are provided in this paragraph. These rules are not applicable for studded connections or telltale holes.

4.3.9.2 Partially drilled radial holes in cylindrical and spherical shells may be used, provided the following requirements are satisfied.

(a) The drilled hole diameter is less than or equal to 50 mm (2 in.).

(b) The shell inside diameter to thickness ratio is greater than or equal to 10.

(c) The centerline distance between any two partially drilled holes or between a partially drilled hole and an unreinforced opening shall satisfy the requirements of 4.5.13.

(d) Partially drilled holes shall not be placed within the limits of reinforcement of a reinforced opening.

(e) The outside edge of the hole shall be chamfered. For flat bottom holes, the inside bottom corner of the hole shall have a minimum radius, r_{hr} of the following:

$$r_{hr} = \min\left[\frac{d}{4}, \ 6 \ \min\left(0.25 \ \text{in.}\right)\right]$$
 (4.3.28)

(f) The minimum acceptable remaining wall thickness, t_{rw} at the location of a partially drilled hole shall be determined as follows:

$$t_{rw} \ge \max[t_{rw1}, 0.25t, 6 \,\mathrm{mm}(0.25 \,\mathrm{in.})]$$
(4.3.29)

where,

$$t_{rw1} = t \left(-1.2261727 + 1.9842895 \left(\frac{d}{D} \right) - 2.236553 \left(\frac{d}{D} \right)^{0.5} \ln \left[\frac{d}{D} \right] \right)$$
(4.3.30)

(g) The calculated average shear stress, as determined below shall not exceed 0.8S.

$$t_{pd} = \frac{Pd}{4t_{rw}} \tag{4.3.31}$$

4.3.10 COMBINED LOADINGS AND ALLOWABLE STRESSES

4.3.10.1 General. The rules of this paragraph shall be used to determine the acceptance criteria for stresses developed in cylindrical, spherical, and conical shells subjected to internal pressure plus supplemental loads of applied net section axial force, bending moment, and torsional moment, as shown in Figure 4.3.7. The rules in this paragraph are only applicable to cylindrical, spherical, and conical shells where the wall thickness is determined using the rules in 4.3.3 through 4.3.5, respectively. These rules are applicable if the requirements shown below are satisfied. If all of these requirements are not satisfied, the shell section shall be designed per Part 5.

(a) The rules are applicable for regions of shells that are $2.5\sqrt{Rt}$ from any gross structural discontinuity.

(*b*) These rules do not take into account the action of shear forces, since these loads generally can be disregarded. (*c*) The ratio of the shell inside radius to thickness is greater than 3.0.

4.3.10.2 The following procedure shall be used to determine the acceptance criteria for stresses developed in cylindrical, spherical, and conical shells subjected to internal pressure plus supplemental loads of applied net section axial force, bending moment, and torsional moment.

$$\sigma_{\theta m} = \frac{PD}{E(D_0 - D)} \tag{4.3.32}$$

$$\sigma_{sm} = \frac{1}{E} \left(\frac{PD^2}{D_o^2 - D^2} + \frac{4F}{\pi \left(D_o^2 - D^2 \right)} \pm \frac{32MD_o \cos[\theta]}{\pi \left(D_o^4 - D^4 \right)} \right)$$
(4.3.33)

$$\tau = \frac{16M_t D_o}{\pi \left(D_o^4 - D^4 \right)}$$
(4.3.34)

(*b*) For spherical shells for 0 deg < ϕ < 180 deg:

$$\sigma_{\theta m} = \frac{PD^2}{E(D_0^2 - D^2)}$$
(4.3.35)

$$\sigma_{sm} = \frac{1}{E} \left(\frac{PD^2}{D_o^2 - D^2} + \frac{4F}{\pi \left(D_o^2 - D^2 \right) \sin^2 \left[\phi \right]} \pm \frac{32MD_o \cos[\theta]}{\pi \left(D_o^4 - D^4 \right) \sin^3 \left[\phi \right]} \right)$$
(4.3.36)

$$\tau = \frac{32MD_o}{\pi \left(D_o^4 - D^4 \right)} \frac{\cos[\phi]}{\sin^3[\phi]} \sin[\theta] + \frac{16M_t D_o}{\pi \left(D_o^4 - D^4 \right) \sin^2[\phi]}$$
(4.3.37)

(c) For conical shells for $\alpha \leq 60$ deg:

$$\sigma_{\theta m} = \frac{PD}{E(D_o - D)\cos[\alpha]}$$
(4.3.38)

$$\sigma_{sm} = \frac{1}{E} \left(\frac{PD^2}{\left(D_o^2 - D^2 \right) \cos\left[\alpha\right]} + \frac{4F}{\pi \left(D_o^2 - D^2 \right) \cos\left[\alpha\right]} \pm \frac{32MD_o \cos\left[\theta\right]}{\pi \left(D_o^4 - D^4 \right) \cos\left[\alpha\right]} \right)$$
(4.3.39)

$$\tau = \frac{32MD_o}{\pi \left(D_o^4 - D^4 \right)} \tan \left[\alpha \right] \sin \left[\theta \right] + \frac{16M_t D_o}{\pi \left(D_o^4 - D^4 \right)}$$
(4.3.40)

Step 2. Calculate the principal stresses.

$$\sigma_1 = 0.5 \left(\sigma_{\theta m} + \sigma_{sm} + \sqrt{\left(\sigma_{\theta m} - \sigma_{sm} \right)^2 + 4\tau^2} \right)$$
(4.3.41)

$$\sigma_2 = 0.5 \left(\sigma_{\theta m} + \sigma_{sm} - \sqrt{\left(\sigma_{\theta m} - \sigma_{sm} \right)^2 + 4\tau^2} \right)$$
(4.3.42)

 $\sigma_3 = \sigma_r = 0$ for stress on the outside surface (4.3.43)

Step 3. At any point on the shell, the following limit shall be satisfied.

$$\frac{1}{\sqrt{2}} \left[\left(\sigma_1 - \sigma_2 \right)^2 + \left(\sigma_2 - \sigma_3 \right)^2 + \left(\sigma_3 - \sigma_1 \right)^2 \right]^{0.5} \le S$$
(4.3.44)

Step 4. For cylindrical and conical shells, if the axial membrane stress, σ_{sm} , is compressive, then eq. (4.3.45) shall be satisfied where F_{xa} is evaluated using 4.4.12.2 with $\lambda = 0.15$. For spherical shells, the allowable compressive stress criteria in 4.4.12.4 shall be satisfied. Note that the controlling condition for this case may be the combined loadings without internal pressure.

$$\sigma_{sm} \le F_{xa} \tag{4.3.45}$$

CYLINDRICAL-TO-CONICAL SHELL TRANSITION JUNCTIONS WITHOUT A KNUCKLE 4.3.11

4.3.11.1 The following rules are applicable for the design of conical transitions or circular cross-sections that do not have a knuckle at the large end or flare at the small end under loadings of internal pressure and applied net section axial force and bending moment. Acceptable conical transition details are shown in Figure 4.3.8. Design rules for a knuckle at the large end or flare at the small end are provided in 4.3.12.

4.3.11.2 Design rules are provided for the cylinder-to-cone junction details shown in Figure 4.3.9. Details with a stiffening ring at the cylinder-to-cone junction, or other details that differ from the ones shown in this figure shall be designed in accordance with Part 5.

4.3.11.3 Except as permitted in Figure 4.18.15, the length of the conical shell, measured parallel to the surface of the (23) cone shall be equal to or greater than the following value.

$$L_{c} \ge 2.0\sqrt{\frac{R_{L}t_{c}}{\cos[\alpha]}} + 1.4\sqrt{\frac{R_{s}t_{c}}{\cos[\alpha]}}$$

$$(4.3.46)$$

4.3.11.4 The procedure that shall be used to design the large end of a cylinder-to-cone junction without a knuckle is described below.

Step 1. Compute the required thickness of the cylinder at the large end of the cone-to-cylinder junction using 4.3.3, and select the nominal thickness, t_L .

Step 2. Determine the cone half-apex angle, α ; compute the required thickness of the cone at the large end of the coneto-cylinder junction using 4.3.4; and select the nominal thickness, t_c .

Step 3. Proportion the cone geometry such that eq. (4.3.46) and the following equations are satisfied. If all of these equations are not satisfied, then the cylinder-to-cone junction shall be designed in accordance with Part 5. In the calculations, if 0 deg < $\alpha \le 10$ deg, then use $\alpha = 10$ deg.

$$20 \le \frac{R_L}{t_L} \le 500 \tag{4.3.47}$$

$$1 \le \frac{t_C}{t_L} \le 2 \tag{4.3.48}$$

$$\alpha \le 60 \text{ deg} \tag{4.3.49}$$

Step 4. Determine the net section axial force, F_L, and bending moment, M_L, applied to the conical transition. The thrust load due to pressure shall not be included as part of the axial force, F_L . Determine an equivalent, X_L , using eq. (4.3.50).

$$X_{L} = \frac{F_{L}}{2\pi R_{L}} \pm \frac{M_{L}}{\pi R_{L}^{2}}$$
(4.3.50)

Step 5. Compute the junction transition design parameters. For calculated values of n other than those presented in Tables 4.3.3 and 4.3.4, linear interpolation of the equation coefficients, C_i , is permitted.

$$n = \frac{t_C}{t_L} \tag{4.3.51}$$

$$H = \sqrt{\frac{R_L}{t_L}} \tag{4.3.52}$$

$$B = \tan[\alpha] \tag{4.3.53}$$

Step 6. Compute the stresses in the cylinder and cone at the junction using the equations in Table 4.3.1. The allowable stress criterion for a tensile stress is provided in Table 4.3.1. If either the hoop membrane stress, $\sigma_{\theta m}$, or axial membrane stress, σ_{sm} , at the junction is compressive, then the condition of local buckling shall be considered. Local buckling is not a concern if the limits given in eqs. (4.3.54) and (4.3.55) are satisfied. F_{ha} is evaluated using 4.4.5.1, but substituting $F_{he} = 0.4E\left(\frac{t}{D_o}\right)$. F_{xa} is evaluated using 4.4.12.2(b) with $\lambda = 0.15$. If the stresses of the acceptance criteria are satisfied,

the design of the junction is complete.

$$\sigma_{\theta m} \le F_{ha} \tag{4.3.54}$$

$$\sigma_{sm} \le F_{xa} \tag{4.3.55}$$

Step 7. If the stress acceptance criterion in Step 6 is satisfied, then the design is complete. If the stress acceptance criterion in Step 6 is not satisfied, the cylinder thickness or cone thickness near the junction may be increased until the stress acceptance criterion is satisfied. The section of increased thickness for the cylinder and cone shall extend a minimum distance from the junction as shown in Figure 4.3.9. Proceed to Step 3 to repeat the calculation with the new wall thickness.

4.3.11.5 The procedure that shall be used to design the small end of a cylinder-to-cone junction without a flare is described below.

Step 1. Compute the required thickness of the cylinder at the small end of the cone-to-cylinder junction using 4.3.3, and select the nominal thickness, t_s .

Step 2. Determine the cone half-apex angle, α ; compute the required thickness of the cone at the small end of the coneto-cylinder junction using 4.3.4; and select the nominal thickness, t_c .

Step 3. Proportion the cone geometry such that eq. (4.3.46) and the following equations are satisfied. If all of these equations are not satisfied, then the cylinder-to-cone junction shall be designed in accordance with Part 5. In the calculations, if 0 deg < $\alpha \le 10$ deg, then use $\alpha = 10$ deg.

$$20 \le \frac{R_S}{t_S} \le 500 \tag{4.3.56}$$

$$1 \le \frac{t_C}{t_S} \le 2 \tag{4.3.57}$$

$$\alpha \le 60 \text{ deg} \tag{4.3.58}$$

Step 4. Determine the net section axial force, F_S , and bending moment, M_s , applied to the conical transition. The thrust load due to pressure shall not be included as part of the axial force, F_S . Determine an equivalent, X_s , line using eq. (4.3.59).

$$X_{S} = \frac{F_{S}}{2\pi R_{S}} \pm \frac{M_{S}}{\pi R_{S}^{2}}$$
(4.3.59)

Step 5. Compute the junction transition design parameters. For calculated values of n other than those presented in Tables 4.3.5 and 4.3.6, linear interpolation of the equation coefficients, C_i , is permitted.

$$n = \frac{t_C}{t_S} \tag{4.3.60}$$

$$H = \sqrt{\frac{R_S}{t_S}} \tag{4.3.61}$$

$$B = \tan\left[\alpha\right] \tag{4.3.62}$$

Step 6. Compute the stresses in the cylinder and cone at the junction using the equations in Table 4.3.2. The allowable stress criterion for a tensile stress is provided in Table 4.3.2. If either the hoop membrane stress, $\sigma_{\theta m}$, or axial membrane stress, σ_{sm} , at the junction is compressive, then the condition of local buckling shall be considered. Local buckling is not of concern if the limits given in eqs. (4.3.54) and (4.3.55) are satisfied, using the procedure provided in 4.3.11.4, Step 6. If the stresses of the acceptance criteria are satisfied, the design of the junction is complete.

Step 7. If the stress acceptance criterion in Step 6 is satisfied, then the design is complete. If the stress acceptance criterion in Step 6 is not satisfied, the cylinder thickness or cone thickness near the junction may be increased until the stress acceptance criterion is satisfied. The section of increased thickness for the cylinder and cone shall extend a minimum distance from the junction as shown in Figure 4.3.9. Proceed to Step 3 to repeat the calculation with the new wall thickness.

4.3.12 CYLINDRICAL-TO-CONICAL SHELL TRANSITION JUNCTIONS WITH A KNUCKLE

4.3.12.1 General. The following rules are applicable for the design of conical transitions of circular cross-section with a knuckle at the large end or flare at the small end under loadings of internal pressure and applied net section axial force and bending moment. Acceptable conical transition details are shown in Figure 4.3.10. Design rules for transition junctions without a knuckle at the large end or flare at the small end are provided in 4.3.11.

4.3.12.2 The procedure that shall be used to design the large end of a cylinder-to-cone junction with a knuckle is described below.

Step 1. Compute the required thickness of the cylinder at the large end of the cone-to-cylinder junction using 4.3.3, and select the nominal thickness, t_L .

Step 2. Determine the cone half-apex angle, α ; compute the required thickness of the cone at the large end of the cone-to-cylinder junction using 4.3.4; and select the nominal thickness, t_c .

Step 3. Proportion the transition geometry by assuming a value for the knuckle radius, r_k , and knuckle thickness, t_k , such that the following equations are satisfied. If all of these equations cannot be satisfied, then the cylinder-to-cone junction shall be designed in accordance with Part 5.

$$t_k \ge t_L \tag{4.3.63}$$

$$r_k > 3t_k \tag{4.3.64}$$

$$\frac{r_k}{R_L} > 0.03$$
 (4.3.65)

$$\alpha \le 60 \, \deg \tag{4.3.66}$$

Step 4. Determine the net section axial force, F_L , and bending moment, M_L , applied to the conical transition at the location of the knuckle. The thrust load due to pressure shall not be included as part of the axial force, F_L .

Step 5. Compute the stresses in the cylinder, knuckle, and cone at the junction using the equations in Table 4.3.7. The allowable stress criterion for a tensile stress is provided in Table 4.3.7. If either the hoop membrane stress, $\sigma_{\theta m}$, or axial membrane stress, σ_{sm} , at the junction is compressive, then the condition of local buckling shall be considered. Local buckling is not a concern if the limits given in eqs. (4.3.67) and (4.3.68) are satisfied. F_{ha} is evaluated using 4.4.5.1, but substituting $F_{he} = 0.4E\left(\frac{t}{D_0}\right)$. F_{xa} is evaluated using 4.4.12.2(b) with $\lambda = 0.15$. If the stresses of the acceptance criteria are satisfied, the design of the junction is complete.

$$\sigma_{\theta m} \le F_{ha} \tag{4.3.67}$$

$$\sigma_{sm} \le F_{xa} \tag{4.3.68}$$

Step 6. If the stress acceptance criterion in Step 5 is satisfied, then the design is complete. If the stress acceptance criterion in Step 5 is not satisfied, the knuckle thickness, cylinder thickness, or cone thickness near the junction may be increased until the stress acceptance criterion is satisfied. If the cylinder or cone thickness is increased, the section of increased thickness shall extend a length given by eqs. (4.3.69) and (4.3.70), respectively. Proceed to Step 3 to repeat the calculation with the new wall thicknesses.

$$L_{rcy} = K_m \sqrt{R_L t_L} \tag{4.3.69}$$

$$L_{rco} = K_m \sqrt{L_k t_C} \tag{4.3.70}$$

4.3.12.3 The procedure that shall be used to design the small end of a cylinder-to-cone junction with a flare is described below.

Step 1. Compute the required thickness of the cylinder at the small end of the cone-to-cylinder junction using 4.3.3, and select the nominal thickness, t_s .

Step 2. Determine the cone half-apex angle, α ; compute the required thickness of the cone at the small end of the cone-to-cylinder junction using 4.3.4; and select the nominal thickness, t_c .

Step 3. Proportion the transition geometry by assuming a value for the flare radius, r_f , and flare thickness, t_f , such that the following equations are satisfied. If all of these equations cannot be satisfied, then the cylinder-to-cone junction shall be designed in accordance with Part 5.

$$t_f \ge t_s \tag{4.3.71}$$

$$r_f > 3t_f$$
 (4.3.72)

$$\frac{r_f}{R_S} > 0.03$$
 (4.3.73)

$$\alpha \le 60 \, \deg \tag{4.3.74}$$

Step 4. Determine the net section axial force, F_s , and bending moment, M_s , applied to the conical transition at the location of the knuckle. The thrust load due to pressure shall not be included as part of the axial force, F_s .

ASME BPVC.VIII.2-2023

Step 5. Compute the stresses in the cylinder, flare, and cone at the junction using the equations in Table 4.3.8. The allowable stress criterion for a tensile stress is provided in Table 4.3.8. If either the hoop membrane stress, $\sigma_{\theta m}$, or axial membrane stress, σ_{sm} , at the junction is compressive, then the condition of local buckling shall be considered. Local buckling is not of concern if the limits given in eqs. (4.3.67) and (4.3.68) are satisfied, using the procedure provided in 4.3.12.2, Step 5. If the stresses of the acceptance criteria are satisfied, the design of the junction is complete.

Step 6. If the stress acceptance criterion in Step 5 is satisfied, then the design is complete. If the stress acceptance criterion in Step 5 is not satisfied, the knuckle thickness, cylinder thickness, or cone thickness near the junction may be increased until the stress acceptance criterion is satisfied. If the cylinder or cone thickness is increased, the section of increased thickness shall extend a length given by eqs. (4.3.75) and (4.3.76), respectively. Proceed to Step 3 to repeat the calculation with the new wall thicknesses.

$$L_{rcy} = K_m \sqrt{R_S t_S} \tag{4.3.75}$$

$$L_{rco} = K_m \sqrt{L_f t_C} \tag{4.3.76}$$

4.3.13 NOMENCLATURE

- A_R = cross-sectional area of the stiffening ring at the junction
- *B* = curve-fit geometric constant
- C_1 = angle constant used in the torispherical head calculation
- C_2 = angle constant used in the torispherical head calculation
- C_3 = strength parameter used in the torispherical head calculation
- D = inside diameter of a shell or head. For conical shells, the inside diameter at the point under consideration, measured perpendicular to the longitudinal axis (see Figure 4.3.1).
- d = diameter of a drilled hole that does not completely penetrate a shell
- D_o = outside diameter of a shell or head
- E = weld joint factor (see 4.2.4), the ligament efficiency (see 4.10.2), or the casting quality factor (see Part 3), as applicable, for the weld seam being evaluated (i.e., longitudinal or circumferential)
- E_{RT} = modulus of elasticity at room temperature
- E_T = modulus of elasticity at maximum design temperature
- F = net-section axial force acting at the point of consideration, a positive force produces an axial tensile stress in the cylinder
- F_{ha} = allowable compressive hoop membrane stress as given in 4.4
- F_L = net-section axial force acting on the large end cylindrical shell, a positive force produces an axial tensile stress in the cylinder
- F_s = net-section axial force acting on the small end cylindrical shell, a positive force produces an axial tensile stress in the cylinder
- F_{xa} = allowable compressive axial membrane stress as given in 4.4
 - G = constant used in the torispherical head calculation
 - *H* = curve-fit geometric constant
 - h = height of the ellipsoidal head measured to the inside surface
- I_R = moment of inertia of the stiffening ring at the junction
- j_f = number of locations around the flare that shall be evaluated, used in the conical transition stress calculation when a non-compact flare is present
- j_k = number of locations around the knuckle that shall be evaluated, used in the conical transition stress calculation when a non-compact knuckle is present
- k = angle constant used in the torispherical and elliptical head calculation
- K_m = length factor used in the conical transition calculation when a flare or knuckle is present
- K_{pc} = cylinder-to-cone junction plasticity correction factor
 - L = inside crown radius of a torispherical head
- $L_{1 f}$ = length used in the conical transition stress calculation when a flare is present
- $L_{1 k}$ = length used in the conical transition stress calculation when a knuckle is present
 - L_c = length of the conical shell measured parallel to the surface of the cone
- L_f = length used in the conical transition stress calculation when a flare is present
- L_{1f}^{j} = length used in the conical transition stress calculation when a flare is present

- L_{1k}^{j} = length used in the conical transition stress calculation when a knuckle is present
 - L_k = length used in the conical transition stress calculation when a knuckle is present
 - M = net-section bending moment acting at the point of consideration
- M_{cs} = total resultant meridional moment acting on the cone
- M_{csP} = cylinder-to-cone junction resultant meridional moment acting on the cone, due to internal pressure
- M_{csX} = cylinder-to-cone junction resultant meridional moment acting on the cone, due to an equivalent line load
- M_L = net-section bending moment acting at the large end cylindrical shell
- M_s = net-section bending moment acting at the small end cylindrical shell
- M_s = total resultant meridional moment acting on the cylinder
- M_{sN} = normalized curve-fit resultant meridional moment acting on the cylinder
- M_{sP} = cylinder-to-cone junction resultant meridional moment acting on the cylinder, due to internal pressure
- M_{sx} = cylinder-to-cone junction resultant meridional moment acting on the cylinder, due to an equivalent line load
- M_t = net-section torsional moment acting on a shell section
- n = ratio of the thickness of the cone to the thickness of the cylinder
- N_{cs} = resultant meridional membrane force acting on the cone, due to pressure plus an equivalent line load
- $N_{c\theta}$ = resultant circumferential membrane force acting on the cone, due to pressure plus an equivalent line load
- N_s = resultant meridional membrane force acting on the cylinder, due to pressure plus an equivalent line load
- N_{θ} = resultant circumferential membrane force acting on the cylinder, due to pressure plus an equivalent line load
- P = internal design pressure
- P_a = maximum allowable internal pressure of a torispherical head
- P_{ac} = allowable internal pressure of a torispherical head based on the rupture of the crown
- P_{ak} = allowable internal pressure of a torispherical head based on a buckling failure of the knuckle
- P_{ck} = value of internal pressure expected to result in a buckling failure of the knuckle in a torispherical head
- P_e = equivalent design pressure used in the conical transition stress calculation when a knuckle or flare is present
- P_e^{j} = equivalent design pressure at locations around the knuckle or flare, used in the conical transition stress calculation when a knuckle or flare is present
- P_{eth} = value of internal pressure expected to produce elastic buckling of the knuckle in a torispherical head
- P_y = value of the internal pressure expected to result in a maximum stress equal to the material yield strength in a torispherical head
- Q = total resultant shear force acting on the cylinder
- Q_c = total resultant shear force acting on the cone
- Q_N = normalized curve-fit resultant shear force acting on the cylinder
- Q_P = cylinder-to-cone junction resultant shear force acting on the cylinder, due to internal pressure
- Q_X = cylinder-to-cone junction resultant shear force acting on the cylinder, due to an equivalent line load
- r = inside knuckle radius used in torispherical head calculation
- R_C = equivalent radius of the cone
- R_f = radius to the center of curvature for the flare
- r_f = inside flare radius of the small end of a toriconical transition
- r_{hr} = minimum hole radius
- R_k = radius to the center of curvature for the knuckle
- r_k = inside knuckle radius of the large end of a toriconical transition
- R_L = inside radius of the large end of a conical transition
- R_m = mean radius of the cylinder
- R_{S} = inside radius of the small end of a conical transition
- R_{th} = radius used in the torispherical head calculation
- S = allowable stress value from Annex 3-A evaluated at the design temperature
- S_a = allowable stress amplitude
- S_{PS} = allowable primary plus secondary stress evaluated using 4.1.6.3 at the design temperature
- s_R = distance measured along the cylinder from the centroid of the stiffening ring centroid to the intersection of the cylinder and cone
- S_y = yield strength from Annex 3-D evaluated at the design temperature
- t = minimum required thickness of a shell
- t_c = nominal thickness of the cone in a conical transition at the large end or small end as applicable
- t_j = thickness of the cylinder, knuckle, or flue, as applicable, at the junction of a toriconical transition, $t_j \ge t$ and $t_j \ge t_c$
- t_L = nominal thickness of the large end cylinder in a conical transition
- t_{rw} = remaining wall thickness at the location of a partially drilled hole

ASME BPVC.VIII.2-2023

 $t_{rw1}\,$ = limit for the remaining wall thickness at the location of a partially drilled hole

- t_s = nominal thickness of the small end cylinder in a conical transition
- v = Poisson's ratio
- X_L = equivalent line load acting on the large end cylinder, due to an axial force and bending moment
- $X_{\rm S}$ = equivalent line load acting on the small end cylinder, due to an axial force and bending moment
- α = one-half of the apex angle of a conical shell
- α_2 = cone angle in an offset transition
- α_1 = cone angle in an offset transition
- β_{co} = geometric factor for the cone
- β_{cv} = geometric factor for the cylinder
- β_f = angle used in the conical transition calculation when a flare is present
- β_{f2} = angle used in the conical transition calculation when a flare is present
- β_k = angle used in the conical transition calculation when a knuckle is present
- β_{k1} = angle used in the conical transition calculation when a knuckle is present
- β_{k2} = angle used in the conical transition calculation when a knuckle is present
- β_{th} = angle used in the torispherical head calculation
- β_{fI} = angle used in the conical transition calculation when a flare is present
- λ = compressive stress factor
- σ_1 = principal stress in the 1-direction
- σ_2 = principal stress in the 2-direction
- σ_3 = principal stress in the 3-direction
- σ_r = radial stress in a shell
- σ_s = axial (longitudinal) stress in a shell
- σ_{sb} = axial (longitudinal) bending stress in a shell
- σ_{sm} = axial (longitudinal) membrane stress in a shell
- σ_{θ} = hoop (circumferential) stress in a shell
- $\sigma_{\theta b}$ = hoop (circumferential) bending stress in a shell
- $\sigma_{\theta m}$ = hoop (circumferential) membrane stress in a shell
- τ = torsional shear stress in a shell
- τ_{pd} = average shear stress in a shell at the location of a partially drilled hole. location where stress is computed for shells subject to supplemental loads. A value of zero defines the location of maximum positive longitudinal stress from net-section bending moment.
- ϕ = angle to locate a circumferential section in a spherical shell
- ϕ_{f}^{e} = angle used in the conical transition calculation when a non-compact flare is present
- ϕ_{k}^{e} = angle used in the conical transition calculation when a non-compact knuckle is present
- ϕ_f = angle used in the conical transition calculation when a flare is present
- ϕ_{f}^{j} = angle used in the conical transition calculation when a non-compact flare is present
- ϕ_k^j = angle used in the conical transition calculation when a non-compact knuckle is present
- ϕ_k = angle used in the conical transition calculation when a knuckle is present
- ϕ_{f}^{s} = angle used in the conical transition calculation when a non-compact flare is present
- ϕ^{s}_{k} = angle used in the conical transition calculation when a non-compact knuckle is present
- ϕ_{th} = angle used in the torispherical head calculation

4.3.14 **TABLES**

	Table 4.3.1 ge End Junction		
Cylinder Cone			
S	tress Resultant Calculation		
$\begin{split} M_{SP} &= Pt_L^2 M_{SN}, \text{ see Table 4.3.3} \\ M_{sX} &= X_L t_L M_{sN}, \text{ see Table 4.3.4} \\ M_s &= M_{sP} + M_{sX} \\ Q_P &= P_{tL} Q_N, \text{ see Table 4.3.3} \\ Q_X &= X_L Q_N, \text{ see Table 4.3.4} \\ Q &= Q_P + Q_X \\ \beta_{cy} &= \left[\frac{3(1-v^2)}{R_L^2 t_L^2}\right]^{0.25} \\ N_S &= \frac{PR_L}{2} + X_L \end{split}$	$M_{csP} = M_{sP}$ $M_{csX} = M_{sX}$ $M_{cs} = M_{csP} + M_{csX}$ $Q_c = Q \cos [\alpha] + N_s \sin[\alpha] \text{ [Note (1)]}$ $R_c = \frac{R_L}{\cos[\alpha]}$ $\beta_{co} = \left[\frac{3(1 - v^2)}{R_c^2 t_c^2}\right]^{0.25}$ $N_{cs} = N_s \cos[\alpha] - Q \sin[\alpha] \text{ [Note (2)]}$ PR_L		
$N_{\theta} = PR_L + 2\beta_{cy}R_L(-M_s\beta_{cy} + Q)$ $K_{pc} = 1.0$	$N_{C\theta} = \frac{PR_L}{\cos[\alpha]} + 2\beta_{co}R_C \Big(-M_{CS}\beta_{co} - Q_C \Big)$ $K_{cpc} = 1.0$		
N	Stress Calculation		
$\sigma_{sm} = \frac{N_s}{t_L}$	$\sigma_{sm} = \frac{N_{CS}}{t_C}$		
$\sigma_{Sb} = \frac{6M_s}{t_L^2 K_{pc}}$	$\sigma_{SD} = \frac{6M_{cS}}{t_c^2 K_{pc}}$		
$\sigma_{\theta m} = \frac{N_{\theta}}{t_L}$	$\sigma_{\! heta m} = rac{N_{c heta}}{t_c}$		
$\sigma_{\theta b} = \frac{6\nu M_S}{t_L^2 K_{pc}}$	$\sigma_{\theta b} = \frac{6vM_{cs}}{t_c^2 K_{cpc}}$		
	Acceptance Criteria		
$\sigma_{sm} \leq 1.5S$	$\sigma_{sm} \leq 1.5S$		
$\sigma_{sm} \pm \sigma_{sb} \leq S_{PS}$	$\sigma_{sm} \pm \sigma_{sb} \leq S_{PS}$		
$\sigma_{\theta m} \leq 1.5S$	$\sigma_{\theta m} \leq 1.5S$		
$\sigma_{\theta m} \pm \sigma_{\theta b} \leq S_{PS}$	$\sigma_{\theta m} \pm \sigma_{\theta b} \leq S_{PS}$		

The *Q* and *N_s* values used to determine the resultant shear force in the cone, *Q_c*, are the same as those defined for the cylinder.
 The *Q* and *N_s* values used to determine the resultant meridional membrane force in the cone, *N_{cs}*, are the same as those defined for the cylinder.

Sm	Table 4.3.2 all End Junction
Cylinder	Cone
Stres	s Resultant Calculation
$M_{sP} = Pt_{S}^{2}M_{sN}$, see Table 4.3.5	$M_{CSP} = M_{SP}$
$M_{SX} = X_S t_S M_{SN}$, see Table 4.3.6	$M_{cSX} = M_{SX}$
$M_{S} = M_{SP} + M_{SX}$	$M_{CS} = M_{CSP} + M_{CSX}$
$Q_P = Pt_S Q_N$, see Table 4.3.5	$Q_{c} = Q\cos\left[\alpha\right] + N_{s}\sin\left[\alpha\right] [\text{Note (1)}]$
$Q_X = X_S Q_N$, see Table 4.3.6	$R = \frac{R_s}{R_s}$
$Q = Q_P + Q_X$	$R_c = \frac{R_s}{\cos[\alpha]}$
$\left[3(1-v^2)\right]^{0.25}$	$[3(1-v^2)]^{0.25}$
$\beta_{cy} = \left\lceil \frac{3(1-v^2)}{R_S^2 t_S^2} \right\rceil^{0.25}$	$\beta_{co} = \left[\frac{3(1-v^2)}{R_c^2 t_c^2}\right]^{0.25}$
	$N_{cs} = N_s \cos[\alpha] - Q \sin[\alpha]$ [Note (2)]
$N_S = \frac{PR_S}{2} + X_S$	
$N_{\theta} = PR_s + 2\beta_{cy}R_s \left(-M_s\beta_{cy} - Q\right)$	$N_{C\theta} = \frac{PR_s}{\cos[\alpha]} + 2\beta_{co}R_C \Big(-M_{cs}\beta_{co} + Q_c \Big)$
$K_{pc} = 1.0$	$K_{cpc} = 1.0$
	Stress Calculation
$\sigma_{sm} = \frac{N_s}{t_s}$	$\sigma_{sm} = \frac{N_{cs}}{t_c}$
5	
$\sigma_{Sb} = \frac{6M_S}{t_S^2 K_{DC}}$	$\sigma_{sb} = \frac{6M_{cs}}{t_c^2 K_{cnc}}$
	0 sp0
$\sigma_{\Theta m} = \frac{N_{\Theta}}{t_c}$	$\sigma_{ heta m} = rac{N_{C heta}}{t_{C}}$
-3	°с
$\sigma_{\theta b} = \frac{6vM_s}{t_s^2 K_{pc}}$	$\sigma_{\theta b} = \frac{6 v M_{cs}}{t_c^2 K_{cpc}}$
	Acceptance Criteria
$\sigma_{sm} \le 1.5S$	$\sigma_{sm} \le 1.5S$
$\sigma_{sm} \pm \sigma_{sb} \le S_{PS}$	$\sigma_{sm} \pm \sigma_{sb} \le S_{PS}$
$\sigma_{ heta m} \leq 1.5S$	$\sigma_{ heta m} \leq 1.5S$
$\sigma_{\theta m} \pm \sigma_{\theta b} \leq S_{PS}$	$\sigma_{m{ heta} m} \pm \sigma_{m{ heta} b} \leq S_{PS}$

The *Q* and *N_s* values used to determine the resultant shear force in the cone, *Q_c*, are the same as those defined for the cylinder.
 The *Q* and *N_s* values used to determine the resultant meridional membrane force in the cone, *N_{cs}*, are the same as those defined for the cylinder.

quation Coefficients, C _i	n = 1	n = 1.25	<i>n</i> = 1.5	n = 1.75	<i>n</i> = 2
	Ju	unction Moment Result	tant, M _{sN} [Note (1)]		
1	-3.065534	-3.113501	-3.140885	-3.129850	-3.115764
2	3.642747	3.708036	3.720338	3.674582	3.623956
3	0.810048	0.736679	0.623373	0.490738	0.360998
4	-0.221192	-0.239151	-0.241393	-0.224678	-0.209963
5	-0.081824	-0.075734	-0.056744	-0.034581	-0.013613
6	0.035052	0.083171	0.157222	0.240314	0.316184
7	0.025775	0.027432	0.027393	0.025163	0.023508
8	-0.015413	-0.015659	-0.017311	-0.019456	-0.021796
9	0.002102	0.000993	-0.004600	-0.011145	-0.017172
10	-0.005587	-0.013283	-0.025609	-0.039144	-0.050859
	Ju	nction Shear Force Res	ultant, Q _N [Note (1)]		
1	-1.983852	-1.911375	-1.893640	-1.852083	-1.816642
2	2.410703	2.292069	2.253430	2.184549	2.126469
3	0.626443	0.478030	0.364794	0.251818	0.152468
4	-0.119151	-0.079165	-0.075123	-0.059024	-0.048876
5	-0.115841	-0.074658	-0.047032	-0.024214	-0.007486
6	0.122993	0.219247	0.282565	0.343492	0.390839
7	0.012160	0.007250	0.007505	0.006116	0.005632
8	-0.016987	-0.021607	-0.024667	-0.027144	-0.029118
9	0.010919	-0.003818	-0.012439	-0.018971	-0.023076
10	-0.016653	-0.033814	-0.043500	-0.052435	-0.058417

 $M_{SN}, Q_N = -\exp \begin{bmatrix} C_1 + C_2 \ln[H] + C_3 \ln[B] + C_4 (\ln[H])^2 + C_5 (\ln[B])^2 + C_6 \ln[H] \ln[B] \\ C_7 (\ln[H])^3 + C_8 (\ln[B])^3 + C_9 \ln[H] (\ln[B])^2 + C_{10} (\ln[H])^2 \ln[B] \end{bmatrix}$

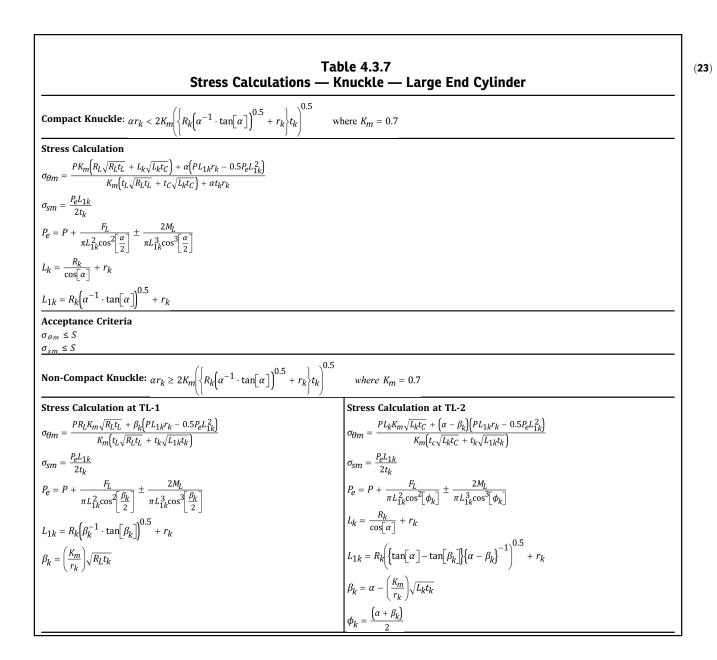
1	Jur	ction Moment Results			
1		iction moment Resulta	nt, M _{sN} [Note (1)]		
	-5.697151	-5.727483	-5.893323	-6.159334	-6.532748
2	0.003838	0.006762	0.012440	0.019888	0.029927
3	0.476317	0.471833	0.466370	0.461308	0.454550
4	-0.213157	-0.213004	-0.211065	-0.207037	-0.200411
5	2.233703	2.258541	2.335015	2.449057	2.606550
6	0.000032	0.000010	-0.000006	-0.000008	-0.000004
7	0.002506	0.003358	0.004949	0.007005	0.009792
8	-0.001663	-0.002079	-0.003105	-0.004687	-0.007017
9	-0.212965	-0.216613	-0.224714	-0.235979	-0.251220
10	0.000138	-0.000108	-0.000721	-0.001597	-0.002797
11	-0.106203	-0.106269	-0.107142	-0.108733	-0.110901
	Junc	tion Shear Force Resu	ltant, Q _N [Note (1)]		
1	-4.774616	-5.125169	-5.556823	-6.113380	-6.858200
2	0.000461	0.021875	0.049082	0.084130	0.131374
3	-0.002831	-0.055928	-0.127941	-0.225294	-0.361885
4	-0.197117	-0.196848	-0.196204	-0.194732	-0.193588
5	1.982132	2.156708	2.378102	2.668633	3.069269
6	0.000069	-0.000450	-0.001077	-0.001821	-0.002760
7	-0.000234	0.000188	0.000821	0.001694	0.002958
8	-0.003536	-0.005341	-0.007738	-0.010934	-0.015089
9	-0.202493	-0.223872	-0.251223	-0.287283	-0.337767
10	-0.000088	-0.002426	-0.005428	-0.009440	-0.015045
	0.001365	0.012698	0.027686	0.047652	0.075289

Equation Coefficients, C _i	<i>n</i> = 1	n = 1.25	n = 1.5	n = 1.75	<i>n</i> = 2
	Ji	unction Moment Result	ant, M _{sN} [Note (1)]		
1	-9.615764	-10.115298	-11.531005	-14.040332	-18.457734
2	1.755095	1.858053	2.170806	2.762452	3.859890
3	3.937841	4.222547	4.872664	5.973215	7.923210
4	-0.043572	-0.053476	-0.080011	-0.131830	-0.228146
5	-1.035596	-1.100505	-1.213287	-1.388782	-1.685101
6	-0.008908	-0.033941	-0.121942	-0.288589	-0.612009
7	0.003984	0.004388	0.005287	0.006975	0.010041
8	0.115270	0.121595	0.129218	0.139465	0.154368
9	0.013712	0.015269	0.022097	0.034632	0.059879
10	-0.007031	-0.006067	-0.002848	0.003867	0.017109
	Ju	nction Shear Force Res	ultant, Q_N [Note (2)]		
1	0.028350	0.207327	0.376538	0.532382	0.682418
2	0.000020	0.000007	-0.000008	-0.000023	-0.000040
3	0.001668	0.003856	0.005918	0.007947	0.009881
4	0.002987	0.002885	0.002781	0.002709	0.002632
5	0.001125	-0.000330	-0.001848	-0.002664	-0.003542
6	0.000000	0.000000	0.000000	0.000000	0.000000
7	0.000001	-0.000001	-0.000003	-0.000005	-0.000006
8	-0.000122	-0.000120	-0.000118	-0.000117	-0.000116
9	-0.000181	-0.000139	-0.000106	-0.000090	-0.000079
10	0.000001	0.000001	0.000001	0.000001	0.000001
11	-0.004724	-0.004417	-0.004128	-0.003847	-0.003570

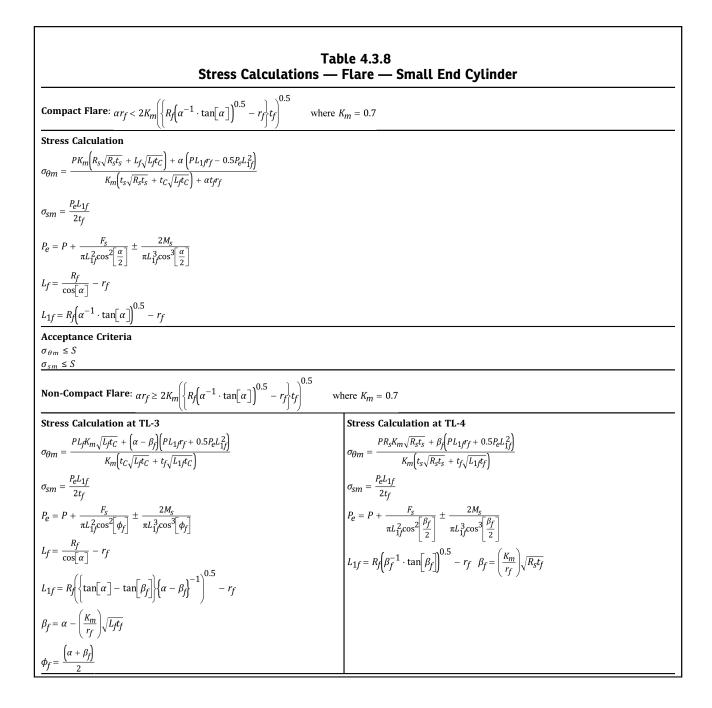
$$M_{SN} = \exp \begin{bmatrix} C_1 + C_2 \ln \left[H^2 \right] + C_3 \ln \left[\alpha \right] + C_4 \left(\ln \left[H^2 \right] \right)^2 + C_5 \left(\ln \left[\alpha \right] \right)^2 + C_6 \ln \left[H^2 \right] \ln \left[\alpha \right] + C_7 \left(\ln \left[H^2 \right] \right)^3 + C_8 \left(\ln \left[\alpha \right] \right)^3 + C_9 \ln \left[H^2 \right] \left(\ln \left[\alpha \right] \right)^2 + C_{10} \left(\ln \left[H^2 \right] \right)^2 \ln \left[\alpha \right] + C_8 \left(\ln \left[\alpha \right] \right)^3 + C_8 \left(\ln \left[$$

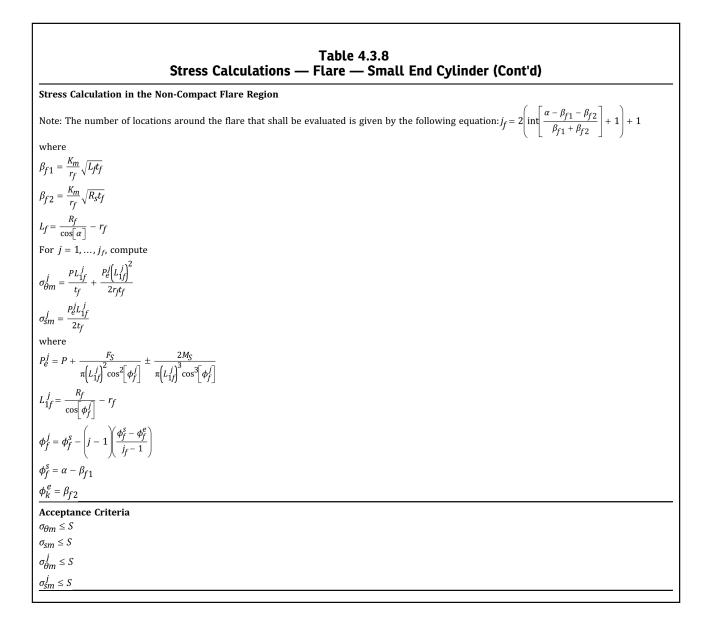
Г

(2) The equation to determine Q_N is shown below. $Q_N = \left(\frac{C_1 + C_3 H^2 + C_5 \alpha + C_7 H^4 + C_9 \alpha^2 + C_{11} H^2 \alpha}{1 + C_2 H^2 + C_4 \alpha + C_6 H^4 + C_8 \alpha^2 + C_{10} H^2 \alpha}\right)$

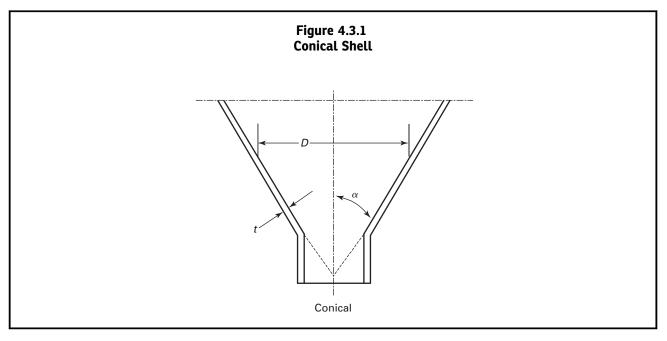

	Equivalent	Table 4 Line Load Applie		lunction	
Equation Coefficients, C _i	<i>n</i> = 1	n = 1.25	<i>n</i> = 1.5	<i>n</i> = 1.75	<i>n</i> = 2
	Jı	unction Moment Result	tant, M _{sN} [Note (1)]		
1	-0.000792	0.000042	0.002412	0.005766	0.009868
2	-0.000627	-0.000327	-0.000033	0.000236	0.000453
3	-0.001222	-0.001188	-0.001079	-0.000951	-0.000860
4	0.142039	0.132463	0.125812	0.121877	0.120814
5	0.010704	0.009735	0.009802	0.010465	0.010928
6	0.000013	0.000006	-0.000002	-0.000009	-0.000015
7	-0.000006	-0.000001	-0.000006	-0.000008	-0.000008
8	0.009674	0.008839	0.007580	0.006261	0.005044
9	0.006254	0.005493	0.003701	0.001619	0.000381
10	-0.000046	0.000011	0.000088	0.000171	0.000230
11	0.202195	0.208304	0.205169	0.197061	0.186547
	Ju	nction Shear Force Res	ultant, Q _N [Note (2)]		
1	-0.460579	-0.444768	-0.428659	-0.412043	-0.396046
2	-0.002381	0.006711	0.013388	0.019509	0.026272
3	-0.400925	-0.376106	-0.353464	-0.331009	-0.309046
4	0.001550	-0.000672	-0.002169	-0.003562	-0.005266
5	-0.140077	-0.129459	-0.121074	-0.113195	-0.105461
6	0.000793	0.001950	0.002212	0.002168	0.002310
7	-0.000219	-0.000023	0.000098	0.000215	0.000374
8	-0.019081	-0.017115	-0.015814	-0.014699	-0.013625
9	0.000384	0.000618	0.000739	0.000806	0.000860
10	0.000103	0.000006	0.000038	0.000102	0.000117

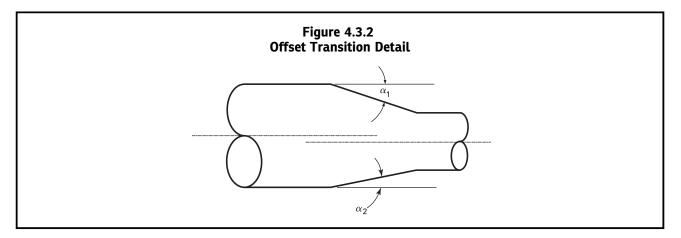
NOTES: (1) The equation to determine M_{sN} is shown below.

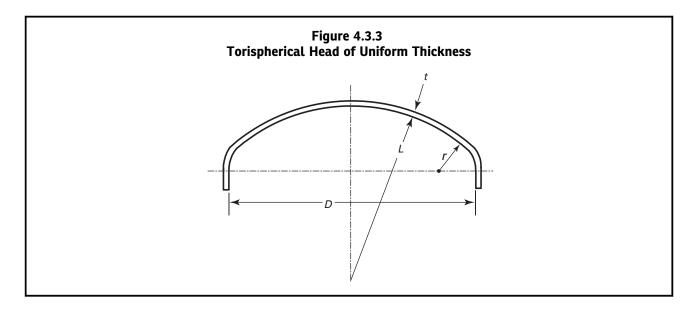

$$M_{sN} = \left(\frac{C_1 + C_3H + C_5B + C_7H^2 + C_9B^2 + C_{11}HB}{1 + C_2H + C_4B + C_6H^2 + C_8B^2 + C_{10}HB}\right)$$

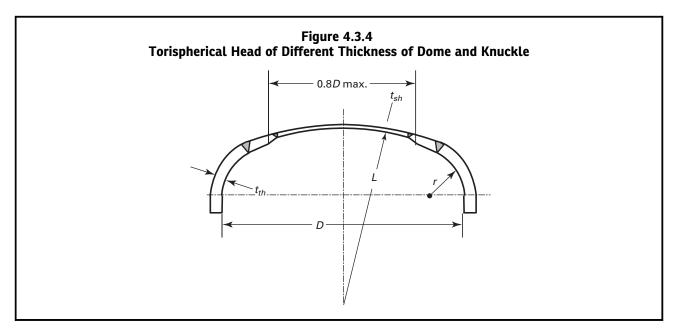

(2) The equation to determine Q_N is shown below.

$$Q_{N} = \begin{pmatrix} C_{1} + C_{2}\ln[H] + C_{3}\ln[B] + C_{4}(\ln[H])^{2} + C_{5}(\ln[B])^{2} + C_{6}\ln[H]\ln[B] + C_{7}(\ln[H])^{3} + C_{8}(\ln[B])^{3} + C_{9}\ln[H](\ln[B])^{2} + C_{10}(\ln[H])^{2}\ln[B] \end{pmatrix}$$

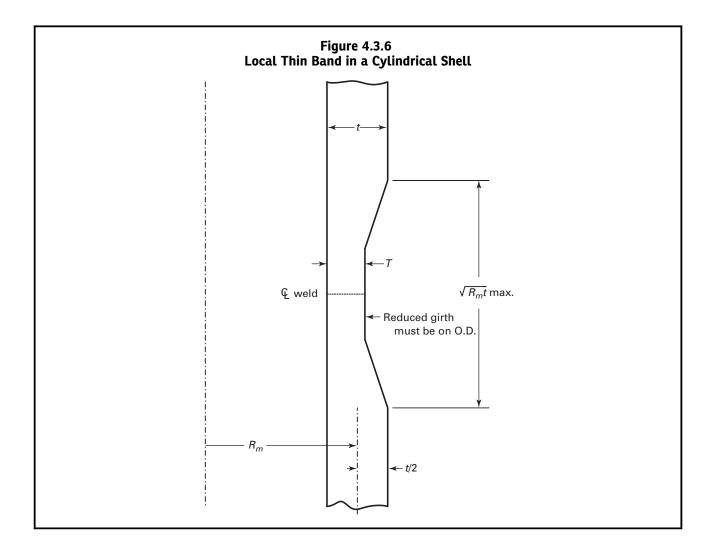


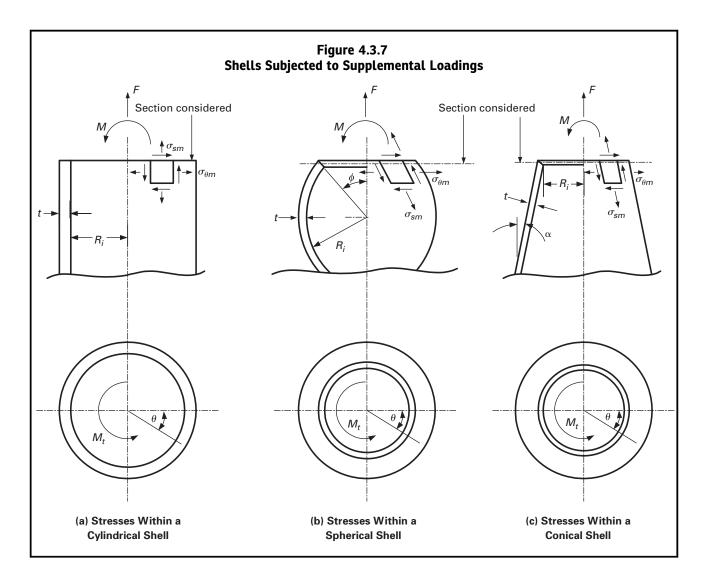

Note: The number of locations around the knuckle that shall be evaluated is given by the following equation: $j_{k} = 2\left[\ln\left[\frac{\alpha - \beta_{k1} - \beta_{k2}}{\beta_{k1} + \beta_{k2}}\right] + 1\right) + 1$ where $\beta_{k1} = \frac{K_m}{r_k} \sqrt{R_k t_k}$ $\beta_{k2} = \frac{K_m}{r_k} \sqrt{L_k t_k}$ $L_k = \frac{R_k}{\cos[\alpha]} + r_k$ For $j = 1,, j_k$, compute $\sigma_{0jm}^j = \frac{P_k^j L_k}{2r_k t_k}$ $a_{jm}^j = \frac{P_k^j L_k^j}{2r_k t_k}$ where $P_l^j = P + \frac{F_k}{\pi(L_k^j)^2 \cos^2[\phi_k]} \pm \frac{2M_k}{\pi(L_k^j)^3 \cos^2[\phi_k]}$ $L_{1k}^j = \frac{R_k}{\cos[\phi_k^j]} + r_k$ $\phi_k^j = \phi_k^s + \left(j - 1\right) \left(\frac{\phi_k^s - \phi_k^s}{J_k - 1}\right)$ $\phi_k^s = R_{k1}$ $\phi_k^s = \sigma_{k2}$ Acceptance Criteria $\sigma_{0jm}^m \leq S$	Stress Calculations — Knuckle — Large End (Stress Calculation in the Non-Compact Knuckle Region	Lylinder (Cont'd)
where $\begin{aligned} &\rho_{k1} = \frac{r_{kn}}{r_{k}} \sqrt{R_{k} t_{k}} \\ &\rho_{k2} = \frac{R_{k}}{r_{k}} \sqrt{L_{k} t_{k}} \\ &For j = 1, \dots, j_{k}, \text{ compute} \\ &\sigma_{0}^{j} = \frac{P_{k} \frac{j_{k}}{l_{k}} - \frac{P_{k}^{2} \left[t_{k}^{j} \right]^{2}}{2r_{k} t_{k}} \\ &\sigma_{0}^{j} = \frac{P_{k} \frac{j_{k}}{l_{k}} - \frac{P_{k}^{2} \left[t_{k}^{j} \right]^{2}}{2r_{k} t_{k}} \\ &\text{where} \\ P_{e}^{j} = P + \frac{F_{L}}{\pi \left[t_{k}^{j} \right]^{2} \cos^{2} \left[\phi_{k}^{j} \right]} \pm \frac{2M_{L}}{\pi \left[t_{k}^{j} \right]^{3} \cos^{2} \left[\phi_{k}^{j} \right]} \\ &L_{1}^{i} k = \frac{R_{k}}{\cos \left[\phi_{k}^{j} \right]} + r_{k} \\ &\phi_{k}^{j} = \phi_{k}^{s} + \left(j - 1 \right) \left[\frac{\phi_{k}^{e} - \phi_{k}^{s}}{j_{k} - 1} \right] \\ &\phi_{k}^{e} = -\beta_{k2} \\ &Acceptance Criteria \\ &\sigma_{gm} \leq S \\ &\sigma_{Sm} \leq S \end{aligned}$		owing equation:
$\begin{split} \beta_{k1} &= \frac{K_m}{r_k} \sqrt{k_k t_k} \\ \beta_{k2} &= \frac{K_m}{r_k} \sqrt{k_k t_k} \\ L_k &= \frac{R_k}{\cos[\alpha]} + r_k \\ \text{For } j = 1, \dots, j_k, \text{ compute} \\ \sigma_0^j_m &= \frac{p_{L_{1k}}^j}{t_k} - \frac{p_{\ell}^j \left\lfloor t_k^j \right\rfloor^2}{2r_k t_k} \\ \sigma_{sm}^j &= \frac{p_{L_{1k}}^j}{2t_k} \\ \text{where} \\ P_0^j &= P + \frac{F_L}{\pi \left\lfloor t_k^j \right\rfloor^2 \cos^2\left[\phi_k^j\right]} \pm \frac{2M_L}{\pi \left\lfloor t_{1k}^j \right\rfloor^3 \cos^3\left[\phi_k^j\right]} \\ L_{1k}^j &= \frac{R_k}{\cos[\phi_k]} + r_k \\ \phi_k^j &= \phi_k^s + \left(j - 1\right) \left(\frac{\phi_k^s - \phi_k^s}{j_k - 1}\right) \\ \phi_k^s &= \beta_{k1} \\ \phi_k^{\phi} &= \alpha - \beta_{k2} \\ \text{Acceptance Criteria} \\ \sigma_{gm} &\leq S \\ \sigma_{sm} &\leq S \\ \sigma_{sm} &\leq S \\ \end{split}$	$j_k = 2\left(\operatorname{int} \left[\frac{\alpha - \beta_{k1} - \beta_{k2}}{\beta_{k1} + \beta_{k2}} \right] + 1 \right) + 1$	
$\begin{aligned} L_{k} &= \frac{R_{k}}{\cos[\alpha]} + r_{k} \\ \text{For } j = 1_{r, j_{k}}, \text{ compute} \\ \sigma_{0}^{j}_{m} &= \frac{PL_{1k}^{j}}{L_{1k}} - \frac{P\ell[L_{1k}^{j}]^{2}}{2r_{k}t_{k}} \\ \sigma_{3}^{j}_{m} &= \frac{P_{2}^{j}L_{1k}^{j}}{2t_{k}} \\ \text{where} \\ P_{e}^{j} &= P + \frac{F_{L}}{\pi[L_{1k}^{j}]^{2}\cos^{2}[\phi_{k}]} \pm \frac{2M_{L}}{\pi[L_{1k}^{j}]^{3}\cos^{3}[\phi_{k}]]} \\ L_{1k}^{j} &= \frac{R_{k}}{\cos[\phi_{k}^{j}]} + r_{k} \\ \phi_{k}^{j} &= \phi_{k}^{s} + \left(j - 1\right) \left(\frac{\phi_{k}^{e} - \phi_{k}^{s}}{l_{k} - 1}\right) \\ \phi_{k}^{s} &= \beta_{k1} \\ \phi_{k}^{e} &= \alpha - \beta_{k2} \end{aligned}$ Acceptance Criteria $\sigma_{0m} \leq S \\ \sigma_{5m} \leq S \end{aligned}$	where $\beta_{k1} = \frac{K_m}{r_k} \sqrt{R_L t_k}$	
For $j = 1,, j_k$, compute $\sigma_{0m}^{j} = \frac{PL_{1k}^{j}}{\ell_k} - \frac{P_{\ell}^{j} \left[L_{1k}^{j} \right]^2}{2r_k \ell_k}$ where $P_{\ell}^{j} = P + \frac{F_L}{\pi \left[L_{1k}^{j} \right]^2 \cos^2 \left[\phi_k^{j} \right]} \pm \frac{2M_L}{\pi \left[L_{1k}^{j} \right]^3 \cos^3 \left[\phi_k^{j} \right]}$ $L_{1k}^{j} = \frac{R_k}{\cos \left[\phi_k^{j} \right]} + r_k$ $\phi_k^{j} = \phi_k^{s} + \left[j - 1 \right] \left(\frac{\phi_k^{e} - \phi_k^{s}}{j_k - 1} \right)$ $\phi_k^{s} = \beta_{k1}$ $\phi_k^{e} = \alpha - \beta_{k2}$ Acceptance Criteria $a_{0m} \leq S$ $\sigma_{5m} \leq S$	$\beta_{k2} = \frac{K_m}{r_k} \sqrt{L_k t_k}$	
$\sigma_{0m}^{j} = \frac{PL_{1k}^{j}}{t_{k}} - \frac{P_{0}^{j}\left[L_{1k}^{j}\right]^{2}}{2r_{k}t_{k}}$ $\sigma_{sm}^{j} = \frac{P_{0}^{j}L_{1k}^{j}}{2t_{k}}$ where $P_{0}^{j} = P + \frac{F_{L}}{\pi\left[L_{1k}^{j}\right]^{2}\cos^{2}\left[\phi_{k}^{j}\right]} \pm \frac{2M_{L}}{\pi\left[L_{1k}^{j}\right]^{3}\cos^{3}\left[\phi_{k}^{j}\right]}$ $L_{1k}^{j} = \frac{R_{k}}{\cos\left[\phi_{k}^{j}\right]} + r_{k}$ $\phi_{k}^{j} = \phi_{k}^{s} + \left(j-1\right)\left(\frac{\phi_{k}^{e} - \phi_{k}^{s}}{j_{k}-1}\right)$ $\phi_{k}^{s} = \beta_{k1}$ $\phi_{k}^{e} = \alpha - \beta_{k2}$ Acceptance Criteria $\sigma_{0m} \leq S$ $\sigma_{sm} \leq S$		
$\begin{split} \sigma_{sm}^{j} &= \frac{P_{k}^{j}L_{1_{k}}^{j}}{2t_{k}} \\ \text{where} \\ P_{e}^{j} &= P + \frac{F_{L}}{\pi \left[L_{1k}^{j}\right]^{2} \cos^{2}\left[\phi_{k}^{j}\right]} \pm \frac{2M_{L}}{\pi \left[L_{1k}^{j}\right]^{3} \cos^{3}\left[\phi_{k}^{j}\right]} \\ L_{1k}^{j} &= \frac{R_{k}}{\cos\left[\phi_{k}^{j}\right]} + r_{k} \\ \phi_{k}^{j} &= \phi_{k}^{s} + \left(j - 1\right) \left(\frac{\phi_{k}^{e} - \phi_{k}^{s}}{j_{k} - 1}\right) \\ \phi_{k}^{s} &= \beta_{k1} \\ \phi_{k}^{e} &= \alpha - \beta_{k2} \\ \hline \begin{array}{c} Acceptance \ \mathbf{Criteria} \\ \sigma_{\thetam} &\leq S \\ \sigma_{sm} &\leq S \\ \end{array} \end{split}$	For $J = 1,, J_k$, compute $\sigma_{0m}^j = \frac{PL_{1k}^j}{t_k} - \frac{P_e^j (L_{1k}^j)^2}{2r_k t_k}$	
$P_{e}^{j} = P + \frac{F_{L}}{\pi \left(L_{1k}^{j}\right)^{2} \cos^{2}\left[\phi_{k}^{j}\right]} \pm \frac{2M_{L}}{\pi \left(L_{1k}^{j}\right)^{3} \cos^{3}\left[\phi_{k}^{j}\right]}$ $L_{1k}^{j} = \frac{R_{k}}{\cos\left[\phi_{k}^{j}\right]} + r_{k}$ $\phi_{k}^{j} = \phi_{k}^{s} + \left(j - 1\right) \left(\frac{\phi_{k}^{e} - \phi_{k}^{s}}{j_{k} - 1}\right)$ $\phi_{k}^{s} = \beta_{k1}$ $\phi_{k}^{e} = \alpha - \beta_{k2}$ Acceptance Criteria $\sigma_{\theta m} \leq S$ $\sigma_{sm} \leq S$	$\sigma_{sm}^j = \frac{P_e^j L_{1k}^j}{2t_k}$	
$\phi_k^j = \phi_k^s + \left(j - 1\right) \left(\frac{\phi_k^e - \phi_k^s}{j_k - 1}\right)$ $\phi_k^s = \beta_{k1}$ $\phi_k^e = \alpha - \beta_{k2}$ Acceptance Criteria $\sigma_{\partial m} \le S$ $\sigma_{sm} \le S$	where $P_e^j = P + \frac{F_L}{\pi \left(L_{1k}^j\right)^2 \cos^2\left[\phi_k^j\right]} \pm \frac{2M_L}{\pi \left(L_{1k}^j\right)^3 \cos^3\left[\phi_k^j\right]}$	
$\phi_k^s = \beta_{k1}$ $\phi_k^e = \alpha - \beta_{k2}$ Acceptance Criteria $\sigma_{\theta m} \le S$ $\sigma_{sm} \le S$	$L_{1k}^{j} = \frac{R_k}{\cos[\phi_k^j]} + r_k$	
$ \phi_k^e = \alpha - \beta_{k2} $ Acceptance Criteria $ \sigma_{\partial m} \leq S $ $ \sigma_{sm} \leq S $	$\phi_k^j = \phi_k^s + \left(j - 1\right) \left(\frac{\phi_k^e - \phi_k^s}{j_k - 1}\right)$	
Acceptance Criteria $\sigma_{\partial m} \leq S$ $\sigma_{sm} \leq S$	$\phi_k^s = \beta_{k1}$	
$\sigma_{\partial m} \leq S$ $\sigma_{sm} \leq S$		
$\sigma_{sm} \leq S$	•	
	$\sigma_{hm}^j \le S$	

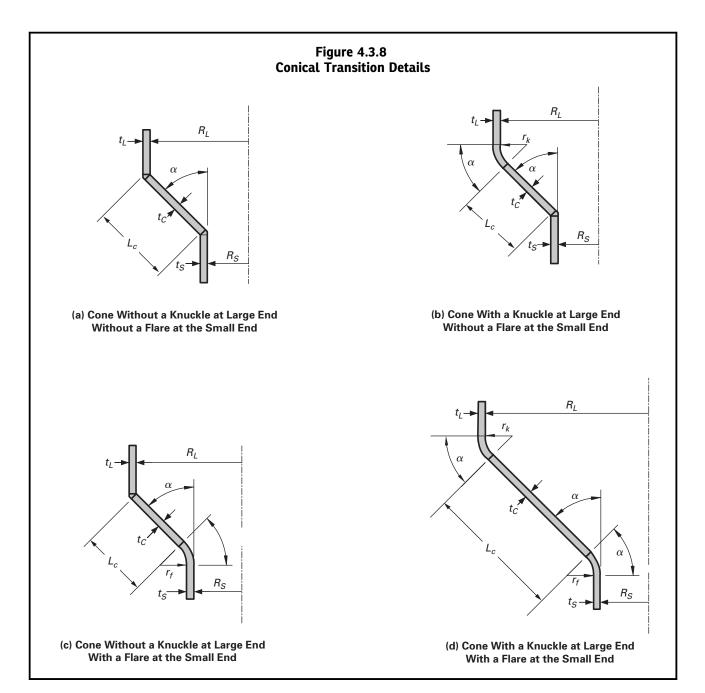


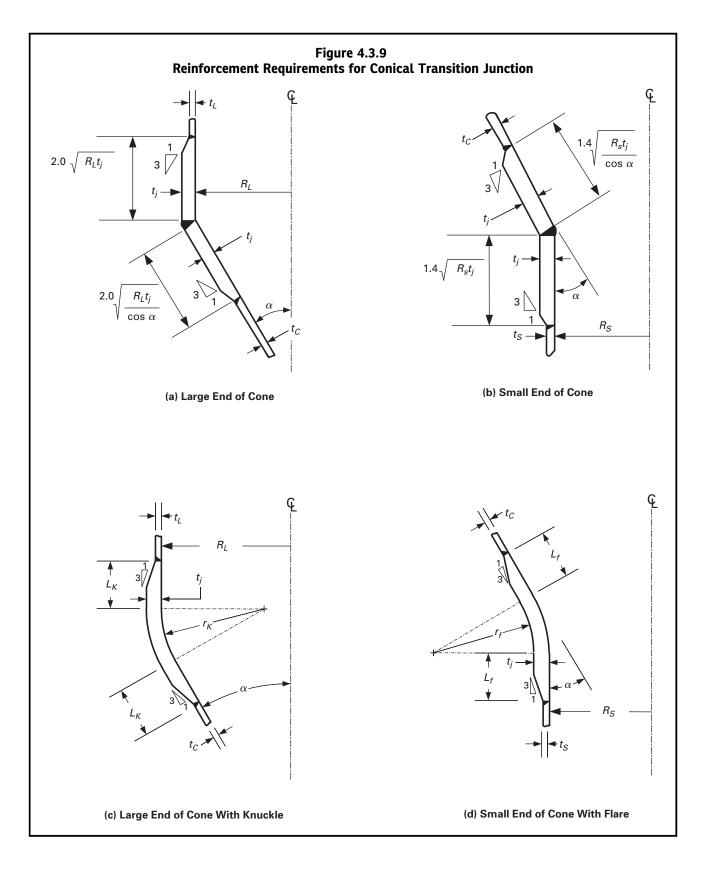


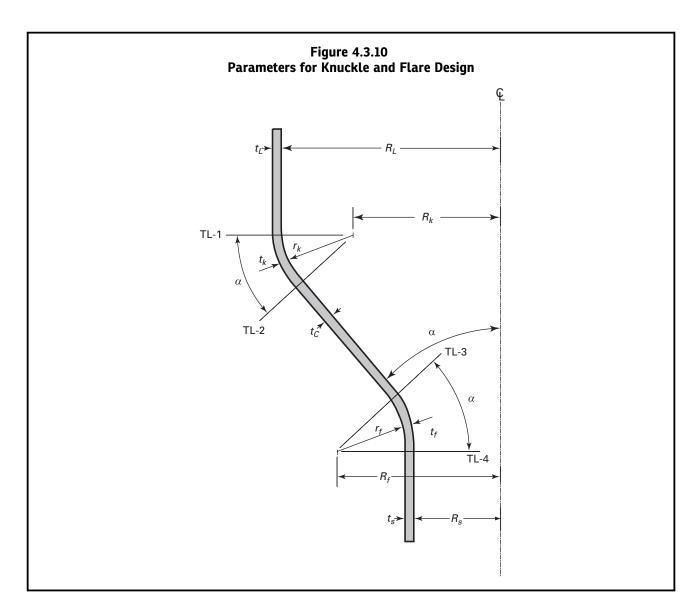
4.3.15 FIGURES











4.4 DESIGN OF SHELLS UNDER EXTERNAL PRESSURE AND ALLOWABLE COMPRESSIVE STRESSES

4.4.1 SCOPE

4.4.1.1 4.4 provides rules for determining the required wall thickness of cylindrical, conical, spherical, torispherical, and ellipsoidal shells and heads subject to external pressure. In this context, external pressure is defined as pressure acting on the convex side of the shell.

4.4.1.2 The effects of supplemental loads are not included in the design equations for shells and heads included in 4.4.5 through 4.4.9. The effects of supplemental loads that result in combined loadings shall be evaluated in a separate analysis performed in accordance with the methods in 4.4.12.

4.4.1.3 Rules are also provided for the design of cylindrical-to-conical shell transition junctions in 4.4.13 and 4.4.14. To facilitate the use of these rules, it is recommended that the shell wall thickness and stiffener configuration, as applicable, first be designed using the rules in 4.4.5 through 4.4.9. After an initial design is determined, this design should then be checked and modified as required using the rules of 4.4.13 and 4.4.14.

4.4.1.4 The equations in this paragraph are applicable for $D_o/t \le 2000$. If $D_o/t > 2000$, then the design shall be in accordance with Part 5. In developing the equations in the paragraph, the shell section is assumed to be axisymmetric with uniform thickness for unstiffened cylinders and formed heads. Stiffened cylinders and cones are also assumed to be

of uniform thickness between stiffeners. Where nozzles with reinforcing plates or locally thickened shell sections exist, the thinnest uniform thickness in the applicable unstiffened or stiffened shell section shall be used for the calculation of the allowable compressive stress.

4.4.1.5 Special consideration shall be given to ends of components (shell sections) or areas of load application where stress distribution may be in the inelastic range and localized stresses may exceed those predicted by linear theory.

4.4.1.6 When the localized stresses extend over a distance equal to one-half the length of the buckling mode (approximately $1.2\sqrt{D_0 t}$), the localized stresses shall be considered as a uniform stress for the design of the shell section.

4.4.1.7 The buckling strength formulations presented in this paragraph are based upon linear structural stability theory which is modified by reduction factors which account for the effects of imperfections, boundary conditions, non-linearity of material properties and residual stresses. The reduction factors are determined from approximate lower bound values of test data of shells with initial imperfections representative of the tolerance limits specified in this paragraph.

4.4.2 DESIGN FACTORS

The allowable stresses are determined by applying a design factor, *FS*, to the predicted buckling stresses. The required values of *FS* are 2.0 when the buckling stress is elastic and 1.667 when the predicted buckling stress equals the minimum specified yield strength at the design temperature. A linear variation shall be used between these limits. The equations for *FS* are given below where F_{ic} is the predicted inelastic buckling stress that is determined in 4.4.3. For combinations of design loads and earthquake loading or wind loading (see 4.1.5.3), the allowable stress for F_{bha} or F_{ba} in eqs. (4.4.85), (4.4.86), (4.4.87), (4.4.90), (4.4.91), and (4.4.92) may be increased by a factor of 1.2.

$$FS = 2.0 \text{ for } F_{ic} \le 0.55S_y$$
 (4.4.1)

$$FS = 2.407 - 0.741 \left(\frac{F_{ic}}{S_y}\right) \text{ for } 0.55S_y < F_{ic} < S_y$$
(4.4.2)

$$FS = 1.667$$
 for $F_{ic} = S_y$ (4.4.3)

4.4.3 MATERIAL PROPERTIES

4.4.3.1 The equations for the allowable compressive stress are based on the materials as given in Part 3 and are limited to the time-independent region. The maximum temperature limit permitted for these materials is defined in Table 4.4.1. If the component as designed is in the time-dependent region (i.e., creep is significant), the effects of time-dependent behavior shall be considered.

4.4.3.2 The equations for the allowable compressive stress consider both the predicted elastic buckling stress and predicted inelastic buckling stress. The predicted elastic buckling stress, F_{he} , F_{xe} , and F_{ve} , is determined based on the geometry of the component and the loading under consideration as provided in subsequent applicable paragraphs. The predicted inelastic buckling stress, F_{ic} , is determined using the following procedure:

Step 1. Calculate the predicted elastic buckling stress due to external pressure, F_{he} ; axial compression, F_{xe} ; and shear, F_{ve} , as applicable.

Step 2. Calculate the elastic buckling ratio factor, A_e, for the applicable loading condition.

$$A_e = \frac{F_{he}}{E}, \frac{F_{xe}}{E}, \frac{F_{ve}}{E}$$
(4.4.4)

Step 3. Solve for the predicted inelastic buckling stress, F_{ic} , through the determination of the material's tangent modulus, E_t , based on the stress-strain curve model at the design temperature per Annex 3-D, 3-D.5.1. The value of F_{ic} is solved for using an iterative procedure such that the following relationship is satisfied:

$$\frac{F_{ic}}{E_t} = A_e \tag{4.4.5}$$

When using the procedure of Annex 3-D, 3-D.5.1, the value of F_{ic} is substituted for σ_t .

An example of an iterative solution to determine F_{ic} is shown in Table 4.4.2.

4.4.4 SHELL TOLERANCES

4.4.4.1 Permissible Out-of-Roundness of Cylindrical and Conical Shells. The shell of a completed vessel subject to external pressure shall meet the following requirements at any cross section.

(a) The out-of-roundness requirements in 4.3.2.1 shall be satisfied.

(b) The maximum plus or minus deviation from a true circle, e, measured from a segmental circular template having the design inside or outside radius (depending on where the measurements are taken) and a chord length, L_{ec} , should not exceed the following value:

$$e = \min[e_c, 2t] \tag{4.4.6}$$

where

$$e_c = 0.0165t \left(\frac{L}{\sqrt{R_o t}} + 3.25 \right)^{1.069}$$
 valid for $0.1t \le e_c \le 0.0282R_o$ (4.4.7)

$$L_{ec} = 2R_m \sin\left[\frac{\pi}{2n}\right] \tag{4.4.8}$$

$$n = \xi \left[\sqrt{\frac{R_m}{t}} \cdot \left(\frac{R_m}{L}\right) \right]^{\psi} \text{ valid for } 2 \le n \le 1.41 \sqrt{\frac{R_m}{t}}$$

$$(4.4.9)$$

$$\xi = \min\left[2.28 \left(\frac{R_m}{t}\right)^{0.054}, \ 2.80\right]$$
(4.4.10)

$$\psi = \min\left[0.38 \left(\frac{R_m}{t}\right)^{0.044}, 0.485\right]$$
 (4.4.11)

(c) The value of thickness, t, used in the above equations shall be determined as follows:

(1) For vessels with butt joints, *t* is the nominal plate thickness less the corrosion allowance.

(2) For vessels with lap joints, t is the nominal plate thickness and the permissible deviation is e + t.

(3) Where the shell at any cross section is made from plates of different thicknesses *t* is the nominal plate thickness of the thinnest plate less the corrosion allowance.

(d) For cones and conical sections, t shall be determined using (c) except that t shall be replaced by t_c .

(e) Measurements for out-of-tolerances shall be taken on the surface of the base metal and not on welds or other raised parts of the component.

(f) The dimensions of a completed vessel may be brought within the requirements of this paragraph by any process that will not impair the strength of the material.

(g) Sharp bends and flats spots shall not be permitted unless provision is made for them in the design or they satisfy the tolerances in 4.4.4.2 and 4.4.4.4.

(*h*) Vessels fabricated of pipe may have permissible variations in the outside diameter in accordance with those permitted under the specification covering its manufacture.

4.4.4.2 Cylindrical and Conical Shells Subject to Uniform Axial Compression and Axial Compression Due to a **Bending Moment.** The tolerance requirements in 4.3.2.1 shall be satisfied. In addition, the local inward deviation from a straight line, e, measured along a meridian over gauge length, L_x , shall not exceed the maximum permissible deviation, e_x , given below:

$$e_x = 0.002R_m$$
 (4.4.12)

and,

$$L_{X} = \min\left[4\sqrt{R_{m}t}, L\right]$$
 for cylindrical shells (4.4.13)

$$L_{X} = \min\left[4\sqrt{\frac{R_{m}t_{c}}{\cos[a]}}, \frac{L_{c}}{\cos[a]}\right]$$
for conical shells (4.4.14)

$$L_x = 25t$$
 across circumferential welds (4.4.15)

4.4.4.3 Cylindrical and Conical Shells Subject to External Pressure and Uniform Axial Compression and Axial Compression Due to a Bending Moment. All of the tolerance requirements in 4.4.4.1 and 4.4.4.2 shall be satisfied.

4.4.4.4 Spherical Shells and Formed Heads. The tolerance requirements in 4.3.2.2 shall be satisfied. In addition, the maximum local deviation from true circular form, *e*, for spherical shells and any spherical portion of a formed head shall not exceed the shell thickness. Measurements to determine the maximum local deviation shall be made with a template with a chord length, *L*_{es}, given by the following equation.

$$L_{es} = 3.72\sqrt{R_m t}$$
 (4.4.16)

For spherical shells, the out-of-roundness requirements in 4.3.2.1 shall also be satisfied.

4.4.4.5 Shells that do not meet the tolerance requirements of this paragraph may be evaluated using 4.14.

4.4.5 CYLINDRICAL SHELL

4.4.5.1 Required Thickness. The required thickness of a cylindrical shell subjected to external pressure loading shall be determined using the following procedure.

Step 1. Assume an initial thickness, *t*, and unsupported length, *L* (see Figures 4.4.1 and 4.4.2). *Step 2*. Calculate the predicted elastic buckling stress, F_{he} .

$$F_{he} = \frac{1.6C_h E_y t}{D_0}$$
(4.4.17)

$$M_X = \frac{L}{\sqrt{R_o t}} \tag{4.4.18}$$

$$C_h = 0.55 \left(\frac{t}{D_o}\right) \text{ for } M_X \ge 2 \left(\frac{D_o}{t}\right)^{0.94}$$
(4.4.19)

$$C_h = 1.12 M_x^{-1.058} \text{ for } 13 < M_x < 2 \left(\frac{D_o}{t}\right)^{0.94}$$
 (4.4.20)

$$C_h = \frac{0.92}{M_X - 0.579}$$
 for 1.5 < $M_X \le 13$ (4.4.21)

$$C_h = 1.0 \text{ for } M_\chi \le 1.5$$
 (4.4.22)

Step 3. Calculate the predicted inelastic buckling stress, F_{ic} , per 4.4.3. *Step 4*. Calculate the value of design factor, *FS*, per 4.4.2. *Step 5*. Calculate the allowable external pressure, P_a .

$$P_a = 2F_{ha} \left(\frac{t}{D_o}\right) \tag{4.4.23}$$

where

$$F_{ha} = \frac{F_{ic}}{FS} \tag{4.4.24}$$

Step 6. If the allowable external pressure, P_a , is less than the design external pressure, increase the shell thickness or reduce the unsupported length of the shell (i.e., by the addition of a stiffening rings) and go to Step 2. Repeat this process until the allowable external pressure is equal to or greater than the design external pressure.

4.4.5.2 Stiffening Ring Size. The following equations shall be used to determine the size of a stiffening ring.

(a) Stiffening Ring Configuration. A combination of large and small stiffening rings may be used along the length of a shell. If a single size stiffener is used, then it shall be sized as a small stiffener. Alternatively, a combination of large and small stiffeners can be used to reduce the size of the intermittent small stiffening rings. The large stiffening rings may be sized to function as end stiffeners or bulkheads with small stiffeners spaced as required between end rings based on the shell thickness selected and loading combinations considered in the design.

(b) Small Stiffening Ring. The required moment of inertia of the effective stiffening ring (i.e., actual stiffening ring plus the effective length of shell, see Figure 4.4.3) shall satisfy eq. (4.4.25). The parameter F_{he} shall be evaluated using the equations in 4.4.5.1 with $M_x = L_S / \sqrt{R_0 t}$.

$$I_{s}^{C} \ge \frac{1.5F_{he}L_{s}R_{c}^{2}t}{E_{y}(n^{2}-1)}$$
(4.4.25)

where

$$n = \sqrt{\frac{2D_o^{1.5}}{3L_B t^{0.5}}} \qquad \text{where } n \text{ is an integer; for } n < 2 \text{ use } n = 2,$$
(4.4.26)
and for $n > 10$ use $n = 10$

The actual moment of inertia of the composite section comprised of the small stiffening ring and effective length of the shell about the centroidal axis shall be calculated using eq. (4.4.27):

$$I_{S}^{C} = I_{S} + A_{S} Z_{S}^{2} \left(\frac{L_{e} t}{A_{S} + L_{e} t} \right) + \frac{L_{e} t^{3}}{12}$$
(4.4.27)

where

$$L_e = 1.1 \sqrt{D_0 t}$$
 (4.4.28)

(c) Large Stiffening Ring or Bulkhead. The required moment of inertia of the effective stiffening ring (i.e., actual stiffening ring plus the effective length of shell) shall satisfy eq. (4.4.29). The parameter F_{hef} is the average value of the hoop buckling stress, F_{he} , over length L_F evaluated using the equations in 4.4.5.1 with $M_X = L_F / \sqrt{R_o t}$.

$$I_L^C \ge \frac{F_{hej} L_F R_c^2 t}{2E_y} \tag{4.4.29}$$

The actual moment of inertia of the composite section comprised of the large stiffening ring and effective length of the shell about the centroidal axis shall be calculated using eq. (4.4.30):

$$I_{L}^{C} = I_{L} + A_{L} Z_{L}^{2} \left(\frac{L_{e}t}{A_{L} + L_{e}t} \right) + \frac{L_{e}t^{3}}{12}$$
(4.4.30)

where

$$L_e = 1.1\sqrt{D_o t} \left(\frac{A_s + L_s t}{A_L + L_s t}\right) \tag{4.4.31}$$

(d) Local Stiffener Geometry Requirements for all Loading Conditions. The following equations shall be met to assure the stability of a stiffening ring.

(1) Flat bar stiffener, flange of a tee section and the outstanding leg of an angle stiffener (see Figure 4.4.3)

$$\frac{h_1}{t_1} \le 0.375 \left(\frac{E_y}{S_y}\right)^{0.5}$$
 (4.4.32)

(2) Web of a tee stiffener or leg of an angle stiffener attached to the shell (see Figure 4.4.3).

$$\frac{h_2}{t_2} \le \left(\frac{E_y}{S_y}\right)^{0.5} \tag{4.4.33}$$

(e) Stiffener Size to Increase Allowable Longitudinal Compressive Stress. Ring stiffeners can be used to increase the allowable longitudinal compressive stress for cylindrical or conical shells subject to uniform axial compression and axial compression due to bending. The required size of the stiffener shall satisfy the following equations. In addition, the spacing of the stiffeners must result in a value of $M_s \leq 15$ where M_s is given by eq. (4.4.37).

$$A_{s} \ge \left(\frac{0.334}{M_{s}^{0.6}} - 0.063\right) L_{s} t \tag{4.4.34}$$

$$A_s \ge 0.06L_s t \tag{4.4.35}$$

$$I_{s}^{C} \ge \frac{5.33L_{s}t^{3}}{M_{s}^{1.8}}$$
(4.4.36)

$$M_{\rm S} = \frac{L_{\rm S}}{\sqrt{R_{\rm o}t}} \tag{4.4.37}$$

(f) Stiffener Size For Shear. The required size of the stiffener shall satisfy the following equation where C_v is evaluated using eqs. (4.4.62) through (4.4.65) with $M_x = M_s$, M_s is given by eq. (4.4.37).

$$I_{S}^{C} \ge 0.184C_{\nu}M_{S}^{0.8}t^{3}L_{S} \tag{4.4.38}$$

(g) Arrangement of Stiffening Rings

(1) As shown in Figure 4.4.4, any joints between the ends or sections of such rings, at locations (A) and (B), and any connection between adjacent portions of a stiffening ring lying inside or outside the shell, at location (C), shall be made so that the required moment of inertia of the combined ring-shell section is maintained. For a section with a strut at location (D), the required moment of inertia shall be supplied by the strut alone.

(2) As shown in Figure 4.4.4, stiffening rings placed on the inside of a vessel may be arranged as shown at locations (E) and (F), provided that the required moment of inertia of the ring at location (E) or of the combined ring-shell section at location (F) is maintained within the sections indicated. Where the gap at locations (A) or (E) does not exceed eight times the thickness of the shell plate, the combined moment of inertia of the shell and stiffener may be used.

(3) Stiffening rings shall extend completely around the vessel except as provided below. Any gap in that portion of a stiffening ring supporting the shell, as shown in Figure 4.4.4 at locations (D) and (E), shall not exceed the length of arc given in Figure 4.4.5 unless additional reinforcement is provided as shown at location (C), or unless all of the following conditions are met:

- (-a) only one unsupported shell arc is permitted per ring
- (-b) the length of unsupported shell arc does not exceed 90 deg
- (-c) the unsupported shell arcs in adjacent stiffening rings are staggered 180 deg

(-*d*) the dimension *L* is taken as the larger of the distance between alternate stiffening rings or the distance from the head-bend line to the second stiffening ring plus one-third of the head depth

(4) When internal plane structures perpendicular to the longitudinal axis of the cylinder, such as bubble trays or baffle plates, are used in a vessel, they may also be considered to act as stiffening rings, provided they are designed to function as such.

(5) Any internal stays or supports used shall bear against the shell of the vessel through the medium of a substantially continuous ring.

(*h*) Attachment of Stiffening Rings. Stiffening rings shall be attached to either the outside or the inside of the vessel by continuous welding, or if the component is not in cyclic service (i.e., a fatigue analysis is not required in accordance with 4.1.1.4) intermittent welding. Where gaps occur in the stiffening ring, the attachment weld shall conform to the details in 4.2.

4.4.5.3 Combined Loadings. Cylindrical shells subject to external pressure and other loadings shall satisfy the requirements of 4.4.12.

4.4.6 CONICAL SHELL

4.4.6.1 Required Thickness. The required thickness of a conical shell subjected to external pressure loading shall be determined using the equations for a cylinder by making the following substitutions:

(a) The value of t_c is substituted for t in the equations in 4.4.5.

(*b*) For offset cones, the cone angle, α , shall satisfy the requirements of 4.3.4.

(c) The value of $0.5(D_L + D_S)/\cos[\alpha]$ is substituted for D_o in the equations in 4.4.5.

(d) The value of $L_{ce}/\cos[\alpha]$ is substituted for L in the equations in 4.4.5 where L_{ce} is determined as shown below. (1) For sketches (a) and (e) in Figure 4.4.7

$$L_{ce} = L_c \tag{4.4.39}$$

(2) For sketch (b) in Figure 4.4.7

$$L_{ce} = r_k \sin[\alpha] + L_c \tag{4.4.40}$$

(3) For sketch (c) in Figure 4.4.7

$$L_{ce} = r_f \sin[\alpha] + L_c \tag{4.4.41}$$

```
(4) For sketch (d) in Figure 4.4.7
```

$$L_{ce} = \left(r_k + r_f\right) \sin\left[\alpha\right] + L_c \tag{4.4.42}$$

(e) Note that the half-apex angle of a conical transition can be computed knowing the shell geometry with the following equations. These equations were developed with the assumption that the conical transition contains a cone section, knuckle, or flare. If the transition does not contain a knuckle or flare, the radii of these components should be set to zero when computing the half-apex angle (see Figure 4.4.7).

(1) If $(R_L - r_k) \ge (R_S + r_f)$:

(2) If $(R_L - r_k) < (R_S + r_f)$:

$$\alpha = \beta + \phi \tag{4.4.43}$$

$$\beta = \arctan\left[\frac{\left(R_L - r_k\right) - \left(R_S + r_f\right)}{L_{ce}}\right]$$
(4.4.44)

$$\alpha = \phi - \beta \tag{4.4.45}$$

$$\beta = \arctan\left[\frac{\left(R_{S} + r_{f}\right) - \left(R_{L} - r_{k}\right)}{L_{ce}}\right]$$
(4.4.46)

(3) In both cases shown above, the angle ϕ is given by the following equation.

$$\phi = \arcsin\frac{\left(r_f + r_k\right)\cos\beta}{L_{ce}} \tag{4.4.47}$$

4.4.6.2 Small Stiffening Rings. Intermediate circumferential stiffening rings within the conical transition shall be sized using eq. (4.4.25) where L_s is determined from 4.4.6.1(d), and t_c is the cone thickness at the ring location.

4.4.6.3 Combined Loadings. Conical shells subject to external pressure and other loadings shall satisfy the requirements of **4.4.12**.

4.4.7 SPHERICAL SHELL AND HEMISPHERICAL HEAD

4.4.7.1 Required Thickness. The required thickness of a spherical shell or hemispherical head subjected to external pressure loading shall be determined using the following procedure.

Step 1. Assume an initial thickness, *t* for the spherical shell.

Step 2. Calculate the predicted elastic buckling stress, F_{he} .

$$F_{he} = 0.075 E_y \left(\frac{t}{R_o}\right) \tag{4.4.48}$$

Step 3. Calculate the predicted inelastic buckling stress, F_{ic} , per 4.4.3.

Step 4. Calculate the value of design margin, FS, per 4.4.2.

Step 5. Calculate the allowable external pressure, P_a

$$P_a = 2F_{ha} \left(\frac{t}{R_o}\right) \tag{4.4.49}$$

where

$$F_{ha} = \frac{F_{lc}}{FS} \tag{4.4.50}$$

Step 6. If the allowable external pressure, P_a , is less than the design external pressure, increase the shell thickness and go to Step 2. Repeat this process until the allowable external pressure is equal to or greater than the design external pressure.

4.4.7.2 Combined Loadings. Spherical shells and hemispherical heads subject to external pressure and other loadings shall satisfy the requirements of 4.4.12.

4.4.8 TORISPHERICAL HEAD

4.4.8.1 Required Thickness. The required thickness of a torispherical head subjected to external pressure loading shall be determined using the equations for a spherical shell in 4.4.7 by substituting the outside crown radius for *R*_o.

4.4.8.2 **Restrictions on Torispherical Head Geometry.** The restriction of 4.3.6 shall apply.

4.4.8.3 Torispherical Heads With Different Dome and Knuckle Thicknesses. Heads with this configuration shall be designed in accordance with Part 5.

4.4.8.4 Combined Loadings. Torispherical heads subject to external pressure and other loadings shall satisfy the requirements of 4.4.12.

4.4.9 ELLIPSOIDAL HEAD

4.4.9.1 Required Thickness. The required thickness of an elliptical head subjected to external pressure loading shall be determined using the equations for a spherical shell in 4.4.7 by substituting $K_o D_o$ for R_o where K_o is given by the following equation:

$$K_o = 0.25346 + 0.13995 \left(\frac{D_o}{2h_o}\right) + 0.12238 \left(\frac{D_o}{2h_o}\right)^2 - 0.015297 \left(\frac{D_o}{2h_o}\right)^3$$
(4.4.51)

4.4.9.2 Combined Loadings. Ellipsoidal heads subject to external pressure and other loadings shall satisfy the requirements of 4.4.12.

4.4.10 LOCAL THIN AREAS

Rules for the evaluation of Local Thin Areas are covered in 4.14.

4.4.11 DRILLED HOLES NOT PENETRATING THROUGH THE VESSEL WALL

Design requirements for partially drilled holes that do not penetrate completely through the vessel wall are covered in 4.3.9.

4.4.12 COMBINED LOADINGS AND ALLOWABLE COMPRESSIVE STRESSES

4.4.12.1 The rules in 4.4.2 through 4.4.11 are applicable for external pressure loading. The rules in this paragraph (23) provide allowable compressive stresses that shall be used for the design of shells subjected to supplemental loads that result in combined loadings.

4.4.12.2 Cylindrical Shells. The allowable compressive stresses for cylindrical shells shall be computed using the following rules that are based on loading conditions. The loading conditions are underlined for clarity in the following paragraphs. Common parameters used in each of the loading conditions are given in (k).

(a) External Pressure Acting Alone. The allowable hoop compressive membrane stress of a cylinder subject to external pressure acting alone, F_{ha} , is computed using the equations in 4.4.5.1.

(b) Axial Compressive Stress Acting Alone. The allowable axial compressive membrane stress of a cylinder subject to an axial compressive load acting alone, F_{xa} , is computed using the following equations.

(1) For $\lambda_c \leq 0.15$ (Local Buckling):

Step 1. Calculate the predicted elastic buckling stress, F_{xe} .

$$F_{Xe} = \frac{C_X E_y t}{D_0} \tag{4.4.52}$$

$$C_{X} = \min\left[\frac{409\bar{c}}{\left(389 + \frac{D_{0}}{t}\right)}, 0.9\right] \text{ for } \frac{D_{0}}{t} < 1247$$
 (4.4.53)

$$C_X = 0.25\bar{c} \text{ for } 1247 \le \frac{D_0}{t} \le 2000$$
 (4.4.54)

$$\bar{c} = 2.64 \text{ for } M_{\chi} \le 1.5$$
 (4.4.55)

$$\bar{c} = \frac{3.13}{M_{\chi}^{0.42}}$$
 for $1.5 < M_{\chi} < 15$ (4.4.56)

$$\bar{c} = 1.0 \text{ for } M_{\chi} \ge 15$$
 (4.4.57)

Step 2. Calculate the predicted inelastic buckling stress, F_{ic} , per 4.4.3.

Step 3. Calculate the factor of safety, FS, per 4.4.2.

Step 4. Calculate the allowable axial compressive stress, F_{xa} , as follows:

$$F_{xa} = F_{ic}/FS \tag{4.4.58}$$

(2) For $\lambda_c > 0.15$ and $K_u L_u / r_g < 200$ (Column Buckling):

$$F_{ca} = F_{xa} \Big[1 - 0.74 \big(\lambda_c - 0.15 \big) \Big]^{0.3} \text{ for } 0.15 < \lambda_c < 1.2$$
(4.4.59)

$$F_{ca} = \frac{0.88F_{xa}}{\lambda_c^2} \text{ for } \lambda_c \ge 1.2$$
(4.4.60)

(c) Compressive Bending Stress. The allowable axial compressive membrane stress of a cylindrical shell subject to a bending moment acting across the full circular cross section F_{ba} , shall be determined using the procedure in (b).

(*d*) Shear Stress. The allowable shear stress of a cylindrical shell, F_{va} , is computed using the following equations. Step 1. Calculate the predicted elastic buckling stress, F_{ve} .

$$F_{ve} = \alpha_v C_v E_y \left(\frac{t}{D_o}\right) \tag{4.4.61}$$

$$6 - / + Q$$

 $C_v = 4.454$ for $M_x \le 1.5$
(4.4.62)

$$C_{\nu} = \left(\frac{9.64}{M_{\chi}^2}\right) \left(1 + 0.0239 M_{\chi}^3\right)^{0.5} \text{ for } 1.5 < M_{\chi} < 26$$
(4.4.63)

$$C_{\nu} = \frac{1.492}{M_{\chi}^{0.5}} \text{ for } 26 \leq M_{\chi} < 4.347 \left(\frac{D_0}{t}\right)$$
(4.4.64)

$$C_{v} = 0.716 \left(\frac{t}{D_{o}}\right)^{0.5}$$
 for $M_{X} \ge 4.347 \left(\frac{D_{o}}{t}\right)$ (4.4.65)

$$\alpha_{\rm V} = 0.8 \text{ for } \frac{D_0}{t} \le 500$$
 (4.4.66)

$$\alpha_v = 1.389 - 0.218 \log_{10} \left(\frac{D_o}{t} \right) \text{ for } \frac{D_o}{t} > 500$$
 (4.4.67)

Step 2. Calculate the predicted inelastic buckling stress, F_{ic} , per 4.4.3.

Step 3. Calculate the factor of safety, FS, per 4.4.2.

Step 4. Calculate the allowable axial compressive stress, F_{va} , as follows:

$$F_{Va} = F_{ic}/FS \tag{4.4.68}$$

(e) Axial Compressive Stress and Hoop Compression. The allowable compressive stress for the combination of uniform axial compression and hoop compression, F_{xha} , is computed using the following equations:

(1) For $\lambda_c \leq 0.15$, F_{xha} is computed using the following equation with F_{ha} and F_{xa} evaluated using the equations in (a) and (b)(1), respectively.

$$F_{xha} = \left[\left(\frac{1}{F_{xa}^2} \right) - \left(\frac{C_1}{C_2 F_{xa} F_{ha}} \right) + \left(\frac{1}{C_2^2 F_{ha}^2} \right) \right]^{-0.5}$$
(4.4.69)

$$C_1 = \frac{F_{xa} \cdot FS + F_{ha} \cdot FS}{S_y} - 1.0 \tag{4.4.70}$$

$$C_2 = \frac{f_x}{f_h}$$
(4.4.71)

$$f_x = f_a + f_q \quad \text{for} \quad f_x \le F_{xha} \tag{4.4.72}$$

The parameters f_a and f_q are defined in (k).

The values of *FS* are given in 4.4.2. The values of *FS* are to be determined independently for axial and hoop directions.

(2) For $0.15 < \lambda_c < 1.2$, F_{xha} is computed from the following equation with $F_{ah1} = F_{xha}$ evaluated using the equations in (1) and F_{ah2} using the following procedure. The value of F_{ca} used in the calculation of F_{ah2} is evaluated using the equations in (b)(2) with $F_{xa} = F_{xha}$ as determined in (1). As noted, the load on the end of a cylinder due to external pressure does not contribute to column buckling and therefore F_{ah1} is compared with f_a rather than f_x . The stress due to the pressure load does, however, lower the effective yield stress and the quantity in $(1 - f_q/S_y)$ accounts for this reduction.

$$F_{xha} = \min[F_{ah1}, F_{ah2}]$$
 (4.4.73)

$$F_{ah2} = F_{ca} \left(1 - \frac{f_q}{S_y} \right) \tag{4.4.74}$$

(3) For $\lambda_c \leq 0.15$, the allowable hoop compressive membrane stress, F_{hxa} , is given by the following equation:

$$F_{hxa} = \frac{F_{xha}}{C_2} \tag{4.4.75}$$

(4) For $\lambda_c \ge 1.2$, the rules in (e) do not apply.

(f) Compressive Bending Stress and Hoop Compression. The allowable compressive stress for the combination of axial compression due to a bending moment and hoop compression, F_{bha} , is computed using the following equations.

(1) An iterative solution procedure is utilized to solve these equations for C_3 with F_{ha} and F_{ba} evaluated using the equations in (a) and (c), respectively.

$$F_{bha} = C_3 C_4 F_{ba} \tag{4.4.76}$$

$$C_4 = \left(\frac{f_b}{f_h}\right) \left(\frac{F_{ha}}{F_{ba}}\right) \tag{4.4.77}$$

$$C_3^2 \left(C_4^2 + 0.6C_4 \right) + C_3^{2n} - 1 = 0$$
(4.4.78)

$$n = 5 - \frac{4F_{ha} \cdot FS}{S_y} \tag{4.4.79}$$

(2) The allowable hoop compressive membrane stress, F_{hba} , is given by the following equation:

$$F_{hba} = F_{bha} \left(\frac{f_h}{f_b} \right) \tag{4.4.80}$$

(g) Shear Stress and Hoop Compression. The allowable compressive stress for the combination of shear, F_{vha} , and hoop compression is computed using the following equations.

(1) The allowable shear stress is given by the following equation with F_{ha} and F_{va} evaluated using the equations in (a) and (d), respectively.

$$F_{vha} = \left[\left(\frac{F_{va}^2}{2C_5 F_{ha}} \right)^2 + F_{va}^2 \right]^{0.5} - \frac{F_{va}^2}{2C_5 F_{ha}}$$
(4.4.81)

$$C_5 = \frac{f_v}{f_h}$$
(4.4.82)

(2) The allowable hoop compressive membrane stress, F_{hva} , is given by the following equation:

$$F_{hva} = \frac{F_{vha}}{C_5} \tag{4.4.83}$$

(*h*) Axial Compressive Stress, Compressive Bending Stress, Shear Stress, and Hoop Compression. The allowable compressive stress for the combination of uniform axial compression, axial compression due to a bending moment, and shear in the presence of hoop compression is computed using the following interaction equations.

(1) The shear coefficient is determined using the following equation with F_{va} from (d).

$$K_{S} = 1.0 - \left(\frac{f_{v}}{F_{va}}\right)^{2}$$
 (4.4.84)

(2) For $\lambda_c \leq 0.15$, the acceptability of a member subject to compressive axial and bending stresses, f_a and f_b , respectively, is determined using the following interaction equation with F_{xha} and F_{bha} evaluated using the equations in (e)(1) and (f)(1), respectively.

$$\left(\frac{f_a}{K_s F_{xha}}\right)^{1.7} + \left(\frac{f_b}{K_s F_{bha}}\right) \le 1.0 \tag{4.4.85}$$

(3) For 0.15 < $\lambda_c \le 1.2$, the acceptability of a member subject to compressive axial and bending stresses, f_a and f_b , respectively, is determined using the following interaction equation with F_{xha} and f_{bha} evaluated using the equations in (e)(2) and (f)(1), respectively.

$$\left(\frac{f_a}{K_s F_{xha}}\right) + \left(\frac{8}{9} \frac{\Delta f_b}{K_s F_{bha}}\right) \le 1.0 \text{ for } \frac{f_a}{K_s F_{xha}} \ge 0.2$$
(4.4.86)

$$\left(\frac{f_a}{2K_s F_{xha}}\right) + \left(\frac{\Delta f_b}{K_s F_{bha}}\right) \le 1.0 \text{ for } \frac{f_a}{K_s F_{xha}} < 0.2$$
(4.4.87)

$$\Delta = \frac{C_m}{1 - \left(\frac{f_a \cdot FS}{F_e}\right)} \tag{4.4.88}$$

$$F_e = \frac{\pi^2 E_y}{\left(\frac{K_u L_u}{r_g}\right)^2} \tag{4.4.89}$$

(i) Axial Compressive Stress, Compressive Bending Stress, and Shear. The allowable compressive stress for the combination of uniform axial compression, axial compression due to a bending moment, and shear in the absence of hoop compression is computed using the following interaction equations:

(1) The shear coefficient is determined using the equation in (h)(1) with F_{va} from (d).

(2) For $\lambda_c \leq 0.15$, the acceptability of a member subject to compressive axial and bending stresses f_a and f_b , respectively, is determined using the following interaction equation with, F_{xa} and F_{ba} evaluated using the equations in (b)(1) and (c), respectively.

$$\left(\frac{f_a}{K_s F_{xa}}\right)^{1.7} + \left(\frac{f_b}{K_s F_{ba}}\right) \le 1.0 \tag{4.4.90}$$

(3) For 0.15 < $\lambda_c \le 1.2$, the acceptability of a member subject to compressive axial and bending stresses, f_a and f_b , respectively, is determined using the following interaction equation with, F_{ca} and F_{ba} evaluated using the equations in (b)(2) and (c) respectively. The coefficient Δ is evaluated using the equations in (h)(3).

$$\left(\frac{f_a}{K_s F_{ca}}\right) + \left(\frac{8}{9} \frac{\Delta f_b}{K_s F_{ba}}\right) \le 1.0 \text{ for } \frac{f_a}{K_s F_{ca}} \ge 0.2$$

$$(4.4.91)$$

$$\left(\frac{f_a}{2K_sF_{ca}}\right) + \left(\frac{\Delta f_b}{K_sF_{ba}}\right) \le 1.0 \text{ for } \frac{f_a}{K_sF_{ca}} < 0.2$$
(4.4.92)

(*j*) The maximum deviation, *e* may exceed the value of e_x given in 4.4.4.2 if the maximum axial stress is less than F_{xa} for shells designed for axial compression only, or less than F_{xha} for shells designed for combinations of axial compression and external pressure. The change in buckling stress, F'_{xe} , is given by eq. (4.4.93). The reduced allowable buckling stress, F_{xa} (reduced), is determined using eq. (4.4.94) where *e* is the new maximum deviation, F_{xa} is determined using eq. (4.4.58), and FS_{xa} is the value of the stress reduction factor used to determine F_{xa} .

$$F'_{Xe} = \left(0.944 - \left| 0.286\log\left[\frac{0.0005e}{e_X}\right]\right| \left| \left(\frac{E_y t}{R}\right) \right|$$
(4.4.93)

$$F_{xa(\text{reduced})} = \frac{F_{xa} \cdot FS_{xa} - F'_{xe}}{FS_{xa}}$$
(4.4.94)

The quantity $0.286\log[0.0005(e/e_x)]$ in eq. (4.4.93) is an absolute number (i.e., the log of a very small number is negative). For example, if $e = e_x$, then the change in the buckling stress computed using eq. (4.4.93) is $F'_{xe} = 0.086E_y(t/R)$.

ASME BPVC.VIII.2-2023

(*k*) Section Properties, Stresses, Buckling Parameters. Equations for section properties, nominal shell stresses, and buckling parameters that are used in (a) through (i) are provided below.

$$A = \frac{\pi \left(D_o^2 - D_i^2 \right)}{4} \tag{4.4.95}$$

$$S = \frac{\pi \left(D_o^4 - D_i^4 \right)}{32D_o} \tag{4.4.96}$$

$$f_h = \frac{PD_o}{2t} \tag{4.4.97}$$

$$f_b = \frac{M}{S} \tag{4.4.98}$$

$$f_a = \frac{F}{A} \tag{4.4.99}$$

$$f_q = \frac{P\pi D_i^2}{4A}$$
(4.4.100)

$$f_{\nu} = \frac{V \sin[\phi]}{A} \tag{4.4.101}$$

$$r_g = 0.25\sqrt{D_o^2 + D_i^2} \tag{4.4.102}$$

$$M_X = \frac{L}{\sqrt{R_o t}} \tag{4.4.103}$$

$$\lambda_c = \frac{K_u L_u}{\pi r_g} \left(\frac{F_{xa} \cdot FS}{E_y} \right)^{0.5}$$
(4.4.104)

4.4.12.3 Conical Shells. Unstiffened conical transitions or cone sections between stiffening rings of conical shells with a half-apex angle, α , less than 60 deg shall be evaluated as an equivalent cylinder using the equations in 4.4.12.2 with the substitutions shown below. Both the shell tolerances and stress criteria in this paragraph shall be satisfied at all cross-sections along the length of the cone.

(a) The value of t_c is substituted for t to determine the allowable compressive stress.

(b) The value of $D/\cos \alpha$ is substituted for D_o to determine the allowable compressive stress where D is the outside diameter of the cone at the point under consideration.

(c) The value of $L_c/\cos \alpha$, is substituted for L where L_c is the distance along the cone axis between stiffening rings.

4.4.12.4 Spherical Shells and Formed Heads. The allowable compressive stresses are based on the ratio of the biaxial stress state.

(a) Equal Biaxial Stresses. The allowable compressive stress for a spherical shell subject to a uniform external pressure, F_{ha} , is given by the equations in 4.4.7.

(b) Unequal Biaxial Stresses, Both Stresses Are Compressive. The allowable compressive stress for a spherical shell subject to unequal biaxial stresses, σ_1 and σ_2 , where both σ_1 and σ_2 are compressive stresses resulting from the applied loads is given by the equations shown below. In these equations, F_{ha} is determined using 4.4.7. F_{1a} is the allowable compressive stress in the direction of σ_1 and is the F_{2a} allowable compressive stress in the direction of σ_2 .

$$F_{1a} = \frac{F_{ha}}{0.6 + 0.4k} \tag{4.4.105}$$

$$F_{2a} = kF_{1a} \tag{4.4.106}$$

$$k = \frac{\sigma_2}{\sigma_1} \text{ where } \left| \sigma_1 \right| > \left| \sigma_2 \right| \tag{4.4.107}$$

(c) Unequal Biaxial Stresses, One Stress Is Compressive and the Other Is Tensile. The allowable compressive stress for a spherical shell subject to unequal biaxial stresses, σ_1 and σ_2 , where σ_1 is compressive and σ_2 is tensile, resulting from the applied loads is given by the equations shown below. In these equations, F_{1a} is the allowable compressive stress in the direction of σ_1 , and is the value of F_{ha} determined using 4.4.7 with F_{he} computed using the following equations.

$$F_{he} = \frac{(C_o + C_p)E_y t}{R_o}$$
(4.4.108)

$$C_o = \frac{102.2}{195 + \frac{R_o}{t}} \quad \text{for } \frac{R_o}{t} < 622 \tag{4.4.109}$$

$$C_o = 0.125 \text{ for } 622 \le \frac{R_o}{t} \le 1\ 000$$
 (4.4.110)

$$C_p = \frac{1.06}{3.24 + \left(\frac{E_y t}{\sigma_2 R_o}\right)}$$
(4.4.111)

4.4.13 CYLINDRICAL-TO-CONICAL SHELL TRANSITION JUNCTIONS WITHOUT A KNUCKLE

4.4.13.1 The design rules in 4.3.11 shall be satisfied. In these calculations, a negative value of pressure shall be used in all applicable equations.

4.4.13.2 If a stiffening ring is provided at the cone-to-cylinder junction, the design shall be made in accordance with Part 5.

4.4.14 CYLINDRICAL-TO-CONICAL SHELL TRANSITION JUNCTIONS WITH A KNUCKLE

4.4.14.1 The design rules in 4.3.12 shall be satisfied. In these calculations, a negative value of pressure shall be used in all applicable equations.

4.4.14.2 If a stiffening ring is provided within the knuckle, the design shall be made in accordance with Part 5.

4.4.15 NOMENCLATURE

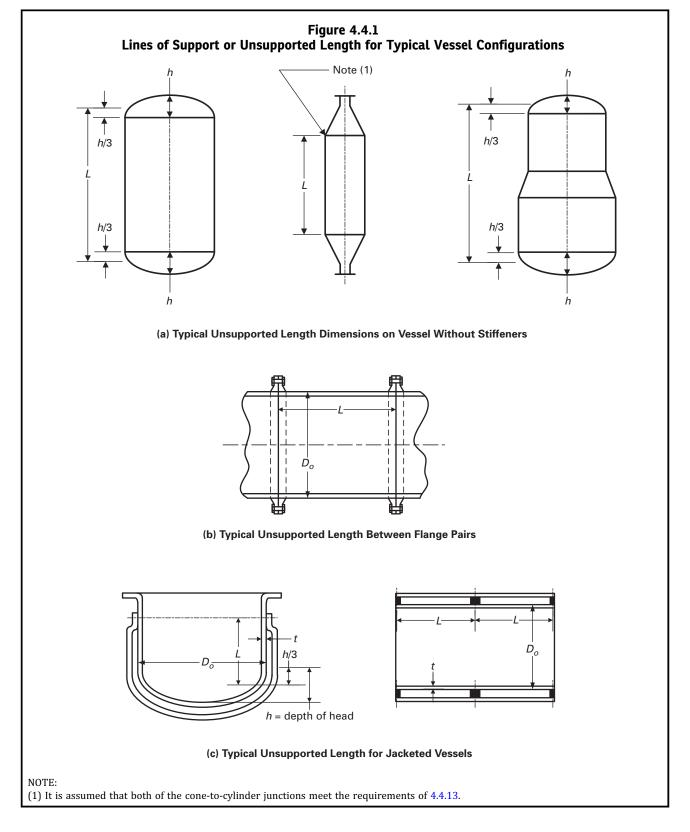
- A = cross-sectional area of cylinder
- A_L = cross-sectional area of a large ring stiffener that acts as a bulkhead
- A_S = cross-sectional area of a small ring stiffener
- C_m = coefficient whose value is established as follows:
 - = 0.85 for compression members in frames subject to joint translation (sideway)
 - = $0.6 0.4(M_1/M_2)$ for rotationally restrained members in frames braced against joint translation and not subject to transverse loading between their supports in the plane of bending; in this equation, is the ratio of the smaller to large bending moment at the ends of the portion of the member that is unbraced in the plane of bending under consideration M_1/M_2 is positive when the member is bent in reverse curvature and negative when the member is bent in single curvature)
 - = 0.85 for compression members in frames braced against joint translation and subject to transverse loading between support points, the member ends are restrained against rotation in the plane of bending
 - = 1.0 for compression members in frames braced against joint translation and subject to transverse loading between support points, the member ends are unrestrained against rotation in the plane of bending
 - = 1.0 for an unbraced skirt supported vessel
- c = distance from the neutral axis to the point under consideration
- D_c = diameter to the centroid of the composite ring section for an external ring; or the inside diameter for and internal ring (see Figure 4.4.6)

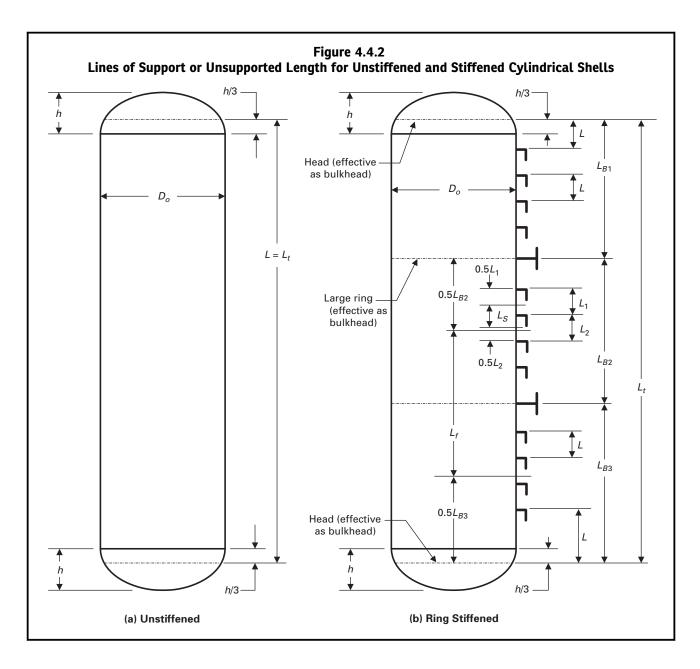
- D_e = outside diameter of an assumed equivalent cylinder for the design of cones or conical sections
- D_i = Inside diameter of cylinder (including the effects of corrosion
- D_L = outside diameter of at the large end of the cone or conical section between lines of support
- D_o = outside diameter of cylinder
- D_S = outside diameter of at the small end of the cone or conical section between lines of support
- E_t = tangent modulus of elasticity of material at the design temperature from Part 3
- E_v = modulus of elasticity of material at the design temperature from Part 3
- F = applied net-section axial compression load
- f_a = axial compressive membrane stress resulting from applied axial load
- f_b = axial compressive membrane stress resulting from applied bending moment
- F_{ba} = allowable compressive membrane stress of a cylinder subject to a net-section bending moment in the absence of other loads
- F_{bha} = allowable axial compressive membrane stress of a cylinder subject to bending in the presence of hoop compression
- F_{ca} = allowable compressive membrane stress of a cylinder due to an axial compressive load with $\lambda_c > 0.15$ f_h = hoop compressive stress in the cylinder from external pressure
- F_{ha} = allowable hoop compressive membrane stress of a cylinder or formed head subject to external pressure only
- F_{hba} = allowable hoop compressive membrane stress of a cylinder in the presence of longitudinal compression due to net-section bending moment
- F_{he} = elastic hoop compressive membrane failure stress of a cylinder or formed head subject to external pressure only
- F_{hef} = average value of the hoop buckling stress, F_{he} , averaged over the length L_F where F_{he} is determined from eq. (4.4.17)
- F_{hva} = allowable hoop compressive membrane stress of a cylinder in the presence of shear stress
- F_{hxa} = allowable hoop compressive membrane stress of a cylinder in the presence of axial compression
- F_{ic} = predicted inelastic buckling stress
- f_q = axial compressive membrane stress resulting from the pressure load, Q_p , on the end of the cylinder
- F_{ta} = allowable tensile stress from 3.8
- f_v = shear stress from applied loads
- F_{va} = allowable shear stress of a cylinder subject only to shear loads
- F_{ve} = elastic shear buckling stress of a cylinder subject only to shear loads
- F_{vhg} = allowable shear stress of a cylinder subject to shear stress in the presence of hoop compression
- F_{xa} = allowable compressive membrane stress of a cylinder due to an axial compressive load with $\lambda_c \leq 0.15$
- F_{xe} = elastic axial compressive failure membrane stress (local buckling) of a cylinder in the absence of other loads
- F_{xha} = allowable axial compressive membrane stress of a cylinder in the presence of hoop compression for $\lambda_c \le 0.15$
 - FS = design factor
 - h_1 = length of a flat bar stiffener, or leg of an angle stiffener, or flange of a tee stiffener, as applicable
 - h_2 = length of the angle leg or web of the stiffener, as applicable
 - h_o = height of the elliptical head measured to the outside surface
 - I = moment of inertia of the cylinder or cone cross section
 - I_{L}^{c} = actual moment of inertia of the composite section comprised of the large stiffening ring and effective length of the shell about the centroidal axis
 - I_L = actual moment of inertia of the large stiffening ring
 - I_s = actual moment of inertia of the small stiffening ring
 - $I_s^{\ C}$ = actual moment of inertia of the composite section comprised of the small stiffening ring and effective length of the shell about the centroidal axis
 - K_o = elliptical head factor:
 - K_u = coefficient based on end conditions of a member subject to axial compression:
 - = 2.10 for a member with one free end and the other end fixed. In this case, "member" is the unbraced cylindrical shell or cylindrical shell section as defined in this Nomenclature.
 - = 1.00 for a member with both ends pinned,
 - = 0.80 for a member with one end pinned and the other end fixed,
 - = 0.65 for a member with both ends fixed

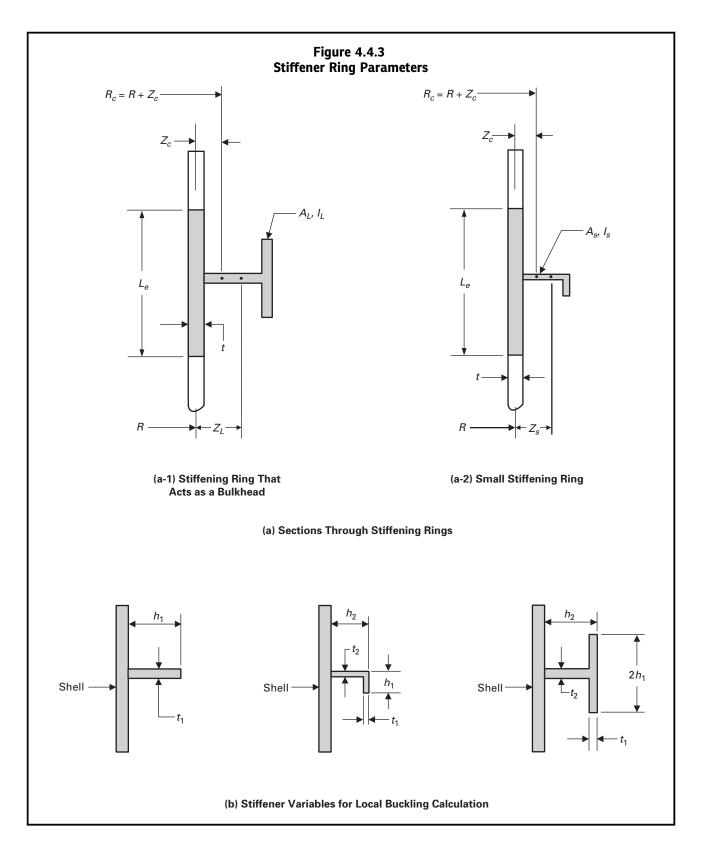
 $L_{B,L_{B1},L_{B2,...}}$ = design lengths of the cylinder between bulkheads or large rings designated to act as bulkheads (see Figure 4.4.2)

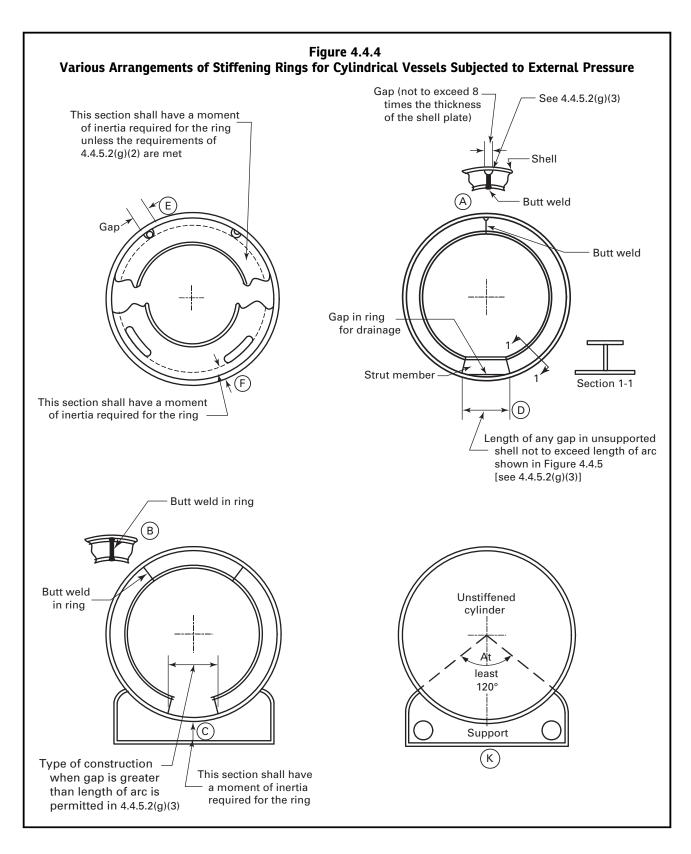
- L_c = axial length of a cone or conical section for an unstiffened cone, or the length from the cone-to-cylinder junction to the first stiffener in the cone for a stiffened cone (see Figures 4.4.6 and 4.4.7)
- L_d = design length of an unsupported cylinder or conical shell (see Figure 4.4.5)
- L_e = effective length of the shell
- L_{ec} = chord length of segmental circular template used to measure deviation from a true circle of a cylinder
- L_{es} = chord length of segmental circular template used to measure deviation from a true circle of a sphere
- L_F = one-half of the sum of the distances, L_B , from the center line of a large ring to the next large ring of head line of support on either side of the large ring
- L_s = one-half of the sum of the distances from the centerline of a stiffening ring to the next line of support on either side of the ring measured parallel to the axis of the cylinder. A line of support is defined in the definition of L
- L_t = overall length of the vessel
- L_u = laterally unbraced length of cylindrical member that is subject to column buckling, equal to zero when evaluating the shell of a vessel under external pressure only
- L_{1}, L_{2}, \dots = design lengths of the unstiffened vessel sections between lines of support (see Figure 4.4.2). A line of support is

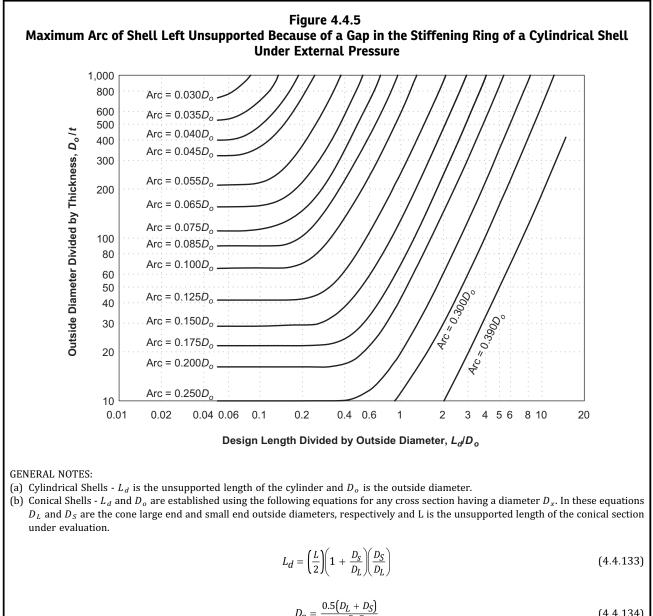
(*a*) a circumferential line on a head (excluding conical heads) at one-third the depth of the head measured from the tangent line

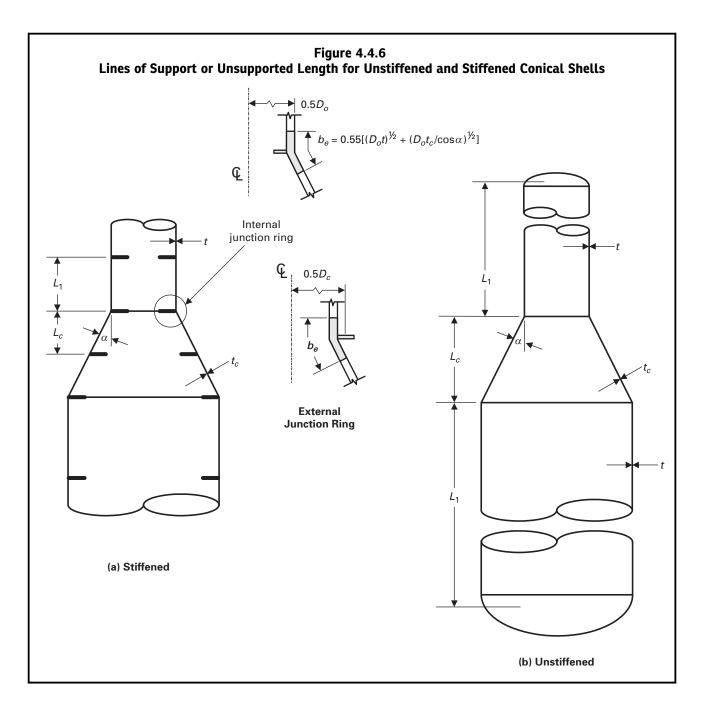

- (b) a small stiffening ring that meets the requirements of 4.4.5.2(b), or
- (c) a tubesheet
- M = applied net-section bending moment
- M_x = shell parameter
- *P* = applied external pressure
- P_a = allowable external pressure in the absence of other loads
- R = inside or outside radius of cylindrical, conical, and spherical shells, as applicable
- R_c = radius to the centroid of the combined ring stiffener and effective length of the shell, $R_c = R + Z_c$ (see Figure 4.4.3)
- r_f = inside radius of the flare
- r_g = radius of gyration
- $\vec{r_k}$ = inside radius of the knuckle
- R_L = inside radius of the cylinder at the large end of a cone to cylinder junction
- R_m = radius to the centerline of the shell
- R_o = outside radius of a cylinder or spherical shell
- R_S = inside radius of the cylinder at the small end of a cone to cylinder junction
- S = section modulus of the shell
- S_v = minimum specified yield strength from Annex 3-D at specified design metal temperature
- t = shell thickness
- t_1 = thickness of a flat bar stiffener, or leg of an angle stiffener, or flange of a tee stiffener, as applicable
- t_2 = thickness of the angle leg or web of the stiffener, as applicable
- t_c = cone thickness
- t_L = shell thickness of large end cylinder at a conical transition
- t_s = shell thickness of small end cylinder at a conical transition
- V = net-section shear force
- Z_c = radial distance from the centerline of the shell to the combined section of the ring stiffener and effective length of the shell
- Z_L = radial distance from the centerline of the shell to the centroid of the large ring stiffener
- Z_s = radial distance from the centerline of the shell to the centroid of the small ring stiffener
- α = one-half of the conical shell apex angle (degrees)
- γ = buckling parameter
- λ_c = slenderness factor for column buckling
- σ_1 = principal compressive stress in the 1-direction
- σ_2 = principal compressive stress in the 2-direction
- ϕ = angle measured around the circumference from the direction of the applied shear force to the point under consideration

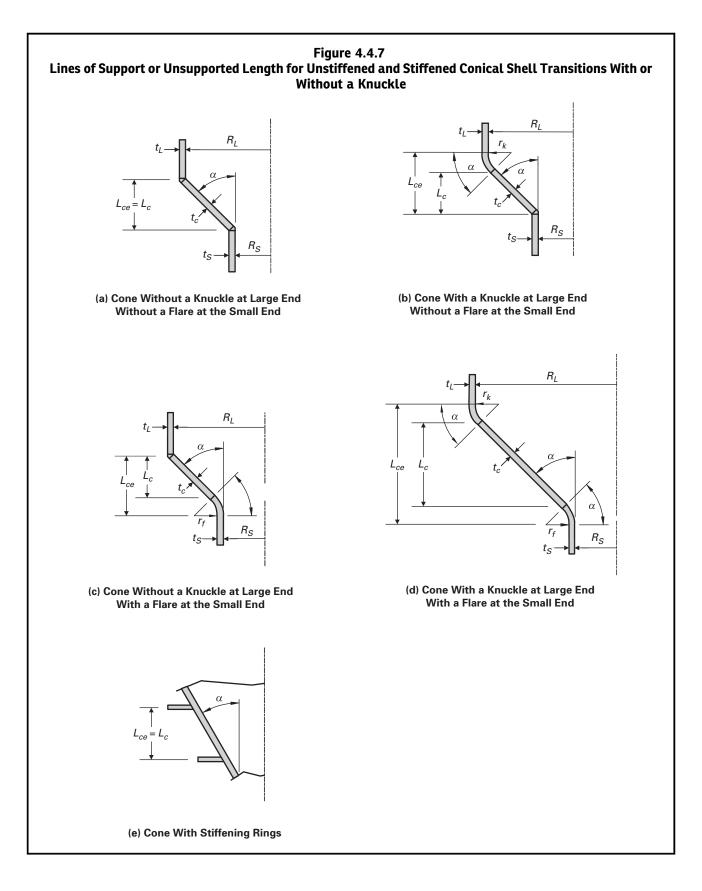

4.4.16 **TABLES**


Table 4.4.1 Maximum Metal Temperature for Compressive Stress Rules			
	Temperature Limit		
Materials	°C	°F	
Carbon and Low Alloy Steels — Table 3-A.1	425	800	
High Alloy Steels — Table 3-A.3	425	800	
Quenched and Tempered Steels — Table 3-A.2	370	700	
Aluminum and Aluminum Alloys — Table 3-A.4	150	300	
Copper and Copper Alloys — Table 3-A.5	65	150	
Nickel and Nickel Alloys — Table 3-A.6	480	900	
Titanium and Titanium Alloys — Table 3-A.7	315	600	


Table 4.4.2 Algorithm for Computation of Predicted Inelastic Buckling Stress, F _{ic}		
	Ae = Fe / E	
	Ficup = MSTS	
	Ficlow = 0.0	
	TOLAdiff = 0.00001	
	Adiff = 1.0	
	Do While Adiff > TOLAdiff	
	Ficg = 0.5 * (Ficup + Ficlow)	
	Etg = (1/E +D1 + D2 + D3 + D4)^-1 [See Note (1)]	
	Ai = Ficg / Etg	
	Adiff = Ai - Ae	
	IF (Adiff < 0.0)	
	Ficlow = Ficg	
	ELSE	
	Ficup = Ficg	
	END IF	
	Adiff = ABS(Adiff)	
	End Do	
	Fic = Ficg	
GENERAL NOTES:		
(a) The variables are defined a	s follows:	
A_e = elastic bucklin	a ratio factor	
A_i = inelastic buckl		
	isticity of material at design temperature	
	nt modulus (see 3-D.5.1 for intermediate calculations)	
F_e = predicted elas		
	cted inelastic buckling stress that satisfies the iterative solution	
F_{icg} = value of the s $F_{ic,low}$ = lower bound g	tress used to calculate the tangent modulus of elasticity, E_{tg}	
$F_{ic,up}$ = upper bound g		
$TOLA_{diff}$ = tolerance on it		
(b) This algorithm is only one j	possible means to determine the value of F_{ic} . Other methods that produce similar results are acceptable.	
NOTE:		
1) See equations from 3-D.5.1.		


4.4.17 FIGURES





$$D_{o} = \frac{0.5(D_{L} + D_{S})}{\cos[\alpha]}$$
(4.4.134)

4.5 DESIGN RULES FOR OPENINGS IN SHELLS AND HEADS

4.5.1 SCOPE

The rules in 4.5 are applicable for the design of nozzles in shells and heads subjected to internal pressure, external pressure, and external forces and moments from supplemental loads as defined in 4.1. Configurations, including dimensions and shape, and/or loading conditions that do not satisfy the rules of this 4.5 may be designed in accordance with Part 5.

4.5.2 DIMENSIONS AND SHAPE OF NOZZLES

4.5.2.1 Nozzles shall be circular, elliptical, or of any other shape which results from the intersection of a circular or elliptical cylinder with vessels of the shapes for which design equations are provided in 4.3 and 4.4. The design rules in this paragraph shall be used only if the ratio of the inside diameter of the shell and the shell thickness is less than or equal to 400, except that the rules of 4.5.10 and 4.5.11 may be used without restriction on the ratio of the inside diameter to shell thickness.

4.5.2.2 With the exception of studding outlet type flanges and the straight hubs of forged nozzle flanges (see 4.1.11.3), bolted flange material within the limits of reinforcement shall not be considered to have reinforcement value. With the exception of material within an integral hub, no material in a tubesheet or flat head shall be credited as reinforcement for an opening in an adjacent shell or head.

4.5.2.3 Nozzle openings that do not satisfy the criteria of 4.5.2.1 and other geometries shall be designed in accordance with Part 5.

4.5.3 METHOD OF NOZZLE ATTACHMENT

4.5.3.1 Nozzles may be attached to the shell or head of a vessel by the following methods.

(*a*) Welded Connections - Nozzles attachment by welding shall be in accordance with the requirements of 4.2.2. If other details not included in this paragraph are required, the nozzle detail shall be designed using Part 5.

(b) Studded Connections - Nozzles may be made by means of studded pad type connections. The vessel shall have a flat surface machined on the shell, or on a built-up pad, or on a properly attached plate or fitting. Drilled holes to be tapped shall not penetrate within one-fourth of the wall thickness from the inside surface of the vessel after deducting corrosion allowance, unless at least the minimum thickness required as above is maintained by adding metal to the inside surface of the vessel. Where tapped holes are provided for studs, the threads shall be full and clean and shall engage the stud for a length, L_{st} , defined by the following equations.

$$L_{\rm st} = \min[L_{\rm st1}, \ 1.5d_{\rm st}] \tag{4.5.1}$$

where

$$L_{\rm st1} = \max\left[d_{\rm str} \ 0.75 d_{\rm st} \left(\frac{S_{\rm st}}{S_{tp}}\right)\right] \tag{4.5.2}$$

(c) Threaded Connections - Pipes, tubes, and other threaded connections that conform to the ANSI/ASME Standard for Pipe Threads, General Purpose, Inch (ASME B1.20.1) may be screwed into a threaded hole in a vessel wall, provided the connection size is less than or equal to DN 50 (NPS 2) and the pipe engages the minimum number of threads specified in Table 4.5.1 after allowance has been made for curvature of the vessel wall. The thread shall be a standard taper pipe thread except that a straight thread of at least equal strength may be used if other sealing means to prevent leakage are provided. A built-up pad or a properly attached plate or fitting may be used to provide the metal thickness and number of threads required in Table 4.5.1, or to furnish reinforcement when required.

(*d*) Expanded Connections - A pipe, tube, or forging may be attached to the wall of a vessel by inserting through an unreinforced opening and expanding into the shell, provided the diameter is not greater than DN 50 (NPS 2) pipe size. A pipe, tube, or forging not exceeding 150 mm (6 in.) in outside diameter may be attached to the wall of a vessel by inserting through a reinforced opening and expanding into the shell. The expanded connection shall be made using one of the following methods:

- (1) Firmly rolled in and beaded
- (2) Rolled in, beaded, and seal-welded around the edge of the bead
- (3) Expanded and flared not less than 3 mm (0.125 in.) over the diameter of the hole

(4) Rolled, flared, and welded; or

(5) Rolled and welded without flaring or beading, provided the ends extend at least 6 mm (0.25 in.), but no more than 10 mm (0.375 in.), through the shell and the throat of the weld is at least 5 mm (0.1875 in.), but no more than 8 mm (0.3125 in.).

4.5.3.2 Additional requirements for nozzle connections are as follows.

(*a*) When the tube or pipe does not exceed 38 mm (1.5 in.) in outside diameter, the shell may be chamfered or recessed to a depth at least equal to the thickness of the tube or pipe and the tube or pipe may be rolled into place and welded. In no case shall the end of the tube or pipe extend more than 10 mm (0.375 in.) beyond the inside diameter of the shell.

(b) Grooving of shell openings in which tubes and pipe are to be rolled or expanded is permissible.

(c) Expanded connections shall not be used as a method of attachment to vessels used for the processing or storage of flammable and/or noxious gases and liquids unless the connections are seal-welded.

(d) Reinforcing plates and saddles attached to the outside of a vessel shall be provided with at least one vent hole [maximum diameter 11 mm ($^{7}/_{16}$ in.)] that may be tapped with straight or tapered threads. These vent holes may be left open or may be plugged when the vessel is in service. If the holes are plugged, the plugging material used shall not be capable of sustaining pressure between the reinforcing plate and the vessel wall. Vent holes shall not be plugged during heat treatment.

4.5.4 NOZZLE NECK MINIMUM THICKNESS REQUIREMENTS

4.5.4.1 The minimum nozzle neck thickness for nozzles excluding access openings and openings for inspection shall be determined for internal and external pressure using 4.3 and 4.4, as applicable. Corrosion allowance and the effects of external forces and moments from supplemental loads shall be considered in these calculations. The resulting nozzle neck thickness shall not be less than the smaller of the shell thickness or the thickness given in Table 4.5.2. Corrosion allowance shall be added to the minimum nozzle neck thickness.

4.5.4.2 The minimum nozzle neck thickness for access openings and openings for inspection shall be determined for internal and external pressure using 4.3 and 4.4. Corrosion allowance shall be considered in these calculations.

4.5.5 RADIAL NOZZLE IN A CYLINDRICAL SHELL

4.5.5.1 The procedure to design a radial nozzle in a cylindrical shell subject to pressure loading is shown below. The parameters used in this design procedure are shown in Figures 4.5.1, 4.5.2, and 4.5.3 and shall be considered in the corroded condition.

Step 1. Determine the effective radius of the shell as follows:

(a) For cylindrical shells:

$$R_{\rm eff} = 0.5D_i \tag{4.5.3}$$

(b) For conical shells R_{eff} is the inside radius of the conical shell at the nozzle centerline to cone junction. The radius is measured normal to the longitudinal axis of the conical shell.

Step 2. Calculate the limit of reinforcement along the vessel wall.

(a) For integrally reinforced nozzles:

$$L_R = \min\left[\sqrt{R_{\text{eff}}t}, 2R_n\right] \text{ for set-in nozzles}$$
(4.5.4)

$$L_R = \min\left[\sqrt{R_{\text{eff}}t}, 2R_n\right] + t_n \text{ for set-on nozzles}$$
(4.5.5)

(b) For nozzles with reinforcing pads:

$$L_{R1} = \sqrt{R_{\rm eff}t} + W \tag{4.5.6}$$

$$L_{R2} = \sqrt{(R_{\rm eff} + t)(t + t_e)}$$
(4.5.7)

$$L_{R3} = 2R_n$$
 (4.5.8)

$$L_R = \min[L_{R1}, L_{R2}, L_{R3}] \text{ for set-in nozzles}$$

$$(4.5.9)$$

$$L_R = \min[L_{R1}, L_{R2}, L_{R3}] + t_n \text{ for set-on nozzles}$$
 (4.5.10)

Step 3. Calculate the limit of reinforcement along the nozzle wall projecting outside the vessel surface.

$$L_{H1} = \min[1.5t, t_e] + \sqrt{R_n t_n}$$
(4.5.11)

$$L_{H2} = L_{pr1}$$
(4.5.12)

$$L_{H3} = 8(t + t_e) \tag{4.5.13}$$

$$L_H = \min[L_{H1}, L_{H2}, L_{H3}] + t$$
 for set-in nozzles (4.5.14)

$$L_H = \min[L_{H1}, L_{H2}, L_{H3}] \text{ for set-on nozzles}$$
(4.5.15)

Step 4. Calculate the limit of reinforcement along the nozzle wall projecting inside the vessel surface, if applicable.

$$L_{I1} = \sqrt{R_n t_n} \tag{4.5.16}$$

$$L_{I2} = L_{pr2} \tag{4.5.17}$$

$$L_{I3} = 8(t + t_e) \tag{4.5.18}$$

$$L_{I} = \min[L_{I1}, L_{I2}, L_{I3}]$$
(4.5.19)

Step 5. Determine the total available area near the nozzle opening (see Figures 4.5.1 and 4.5.2). Do not include any area that falls outside of the limits defined by L_H , L_R , and L_I . For variable thickness nozzles, see Figures 4.5.13 and 4.5.14 for metal area definitions of A_2 .

$$A_T = A_1 + f_{rn}(A_2 + A_3) + A_{41} + A_{42} + A_{43} + f_{rp}A_5$$
(4.5.20)

$$f_{rn} = \min\left[\frac{S_n}{S}, 1\right]$$
(4.5.21)

$$f_{rp} = \min\left[\frac{S_p}{S}, 1\right]$$
(4.5.22)

$$A_1 = \left(tL_R\right) \cdot \max\left[\left(\frac{\lambda}{5}\right)^{0.85}, 1.0\right]$$
(4.5.23)

$$\lambda = \min\left\{\left\{\frac{2R_n + t_n}{\sqrt{\left(D_i + t_{\text{eff}}\right)t_{\text{eff}}}}\right\}, \quad 12.0\right]$$
(4.5.24)

$$t_{\rm eff} = t + \left(\frac{A_5 f_{rp}}{L_R}\right)$$
 for set-in nozzles (4.5.25)

$$t_{\rm eff} = t + \left(\frac{A_5 f_{rp}}{L_R - t_n}\right)$$
 for set-on nozzles (4.5.26)

$$A_2 = t_n L_H$$
 if $t_n = t_{n2}$ or if $L_H \le L_{X3}$ (4.5.27)

$$A_2 = A_{2a} + A_{2b}$$
 if $t_n > t_{n2}$ and $L_{x3} < L_H \le L_{x4}$ (4.5.28)

$$A_2 = A_{2a} + A_{2c}$$
 if $t_n > t_{n2}$ and $L_H > L_{x4}$ (4.5.29)

$$A_{2a} = t_n L_{x3} \tag{4.5.30}$$

$$A_{2b} = \left(\frac{t_n + t_{nx}}{2}\right) \cdot \min\left[0.78\sqrt{R_n\left(\frac{t_n + t_{nx}}{2}\right)}, \left(L_H - L_{x3}\right)\right]$$
(4.5.31)

$$A_{2c} = t_{n2} \cdot \min\left[0.78\sqrt{R_n t_{n2}}, \left(\frac{t_n + t_{n2}}{2t_{n2}}\right) \left(L_{pr4} - L_{pr3}\right) + \left(L_H - L_{x4}\right)\right]$$
(4.5.32)

$$L_{x3} = L_{pr3} + t$$
 for set-in nozzles (4.5.33)

$$L_{x3} = L_{pr3}$$
 for set-on nozzles (4.5.34)

$$L_{x4} = L_{pr4} + t \quad \text{for set-in nozzles} \tag{4.5.35}$$

$$L_{x4} = L_{pr4}$$
 for set-on nozzles (4.5.36)

$$t_{nx} = \left[1 + \frac{(t_n - t_{n2})}{t_{n2}} \cdot \frac{(L_{x4} - L_H)}{(L_{pr4} - L_{pr3})}\right] t_{n2}$$
(4.5.37)

$$A_3 = t_n L_l \tag{4.5.38}$$

$$A_{41} = 0.5L_{41}^2 \tag{4.5.39}$$

$$A_{42} = 0.5L_{42}^2 \tag{4.5.40}$$

$$A_{43} = 0.5L_{43}^2 \tag{4.5.41}$$

$$A_{5a} = Wt_e \tag{4.5.42}$$

$$A_{5b} = L_R t_e$$
 for set-in nozzles (4.5.43)

$$A_{5b} = (L_R - t_n)t_e \text{ for set-on nozzles}$$
(4.5.44)

$$A_5 = \min[A_{5a}, A_{5b}] \tag{4.5.45}$$

Step 6. Determine the applicable forces.

$$f_N = PR_{xn}L_H$$
 for set-in nozzles (4.5.46)

$$f_N = PR_{xn}(L_H + t)$$
 for set-on nozzles (4.5.47)

$$f_s = PR_{xs}(L_R + t_n)$$
 for set-in nozzles (4.5.48)

$$f_s = PR_{xs}L_R$$
 for set-on nozzles (4.5.49)

$$f_Y = PR_{xs}R_{nc} \tag{4.5.50}$$

$$R_{\rm XR} = \frac{t_n}{\ln\left[1 + \frac{t_n}{R_n}\right]} \tag{4.5.51}$$

$$R_{XS} = \frac{t_{\text{eff}}}{\ln\left[1 + \frac{t_{\text{eff}}}{R_{\text{eff}}}\right]}$$
(4.5.52)

Step 7. Determine the average local primary membrane stress and the general primary membrane stress at the nozzle intersection.

$$\sigma_{\rm avg} = \frac{\left(f_N + f_s + f_Y\right)}{A_T} \tag{4.5.53}$$

$$\sigma_{\rm circ} = \frac{PR_{\rm xs}}{t_{\rm eff}} \tag{4.5.54}$$

Step 8. Determine the maximum local primary membrane stress at the nozzle intersection:

$$P_{L} = \max\left[\left(2\sigma_{\rm avg} - \sigma_{\rm circ}\right), \ \sigma_{\rm circ}\right]$$
(4.5.55)

Step 9. The calculated maximum local primary membrane stress should satisfy eq. (4.5.56). If the nozzle is subjected to internal pressure, then the allowable stress, S_{allow} , is given by eq. (4.5.57). If the nozzle is subjected to external pressure, then the allowable stress is given by eq. (4.5.58).

$$P_L \le S_{\text{allow}} \tag{4.5.56}$$

where

$$S_{\text{allow}} = 1.5SE \text{ for internal pressure}$$
 (4.5.57)

$$S_{\text{allow}} = 1.5S$$
 for external pressure (4.5.58)

Step 10. Determine the maximum allowable working pressure at the nozzle intersection.

$$P_{\max 1} = \frac{\frac{S_{\text{allow}}}{\frac{2A_p}{A_T} - \frac{R_{xx}}{t_{\text{eff}}}}$$
(4.5.59)

$$P_{\max 2} = S\left(\frac{t}{R_{xs}}\right) \tag{4.5.60}$$

$$P_{\max} = \min[P_{\max 1}, P_{\max 2}] \tag{4.5.61}$$

where

$$A_p = \frac{f_N + f_S + f_Y}{P}$$
(4.5.62)

4.5.5.2 If the nozzle is subject to external forces and moments from supplemental loads as defined in 4.1, then the local stresses at the nozzle-to-shell intersection shall be evaluated in accordance with 4.5.15.

4.5.6 HILLSIDE NOZZLE IN A CYLINDRICAL SHELL

For a hillside nozzle in a cylindrical shell (see Figure 4.5.4), the design procedure in 4.5.5 shall be used with the following substitution.

$$R_{nc} = \max\left[\left(\frac{R_{ncl}}{2}\right), R_n\right]$$
(4.5.63)

where

$$R_{ncl} = R_{eff} \left(\theta_1 - \theta_2 \right) \tag{4.5.64}$$

$$\theta_1 = \arccos\left[\frac{D_X}{R_{\rm eff}}\right]$$
(4.5.65)

$$\theta_2 = \arccos\left[\frac{D_X + R_n}{R_{\text{eff}}}\right]$$
(4.5.66)

4.5.7 NOZZLE IN A CYLINDRICAL SHELL ORIENTED AT AN ANGLE FROM THE LONGITUDINAL AXIS

For a nozzle in a cylindrical shell oriented at an angle from the longitudinal axis, the design procedure in 4.5.5 shall be used with the following substitutions (see Figure 4.5.5):

$$R_{nc} = \frac{R_n}{\sin[\theta]} \tag{4.5.67}$$

$$f_{S} = PR_{xS} \left(L_{R} + \frac{t}{\tan\left[\theta\right]} + \frac{t_{n}}{\sin\left[\theta\right]} \right)$$
for set-in nozzles (4.5.68)

$$f_{S} = PR_{XS} \left(L_{R} + \frac{t}{\tan[\theta]} \right)$$
 for set-on nozzles (4.5.69)

$$A_{1} = t \left(L_{R} + \frac{t}{2 \tan\left[\theta\right]} \right) \cdot \max\left[\left(\frac{\lambda}{5}\right)^{0.85}, 1.0 \right]$$
(4.5.70)

4.5.8 RADIAL NOZZLE IN A CONICAL SHELL

For a radial nozzle in a conical shell (see Figure 4.5.6), the design procedure in 4.5.5 shall be used with the following substitutions.

$$f_{s} = \frac{P}{\cos[\alpha]} \left(R_{\text{eff}} + R_{nc} \sin[\alpha] + \frac{L_{t} \sin[\alpha]}{2} \right) L_{t}$$
(4.5.71)

$$f_Y = \frac{P}{\cos[\alpha]} \left(R_{\text{eff}} + \frac{R_{nc} \sin[\alpha]}{2} \right) R_{nc}$$
(4.5.72)

$$L_t = L_R + t_n \text{ for set-in nozzles}$$
(4.5.73)

$$L_t = L_R$$
 for set-on nozzles (4.5.74)

$$R_{\rm XS} = \frac{t_{\rm eff}}{\ln\left[1 + \frac{t_{\rm eff}\cos[\alpha]}{R_{\rm eff} + L_c\sin[\alpha]}\right]}$$
(4.5.75)

$$L_c = L_t + R_{nc} \tag{4.5.76}$$

$$R_{nc} = R_n \tag{4.5.77}$$

4.5.9 NOZZLE IN A CONICAL SHELL

4.5.9.1 If a nozzle in a conical shell is oriented perpendicular to the longitudinal axis (see Figure 4.5.7), then the design procedure in 4.5.8 shall be used with the following substitutions.

$$R_{nc} = \frac{R_n}{\cos[\alpha]} \tag{4.5.78}$$

$$A_{1} = t \left(L_{R} + \frac{t \cdot \tan[\alpha]}{2} \right) \cdot \max\left[\left(\frac{\lambda}{5} \right)^{0.85}, 1.0 \right]$$
(4.5.79)

$$L_t = L_R + \frac{t_n}{\cos[\alpha]} + t \cdot \tan[\alpha] \text{ for set-in nozzles}$$
(4.5.80)

$$L_t = L_R + t \cdot \tan\left[\alpha\right] \text{ for set-on nozzles}$$
(4.5.81)

4.5.9.2 If a nozzle in a conical shell is oriented parallel to the longitudinal axis (see Figure 4.5.8), then the design procedure in 4.5.8 shall be used with the following substitution.

$$R_{nc} = \frac{R_n}{\sin[\alpha]} \tag{4.5.82}$$

$$A_{1} = t \left(L_{R} - \frac{t}{2 \tan[\alpha]} \right) \cdot \max\left[\left(\frac{\lambda}{5} \right)^{0.85}, 1.0 \right]$$
(4.5.83)

$$L_t = L_R - \frac{t}{\tan[\alpha]} + \frac{t_n}{\sin[\alpha]}$$
 for set-in nozzles (4.5.84)

$$L_t = L_R - \frac{t}{\tan[\alpha]} \text{ for set-on nozzles}$$
(4.5.85)

4.5.10 RADIAL NOZZLE IN A SPHERICAL SHELL OR FORMED HEAD

4.5.10.1 The procedure to design a radial nozzle in a spherical shell or formed head subject to pressure loading is shown below. The parameters used in this design procedure are shown in Figures 4.5.1, 4.5.2, and 4.5.9 and shall be considered in the corroded condition.

Step 1. Determine the effective radius of the shell or formed head as follows.

(a) For spherical shells:

$$R_{\rm eff} = 0.5 D_i$$
 (4.5.86)

(b) For ellipsoidal heads:

$$R_{\rm eff} = \frac{0.9D_i}{6} \left[2 + \left(\frac{D_i}{2h}\right)^2 \right]$$
(4.5.87)

(c) For torispherical heads:

$$R_{\rm eff} = L \tag{4.5.88}$$

Step 2. Calculate the limit of reinforcement along the vessel wall.

(a) For integrally reinforced nozzles in spherical shells and ellipsoidal heads:

$$L_R = \min\left[\sqrt{R_{\text{eff}}t}, 2R_n\right]$$
 for set-in nozzles (4.5.89)

$$L_R = \min\left[\sqrt{R_{\text{eff}}t}, \ 2R_n\right] + t_n \text{ for set-on nozzles}$$
(4.5.90)

(b) For integrally reinforced nozzles in torispherical heads:

$$L_{R1} = \max\left[\frac{D_i}{2} - \left(D_R + \left(R_n + t_n\right)\cos\left[\theta\right]\right), \ 0.0\right]$$
(4.5.91)

$$\theta = \arcsin\left[\frac{D_R}{L}\right]$$
 when $D_R \le L \sin\left[\theta_0\right]$ (4.5.92)

$$\theta = \arcsin\left[\frac{D_R - \frac{D_i}{2} + r_k}{r_k}\right] \text{ when } D_R > L\sin[\theta_0]$$
(4.5.93)

$$\theta_0 = \arcsin\left[\frac{\frac{D_i}{2} - r_k}{L - r_k}\right] \tag{4.5.94}$$

$$L_{R2} = \min\left[\sqrt{R_{\text{eff}}t}, 2R_n\right]$$
(4.5.95)

$$L_R = \min[L_{R1}, L_{R2}] \tag{4.5.96}$$

(c) For pad reinforced nozzles:

$$L_{R1} = \sqrt{R_{\rm eff}t} + W \tag{4.5.97}$$

$$L_{R2} = \sqrt{(R_{\rm eff} + t)(t + t_e)}$$
(4.5.98)

$$L_{R3} = 2R_n (4.5.99)$$

$$L_R = \min[L_{R1}, L_{R2}, L_{R3}]$$
 for set-in nozzles (4.5.100)

$$L_R = \min[L_{R1}, L_{R2}, L_{R3}] + t_n$$
 for set-on nozzles (4.5.101)

Step 3. Calculate the limit of reinforcement along the nozzle wall projecting outside the vessel surface.

$$L_{H} = \min\left[t + t_{e} + F_{p}\sqrt{R_{n}t_{n}}, L_{pr1} + t\right]$$
for set-in nozzles (4.5.102)

$$L_H = \min\left[t_e + F_p \sqrt{R_n t_n}, \ L_{pr1}\right] \text{ for set-on nozzles}$$
(4.5.103)

(a) For spherical shells and heads:

$$F_p = C_n \tag{4.5.104}$$

(b) For ellipsoidal and torispherical heads:

$$F_p = \min\left[C_n, C_p\right] \text{ for } X_o > 0.35D_i \tag{4.5.105}$$

$$F_p = C_n \text{ for } X_0 \le 0.35 D_i$$
 (4.5.106)

$$X_{o} = \min\left[D_{R} + (R_{n} + t_{n})\cos\left[\theta\right], \frac{D_{i}}{2}\right]$$
(4.5.107)

(1) For ellipsoidal heads,

$$C_p = \exp\left[\frac{0.35D_i - X_o}{16t}\right]$$
(4.5.108)

$$\theta = \arctan\left[\left(\frac{h}{R}\right) \cdot \left(\frac{D_R}{\sqrt{R^2 - D_R^2}}\right)\right]$$
(4.5.109)

(2) For torispherical heads,

$$C_p = \exp\left[\frac{0.35D_i - X_o}{8t}\right] \tag{4.5.110}$$

 θ is calculated using eqs. (4.5.92) through (4.5.94). The parameter C_n is given by eq. (4.5.111).

$$C_n = \min\left[\left(\frac{t+t_e}{t_n}\right)^{0.35}, 1.0\right]$$
 (4.5.111)

Step 4. Calculate the limit of reinforcement along the nozzle wall projecting inside the vessel surface, if applicable.

$$L_I = \min\left[F_p \sqrt{R_n t_n} , L_{pr2}\right]$$
(4.5.112)

Step 5. Determine the total available area near the nozzle opening (see Figures 4.5.1 and 4.5.2) where f_{rn} and f_{rp} are given by eqs. (4.5.21) and (4.5.22), respectively. Do not include any area that falls outside of the limits defined by L_H , L_R , and L_I . For variable thickness nozzles, see Figures 4.5.13 and 4.5.14 for metal area definitions of A_2 .

$$A_T = A_1 + f_{rn}(A_2 + A_3) + A_{41} + A_{42} + A_{43} + f_{rp}A_5$$
(4.5.113)

$$A_1 = tL_R (4.5.114)$$

$$A_2 = t_n L_H$$
 if $t_n = t_{n2}$ or if $L_H \le L_{X3}$ (4.5.115)

$$A_2 = A_{2a} + A_{2b}$$
 if $t_n > t_{n2}$ and $L_{x3} < L_H \le L_{x4}$ (4.5.116)

$$A_2 = A_{2a} + A_{2c}$$
 if $t_n > t_{n2}$ and $L_H > L_{x4}$ (4.5.117)

$$A_{2a} = t_n L_{X3} \tag{4.5.118}$$

$$A_{2b} = \left(\frac{t_n + t_{nx}}{2}\right) \cdot \min\left[0.78\sqrt{R_n\left(\frac{t_n + t_{nx}}{2}\right)}, \left(L_H - L_{x3}\right)\right]$$
(4.5.119)

$$A_{2c} = t_{n2} \cdot \min\left[0.78\sqrt{R_n t_{n2}}, \left(\frac{t_n + t_{n2}}{2t_{n2}}\right)\left(L_{pr4} - L_{pr3}\right) + \left(L_H - L_{x4}\right)\right]$$
(4.5.120)

$$L_{x3} = L_{pr3} + t$$
 for set-in nozzles (4.5.121)

$$L_{x3} = L_{pr3}$$
 for set-on nozzles (4.5.122)

$$L_{x4} = L_{pr4} + t$$
 for set-in nozzles (4.5.123)

$$L_{x4} = L_{pr4}$$
 for set-on nozzles (4.5.124)

$$t_{nx} = \left[1 + \frac{(t_n - t_{n2})}{t_{n2}} \cdot \frac{(L_{x4} - L_H)}{(L_{pr4} - L_{pr3})}\right] t_{n2}$$
(4.5.125)

$$A_3 = t_n L_l (4.5.126)$$

$$A_{41} = 0.5L_{41}^2 \tag{4.5.127}$$

$$A_{42} = 0.5L_{42}^2 \tag{4.5.128}$$

$$A_{43} = 0.5L_{43}^2 \tag{4.5.129}$$

$$A_{5a} = Wt_e \tag{4.5.130}$$

$$A_{5b} = L_R t_e \text{ for set-in nozzles}$$
(4.5.131)

$$A_{5b} = (L_R - t_n)t_e \text{ for set-on nozzles}$$
(4.5.132)

$$A_5 = \min[A_{5a}, A_{5b}] \tag{4.5.133}$$

Step 6. Determine the applicable forces.

$$f_N = PR_{xn}L_H$$
 for set-in nozzles (4.5.134)

$$f_N = PR_{xn}(L_H + t)$$
 for set-on nozzles (4.5.135)

$$f_{S} = \frac{PR_{xs}(L_{R} + t_{n})}{2}$$
 for set-in nozzles (4.5.136)

$$f_S = \frac{PR_{xs}L_R}{2}$$
 for set-on nozzles (4.5.137)

$$f_Y = \frac{PR_{xs}R_{nc}}{2} \tag{4.5.138}$$

$$R_{XR} = \frac{t_n}{\ln\left[1 + \frac{t_n}{R_n}\right]}$$
(4.5.139)

$$R_{\rm XS} = \frac{t_{\rm eff}}{\ln\left[1 + \frac{t_{\rm eff}}{R_{\rm eff}}\right]} \tag{4.5.140}$$

$$t_{\rm eff} = t + \left(\frac{A_5 f_{rp}}{L_R}\right)$$
 for set-in nozzles (4.5.141)

$$t_{\rm eff} = t + \left(\frac{A_5 f_{rp}}{L_R - t_n}\right)$$
 for set-on nozzles (4.5.142)

Step 7. Determine the average local primary membrane stress and the general primary membrane stress in the vessel.

$$\sigma_{\text{avg}} = \frac{\left(f_N + f_S + f_Y\right)}{A_T} \tag{4.5.143}$$

$$\sigma_{\rm circ} = \frac{PR_{\rm XS}}{2t_{\rm eff}} \tag{4.5.144}$$

Step 8. Determine the maximum local primary membrane stress at the nozzle intersection.

$$P_{L} = \max\left[\left(2\sigma_{\text{avg}} - \sigma_{\text{circ}}\right), \sigma_{\text{circ}}\right]$$
(4.5.145)

Step 9. The calculated maximum local primary membrane stress should satisfy eq. (4.5.146). If the nozzle is subjected to internal pressure, then the allowable stress, S_{allow} , is given by eq. (4.5.57). If the nozzle is subjected to external pressure, then the allowable stress is given by eq. (4.5.58).

$$P_L \le S_{\text{allow}} \tag{4.5.146}$$

Step 10. Determine the maximum allowable working pressure of the nozzle.

$$P_{\max 1} = \frac{S_{\text{allow}}}{\frac{2A_p}{A_T} - \frac{R_{xs}}{2t_{\text{eff}}}}$$
(4.5.147)

$$P_{\max 2} = 2S\left(\frac{t}{R_{xs}}\right) \tag{4.5.148}$$

$$P_{\max} = \min[P_{\max 1}, P_{\max 2}]$$
(4.5.149)

where

$$A_p = \frac{(f_N + f_S + f_Y)}{p}$$
(4.5.150)

4.5.10.2 If the nozzle is subject to external forces and moments from supplemental loads as defined in 4.1, then the local stresses at the nozzle-to-shell intersection shall be evaluated in accordance with 4.5.15.

4.5.11 HILLSIDE OR PERPENDICULAR NOZZLE IN A SPHERICAL SHELL OR FORMED HEAD

4.5.11.1 If a hillside nozzle is located in a spherical shell or hemispherical head [see Figure 4.5.10, sketch (a)], the design procedure in 4.5.10 shall be used with $R_{nc} = R_{ncl}$, which is calculated using eqs. (4.5.64) through (4.5.66) by substituting D_R for D_X .

4.5.11.2 If a hillside or perpendicular nozzle is located in an ellipsoidal head or torispherical head [see Figure 4.5.10, sketch (b)], the design procedure in 4.5.10 shall be used with the following substitutions.

$$R_{nc} = \frac{R_n}{\cos[\theta]}$$
 for hillside nozzles (4.5.151)

$$R_{nc} = \frac{R_n}{\sin[\theta]} \text{ for perpendicular nozzles}$$
(4.5.152)

$$\theta = \arctan\left[\left(\frac{h}{R}\right) \cdot \left(\frac{D_R}{\sqrt{R^2 - D_R^2}}\right)\right] \text{ for ellipsoidal heads}$$
(4.5.153)

For torispherical heads, θ is calculated using eqs. (4.5.92) through (4.5.94).

4.5.12 CIRCULAR NOZZLES IN A FLAT HEAD

4.5.12.1 The procedure to design a nozzle in a flat head subject to pressure loading is shown below. The parameters used in this design procedure are shown in Figures 4.5.1 and 4.5.2. As an alternative, a central nozzle in an integral flat head may be designed using the procedure in 4.6.4.

Step 1. Calculate the maximum unit moment at the nozzle intersection.

$$M_{o} = \frac{St_{rf}^{4}}{6\left(t + C_{e}t_{e}\right)^{2}}$$
(4.5.154)

$$C_e = \min\left[\left\{\frac{(W+0.5L_{42})t_e}{R_n t}\right\}, \ 0.6\right]$$
(4.5.155)

Step 2. Calculate the nozzle parameters.

$$\lambda_n = \frac{1.285}{\sqrt{R_{nm}t_n}} \tag{4.5.156}$$

$$C_1 = \sinh^2[C_L] + \sin^2[C_L]$$
(4.5.157)

$$C_2 = \sinh^2[C_L] - \sin^2[C_L]$$
(4.5.158)

$$C_L = \min\left[\left\{\lambda_n \left(L_{pr1} + t + L_{pr2}\right)\right\}, \ 3.0\right]$$
(4.5.159)

$$C_{3} = \frac{L_{pr1} + t}{L_{pr1} + t + \min[(\lambda_{n})^{-1}, L_{pr2}]}$$
(4.5.160)

$$R_{nm} = R_n + 0.5t_n \tag{4.5.161}$$

$$R_{XR} = \frac{t_n}{\ln\left[1 + \frac{t_n}{R_n}\right]}$$
(4.5.162)

$$x_t = 0.5\lambda_n (t + t_e + L_{41} + L_{43})$$
 for set-in nozzles (4.5.163)

$$x_t = 0.5\lambda_n (t_e + L_{41})$$
 for other set-on nozzles (4.5.164)

$$x_t = 0.5\lambda_n(t + t_e + L_{41})$$
 for set-on nozzles with full penetration welds (4.5.164a)

$$C_t = \exp\left[-x_t\right] \tag{4.5.165}$$

Step 3. Determine the maximum local primary membrane stress in the nozzle at the intersection.

$$P_L = \frac{2M_o \lambda_n^2 R_{nm} C_t C_1 C_3}{t_n C_2} + \frac{P R_{Xn}}{t_n}$$
(4.5.166)

Step 4. The maximum local primary membrane stress at the nozzle intersection shall satisfy eq. (4.5.167). The allowable stress, S_{allow} , is given by eq. (4.5.57).

$$P_L \le S_{\text{allow}} \tag{4.5.167}$$

4.5.12.2 If the nozzle is subject to external forces and moments from supplemental loads as defined in 4.1, then the local stresses at the nozzle-to-shell intersection shall be evaluated in accordance with 4.5.15.

4.5.13 SPACING REQUIREMENTS FOR NOZZLES

4.5.13.1 The limit of reinforcement, L_R (see Figures 4.5.1 and 4.5.2), for a nozzle shall not overlap with a gross structural discontinuity (see 4.2.5.1). The limit of reinforcement, L_S (see Figure 4.5.11), may be reduced from the maximum permitted by other rules to allow closer placement of nozzles so long as all opening reinforcement requirements are satisfied.

4.5.13.2 If the limits of reinforcement determined in accordance with 4.5.5 for nozzles in cylindrical or conical shells or 4.5.10 for nozzles in spherical or formed heads, do not overlap, no additional analysis is required. If the limits of reinforcement overlap, the following procedure shall be used or the design shall be evaluated in accordance with the design by analysis rules of Part 5.

4.5.13.3 The maximum local primary membrane stress and the nozzle maximum allowable working pressure shall be determined following 4.5.5 or 4.5.10, for each individual nozzle with the value of L_R determined as follows.

(a) For two openings with overlapping limits of reinforcement (see Figure 4.5.11):

$$L_R = L_S \left(\frac{R_{nA}}{R_{nA} + R_{nB}} \right) \text{ for nozzle A}$$
(4.5.168)

$$L_R = L_S \left(\frac{R_{nB}}{R_{nA} + R_{nB}} \right) \text{ for nozzle B}$$
(4.5.169)

(b) For three openings with overlapping limits of reinforcement (see Figure 4.5.12):

$$L_R = \min\left[L_{S1}\left(\frac{R_{nA}}{R_{nA} + R_{nB}}\right), \ L_{S2}\left(\frac{R_{nA}}{R_{nA} + R_{nC}}\right)\right] \text{ for nozzle A}$$
(4.5.170)

$$L_{R} = \min\left[L_{S1}\left(\frac{R_{nB}}{R_{nA} + R_{nB}}\right), \ L_{S3}\left(\frac{R_{nB}}{R_{nB} + R_{nC}}\right)\right] \text{ for nozzle B}$$
(4.5.171)

$$L_{R} = \min\left[L_{S2}\left(\frac{R_{nC}}{R_{nA} + R_{nC}}\right), \ L_{S3}\left(\frac{R_{nC}}{R_{nB} + R_{nC}}\right)\right] \text{ for nozzle C}$$
(4.5.172)

(c) For more than three openings with overlapping limits of reinforcement, repeat the above procedure for each pair of adjacent nozzles.

4.5.14 STRENGTH OF NOZZLE ATTACHMENT WELDS

4.5.14.1 The strength of nozzle attachment welds shall be sufficient to resist the discontinuity force imposed by pressure for nozzles attached to a cylindrical, conical, or spherical shell or formed head as determined in 4.5.14.2. Nozzles attached to flat heads shall have their strength of attachment welds evaluated as determined in 4.5.14.3. The effects of external forces and moments from supplemental loads shall be considered.

4.5.14.2 The procedure to evaluate attachment welds of nozzles in a cylindrical, conical, or spherical shell or formed head subject to pressure loading is shown below.

Step 1. Determine the discontinuity force factor

(a) For set-on nozzles:

$$k_y = 1.0$$
 (4.5.173)

(b) For set-in nozzles:

$$k_{y} = \frac{R_{nc} + t_{n}}{R_{nc}}$$
(4.5.174)

Step 2. Calculate Weld Length Resisting Discontinuity Force *(a)* Weld length of nozzle to shell weld

$$L_{\tau} = \frac{\pi}{2} (R_n + t_n) \text{ for radial nozzles}$$
(4.5.175)

$$L_{\tau} = \frac{\pi}{2} \sqrt{\frac{\left(R_{nc} + t_n\right)^2 + \left(R_n + t_n\right)^2}{2}} \quad \text{for nonradial nozzles}$$
(4.5.176)

(b) Weld length of pad to shell weld

$$L_{\tau p} = \frac{\pi}{2} \Big(R_n + t_n + W \Big) \text{ for radial nozzles}$$
(4.5.177)

$$L_{\tau p} = \frac{\pi}{2} \sqrt{\frac{(R_{nc} + t_n + W)^2 + (R_n + t_n + W)^2}{2}}$$
 for nonradial nozzles (4.5.178)

Step 3. Compute the weld throat dimensions, as applicable.

$$L_{41T} = 0.7071L_{41} \tag{4.5.179}$$

$$L_{42T} = 0.7071L_{42} \tag{4.5.180}$$

$$L_{43T} = 0.7071L_{43} \tag{4.5.181}$$

Step 4. Determine if the weld sizes are acceptable.

(*a*) If the nozzle is integrally reinforced, and the computed shear stress in the weld given by eq. (4.5.182) satisfies eq. (4.5.183), then the design is complete. If the shear stress in the weld does not satisfy eq. (4.5.183), increase the weld size and return to Step 3. For nozzles on heads, A_2 and A_3 are to be calculated using $F_p = 1.0$, when computing f_{welds} using eq. (4.5.184).

$$\tau = \frac{f_{\text{welds}}}{L_{\tau} \left(0.49L_{41T} + 0.6t_{w1} + 0.49L_{43T} \right)}$$
(4.5.182)

$$\tau \le S \tag{4.5.183}$$

where

$$f_{\text{welds}} = \min\left[f_Y k_y, 1.5 S_n \left(A_2 + A_3\right), \frac{\pi}{4} P R_n^2 k_y^2\right]$$
(4.5.184)

(*b*) If the nozzle is pad reinforced, and the computed shear stresses in the welds given by eqs. (4.5.185) through (4.5.187) satisfy eq. (4.5.188), then the design is complete. If the shear stress in the weld does not satisfy eq. (4.5.188), increase the weld size and return to Step 3.

$$\tau_1 = \frac{f_{WS}}{L_{\tau} \left(0.6t_{W1} + 0.49L_{43T} \right)} \tag{4.5.185}$$

$$\tau_2 = \frac{f_{Wp}}{L_{\tau} \left(0.6t_{W2} + 0.49L_{41T} \right)} \tag{4.5.186}$$

$$\tau_3 = \frac{f_{wp}}{L_{\tau p} (0.49L_{42T})} \tag{4.5.187}$$

$$\max[\tau_1, \tau_2, \tau_3] \le S \tag{4.5.188}$$

where

$$f_{WS} = \frac{f_{\text{welds}}t \cdot S}{t \cdot S + t_e S_p} \tag{4.5.189}$$

$$f_{wp} = \frac{f_{\text{welds}} t_e S_p}{t \cdot S + t_e S_p} \tag{4.5.190}$$

4.5.14.3 The procedure to evaluate attachment welds of a nozzle in a flat head subject to pressure loading is shown below.

Step 1. Compute the weld throat dimensions, as applicable.

$$L_{41T} = 0.7071L_{41} \tag{4.5.191}$$

$$L_{42T} = 0.7071L_{42} \tag{4.5.192}$$

$$L_{43T} = 0.7071L_{43} \tag{4.5.193}$$

Step 2. Determine if the weld sizes are acceptable.

(a) If the nozzle is integrally reinforced and set-in the flat head, and the computed shear stress in the welds given by eqs. (4.5.194) through (4.5.196) satisfy eq. (4.5.197), then the design is complete. If the shear stress in the welds does not satisfy eq. (4.5.197), increase the weld size and return to Step 1.

$$\tau_1 = \frac{V_S}{0.6t_{x1} + 0.49L_{43T}} \tag{4.5.194}$$

$$\tau_2 = \frac{V_s}{0.6t_{x2} + 0.49L_{41T}} \tag{4.5.195}$$

$$\tau_3 = \frac{P(R_n + t_n)}{2(0.49L_{41T} + 0.6t_{w1} + 0.49L_{43T})}$$
(4.5.196)

$$\max\left[\tau_1, \tau_2, \tau_3\right] \le S \tag{4.5.197}$$

where

$$V_S = \frac{0.3St_{rf}^4}{t^3}$$
(4.5.198)

$$t_{x1} = \min[t_{w1}, 0.5t] \tag{4.5.199}$$

$$t_{X2} = \min\left[\max\left[\left(t_{w1} - 0.5t\right), 0\right], 0.5t\right]$$
(4.5.200)

(*b*) If the nozzle is pad reinforced and set-in the flat head, and the computed shear stress in the welds given by eqs. (4.5.201) through (4.5.204) satisfy eq. (4.5.205), then the design is complete. If the shear stress in the welds does not satisfy eq. (4.5.205), increase the weld size and return to Step 1.

$$\tau_1 = \frac{V_s}{0.6t_{w1} + 0.49L_{43T}} \tag{4.5.201}$$

$$\tau_2 = \frac{V_s}{0.6t_{w2} + 0.49L_{41T}} \tag{4.5.202}$$

$$\tau_3 = \frac{V_s(R_n + t_n)}{0.49L_{42T}(R_n + t_n + W)}$$
(4.5.203)

$$\tau_4 = \frac{P(R_n + t_n)}{2(0.49L_{41T} + 0.6t_{w1} + 0.6t_{w2} + 0.49L_{43T})}$$
(4.5.204)

$$\max\left[\tau_1, \tau_2, \tau_3, \tau_4\right] \le S \tag{4.5.205}$$

The parameter V_s is given by eq. (4.5.198).

(c) If the nozzle is integrally reinforced and set-on the flat head, and the computed shear stress in the weld given by eqs. (4.5.206) through (4.5.207) satisfies eq. (4.5.208), then the design is complete. If the shear stress in the weld does not satisfy eq. (4.5.208), increase the weld size and return to Step 1.

$$\tau_1 = \frac{2M_o}{t(0.6t_{w1} + 0.49L_{41T})}$$
(4.5.206)

$$F_2 = \frac{PR_n}{2(0.6t_{w1} + 0.49L_{41T})}$$
(4.5.207)

$$\max\left[\tau_1, \tau_2\right] \le S \tag{4.5.208}$$

4.5.15 LOCAL STRESSES IN SHELLS, FORMED HEADS, AND NOZZLES FROM EXTERNAL LOADS ON NOZZLES

Localized stresses in shells, formed heads, and nozzle necks at nozzle locations shall be evaluated using one of the methods shown below. Some of the methods calculate the stresses in the shell or formed head only, while others calculate the stresses in the shell or formed head and the attached nozzle. Regardless of the method chosen, the stresses in the shell or formed head and the nozzle shall be evaluated. For each method, the acceptance criteria shall be in accordance with Part 5 including the requirements for the nozzle neck in 5.6.

(a) Nozzles in cylindrical shells – stress calculations shall be in accordance with WRC 537 (supersedes WRC 107), WRC 297, or ASME STP-PT-074.

(b) Nozzles in formed heads – stress calculations shall be in accordance with WRC 537 (supersedes WRC 107) or ASME STP-PT-074.

(c) For all configurations, and as an alternative to (a) and (b), the stress calculations may be performed using a numerical analysis such as the finite element method in accordance with Part 5.

4.5.16 INSPECTION OPENINGS

4.5.16.1 All pressure vessels for use with compressed air and those subject to internal corrosion or having parts subject to erosion or mechanical abrasion (see 4.1.4), except as permitted otherwise in this paragraph, shall be provided with a suitable manhole, handhole, or other inspection opening(s) for examination and cleaning. Compressed air as used in this paragraph is not intended to include air which has had moisture removed to provide an atmospheric dew point of $-46^{\circ}C$ ($-50^{\circ}F$) or less.

4.5.16.2 Inspection openings may be omitted in heat exchangers where the construction does not permit access to the shell side, such as fixed tubesheet heat exchangers or U-tube and floating tubesheet heat exchangers with Configuration a, b, or c as shown in Figure 4.18.4 or Figure 4.18.11. When inspection openings are not provided, the Manufacturer's Data Report shall include one of the following notations under "Remarks":

(*a*) "4.5.16.2" when inspection openings are omitted in fixed tubesheet heat exchangers, or U-tube and floating tubesheet heat exchangers with Configuration a, b, or c as shown in Figure 4.18.4 or Figure 4.18.11;

(*b*) "4.5.16.3", "4.5.16.4", "4.5.16.5" when provision for inspection is made in accordance with one of these paragraphs; (*c*) the statement "for noncorrosive service."

4.5.16.3 Vessels over 300 mm (12 in.) inside diameter under air pressure which also contain, as an inherent requirement of their operation, other substances which will prevent corrosion need not have openings for inspection only, provided the vessel contains suitable openings through which inspection can be made conveniently, and provided such openings are equivalent in size and number to the requirements for inspection openings in 4.5.16.6.

4.5.16.4 For vessels 300 mm (12 in.) or less in inside diameter, openings for inspection only may be omitted if there are at least two removable pipe connections not less than DN 20 (NPS $\frac{3}{4}$).

4.5.16.5 Vessels less than 400 mm (16 in.) and over 300 mm (12 in.) inside diameter shall have at least two handholes or two threaded pipe plug inspection openings of not less than DN 40 (NPS $1^{1}/_{2}$) except as permitted by the following: when vessels less than 400 mm (16 in.) and over 300 mm (12 in.) inside diameter are to be installed so that inspection cannot be made without removing the vessel from the assembly, openings for inspection only may be omitted, provided there are at least two removable pipe connections of not less than DN 40 (NPS $1^{1}/_{2}$).

4.5.16.6 Vessels that require access or inspection openings shall be equipped as follows:

(*a*) All vessels less than 450 mm (18 in.) and over 300 mm (12 in.) inside diameter shall have at least two handholes or two plugged, threaded inspection openings of not less than DN 40 (NPS $1^{1}/_{2}$);

(b) All vessels 450 mm (18 in.) to 900 mm (36 in.), inclusive, inside diameter shall have a manhole or at least two handholes or two plugged, threaded inspection openings of not less than DN 50 (NPS 2);

(c) All vessels over 900 mm (36 in.) inside diameter shall have a manhole, except that those whose shape or use makes one impracticable shall have at least two handholes 100 mm × 150 mm (4 in. × 6 in.) or two equal openings of equivalent area;

(*d*) When handholes or pipe plug openings are permitted for inspection openings in place of a manhole, one handhole or one pipe plug opening shall be in each head or in the shell near each head service;

(e) Openings with removable heads or cover plates intended for other purposes may be used in place of the required inspection openings, provided they are equal at least to the size of the required inspection openings;

(f) A single opening with removable head or cover plate may be used in place of all the smaller inspection openings, provided it is of such size and location as to afford at least an equal view of the interior;

(g) Flanged and/or threaded connections from which piping, instruments, or similar attachments can be removed may be used in place of the required inspection openings, provided that:

(1) The connections are at least equal to the size of the required openings; and

(2) The connections are sized and located to afford at least an equal view of the interior as the required inspection openings.

4.5.16.7 When inspection or access openings are required, they shall comply at least with the following requirements.

(*a*) An elliptical or obround manhole shall be not less than 300 mm × 400 mm (12 in. × 16 in.). A circular manhole shall be not less than 400 mm (16 in.) inside diameter.

(b) A handhole opening shall be not less than 50 mm \times 75 mm (2 in. \times 3 in.), but should be as large as is consistent with the size of the vessel and the location of the opening.

4.5.16.8 All access and inspection openings in a shell or unstayed head shall be designed in accordance with the rules of this Part for openings.

4.5.16.9 When a threaded opening is to be used for inspection or cleaning purposes, the closing plug or cap shall be of a material suitable for the pressure and no material shall be used at a temperature exceeding the maximum temperature allowed in Part 3 for that material. The thread shall be a standard taper pipe thread except that a straight thread of at least equal strength may be used if other sealing means to prevent leakage are provided.

4.5.16.10 Manholes of the type in which the internal pressure forces the cover plate against a flat gasket shall have a minimum gasket bearing width of 17 mm (0.6875 in.).

4.5.17 OPENINGS SUBJECT TO AXIAL COMPRESSION, EXTERNAL PRESSURE, AND THE COMBINATION THEREOF

4.5.17.1 The reinforcement for openings in cylindrical and conical vessels subject to axial compression, external pressure, and the combination thereof that do not exceed 25% of the cylinder diameter or 80% of the ring spacing into which the opening is placed may be designed in accordance with the following rules. Openings in cylindrical and conical vessels that exceed these limitations shall be designed in accordance with Part 5.

4.5.17.2 Reinforcement for nozzle openings in cylindrical and conical vessels designed for external pressure alone shall be in accordance with the requirements of 4.5.5 through 4.5.9, as applicable. The required thickness shall be determined in accordance with 4.5.4. The external pressure shall be used as *P*.

4.5.17.3 For cylindrical and conical vessels designed for axial compression (which includes axial load and/or bending moment) without external pressure, the reinforcement of openings shall be in accordance with the following:

$$A_r = 0 \text{ for } d \le 0.4\sqrt{Rt}$$
 (4.5.209)

$$A_r = 0.5 dt_r$$
 for $d > 0.4 \sqrt{Rt}$ and $\gamma_n \le \left(\frac{(R/t)}{291} + 0.22\right)^2$ (4.5.210)

$$A_r = dt_r \text{ for } d > 0.4\sqrt{Rt} \text{ and } \gamma_n > \left(\frac{(R/t)}{291} + 0.22\right)^2$$
 (4.5.211)

where

$$\gamma_n = \left(\frac{d}{2\sqrt{Rt}}\right) \tag{4.5.212}$$

The reinforcement shall be placed within a distance of $0.75\sqrt{Rt}$ from the edge of the opening. Reinforcement available from the nozzle neck shall be limited to a thickness not exceeding the shell plate thickness at the nozzle attachment, and be placed within a limit measured normal to the outside surface of the vessel shell of $0.5\sqrt{(d/2)t_n}$, but not exceeding $2.5t_n$.

4.5.17.4 For cylindrical and conical vessels designed for axial compression in combination with external pressure, the reinforcement shall be the larger of that required for external pressure alone, 4.5.17.2, or axial compression alone, 4.5.17.3.

4.5.18 NOMENCLATURE

- A_1 = area contributed by the vessel wall
- A_2 = area contributed by the nozzle outside the vessel wall
- A_{2a} = portion of area A_2 for variable nozzle wall thickness, contributed by the nozzle wall within L_{pr3} (see Figures 4.5.13 and 4.5.14)
- A_{2b} = portion of area A_2 for variable nozzle wall thickness, contributed by the nozzle wall outside of L_{pr3} when $L_H \le L_{x4}$ (see Figures 4.5.13 and 4.5.14)
- A_{2c} = portion of area A_2 for variable nozzle wall thickness, contributed by the nozzle wall outside of L_{pr3} when $L_H > L_{x4}$ (see Figures 4.5.13 and 4.5.14)
- A_3 = area contributed by the nozzle inside the vessel wall
- A_5 = area contributed by the reinforcing pad

- A_{41} = area contributed by the outside nozzle fillet weld
- A_{42} = area contributed by the pad to vessel fillet weld
- A_{43} = area contributed by the inside nozzle fillet weld
- A_p = area resisting pressure, used to determine the nozzle opening discontinuity force
- A_r = area of reinforcement required
- A_T = total area within the assumed limits of reinforcement
- C_1 = geometry-dependent coefficient of a flat head
- C_2 = geometry-dependent coefficient of a flat head
- C_3 = geometry-dependent coefficient of a flat head
- C_4 = geometry-dependent coefficient of a flat head
- C_7 = geometry-dependent coefficient of a flat head
- C_8 = geometry-dependent coefficient of a flat head
- C_{10} = geometry-dependent coefficient of a flat head
- C_e = pad thickness credit factor of a flat head
- C_L = dimensionless scale factor of a flat head
- C_{md} = thickness modification factor of a flat head
- C_n = finite element analysis derived factor to modify the effective nozzle length L_H
- C_p = finite element analysis derived factor to modify the effective nozzle length L_H
- C_t = geometry-dependent coefficient of a flat head
- d = inside diameter of the opening
- D_i = inside diameter of a shell or head
- D_R = distance from the head center line to the nozzle center line
- d_{st} = nominal diameter of the stud
- D_X = distance from the cylinder center line to the nozzle center line
- E = weld joint factor (see 4.2);
 - = 1.0 if the nozzle does not intersect a weld seam
- F_{ha} = minimum value of the allowable compressive stress of the shell and nozzle material from 4.4, evaluated at the design temperature
- f_N = force from internal pressure in the nozzle outside of the vessel
- F_p = nozzle attachment factor
- F_p = nozzle attachment factor
- f_{rn} = nozzle material factor
- f_{rp} = pad material factor
- f_S = force from internal pressure in the shell
- f_{welds} = overall discontinuity induced by existence of a nozzle
 - f_{wp} = discontinuity force carried by welds t_{w2} and L_{43}
 - f_Y = discontinuity force from internal pressure
 - h = height of the ellipsoidal head measured to the inside surface
 - k_{y} = discontinuity force factor that adjusts the discontinuity force to the nozzle outer diameter
 - L = inside crown radius of a torispherical head
 - L_{41} = weld leg length of the outside nozzle fillet weld
 - L_{41T} = throat dimension of the outside nozzle fillet weld
 - L_{42} = weld leg length of the pad to vessel fillet weld
 - L_{42T} = throat dimension for the pad to vessel fillet weld
 - L_{43} = weld leg length of the inside nozzle fillet weld
 - L_{43T} = throat dimension for inside nozzle fillet weld
 - L_c = effective length of the vessel wall from the central axis on the nozzle (see Figures 4.5.6 through 4.5.8)
 - L_H = effective length of nozzle wall outside the vessel
 - L_I = effective length of nozzle wall inside the vessel
 - L_{pr1} = nozzle projection from the outside of the vessel wall
 - L_{pr2} = nozzle projection from the inside of the vessel wall
 - L_{pr3} = nozzle projection from the outside of the vessel wall for variable thickness nozzles within constant thickness t_n (see Figures 4.5.13 and 4.5.14.)
 - L_{pr4} = nozzle projection from the outside of the vessel wall for variable thickness nozzles to nozzle thickness t_{n2} (see Figures 4.5.13 and 4.5.14.)
 - L_R = effective length of the vessel wall
 - L_S = shortest distance between the outer surface of the two adjacent nozzle walls

ASME BPVC.VIII.2-2023

- L_{s1} = shortest distance between the outer surface of nozzle A and nozzle B
- L_{s2} = shortest distance between the outer surface of nozzle A and nozzle C
- L_{s3} = shortest distance between the outer surface of nozzle B and nozzle C
- L_{st} = thread engagement length
- L_t = effective length of the vessel wall from the inside corner of the nozzle-vessel intersection (see Figures 4.5.5 through 4.5.8)
- L_{x3} = nozzle projection from the nozzle end for variable thickness nozzles within constant thickness, t_n (see Figures 4.5.13 and 4.5.14)
- L_{x4} = nozzle projection from nozzle end for variable thickness nozzles to nozzle thickness, t_{n2} (see Figures 4.5.13 and 4.5.14)
- L_{τ} = weld length of the nozzle to shell weld
- $L_{\tau p}$ = weld length of the pad to shell weld
- M_o = maximum bending moment per unit length at the nozzle intersection
- P = internal or external design pressure
- P_L = maximum local primary membrane stress at the nozzle intersection
- P_{max} = maximum allowable pressure at the nozzle-shell intersection
- P_{max1} = maximum allowable pressure in the nozzle
- P_{max2} = maximum allowable pressure in the shell
 - R = vessel inside radius
 - R_{eff} = effective pressure radius
 - r_k = knuckle radius at the junction for torispherical heads
 - R_n = nozzle inside radius
 - R_{nA} = internal radius of nozzle A
 - R_{nB} = internal radius of nozzle B
 - R_{nC} = internal radius of nozzle C
 - R_{nc} = radius of the nozzle opening in the vessel along the long chord, for radial nozzles R_{nc} = R_n
 - R_{ncl} = radius of the nozzle opening in the vessel along the long chord for hillside nozzle (see Figure 4.5.4)
 - R_{nm} = nozzle mean radius
 - R_{xn} = nozzle radius for force calculation
 - R_{xs} = shell radius for force calculation

S = allowable stress from Annex 3-A for the vessel (shell, head, or cone, as applicable) at the design temperature S_{allow} = local allowable membrane stress at the nozzle intersection

- S_n = allowable stress from Annex 3-A for the nozzle at the design temperature
- S_p = allowable stress from Annex 3-A for the pad at the design temperature
- S_{st}^{F} = allowable stress from Annex 3-A of the stud material at the design temperature
- S_{tp} = allowable stress from Annex 3-A of the tapped material at the design temperature
- t = nominal thickness of the vessel wall
- t_e = thickness of the reinforcing pad
- $t_{\rm eff}$ = effective thickness used in the calculation of pressure stress near the nozzle opening
- t_n = nominal thickness of the nozzle wall
- t_{n2} = nominal wall thickness of the thinner portion of a variable thickness nozzle
- t_{nx} = wall thickness at the variable thickness portion of the nozzle, which is a function of position
- t_r = thickness of shell required for axial compression loads without external pressure
- t_{rf} = minimum required flat head thickness, exclusive of corrosion allowance, as required by 4.6
- t_{w1} = nozzle to shell groove weld depth
- t_{w2} = nozzle to reinforcing pad groove weld depth
- V_s = shear load per unit length
- W = width of the reinforcing pad
- X_o = distance from the nozzle outside diameter to the head center
- x_t = dimensions scale factor of a flat head
- α = one-half of the apex angle of a conical shell
- θ = angle between the nozzle center line and the vessel center line
- θ_1 = angle between the vessel horizontal axis and the hillside nozzle center line (see Figure 4.5.4)
- θ_2 = angle between the vessel horizontal axis and the hillside nozzle inside radius at the nozzle to vessel intersection (see Figure 4.5.4)
- λ = non-linearity parameter applied to the metal area A_1
- λ_n = nozzle scale factor of a flat head

- $\sigma_{\rm avg}\,$ = average primary membrane stress
- $\sigma_{\rm circ}$ = general primary membrane stress
 - τ = average "effective" shear stress in welds due to pressure (includes joint efficiency)
 - τ_1 = shear stress through load path 1
 - τ_2 = shear stress through load path 2
 - τ_3 = shear stress through load path 3
 - τ_4 = shear stress through load path 4

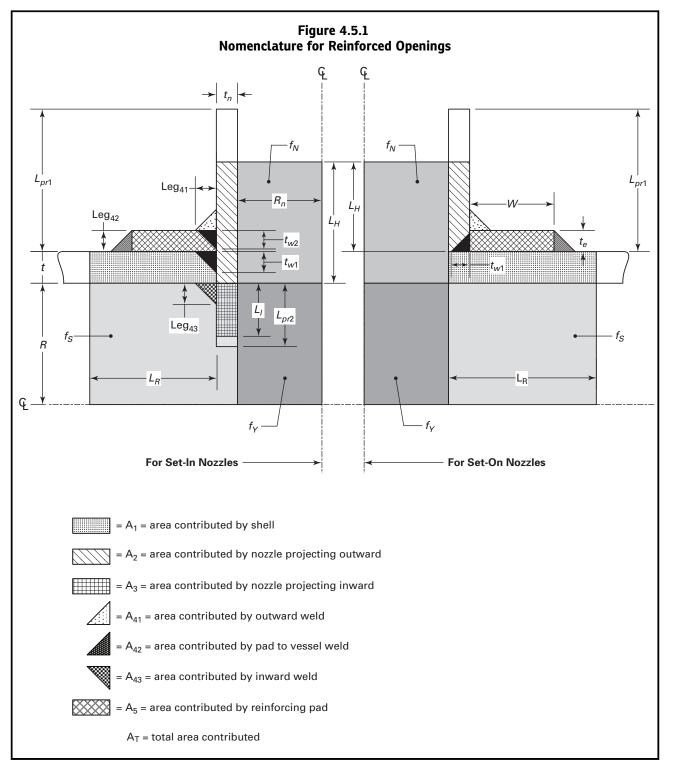
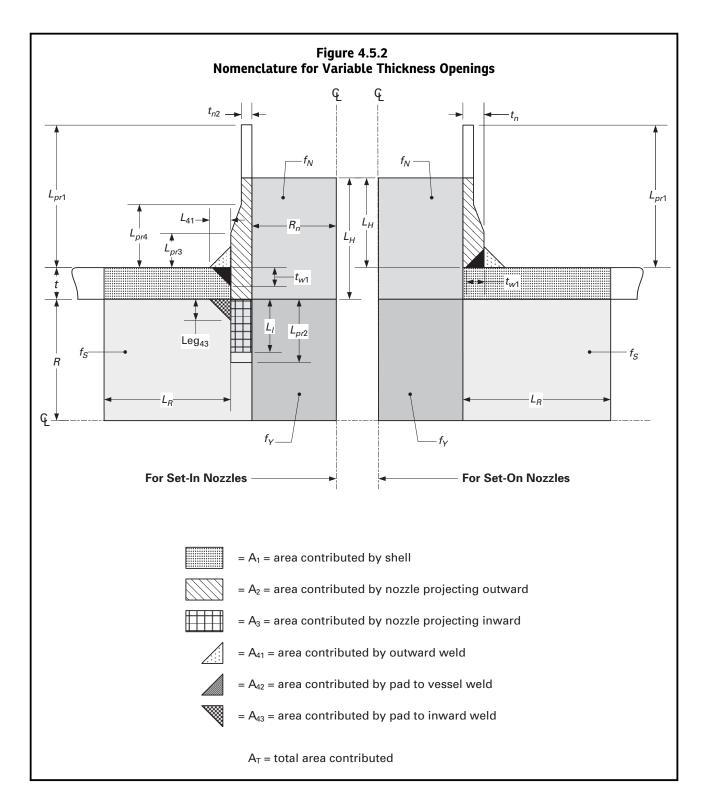
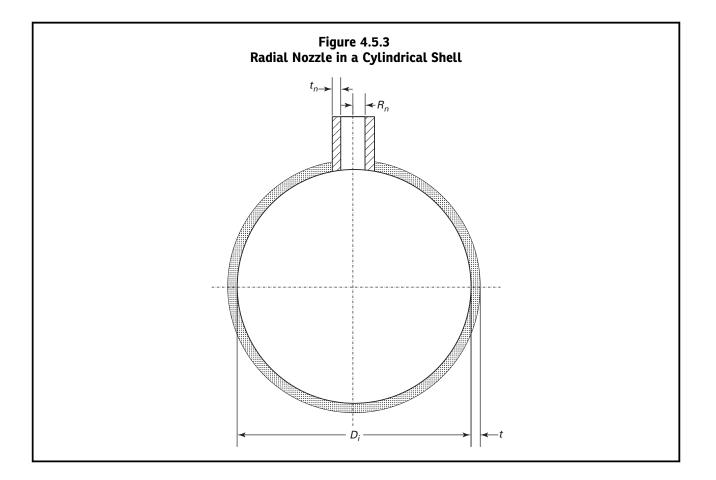
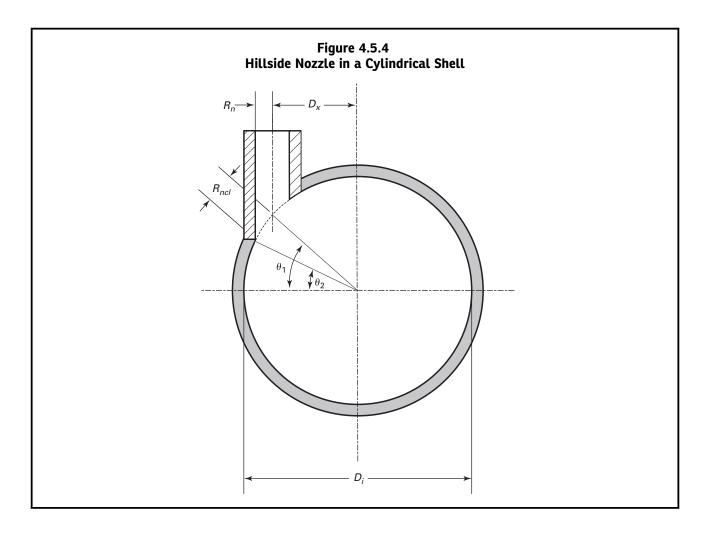

4.5.19 **TABLES**

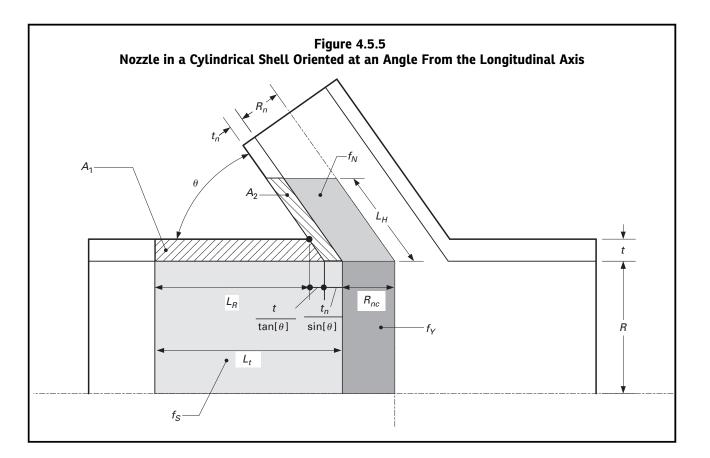
Table 4.5.1 Minimum Number of Pipe Threads for Connections				
Size of Pipe	Threads Engaged	Minimum Plate Thickness Required		
I 15, 20 (NPS 0.5, 0.75 in.)	6	11 mm (0.43 in.)		
N 25, 32, 40 (NPS 1.0, 1.25, 1.5 in.)	7	16 mm (0.61 in.)		
N 50 (NPS 2 in.)	8	18 mm (0.70 in.)		

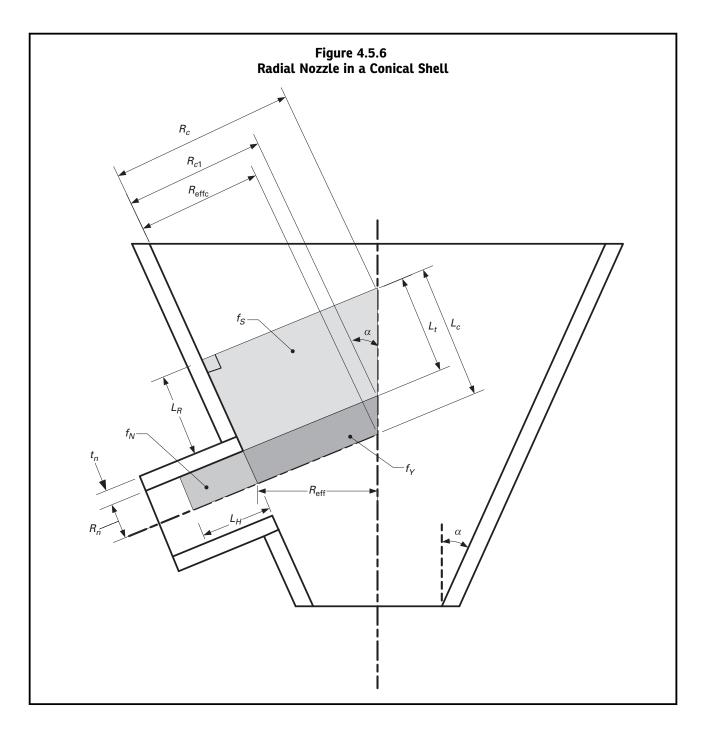

	Minimu	Minimum Thickness	
Nominal Size	mm	in.	
DN 6 (NPS ¹ / ₈)	1.51	0.060	
DN 8 (NPS ¹ / ₄)	1.96	0.077	
DN 10 (NPS ³ / ₈)	2.02	0.080	
DN 15 (NPS ¹ / ₂)	2.42	0.095	
DN 20 (NPS ³ / ₄)	2.51	0.099	
DN 25 (NPS 1)	2.96	0.116	
DN 32 (NPS 1 ¹ / ₄)	3.12	0.123	
DN 40 (NPS 1 ¹ / ₂)	3.22	0.127	
DN 50 (NPS 2)	3.42	0.135	
DN 65 (NPS 2 ¹ / ₂)	4.52	0.178	
DN 80 (NPS 3)	4.80	0.189	
DN 90 (NPS 3 ¹ / ₂)	5.02	0.198	
DN 100 (NPS 4)	5.27	0.207	
DN 125 (NPS 5)	5.73	0.226	
DN 150 (NPS 6)	6.22	0.245	
DN 200 (NPS 8)	7.16	0.282	
DN 250 (NPS 10)	8.11	0.319	
≥DN 300 (NPS 12)	8.34	0.328	

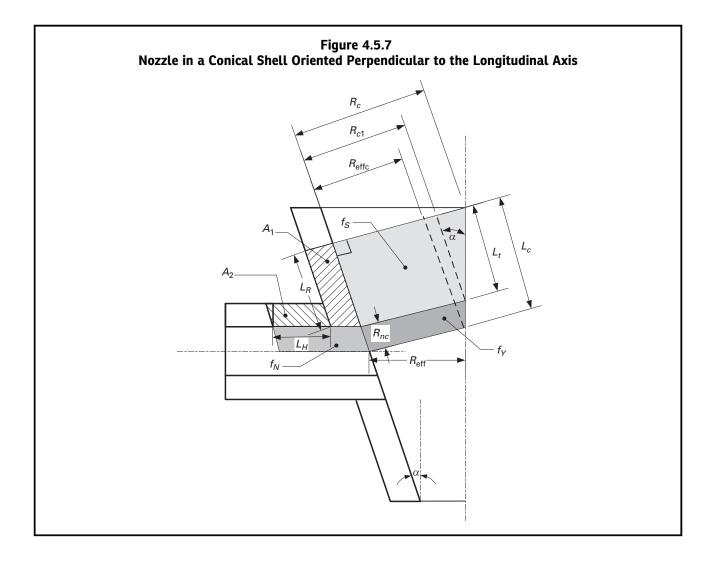
GENERAL NOTE: For nozzles having a specified outside diameter not equal to the outside diameter of an equivalent standard DN (NPS) size, the DN (NPS) chosen from the table shall be one having an equivalent outside diameter larger than the actual nozzle outside diameter.

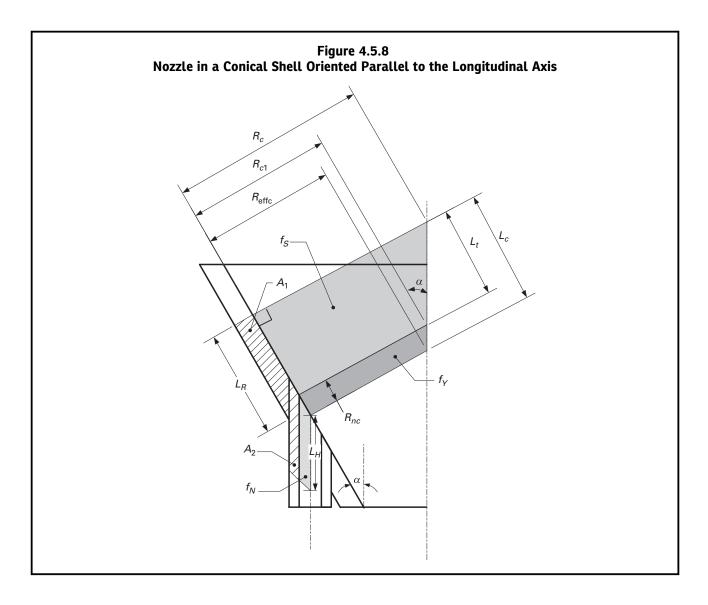

4.5.20 FIGURES

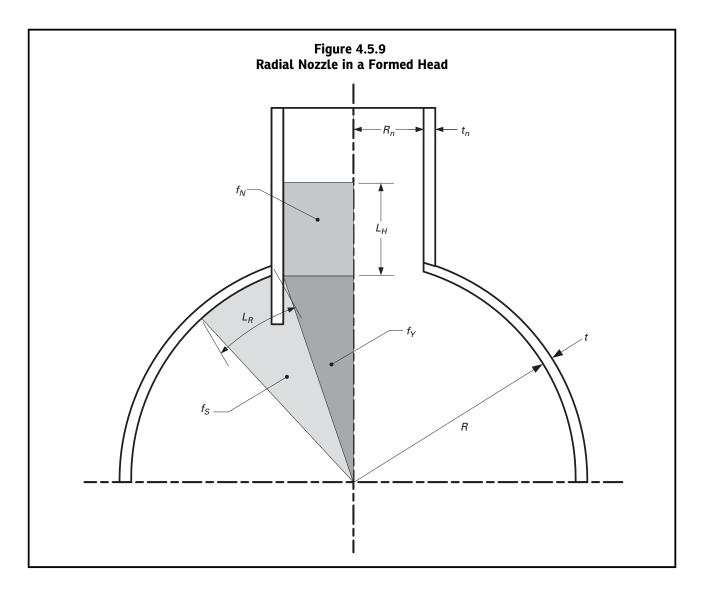


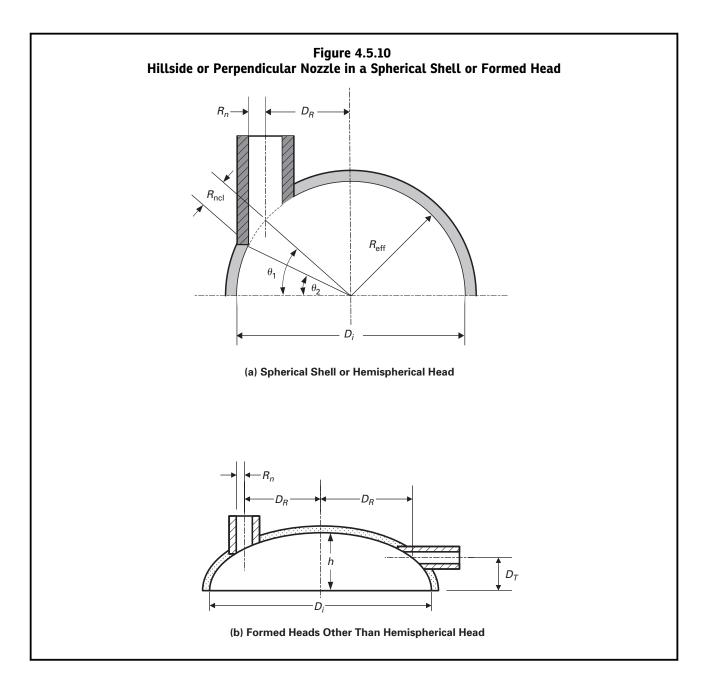

4.5.20

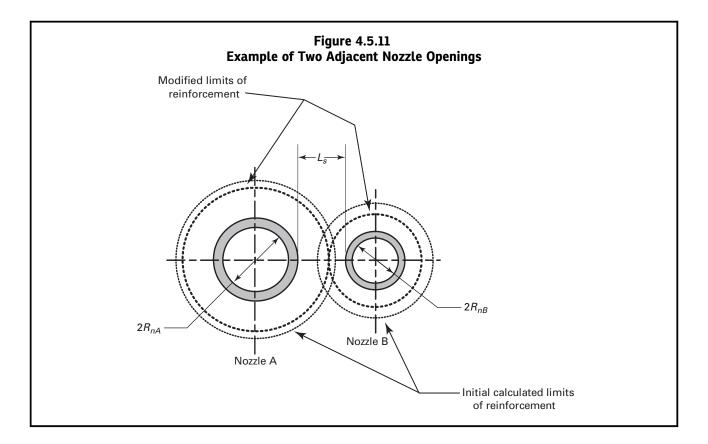


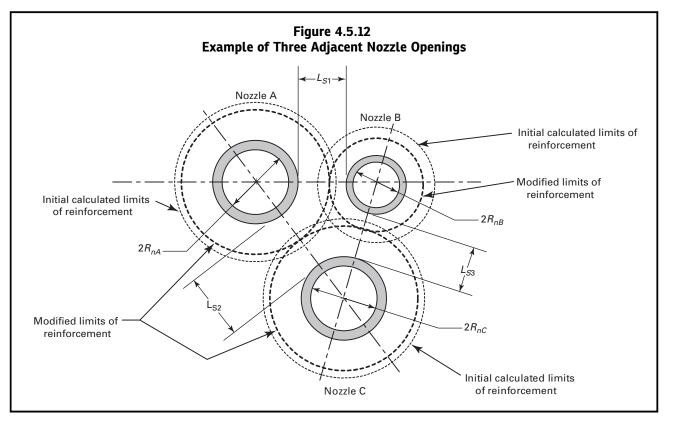

281

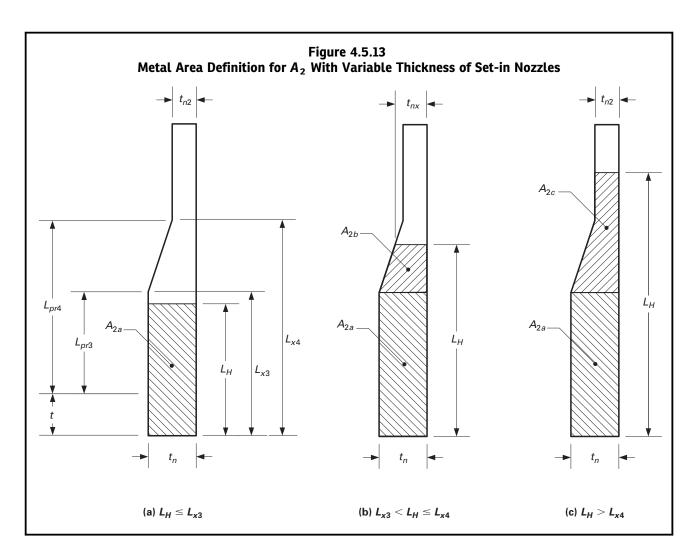


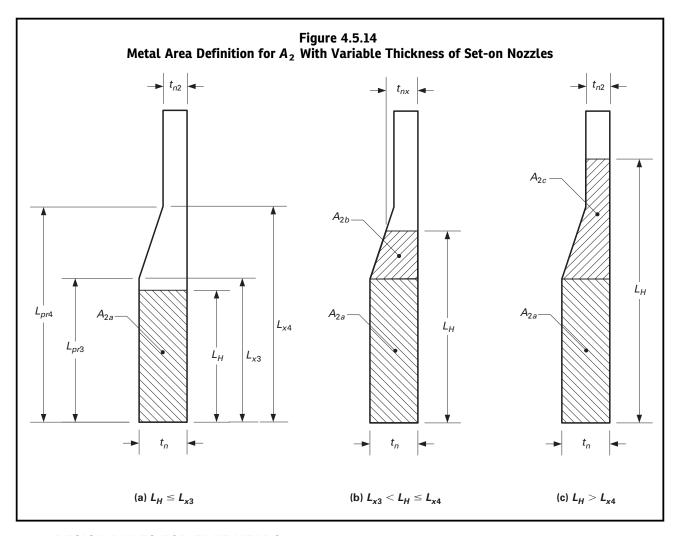







4.5.20





4.6 DESIGN RULES FOR FLAT HEADS

4.6.1 SCOPE

4.6.1.1 The minimum thickness of unstayed flat heads, cover plates and blind flanges shall conform to the requirements given in 4.6. These requirements apply to both circular and noncircular heads and covers. Some acceptable types of flat heads and covers are shown in Table 4.6.1. In this table, the dimensions of the component parts and the dimensions of the welds are exclusive of extra metal required for corrosion allowance.

4.6.1.2 The design methods in this paragraph provide adequate strength for the design pressure. A greater thickness may be necessary if a deflection criterion is required for operation (e.g., leakage at threaded or gasketed joints).

4.6.1.3 For flat head types with a bolted flange connection where the gasket is located inside the bolt circle, calculations shall be made for two design conditions, gasket seating and operating conditions. Details regarding computation of design bolt loads for these two conditions are provided in 4.16.

4.6.2 FLAT UNSTAYED CIRCULAR HEADS

4.6.2.1 Circular blind flanges conforming to any of the flange standards listed in Part 1 and the requirements of 4.1.11 are acceptable for the diameters and pressure-temperature ratings in the respective standard when the blind flange is of the types shown in Table 4.6.1, Detail 7.

4.6.2.2 The minimum required thickness of a flat unstayed circular head or cover that is not attached with bolting that results in an edge moment shall be calculated by the following equation.

$$t = d\sqrt{\frac{CP}{S_{ho}E}}$$
(4.6.1)

4.6.2.3 The minimum required thickness of a flat unstayed circular head, cover, or blind flange that is attached with bolting that results in an edge moment (see Table 4.6.1, Detail 7) shall be calculated by the equations shown below. The operating and gasket seating bolt loads, W_o and W_g , and the moment arm of this load, h_G , in these equations shall be computed based on the flange geometry and gasket material as described in 4.16.

$$t = \max\left[t_0, t_g\right] \tag{4.6.2}$$

where

$$t_{o} = d_{\sqrt{\frac{CP}{S_{ho}E} + \frac{1.9W_{o}h_{G}}{S_{ho}Ed^{3}}}}$$
(4.6.3)

$$t_g = d \sqrt{\frac{1.9W_g h_G}{S_{hg} E d^3}}$$
(4.6.4)

4.6.3 FLAT UNSTAYED NONCIRCULAR HEADS

4.6.3.1 The minimum required thickness of a flat unstayed noncircular head or cover that is not attached with bolting that results in an edge moment shall be calculated by the following equation.

$$t = d\sqrt{\frac{ZCP}{S_{ho}E}}$$
(4.6.5)

where

$$Z = \min\left[2.5, \left(3.4 - \frac{2.4d}{D}\right)\right]$$
(4.6.6)

4.6.3.2 The minimum required thickness of a flat unstayed noncircular head, cover, or blind flange that is attached with bolting that results in an edge moment (see Table 4.6.1, Detail 7) shall be calculated by the equations shown below. The operating and gasket seating bolt loads, W_o and W_g , and the moment arm of this load, h_G , in these equations shall be computed based on the flange geometry and gasket material as described in 4.16.

$$t = \max t_0, t_g \tag{4.6.7}$$

where

$$t_o = d_v \sqrt{\frac{ZCP}{S_{ho}E} + \frac{6W_o h_G}{S_{ho}ELd^2}}$$
(4.6.8)

$$t_g = d_v \sqrt{\frac{6W_g h_G}{S_{hg} ELd^2}}$$
(4.6.9)

The parameter *Z* is given by eq. (4.6.6).

4.6.4 INTEGRAL FLAT HEAD WITH A CENTRALLY LOCATED OPENING

4.6.4.1 Flat heads which have a single, circular, centrally located opening that exceeds one-half of the head diameter shall be designed in accordance with the rules which follow. A general arrangement of an integral flat head with or without a nozzle attached at the central opening is shown in Figure 4.6.1.

(*a*) The shell-to-flat head juncture shall be integral, as shown in Table 4.6.1, Details 1, 2, 3, and 4. Alternatively, a butt weld, or a full penetration corner weld similar to the joints shown in Table 4.6.1 Details 5 and 6 may be used.

(*b*) The central opening in the flat head may have a nozzle that is integral or integrally attached by a full penetration weld, or a nozzle attached by non-integral welds (i.e.,: a double fillet or partial penetration weld, or may have an opening without an attached nozzle or hub. In the case of a nozzle attached by non-integral welds, the head is designed as a head without an attached nozzle or hub.

4.6.4.2 The head thickness does not have to meet the rules in 4.6.2 or 4.6.3. The flat head thickness and other geometry parameters need only satisfy the allowable stress limits in Table 4.6.3.

4.6.4.3 A procedure that can be used to design an integral flat head with a single, circular centrally located opening is shown below.

Step 1. Determine the design pressure and temperature of the flat head opening.

Step 2. Determine the geometry of the flat head opening (see Figure 4.6.1).

Step 3. Calculate the operating moment, M_o , using the following equation.

$$M_o = 0.785 B_n^2 P \left(R + \frac{g_{1n}}{2} \right) + 0.785 \left(B_s^2 - B_n^2 \right) P \left(\frac{R + g_{1n}}{2} \right)$$
(4.6.10)

where

$$R = \frac{B_s - B_n}{2} - g_{1n} \tag{4.6.11}$$

Step 4. Calculate F, V, and f based on B_n , g_{1n} , g_{0n} and h_n using the equations in Table 4.16.4 and Table 4.16.5, designate the resulting values as F_n , V_n , and f_n .

Step 5. Calculate *F*, *V*, and *f* based on B_s , g_{1s} , g_{0s} and h_s using the equations in Table 4.16.4 and Table 4.16.5, designate the resulting values as F_s , V_s , and f_s .

Step 6. Calculate Y, T, U, Z, L, e, and d based on $K = A/B_n$ using the equations in Table 4.16.4.

Step 7. Calculate the quantity $(E\theta)^*$ using one of the following equations:

For an opening with an integrally attached nozzle:

$$\left(E\theta\right)^{*} = \frac{0.91 \left(\frac{g_{1n}}{g_{0n}}\right)^{2} \left(B_{n} + g_{0n}\right) V_{n}}{f_{n} \sqrt{B_{n} g_{0n}}} S_{H}$$
(4.6.12)

Where S_H is evaluated using the equation in Table 4.6.2.

For an opening without an attached nozzle or with a nozzle or hub attached with non-integral welds:

$$\left(E\theta\right)^* = \frac{B_n S_T}{t} \tag{4.6.13}$$

Where S_T is evaluated using the equation in Table 4.6.2.

Step 8. Calculate the quantity M_H using the following equation:

$$M_{H} = \frac{(E\theta)^{*}}{\frac{1.74V_{s}\sqrt{B_{s}g_{0s}}}{g_{0s}^{3}(B_{s} + g_{0s})} + \frac{(E\theta)^{*}}{M_{o}} \left(1 + \frac{F_{s}t}{\sqrt{B_{s}g_{0s}}}\right)}$$
(4.6.14)

Step 9. Calculate the quantity X_1 using the following equation:

$$X_{1} = \frac{M_{o} - M_{H} \left(1 + \frac{F_{s}t}{\sqrt{B_{s}g_{0s}}}\right)}{M_{o}}$$
(4.6.15)

Step 10. Calculate the stresses at the shell-to-flat head junction and opening-to-flat-head junction using Table 4.6.2.

Step 11. Check the flange stress acceptance criteria in Table 4.6.3. If the stress criteria are satisfied, then the design is complete. If the stress criteria are not satisfied, then re-proportion the flat head and/or opening dimensions and go to Step 3.

4.6.5 NOMENCLATURE

- A = shell outside diameter.
- B_s = inside diameter of the shell.
- B_n = inside diameter of the opening.
- C = factor depending upon the method of attachment of head, shell dimensions, and other items as described in Table 4.6.1.
- D = is the long span of noncircular heads or covers measured perpendicular to short span.
- d = diameter, or short span, measured as indicated in figure shown in Table 4.6.1.
- E = joint factor.
- e = flange stress factor.
- f_n = hub stress correction factor for the nozzle opening-to-flat head junction.
- f_s = hub stress correction factor the shell-to-flat head junction
- E = weld joint factor (see 4.2).
- F_n = flange stress factor for the nozzle opening-to-flat head junction.
- F_s = flange stress factor for the shell-to-flat head junction
- g_{1s} = hub thickness at the large end of the shell-to-flat head junction.
- g_{0n} = hub thickness at the small end of the nozzle opening-to-flat head junction.
- g_{0s} = hub thickness at the small end of the shell-to-flat head junction.
- g_{1n} = hub thickness at the large end of the nozzle opening-to-flat head junction.
- g_{1s} = hub thickness at the large end of the shell-to-flat head junction.
- h_G = gasket moment arm (see Table 4.16.6).
- h_n = hub length at the large end of the nozzle opening-to-flat head junction.
- h_s = hub length at the large end of the shell-to-flat head junction.
- L = perimeter of a noncircular bolted head measured along the centers of the bolt holes, or the flange stress factor, as applicable.
- M_o = operating moment.
- M_H = moment acting at the shell-to-flat head junction.
- $m = \text{thickness ratio } t_r/t_s.$
- P = internal design pressure.
- r = inside corner radius on a head formed by flanging or forging.
- S_{ho} = allowable stress from Annex 3-A for the head evaluated at the design temperature.
- S_{hg} = allowable stress from Annex 3-A for the head evaluated at the gasket seating condition.
 - \tilde{T} = flange stress factor.
 - t = minimum required thickness of the flat head or cover.
 - t_g = required thickness of the flat head or cover for the gasket seating condition.
 - t_o = required thickness of the flat head or cover for the design operating condition.
 - t_f = nominal thickness of the flange on a forged head at the large end.
 - t_h = nominal thickness of the flat head or cover.
 - t_r = required thickness of a seamless shell.
 - t_s = nominal thickness of the shell.
 - t_1 = throat dimension of the closure weld
 - U = flange stress factor.
- V_n = flange stress factor for the nozzle opening-to-flat head junction.
- V_s = flange stress factor for the shell-to-flat head junction
- W_o = operating bolt load at the design operating condition.
- W_q = gasket seating bolt load at the design gasket seating condition.
- \bar{Y} = length of the flange of a flanged head, measured from the tangent line of knuckle, or the flange stress factor, as applicable.
- Z = factor for noncircular heads and covers that depends on the ratio of short span to long span, or the flange stress factor, as applicable.
- Z_1 = integral flat head stress parameter.

 $(E\theta)^*$ = slope of head with central opening or nozzle times the modulus of elasticity, disregarding the interaction of the integral shell at the outside diameter of the head.

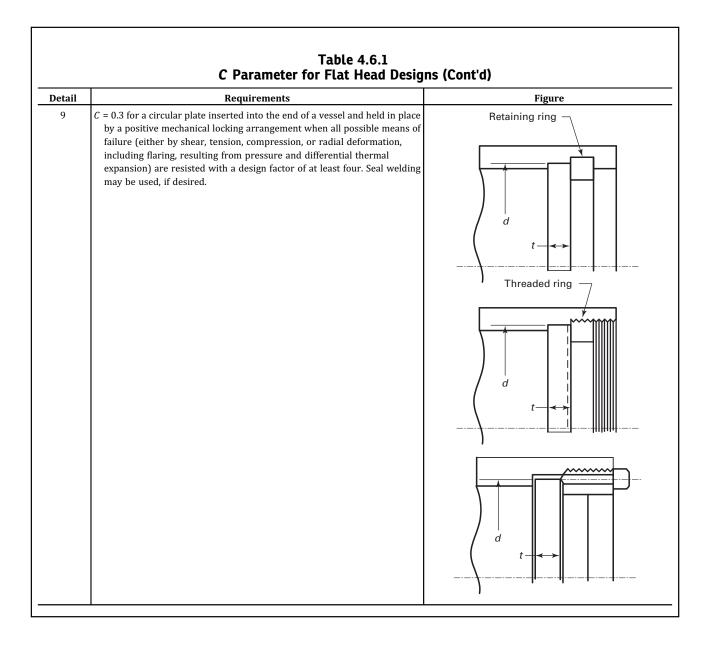

4.6.6 TABLES

	Table 4.6.1 C Parameter for Flat Head Designs				
Detail	Requirements	Figure			
1	• <i>C</i> = 0.17 for flanged circular and noncircular heads forged integral with or butt welded to the vessel with an inside corner radius not less than three times the required head thickness, with no special requirement with regard to length of flange. • <i>C</i> = 0.10 for circular heads, when the flange length for heads of the above design is not less than: $Y = \left[1.1 - 0.8 \left(\frac{t_{\rm S}}{t_{\rm h}}\right)^2\right] \sqrt{dt_{\rm h}}$ • <i>C</i> = 0.10 for circular heads, when the flange length <i>Y</i> less than the	$\begin{array}{c c} & & & \\ &$			
	requirements in the above equation but the shell thickness is not less than the requirements in the above equation but the shell thickness is not less than: $t_s = 1.12t_h\sqrt{1.1 - Y/\sqrt{dt_h}}$ for a length of at least $2\sqrt{dt_s}$. When $C = 0.10$ is used, the taper shall be at least 1:3. • $r = 3t$ minimum shall be used	$d \rightarrow t$			
2	 <i>C</i> = 0.17 for forged circular and noncircular heads integral with or butt welded to the vessel, where the flange thickness is not less than two times the shell thickness, the corner radius on the inside is not less than three times the flange thickness. <i>r</i> = 3t_f minimum shall be used 	$ $ $ $			
3	• $C = \max[0.33m, 0.20]$ for forged circular and noncircular heads integral with or butt welded to the vessel, where the flange thickness is not less than the shell thickness, the corner radius on the inside is not less than the following: r = 10 mm (0.375 in.) for $t_s \leq 38 \text{ mm} (1.5 \text{ in.})$	$ \begin{array}{c c} $			
	$r = \min[0.25t_s, 19 \text{ mm } (0.75 \text{ in.})]$ for $t_s > 38 \text{ mm } (1.5 \text{ in.})$				

4.6.6

Detail	C Parameter for Flat Head Desig Requirements	Figure
4	 <i>C</i> = 0.13 for integral flat circular heads when: the dimension <i>d</i> does not exceed 610 mm (24 in.) the ratio of thickness of the head to the dimension <i>d</i> is not less than 0.05 or greater than 0.25 the head thickness t_h is not less than the shell thickness t_s the inside corner radius is not less than 0.25t the construction is obtained by special techniques of upsetting and spinning the end of the shell, such as employed in closing header ends. <i>r</i> = 3t minimum shall be used 	t
5	$C = 0.33$ for circular plates welded to the end of the shell when t_s is at least $1.25t_r$ and the weld details conform to the requirements of 4.2.	See 4.2 for detail of weld joint, t_s not less than 1.25 t_r
6	$C = \max[0.33m, 0.20]$ for circular plates if an inside fillet weld with minimum throat thickness of $0.7t_s$ is used and the details of the outside weld conform to the requirements of 4.2.	See 4.2 for details of weld joint t_s d t_s


	Table 4.6.1 C Parameter for Flat Head Desig	ıns (Cont'd)
Detail	Requirements	Figure
7	• $C = 0.3$ for circular and noncircular heads and covers bolted to the vessel as indicated in the figures. • When the cover plate is grooved for a peripheral gasket, the net cover plate thickness under the groove or between the groove and the outer edge of the cover plate shall be not less than the following thickness. For circular heads and covers: $t_0 = d\sqrt{\frac{1.9W_0h_G}{S_{ho}d^3}}$ For noncircular heads and covers: $t_0 = d\sqrt{\frac{6W_0h_G}{S_{ho}Ld^2}}$	(h _G
8	C = 0.25 for circular covers bolted with a full-face gasket to shells and flanges.	

Table 4.6.2 Junction Stress Equations for an Integral Flat Head With Opening			
Head/Shell Junction Stresses	Opening/Head Junction Stresses		
$S = \frac{1.1f_{s}X_{1}(E\theta)^{*}\sqrt{B_{s}g_{0s}}}{\left(\frac{g_{1s}}{g_{0s}}\right)^{2}B_{s}V_{s}}$ $S = \frac{1.91M_{H}\left(1 + \frac{F_{s}t}{\sqrt{B_{s}g_{0s}}}\right)}{B_{s}t^{2}} + \frac{0.64F_{s}M_{H}}{B_{s}\sqrt{B_{s}g_{0s}}t}$ $TS = \frac{X_{1}(E\theta)^{*}t}{B_{s}} - \frac{0.57M_{H}\left(1 + \frac{F_{s}t}{\sqrt{B_{s}g_{0s}}}\right)}{B_{s}t^{2}} + \frac{0.642F_{s}M_{H}}{B_{s}\sqrt{B_{s}g_{0s}}t}$	$S_{HO} = X_1 S_H$ $S_{RO} = X_1 S_R$ $S_{TO} = X_1 S_T + \frac{0.64 Z_1 F_s M_H}{B_s \sqrt{B_s g_{0s} t}}$ where $S_H = \frac{f_n M_o}{L g_{1n}^2 B_n}$ $S_R = \frac{(1.33te + 1)M_o}{Lt^2 B_n}$ $S_T = \frac{Y M_o}{t^2 B_n} - Z S_R$ $Z_1 = \frac{2K^2}{K^2 - 1}$ Note: $S_R = S_H = 0.0$ for the case of an opening without a nozzle		

Table 4.6.3 Stress Acceptance Criteria for an Integral Flat Head With Opening				
Head/Shell Junction Stresses	Opening/Head Junction Stresses			
$S_{HS} \le 1.5 S_{ho}$	$S_{HO} \leq 1.5 S_{ho}$			
$S_{HS} \le 1.5 S_{ho}$ $S_{RS} \le S_{ho}$	$S_{HO} \le 1.5S_{ho}$ $S_{RO} \le S_{ho}$			
$S_{TS} \le S_{ho}$	$S_{TO} \leq S_{hO}$			
$S_{TS} \le S_{ho}$ $\frac{(S_{HS} + S_{RS})}{2} \le S_{ho}$	$\frac{\left(S_{HO} + S_{RO}\right)}{2} \le S_{hO}$			
$\frac{(S_{HS} + S_{TS})}{2} \le S_{ho}$	$\frac{\left(S_{HO} + S_{TO}\right)}{2} \le S_{hO}$			

4.6.7 FIGURES

4.7 DESIGN RULES FOR SPHERICALLY DISHED BOLTED COVERS

4.7.1 SCOPE

4.7.1.1 Design rules for four configurations of circular spherically dished heads with bolting flanges are provided in 4.7. The four head types are shown in Figures 4.7.1, 4.7.2, 4.7.3, and 4.7.4. The design rules cover both internal and external pressure, pressure that is concave and convex to the spherical head, respectively. The maximum value of the pressure differential shall be used in all of the equations.

4.7.1.2 For head types with a bolted flange connection where the gasket is located inside the bolt circle, calculations shall be made for two design conditions, gasket seating and operating conditions. Details regarding computation of design bolt loads and flange moments for these two conditions are provided in 4.16. If a flange moment is computed as a negative number, the absolute value of this moment shall be used in all of the equations.

4.7.1.3 Calculations shall be performed using dimensions in the corroded condition and the uncorroded condition, and the more severe case shall control.

4.7.1.4 Flanges designed to Figures 4.7.2 through 4.7.5 do not need to comply with the flange rigidity criterion in Table 4.16.10.

4.7.2 TYPE A HEAD THICKNESS REQUIREMENTS

4.7.2.1 The thickness of the head and skirt for a Type A Head Configuration (see Figure 4.7.1) shall be determined in accordance with the rules in 4.3 for internal pressure (pressure on the concave side), and 4.4 for external pressure (for pressure on the convex side). The skirt thickness shall be determined using the appropriate equation for cylindrical shells. The head radius, *L*, and knuckle radius, *r*, shall comply with the limitations given in these paragraphs.

4.7.2.2 The flange thickness of the head for a Type A Head Configuration shall be determined in accordance with the rules of 4.16. When a slip-on flange conforming to the standards listed in Table 1.1 is used, design calculations per 4.16 need not be done, provided the design pressure-temperature is within the pressure-temperature rating permitted in the flange standard.

4.7.2.3 Detail (a) in Figure 4.7.1 is permitted if both of the following requirements are satisfied.

(a) The material of construction satisfies the following equation.

$$\frac{S_{yT}}{S_u} \le 0.625$$
 (4.7.1)

(b) The component is not in cyclic service, i.e., a fatigue analysis is not required in accordance with 4.1.1.4.

4.7.3 TYPE B HEAD THICKNESS REQUIREMENTS

4.7.3.1 The thickness of the head for a Type B Head Configuration (see Figure 4.7.2) shall be determined by the following equations.

(a) Internal pressure (pressure on the concave side)

$$t = \frac{5PL}{6S} \tag{4.7.2}$$

(*b*) External pressure (pressure on the convex side) - the head thickness shall be determined in accordance with the rules in 4.4.

4.7.3.2 The flange thickness of the head for a Type B Head Configuration shall be determined by the following equations where the flange moments M_o and M_g for the operating and gasket seating conditions, respectively, are determined from 4.16.

(a) Flange thickness for a ring gasket

$$T = \max\left[T_g, T_o\right] \tag{4.7.3}$$

where

$$T_g = \sqrt{\frac{M_g}{S_{fg}B} \left(\frac{A+B}{A-B}\right)}$$
(4.7.4)

$$T_o = \sqrt{\frac{M_o}{S_{fo}B}} \left(\frac{A+B}{A-B}\right)$$
(4.7.5)

(b) Flange thickness for a full face gasket

$$T = 0.6 \sqrt{\frac{|P|}{S_{fo}} \left(\frac{B(A+B)(C-B)}{A-B}\right)}$$
(4.7.6)

4.7.3.3 A Type B head may only be used if both of the requirements in 4.7.2.3 are satisfied.

4.7.4 TYPE C HEAD THICKNESS REQUIREMENTS

4.7.4.1 The thickness of the head for a Type C Head Configuration (see Figure 4.7.3) shall be determined by the following equations.

(a) Internal pressure (pressure on the concave side) - the head thickness shall be determined using eq. (4.7.2).

(b) External pressure (pressure on the convex side) - the head thickness shall be determined in accordance with the rules in 4.4.

4.7.4.2 The flange thickness of the head for a Type C Head Configuration shall be determined by the following equations where the flange moments M_o and M_g for the operating and gasket seating conditions, respectively, are determined from 4.16.

(a) Flange thickness for a ring gasket for heads with round bolting holes

$$T = \max\left[T_g, T_o\right] \tag{4.7.7}$$

where

$$T_{g} = \sqrt{\frac{1.875M_{g}}{S_{fg}B} \left(\frac{C+B}{7C-5B}\right)}$$
(4.7.8)

$$T_o = Q + \sqrt{\frac{1.875M_o}{S_{fo}B} \left(\frac{C+B}{7C-5B}\right)}$$
(4.7.9)

$$Q = \frac{|P|L}{4S_{fo}} \left(\frac{C+B}{7C-5B} \right)$$
(4.7.10)

(b) Flange thickness for ring gasket for heads with bolting holes slotted through the edge of the head

$$T = \max\left[T_g, T_o\right] \tag{4.7.11}$$

where

$$T_{g} = \sqrt{\frac{1.875M_{g}}{S_{fg}B} \left(\frac{C+B}{3C-B}\right)}$$
(4.7.12)

$$T_{o} = Q + \sqrt{\frac{1.875M_{o}}{S_{fo}B} \left(\frac{C+B}{3C-B}\right)}$$
(4.7.13)

$$Q = \frac{|P|L}{4S_{fo}} \left(\frac{C+B}{3C-B} \right)$$
(4.7.14)

(c) Flange thickness for full-face gasket for heads with round bolting holes

$$T = Q + \sqrt{Q^2 + \frac{3BQ(C-B)}{L}}$$
(4.7.15)

The parameter Q is given by eq. (4.7.10).

(d) Flange thickness for full-face gasket for heads with bolting holes slotted through the edge of the head

$$T = Q + \sqrt{Q^2 + \frac{3BQ(C - B)}{L}}$$
(4.7.16)

The parameter Q is given by eq. (4.7.14).

4.7.5 TYPE D HEAD THICKNESS REQUIREMENTS

4.7.5.1 The thickness of the head for a Type D Head Configuration (see Figure 4.7.4) shall be determined by the following equations.

(a) Internal pressure (pressure on the concave side) - the head thickness shall be determined using eq. (4.7.2).

(b) External pressure (pressure on the convex side) - the head thickness shall be determined in accordance with the rules in 4.4.

4.7.5.2 The flange thickness of the head for a Type D Head Configuration shall be determined by the following equations.

$$T = \max\left[T_g, T_o\right] \tag{4.7.17}$$

where

$$T_g = \sqrt{\frac{M_g}{S_{fg}B} + \left(\frac{A+B}{A-B}\right)}$$
(4.7.18)

$$T_{o} = Q + \sqrt{Q^{2} + \frac{M_{o}}{S_{fo}B} + \left(\frac{A+B}{A-B}\right)}$$
(4.7.19)

$$Q = \frac{|P| B\sqrt{4L^2 - B^2}}{8S_{fo}(A - B)}$$
(4.7.20)

When determining the flange design moment for the design condition, M_o , using 4.16, the following modifications shall be made. The moment arm, h_D , shall be computed using eq. (4.7.21). An additional moment term, M_r , computed using eq. (4.7.22) shall be added to M_o as defined 4.16. The term M_{oe} in the equation for M_o as defined 4.16 shall be set to zero in this calculation. Note that this term may be positive or negative depending on the orientation of t_v , R, A_R .

$$h_D = 0.5(C - B) \tag{4.7.21}$$

$$M_r = \left(0.785B^2 P \cot[\beta]\right) h_r \tag{4.7.22}$$

where

$$\beta = \arcsin\left[\frac{B}{2L+t}\right] \tag{4.7.23}$$

4.7.5.3 As an alternative to the rules in 4.7.5.1 and 4.7.5.2, the following procedure can be used to determine the required head and flange thickness of a Type D head. This procedure accounts for the continuity between the flange ring and the head, and represents a more accurate method of analysis.

Step 1. Determine the design pressure and temperature of the flange joint. If the pressure is negative, a negative value must be used for *P* in all of the equations of this procedure, and

$$P_e = 0.0$$
 for internal pressure (4.7.24)

$$P_e = P$$
 for external pressure (4.7.25)

Step 2. Determine an initial Type D head configuration geometry (see Figure 4.7.5). The following geometry parameters are required:

(a) The flange bore, B

(b) The bolt circle diameter, C

(c) The outside diameter of the flange, A

(d) Flange thickness, T

(e) Mean head radius, R

(f) Head thickness, t

(g) Inside depth of flange to the base of the head, q

Step 3. Select a gasket configuration and determine the location of the gasket reaction, G, and the design bolt loads for the gasket seating, W_g , and operating conditions, W_o , using the rules of 4.16.

Step 4. Determine the geometry parameters.

$$h_1 = \frac{(C-G)}{2} \tag{4.7.26}$$

$$h_2 = \frac{(G-B)}{2} \tag{4.7.27}$$

$$d = \frac{\left(A - B\right)}{2} \tag{4.7.28}$$

$$n = \frac{T}{t} \tag{4.7.29}$$

$$K = \frac{A}{B} \tag{4.7.30}$$

$$\phi = \arcsin\left[\frac{B}{2R}\right] \tag{4.7.31}$$

$$e = q - \frac{1}{2} \left(T - \frac{t}{\cos[\phi]} \right)$$
(4.7.32)

$$k_1 = 1 - \left(\frac{1 - 2\nu}{2\lambda}\right) \cot[\phi]$$
(4.7.33)

$$k_2 = 1 - \left(\frac{1+2\nu}{2\lambda}\right) \cot[\phi]$$
(4.7.34)

$$\lambda = \left[3\left(1 - v^2\right)\left(\frac{R}{t}\right)^2\right]^{0.25}$$
(4.7.35)

Step 5. Determine the shell discontinuity geometry factors.

$$C_1 = \frac{0.275n^3t \cdot \ln[K]}{k_1} - e \tag{4.7.36}$$

$$C_2 = \frac{1.1\lambda n^3 t \cdot \ln[K]}{Bk_1} + 1$$
(4.7.37)

$$C_4 = \frac{\lambda \sin[\phi]}{2} \left(k_2 + \frac{1}{k_1} \right) + \frac{B}{4nd} + \frac{1.65e}{tk_1}$$
(4.7.38)

4.7.5.3 - 4.7.6

ASME BPVC.VIII.2-2023

$$C_5 = \frac{1.65}{tk_1} \left(1 + \frac{4\lambda e}{B} \right)$$
(4.7.39)

Step 6. Determine the shell discontinuity load factors for the operating and gasket conditions.

$$C_{3o} = \frac{\pi B^2 P}{4} \left(e \cdot \cot\left[\phi\right] + \frac{2q(T-q)}{B} - h_2 \right) - W_o h_1$$
(4.7.40)

$$C_{6o} = \frac{\pi B^2 P}{4} \left(\frac{4q - B \cdot \cot[\phi]}{4nd} - \frac{0.35}{\sin[\phi]} \right)$$
(4.7.41)

$$C_{3g} = -W_g h_1 \tag{4.7.42}$$

$$C_{6g} = 0.0 \tag{4.7.43}$$

Step 7. Determine the shell discontinuity force and moment for the operating and gasket conditions.

$$V_{do} = \frac{C_2 C_{6o} - C_{3o} C_5}{C_2 C_4 - C_1 C_5}$$
(4.7.44)

$$M_{do} = \frac{C_1 C_{6o} - C_{3o} C_4}{C_2 C_4 - C_1 C_5} \tag{4.7.45}$$

$$V_{dg} = \frac{C_2 C_{6g} - C_{3g} C_5}{C_2 C_4 - C_1 C_5} \tag{4.7.46}$$

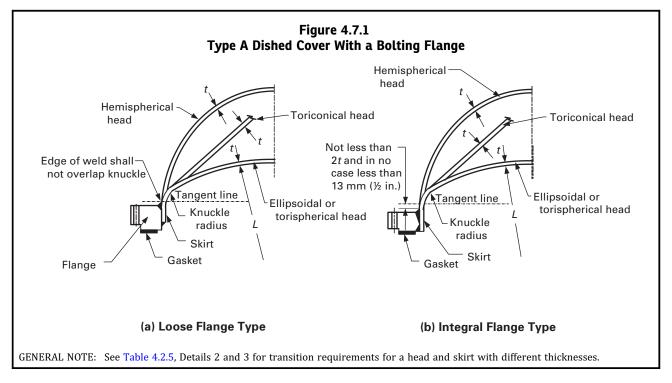
$$M_{dg} = \frac{C_1 C_{6g} - C_{3g} C_4}{C_2 C_4 - C_1 C_5} \tag{4.7.47}$$

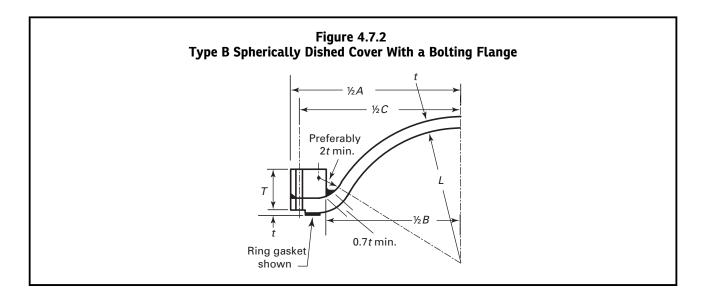
Step 8. Calculate the stresses in the head and at the head-to-flange junction using Table 4.7.1 and check the stress acceptance criteria. If the stress criteria are satisfied, then the design is complete. If the stress criteria are not satisfied, then re-proportion the bolted head dimensions and go to Step 3.

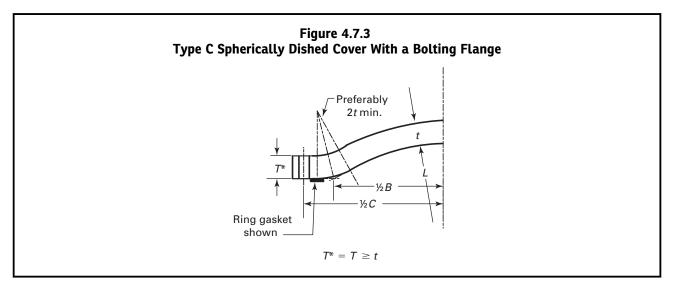
4.7.6 NOMENCLATURE

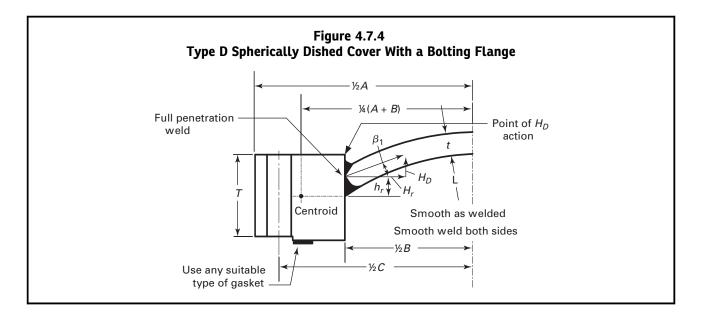
- A = flange outside diameter
- *B* = flange inside diameter
- C = bolt circle diameter
- $\mathcal{C}_1\,$ = shell discontinuity geometry parameter for the Type D head alternative design procedure
- C_2 = shell discontinuity geometry parameter for the Type D head alternative design procedure
- C_{3g} = shell discontinuity load factor for the gasket seating condition for the Type D head alternative design procedure
- C_{3o} = shell discontinuity load factor for the design operating condition for the Type D head alternative design procedure
- C_4 = shell discontinuity geometry parameter for the Type D head alternative design procedure
- C_5 = shell discontinuity geometry parameter for the Type D head alternative design procedure
- C_{6g} = shell discontinuity load factor for the gasket seating condition for the Type D head alternative design procedure
- C_{6o} = shell discontinuity load factor for the design operating condition for the Type D head alternative design procedure
 - e = geometry parameter for the Type D head alternative design procedure
- h_1 = geometry parameter for the Type D head alternative design procedure
- h_2 = geometry parameter for the Type D head alternative design procedure
- h_r = moment arm of the head reaction force
- K = geometry parameter for the Type D head alternative design procedure
- k_1 = geometry parameter for the Type D head alternative design procedure

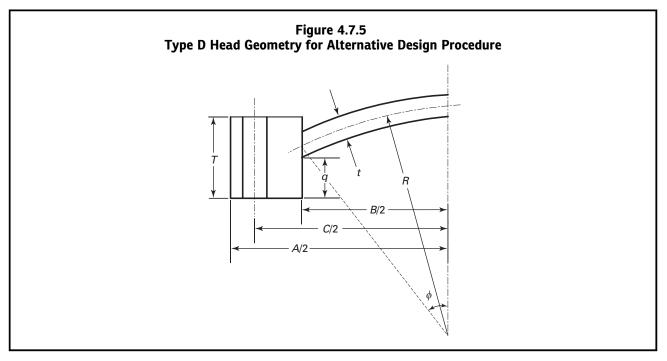
 k_2 = geometry parameter for the Type D head alternative design procedure


- L = inside crown radius
- M_{dg} = shell discontinuity moment for the gasket seating condition
- M_{do} = shell discontinuity moment for design operating condition
- M_g = flange design moment for the gasket seating condition determined using 4.16
- M_o = flange design moment for the design condition determined using 4.16 (see 4.7.5.2 for exception)
- M_r = moment from the head reaction force
- n = geometry parameter for the Type D head alternative design procedure
- P = design pressure
- P_e = pressure factor to adjust the design rules for external pressure
- q = inside depth of the flange to the base of the head
- R = mean radius of a Type D head
- r = inside knuckle radius. S_{fg} allowable stress from Annex 3-A for the flange evaluated at the gasket seating condition
- S_{fm} = membrane stress in the flange
- S_{fmbi} = membrane plus bending stress on the inside surface of the flange
- S_{fmbo} = membrane plus bending stress on the outside surface of the flange
 - S_{fo} = allowable stress from Annex 3-A for the flange evaluated at the design temperature
 - S_{hb} = bending stress at the head-to-flange junction
 - S_{hg} = allowable stress from Annex 3-A for the head evaluated at the gasket seating condition
 - S_{hl} = local membrane stress at the head-to-flange junction
- S_{hlbi} = local membrane plus bending stress at the head-to-flange junction on the inside surface of the head
- S_{hlbo} = local membrane plus bending stress at the head-to-flange junction on the outside surface of the head
- S_{hm} = head membrane stress
- S_{ho} = allowable stress from Annex 3-A for the head evaluated at the design temperature
- S_u = minimum specified ultimate tensile strength from Annex 3-D
- S_{yT} = yield strength from Annex 3-D evaluated at the design temperature
 - *T* = flange thickness
 - t = required head thickness
- T_g = required flange thickness for the gasket seating condition
- T_o = required flange thickness for design operating condition
- T^* = flange thickness for a Type C head
- V_{dq} = shell discontinuity shear force for the gasket seating condition
- V_{do} = shell discontinuity shear force for design operating condition
- W_q = bolt load for the gasket seating condition
- W_o = bolt load for design operating condition
- β = angle formed by the tangent to the center line of the dished cover thickness at its point of intersection with the flange ring, and a line perpendicular to the axis of the dished cover
- λ = geometry parameter for the Type D head alternative design procedure
- v = Poisson's ratio
- ϕ = one-half central angle of the head for the Type D head alternative design procedure


Г


4.7.7 **TABLES**


Operating Conditions	Gasket Seating Conditions
$= \frac{PR}{2t} + P_e$ $= \frac{PR}{2t} + \frac{V_{do}\cos[\phi]}{\pi Bt} + P_e$ $= \frac{6M_{do}}{\pi Bt^2}$ $= S_{hl} - S_{hb}$ $= \frac{1}{\pi BT} \left(\frac{\pi B^2 P}{4} \left(\frac{4q}{B} - \cot[\phi] \right) - V_{do} \right) \left(\frac{K^2 + 1}{K^2 - 1} \right) + P_e$ $= \frac{0.525n}{Btk_1} \left(V_{do} - \frac{4M_{do}\lambda}{B} \right)$ $= S_{fm} - S_{fb}$	$S_{hm} = 0.0$ $S_{hl} = \frac{V_{dg} \cos[\phi]}{\pi Bt}$ $S_{hb} = \frac{6M_{dg}}{\pi Bt^2}$ $S_{hlbi} = S_{hl} - S_{hb}$ $S_{hlbo} = S_{hl} + S_{hb}$ $S_{fm} = \frac{1}{\pi BT} \left(-V_{dg} \right) \left(\frac{K^2 + 1}{K^2 - 1} \right)$ $S_{fb} = \frac{0.525n}{Btk_1} \left(V_{dg} - \frac{4M_{dg}\lambda}{B} \right)$ $S_{fmbo} = S_{fm} - S_{fb}$
$=S_{fm} + S_{fb}$	$S_{fmbi} = S_{fm} + S_{fb}$
	eptance Criteria
$m \leq S_{ho}$ $l \leq 1.5S_{ho}$	$S_{hm} \le S_{hg}$ $S_{hl} \le 1.5S_{hg}$
$L_{1.5S_{ho}}$	$S_{hlbi} = 1.5S_{hg}$ $S_{hlbi} \leq 1.5S_{hg}$
$h_{00} \leq 1.5S_{ho}$	$S_{hlbo} \le 1.5S_{hg}$
$\leq S_{fo}$	$S_{fm} \leq S_{fg}$
$a_{bo} \leq 1.5S_{fo}$	$S_{fmbo} \leq 1.5 S_{fg}$
$f_{mbi} \le 1.5S_{fo}$	$S_{fmbi} \le 1.5S_{fg}$


4.7.8 FIGURES

4.8 DESIGN RULES FOR QUICK-ACTUATING (QUICK-OPENING) CLOSURES

4.8.1 SCOPE

4.8.1.1 Design requirements for quick-actuating or quick-opening closures are provided in 4.8. Specific calculation methods are not provided. However, the rules of Part 4 and Part 5 can be used to qualify the design of a quick-actuating or quick-opening closure.

4.8.2 **DEFINITIONS**

4.8.2.1 Quick-actuating or quick-opening closures are those that permit substantially faster access to the contents space of a pressure vessel than would be expected with a standard bolted flange connection (bolting through one or both flanges). Closures with swing bolts are not considered quick actuating (quick opening).

4.8.2.2 Holding elements are structural members of the closure used to attach or hold the cover to the vessel, and/ or to provide the load required to seal the closure. Hinge pins or bolts can be holding elements.

4.8.2.3 Locking components are parts of the closure that prevent a reduction in the load on a holding element that provides the force required to seal the closure, or prevent the release of a holding element. Locking components may also be used as holding elements.

4.8.2.4 The locking mechanism or locking device consists of a combination of locking components.

4.8.2.5 The use of a multi-link component, such as a chain, as a holding element is not permitted.

4.8.3 GENERAL DESIGN REQUIREMENTS

4.8.3.1 Quick-actuating closures shall be designed such that the locking elements will be engaged prior to or upon application of the pressure and will not disengage until the pressure is released.

4.8.3.2 Quick-actuating closures shall be designed such that the failure of a single locking component while the vessel is pressurized (or contains a static head of liquid acting at the closure) will not:

(a) Cause or allow the closure to be opened or leak; or

(b) Result in the failure of any other locking component or holding element; or

(c) Increase the stress in any other locking component or holding element by more than 50% above the allowable stress of the component.

4.8.3.3 Quick-actuating closures shall be designed and installed such that it may be determined by visual external observation that the holding elements are in satisfactory condition.

4.8.3.4 Quick-actuating closures shall also be designed so that all locking components can be verified to be fully engaged by visual observation or other means prior to the application of pressure to the vessel.

4.8.3.5 When installed, all vessels having quick-actuating closures shall be provided with a pressure-indicating device visible from the operating area and suitable to detect pressure at the closure.

4.8.4 SPECIFIC DESIGN REQUIREMENTS

4.8.4.1 Quick-actuating closures that are held in position by positive locking devices and that are fully released by partial rotation or limited movement of the closure itself or the locking mechanism and any closure that is other than manually operated shall be so designed that when the vessel is installed the following conditions are met:

(*a*) The closure and its holding elements are fully engaged in their intended operating position before pressure can be applied in the vessel.

(*b*) Pressure tending to force the closure open or discharge the contents clear of the vessel shall be released before the closure can be fully opened for access.

(c) In the event that compliance with (a) and (b) above is not inherent in the design of the closure and its holding elements, provisions shall be made so that devices to accomplish this can be added when the vessel is installed.

4.8.4.2 The design rules of 4.16 of this code may not be applicable to design Quick-Actuating or Quick-Opening Closures, see 4.16.1.4.

4.8.4.3 The designer shall consider the effects of cyclic loading, other loadings (see 4.1.5.3) and mechanical wear on the holding and locking components.

4.8.4.4 It is recognized that it is impractical to write requirements to cover the multiplicity of devices used for quick access, or to prevent negligent operation or the circumventing of safety devices. Any device or devices that will provide the safeguards broadly described in 4.8.4.1(a) through 4.8.4.1(c) above will meet the intent of this Division.

4.8.5 ALTERNATIVE DESIGNS FOR MANUALLY OPERATED CLOSURES

4.8.5.1 Quick-actuating closures that are held in position by a locking mechanism designed for manual operation shall be designed such that if an attempt is made to open the closure when the vessel is under pressure, the closure will leak prior to full disengagement of the locking components and release of the closure. The design of the closure and vessel shall be such that any leakage shall be directed away from the normal position of the operator.

4.8.5.2 Manually operated closures need not satisfy 4.8.4.1(a) through 4.8.4.1(c) but such closures shall be equipped with an audible or visible warning device that will warn the operator if pressure is applied to the vessel before the holding elements and locking components are fully engaged in their intended position or if an attempt is made to disengage the locking mechanism before the pressure within the vessel is released.

4.8.6 SUPPLEMENTARY REQUIREMENTS FOR QUICK-ACTUATING (QUICK-OPENING) CLOSURES

Annex 4-B provides additional design information for the Manufacturer and provides installation, operational, and maintenance requirements for the Owner.

4.9 DESIGN RULES FOR BRACED AND STAYED SURFACES

4.9.1 SCOPE

4.9.1.1 Design requirements for braced and stayed surfaces are provided in this paragraph. Requirements for the plate thickness and requirements for the staybolt or stay geometry including size, pitch, and attachment details are provided.

4.9.2 REQUIRED THICKNESS OF BRACED AND STAYED SURFACES

4.9.2.1 The minimum thickness for braced and stayed flat plates and those parts that, by these rules, require staying as flat plates with braces or staybolts of uniform diameter symmetrically spaced, shall be calculated by the following equation.

$$t = p_s \sqrt{\frac{P}{SC}} \tag{4.9.1}$$

4.9.2.2 When stays are used to connect two plates, and only one of these plates requires staying, the value of *C* shall be governed by the thickness of the plate requiring staying.

4.9.3 REQUIRED DIMENSIONS AND LAYOUT OF STAYBOLTS AND STAYS

4.9.3.1 The required area of a staybolt or stay at its minimum cross section, usually located at the root of the thread, exclusive of any corrosion allowance, shall be obtained by dividing the load on the staybolt computed in accordance with 4.9.3.2 by the allowable tensile stress value for the staybolt material, multiplying the result by 1.10.

4.9.3.2 The area supported by a staybolt or stay shall be computed on the basis of the full pitch dimensions, with a deduction for the area occupied by the stay. The load carried by a stay is the product of the area supported by the stay and the maximum allowable working pressure. When a staybolt or stay for a shell is unsymmetrical because of interference with other construction details, the area supported by the staybolt or stay shall be computed by taking the distance from the center of the spacing on one side of the staybolt or stay to the center of the spacing on the other side.

4.9.3.3 When the edge of a flat stayed plate is flanged, the distance from the center of the outermost stays to the inside of the supporting flange shall not be greater than the pitch of the stays plus the inside radius of the flange.

4.9.4 REQUIREMENTS FOR WELDED-IN STAYBOLTS AND WELDED STAYS

4.9.4.1 Welded-in staybolts may be used, provided the following requirements are satisfied.

(*a*) The configuration is in accordance with the typical arrangements shown in Figure 4.9.1.

(b) The required thickness of the plate shall not exceed 38 mm (1.5 in.).

(*c*) The maximum pitch shall not exceed 15 times the diameter of the staybolt; however, if the required plate thickness is greater than 19 mm (0.75 in.), the staybolt pitch shall not exceed 508 mm (20 in.).

(*d*) The size of the attachment welds is not less than that shown in Figure 4.9.1.

(e) The allowable load on the welds shall not exceed the product of the weld area (based on the weld dimension parallel to the staybolt), the allowable tensile stress of the material being welded, and a weld joint factor of 60%.

4.9.4.2 Welded stays may be used, provided the following requirements are satisfied.

(*a*) The configuration is in accordance with the typical arrangements shown in Figure 4.9.1.

(b) The pressure does not exceed 2 MPa (300 psi).

(c) The required thickness of the plate does not exceed 13 mm (0.5 in.).

(*d*) The size of the fillet welds is not less than the plate thickness requiring stay.

(e) The inside welds are visually examined before the closing plates are attached.

(f) The allowable load on the fillet welds shall not exceed the product of the weld area (based on the minimum leg dimension), the allowable tensile stress of the material being welded, and a weld joint factor of 55%.

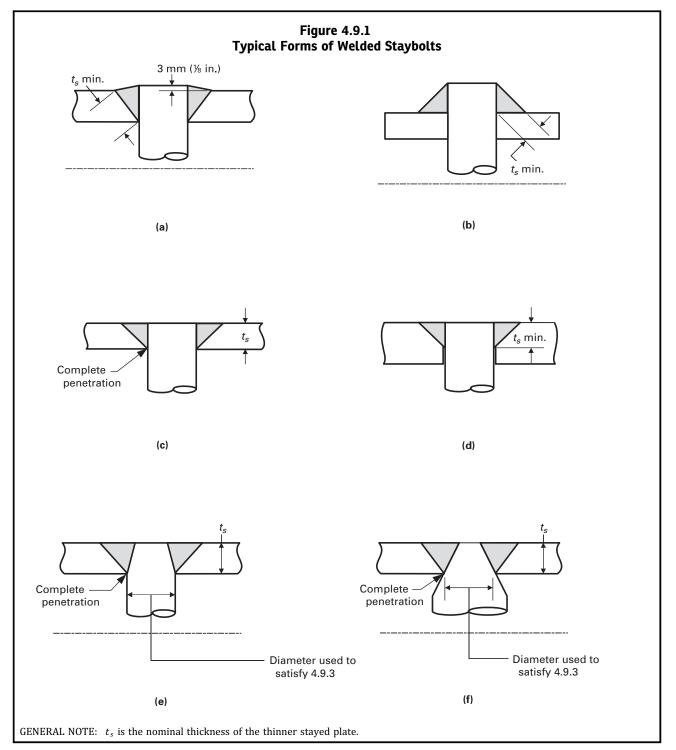
(g) The maximum diameter or width of the hole in the plate shall not exceed 32 mm (1.25 in.).

(*h*) The maximum pitch, p_s , is determined by eq. (4.9.1) with C = 2.1 if either plate thickness is less than or equal to 11 mm (0.4375 in.) thick, and C = 2.2 for all other plate thicknesses.

4.9.5 NOMENCLATURE

C = stress factor for braced and stayed surfaces (see Table 4.9.1)

P = design pressure


- P_s = maximum pitch. The maximum pitch is the greatest distance between any set of parallel straight lines passing through the centers of staybolts in adjacent rows. Each of the three parallel sets running in the horizontal, the vertical, and the inclined planes shall be considered.
- S = allowable stress from Annex 3-A evaluated at the design temperature
- *t* = minimum required plate thickness
- t_s = nominal thickness of the thinner stayed plate (see Figure 4.9.1)

4.9.6 TABLES

Table 4.9.1 Stress Factor for Braced and Stayed Surfaces

Braced and Stayed Surface Construction	С
Welded stays through plates not over 11 mm (0.4375 in.) in thickness	2.1
Welded stays through plates over 11 mm (0.4375 in.) in thickness	2.2

4.9.7 FIGURES

4.10 DESIGN RULES FOR LIGAMENTS

4.10.1 SCOPE

4.10.1.1 Rules for determining the ligament efficiency for hole patterns in cylindrical shells are covered in this paragraph. The ligament efficiency or weld joint factor (see 4.10.3) is used in conjunction with the design equations for shells in 4.3.

4.10.2 LIGAMENT EFFICIENCY

4.10.2.1 When a cylindrical shell is drilled for tubes in a line parallel to the axis of the shell for substantially the full length of the shell as shown in Figures 4.10.1 through 4.10.3, the efficiency of the ligaments between the tube holes shall be determined as follows.

(a) When the pitch of the tube holes on every row is equal (see Figure 4.10.1), the ligament efficiency is

$$E = \frac{p-d}{p} \tag{4.10.1}$$

(b) When the pitch of tube holes on any one row is unequal (as in Figures 4.10.2 and 4.10.3), the ligament efficiency is

$$E = \frac{p_1 - nd}{p_1} \tag{4.10.2}$$

(c) When the adjacent longitudinal rows are drilled as described in (b), diagonal and circumferential ligaments shall also be examined. The least equivalent longitudinal efficiency shall be used to determine the minimum required thickness and the maximum allowable working pressure.

(*d*) When a cylindrical shell is drilled for holes so as to form diagonal ligaments, as shown in Figure 4.10.4, the efficiency of these ligaments shall be determined by Figures 4.10.5 and 4.10.6. Figure 4.10.5 is used to determine the efficiency of longitudinal and diagonal ligaments with limiting boundaries where the condition of equal efficiency of diagonal and longitudinal ligaments form one boundary and the condition of equal efficiency of diagonal and circumferential ligaments form the other boundary. Figure 4.10.6 is used for determining the equivalent longitudinal efficiency of diagonal ligaments. This efficiency is used in the equations for setting the minimum required thickness.

(1) Figure 4.10.5 is used when either or both longitudinal and circumferential ligaments exist with diagonal ligaments. To use Figure 4.10.5, compute the value of p^*/p_1 and also the efficiency of the longitudinal ligament. Next find in the diagram, the vertical line corresponding to the longitudinal efficiency of the ligament and follow this line vertically to the point where it intersects the diagonal line representing the ratio of p^*/p_1 . Then project this point horizontally to the left, and read the diagonal efficiency of the ligament on the scale at the edge of the diagram. The minimum shell thickness and the maximum allowable working pressure shall be based on the ligament that has the lower efficiency.

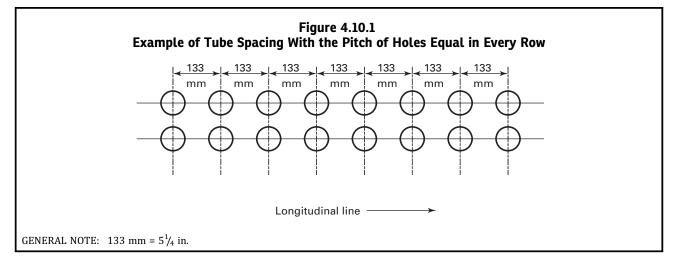
(2) Figure 4.10.6 is used for holes that are not in-line, or holes that are placed longitudinally along a cylindrical shell. The diagram may be used for pairs of holes for all planes between the longitudinal plane and the circumferential plane. To use Figure 4.10.6, determine the angle θ between the longitudinal shell axis and the line between the centers of the openings and compute the value of p^*/d . Find in the diagram, the vertical line corresponding to the value of θ and follow this line vertically to the line representing the value of p^*/d . Then project this point horizontally to the left, and read the equivalent longitudinal efficiency of the diagonal ligament. This equivalent longitudinal efficiency is used to determine the minimum required thickness and the maximum allowable working pressure.

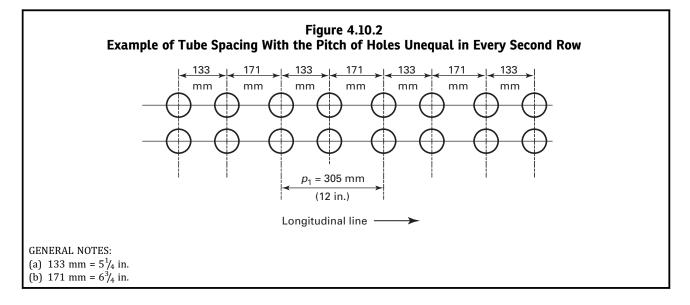
(e) When tube holes in a cylindrical shell are arranged in symmetrical groups which extend a distance greater than the inside diameter of the shell along lines parallel to the axis and the same spacing is used for each group, the efficiency for one of the groups shall be not less than the efficiency on which the maximum allowable working pressure is based.

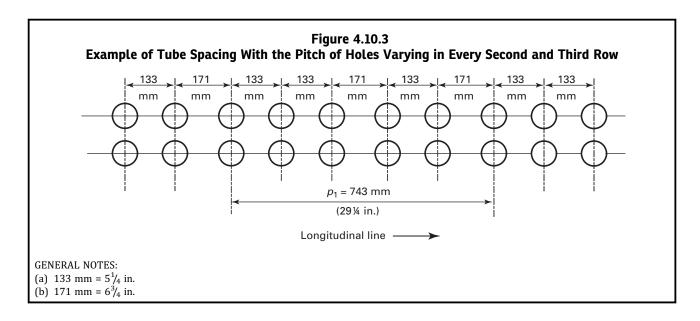
(f) The average ligament efficiency in a cylindrical shell, in which the tube holes are arranged along lines parallel to the axis with either uniform or non-uniform spacing, shall be computed by the following rules and shall satisfy the requirements of both. These rules only apply to ligaments between tube holes and not to single openings. They may give lower efficiencies in some cases than those for symmetrical groups which extend a distance greater than the inside diameter of the shell as covered in (e). When this occurs, the efficiencies computed by the rules under (b) shall govern.

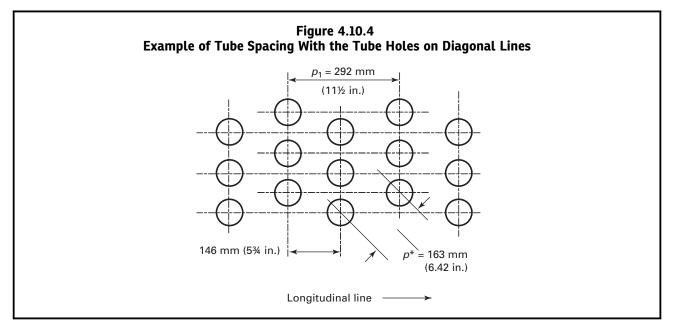
(1) For a length equal to the inside diameter of the shell for the position which gives the minimum efficiency, the efficiency shall be not less than that on which the maximum allowable working pressure is based. When the inside diameter of the shell exceeds 1 520 mm (60 in.), the length shall be taken as 1 520 mm (60 in.), in applying this rule.

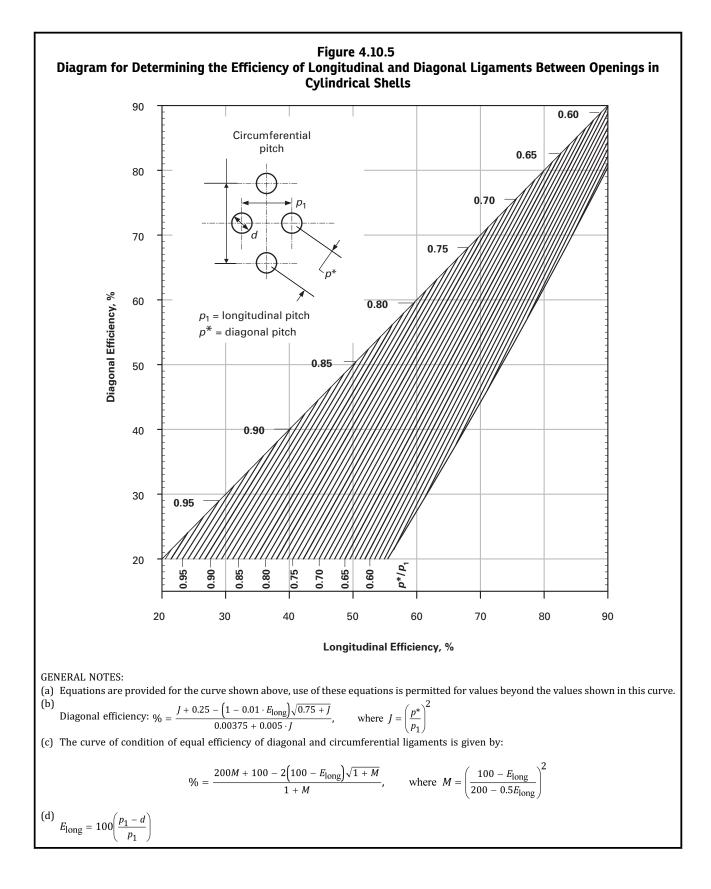
(2) For a length equal to the inside radius of the shell for the position which gives the minimum efficiency, the efficiency shall be not less than 80% of that on which the maximum allowable working pressure is based. When the inside radius of the shell exceeds 760 mm (30 in.), the length shall be taken as 760 mm (30 in.), in applying this rule.

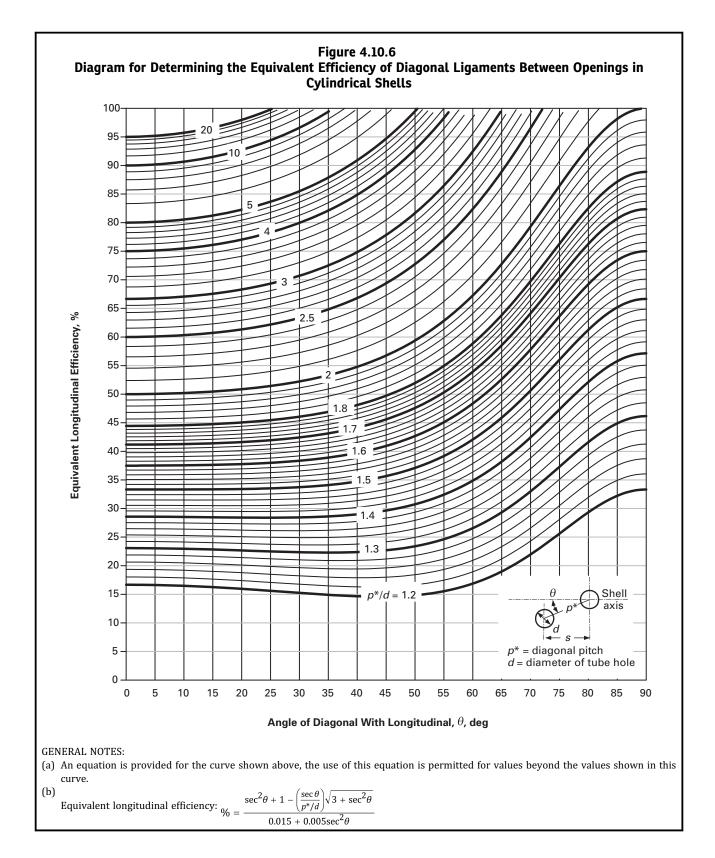

4.10.3 LIGAMENT EFFICIENCY AND THE WELD JOINT FACTOR


When ligaments occur in cylindrical shells made from welded pipe or tubes and their calculated efficiency is less than 85% (longitudinal) or 50% (circumferential), the efficiency to be used in 4.3 to determine the minimum required thickness is the calculated ligament efficiency. In this case, the appropriate stress value in tension may be multiplied by the factor 1.18.


4.10.4 NOMENCLATURE


- d = diameter of tube holes
- *E* = longitudinal ligament efficiency
- E_{long} = longitudinal ligament efficiency in percent
 - n = number of tube holes in length p_1
 - p = longitudinal pitch of tube holes
 - p_1 = unit length of ligament
 - p^* = diagonal pitch of tube holes
 - s = longitudinal dimension of diagonal pitch, $p^* \cdot \cos\theta$
 - θ = angle of the diagonal pitch with respect to the longitudinal line


4.10.5 FIGURES



4.11 DESIGN RULES FOR JACKETED VESSELS

4.11.1 SCOPE

4.11.1.1 The minimum requirements for the design of the jacketed portion of a pressure vessel shall conform to the requirements given in 4.11. The jacketed portion of the vessel is defined as the inner and outer walls, the closure devices and all other penetration or parts within the jacket that are subjected to pressure stress. Parts such as nozzle closure members and stay rings are included in this definition. For the purposes of this section, jackets are assumed to be integral pressure chambers, attached to a vessel for one or more purposes, such as:

- (a) To heat the vessel and its contents,
- (b) To cool the vessel and its contents, or
- (c) To provide a sealed insulation chamber for the vessel.

4.11.1.2 4.11 applies only to jacketed vessels having jackets over the shell or heads as illustrated in Figure 4.11.1, partial jackets as illustrated in Figure 4.11.2, and half-pipe jackets as illustrated in Figure 4.11.3.

4.11.1.3 The jacketed vessels shown in Figure 4.11.1 are categorized as five types shown below. For these types of vessels, the jackets shall be continuous circumferentially for Type 1, 2, 4, or 5 and shall be circular in cross section for Type 3. The use of any combination of the types shown is permitted on a single vessel, provided the individual requirements for each are met. When nozzles or other openings in Type 1, 2, 3, 4, or 5 jackets also penetrate the vessel shell or head, design of the opening in the inner vessel wall shall be in accordance with 4.5. 4.11 does not cover dimpled or embossed jackets.

(a) Type 1 - Jacket of any length confined entirely to the cylindrical shell

(b) Type 2 - Jacket covering a portion of the cylindrical shell and one head

(c) Type 3 - Jacket covering a portion of one head

(d) Type 4 - Jacket with addition of stay or equalizer rings to the cylindrical shell portion to reduce the effective length

(e) Type 5 - Jacket covering the cylindrical shell and any portion of either head.

4.11.1.4 4.11 does not contain rules to cover all details of design and construction. Jacket types defined in **4.11.1.3** subject to general loading conditions (i.e., thermal gradients) or jacket types of different configurations subject to general loading conditions shall be designed using Part 5.

4.11.1.5 If the internal pressure is 100 kPa (15 psi) or less, and any combination of pressures and vacuum in the vessel and jacket will produce a total pressure greater than 100 kPa (15 psi) on the inner vessel wall, then the entire jacket is within the scope of **4.11**.

4.11.2 DESIGN OF JACKETED SHELLS AND JACKETED HEADS

4.11.2.1 Shell and head thickness shall be determined using 4.3 and 4.4 as applicable. In consideration of the loadings given in 4.1, particular attention shall be given to the effects of local internal and external pressure loads and differential thermal expansion (see 4.11.1.4). Where vessel supports are attached to the jacket, consideration shall be given to the transfer of the supported load of the inner vessel and contents.

4.11.2.2 The requirements for inspection openings in jackets shall be in accordance with 4.5.16 except that the maximum size of inspection openings in the jacketed portion of the vessel need not exceed DN 50 (NPS 2) pipe for all diameter vessels.

4.11.2.3 The use of impingement plates or baffles at the jacket inlet connection to reduce erosion of the inner wall shall be considered for media where vapors are condensed (i.e., steam).

4.11.2.4 Flat plate regions of jacketed vessels may be designed as braced and stayed surfaces using the rules of 4.9.

4.11.3 DESIGN OF CLOSURE MEMBER OF JACKET TO VESSEL

4.11.3.1 The design of jacket closure members shall be in accordance with Table 4.11.1 and the additional requirements of 4.11.3. Alternative geometries to those illustrated may be used in accordance with 4.11.1.4.

4.11.3.2 Any radial welds in closure members shall be butt-welded joints penetrating through the full thickness of the member and shall be ground flush where attachment welds are to be made.

4.11.3.3 Partial penetration and fillet welds are permitted when both of the following requirements are satisfied. *(a)* The material of construction satisfies the following equation.

$$\frac{S_y T}{S_u} \le 0.625$$
 (4.11.1)

(b) The component is not in cyclic service, i.e., a fatigue analysis is not required in accordance with 4.1.1.4.

4.11.3.4 Closures for any type of stay-bolted jacket may be designed in accordance with the requirements of Type 1 jackets shown in Figure 4.11.1, provided the entire jacket is stay-bolted to compensate for pressure end forces.

4.11.4 DESIGN OF PENETRATIONS THROUGH JACKETS

4.11.4.1 Jacket penetrations other than those shown in Table 4.11.2 shall conform to the following requirements: *(a)* Design of openings that only penetrate the jacket shall be in accordance with the rules given in 4.5.

(b) Design of openings through the jacket space that also penetrate the vessel shell or head shall be in accordance with Part 5.

4.11.4.2 For jacket penetrations shown in Table 4.11.2, Detail 1, design of openings shall be in accordance with the rules given in 4.5. However, when applying these rules, the limits of reinforcement for the vessel opening and jacket opening shall not overlap. For all other jacket penetrations shown in Table 4.11.2, design of openings through the jacket space shall be in accordance with Part 5.

4.11.4.3 Jacket penetration closure member designs shown in Table 4.11.2 shall conform to the following requirements stipulated in this table and the following provisions. Alternative geometries to those illustrated may be used if the design is based on Part 5.

(*a*) The jacket penetration closure member minimum thickness considers only pressure membrane loading. Axial pressure loadings and secondary loadings given in 4.1 shall be considered in the design.

(*b*) The design Details 2, 3, 4, 5 and 6 shown in Table 4.11.2 provide some flexibility. Only pressure membrane loading is considered in establishing the minimum thickness of the penetration closure member. If the localized stresses at the penetration detail need to be established, the methodology in Part 5 shall be used.

(c) All radial welds in opening sealer membranes shall be butt-welded joints that penetrate through the full thickness of the member.

(*d*) Closure member welds shall be circular, elliptical, or obround in shape where possible. Rectangular member welds are permissible, provided that corners are rounded to a suitable radius.

(e) The requirements of 4.11.3.3 shall be satisfied.

4.11.5 DESIGN OF PARTIAL JACKETS

4.11.5.1 Partial jackets include jackets that encompass less than the full circumference of the vessel. Some variations are shown in Figure 4.11.2.

4.11.5.2 The rules for construction of jacketed vessels in the preceding paragraphs also apply to partial jackets, with the following exceptions.

(*a*) Stayed partial jackets shall be designed and constructed in accordance with 4.9 with closures designed in accordance with 4.11.3.

(*b*) Partial jackets that, by virtue of their service or configuration, do not lend themselves to staybolt construction may be fabricated by other means, provided they are designed using Part 5.

4.11.6 DESIGN OF HALF-PIPE JACKETS

4.11.6.1 The rules in this section are applicable for the design of half-pipe jackets constructed of NPS 2, 3 or 4 pipes and subjected to internal pressure loading (see Figure 4.11.3). Configurations that do not satisfy the rules in 4.11.6.1 may be designed in accordance with Part 5.

4.11.6.2 The fillet weld attaching the half-pipe jacket to the vessel shall have a throat thickness not less than the smaller of the jacket or shell thickness. Consideration should be given to the selection of the half-pipe jacket pitch needed to provide welder access. In addition, the requirements of **4.11.3.3** shall be satisfied.

4.11.6.3 The minimum required thickness of a half pipe jacket is given by the following equation. For a design to be acceptable, the additional condition that $P_i \le P_{ipm}$ where P_{ipm} is given by eq. (4.11.3) must also be satisfied.

$$t_{rp} = \frac{P_j r_p}{0.85 S_j - 0.6 P_j} \tag{4.11.2}$$

4.11.6.4 The maximum permissible pressure in the half-pipe jacket, P_{jpm} , shall be determine using the following equation.

$$P_{jpm} = \frac{F_p}{K_p} \tag{4.11.3}$$

where

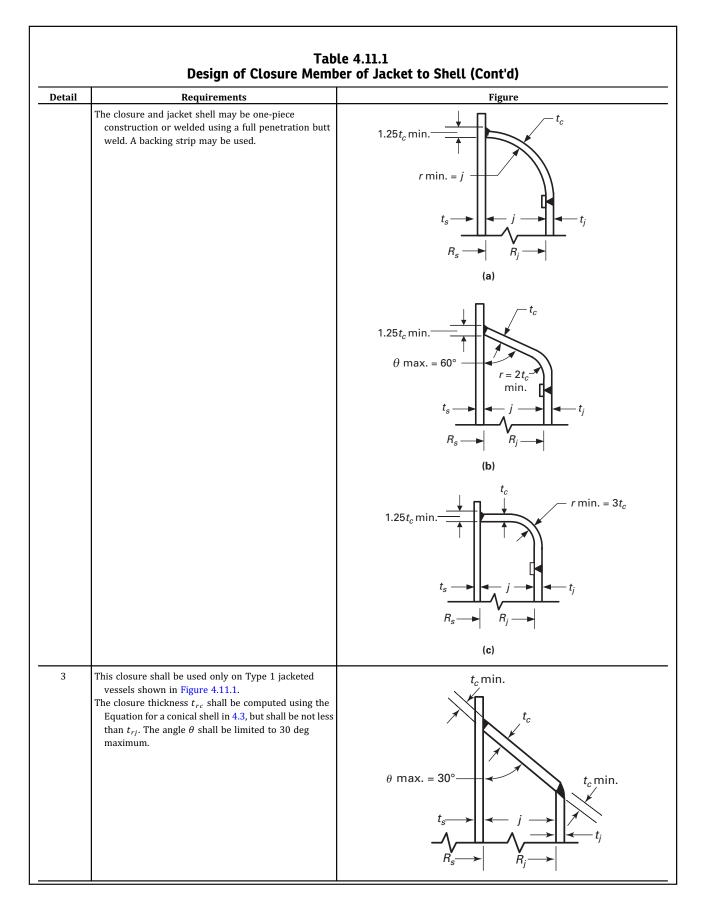
$$F_p = \min[(1.5S - S^*), 1.5S]$$
(4.11.4)

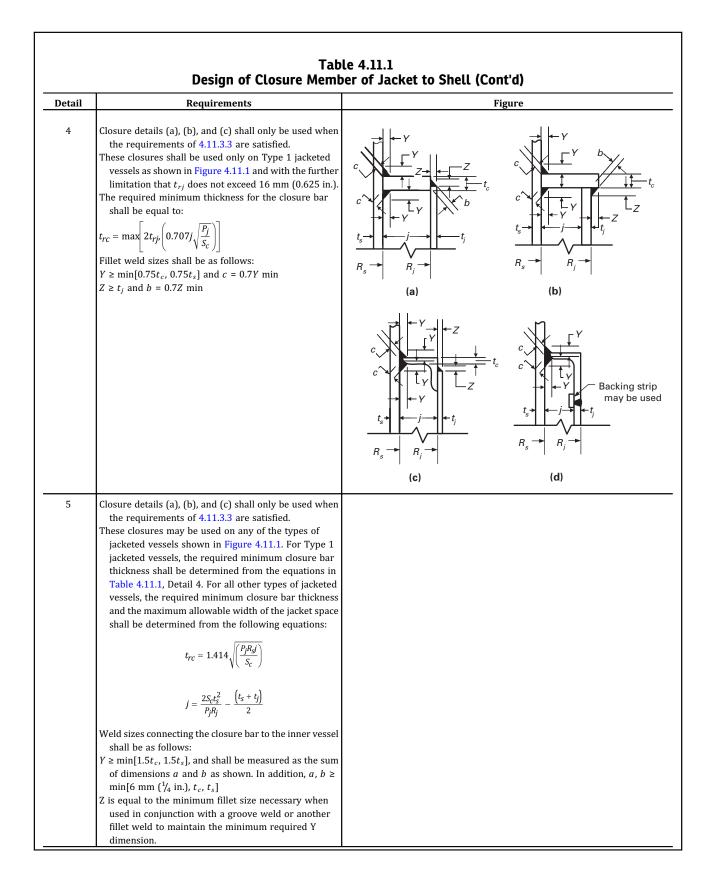
$$K_{p} = C_{1} + C_{2} \frac{D}{C_{ul}}^{0.5} + C_{3} \frac{D}{C_{ul}} + C_{4} \frac{D}{C_{ul}}^{1.5} + C_{5} \frac{D}{C_{ul}}^{2} + C_{6} \frac{D}{C_{ul}}^{2.5} + C_{7} \frac{D}{C_{ul}}^{3} + C_{8} \frac{D}{C_{ul}}^{3.5} + C_{9} \frac{D}{C_{ul}}^{4} + C_{10} \frac{D}{C_{ul}}^{4.5}$$
(4.11.5)

The coefficients for eq. (4.11.5) are provided in Table 4.11.3.

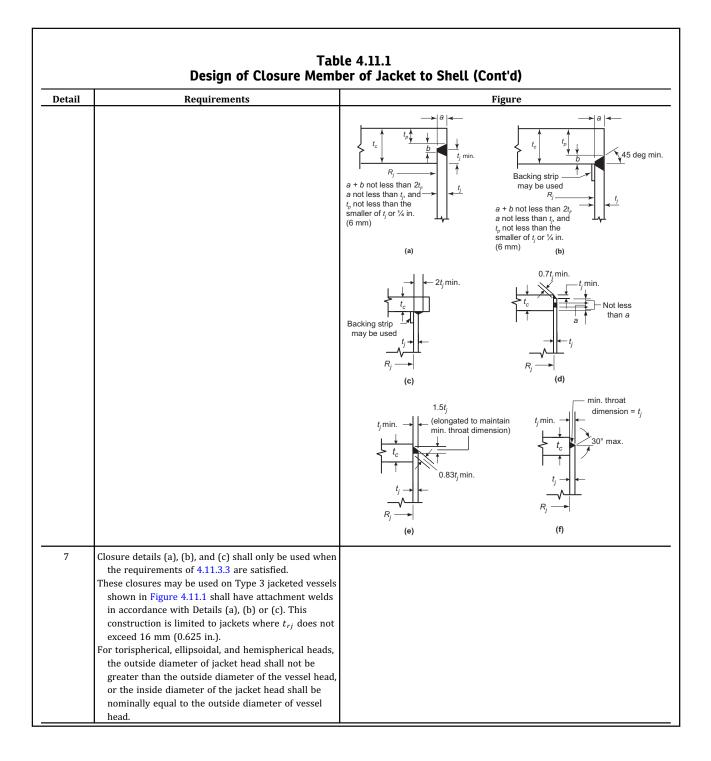
4.11.7 NOMENCLATURE

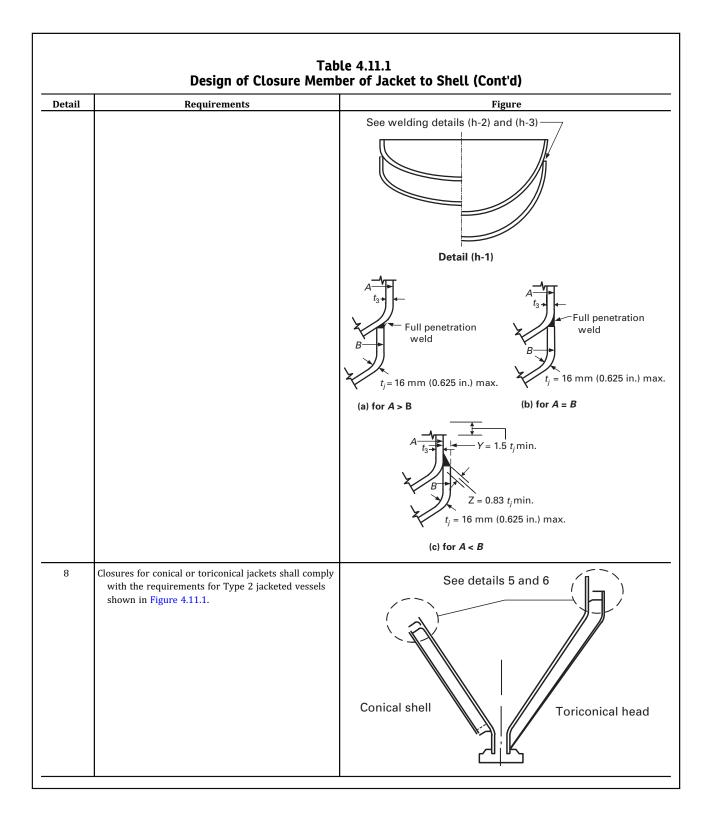
- c_{ul} = conversion factor for length. c_{ul} = 1.0 in. for U.S. Customary Units, and c_{ul} = 25.4 mm for SI Units
- D = inside diameter of the inner vessel
- D_{pi} = nominal pipe size of the half-pipe jacket
- j = jacket space defined as the inside radius of the jacket minus the outside radius of the inner vessel
- K_p = half-pipe jacket rating factor

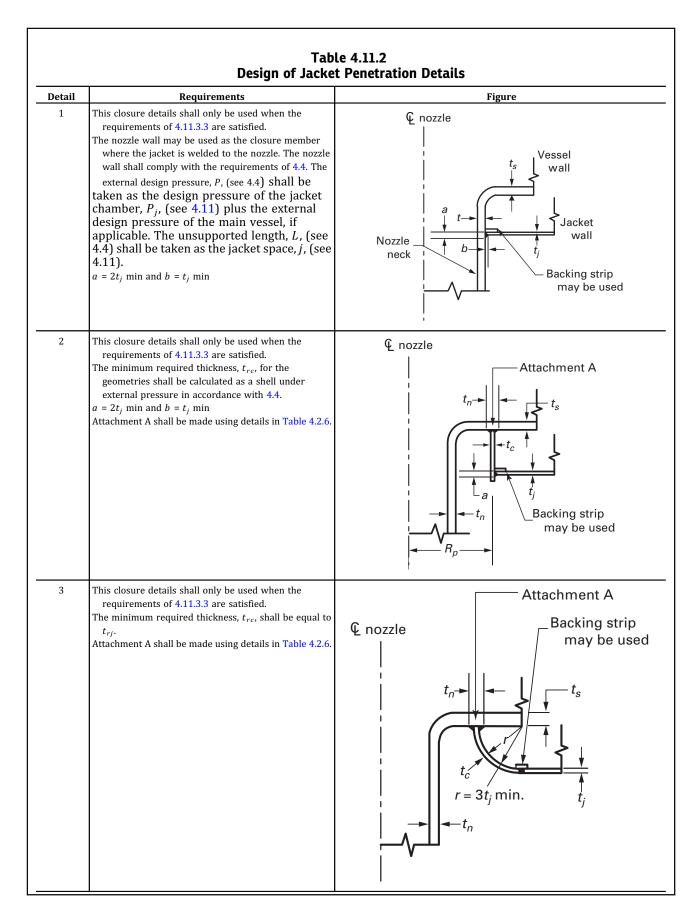

L =length of the jacket

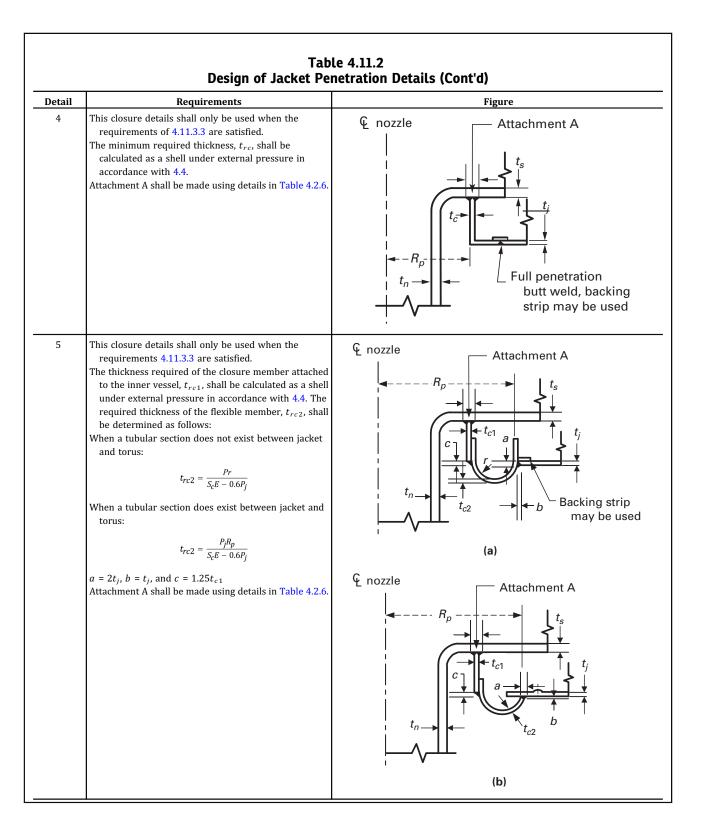

- P_i = design pressure in the jacket chamber
- P_{ipm} = permissible jacket pressure based on the jacket and shell geometry
 - r = corner radius of torus closures
 - R_j = inside radius of the jacket
 - R_p = radius of the opening in the jacket at the jacket penetration
 - $r_p\,$ = inside radius of the half-pipe jacket
 - R_s = outside radius of the inner vessel
 - S = allowable stress of the inner shell from Annex 3-A at the design temperature
 - S^* = actual longitudinal tensile stress in the head or shell due to internal pressure and other axial forces; when axial forces are negligible, $S^* = PD/4t_s$. If the combination of axial forces and pressure results in a negative value of S^* , then $S^* = 0$.
 - S_c = allowable stress of the jacket closure from Annex 3-A at the design temperature
 - S_j = allowable stress of the jacket from Annex 3-A at the design temperature
 - S_u = minimum specified ultimate tensile strength from Annex 3-D
- S_{yT} = yield strength from Annex 3-D at the design temperature
- t_c = nominal thickness of the closure member
- t_i = nominal thickness of the outer jacket wall
- t_n = nominal thickness of the nozzle
- t_{rc} = required minimum thickness of the closure member
- t_{ri} = required minimum thickness of the outer jacket wall
- t_{rp} = required minimum thickness of the half-pipe jacket
- t_s = nominal thickness of the shell inner wall

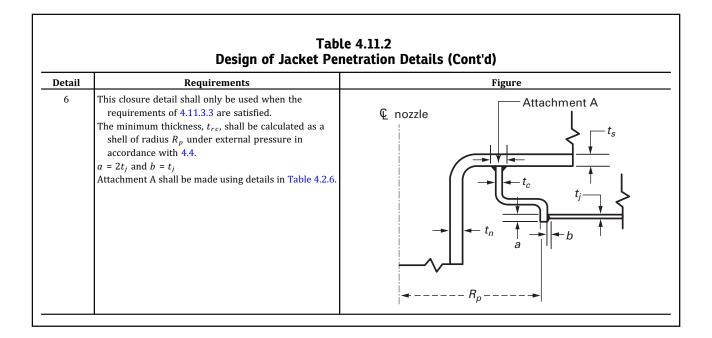
4.11.8 **TABLES**

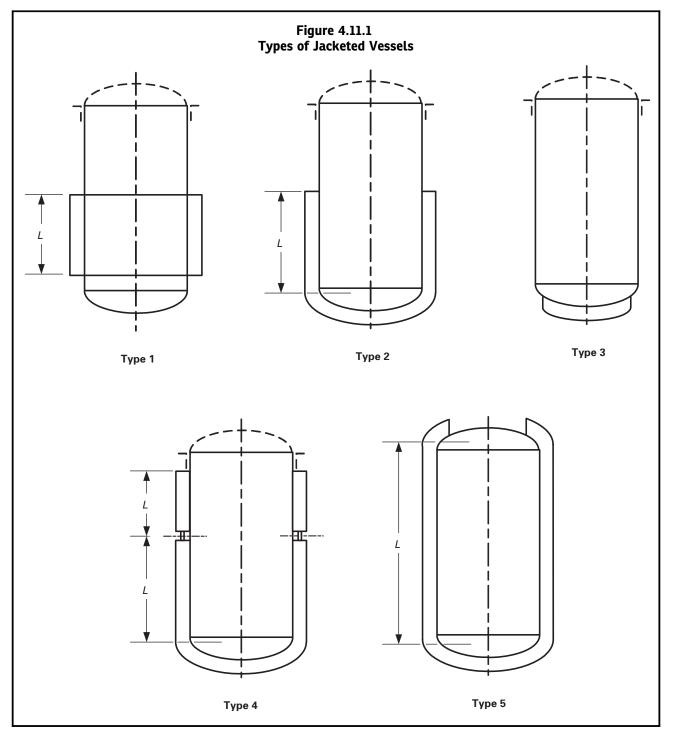

	Table 4.11.1 Design of Closure Member of Jacket to Shell					
Detail	Requirements	Figure				
1	Closure details (a) and (b) shall only be used when the requirements of 4.11.3.3 are satisfied. These closures may be used on Types 1, 2, and 4 jacketed vessels as shown in Figure 4.11.1 and shall have t_{rc} of at least equal to t_{rj} and corner radius r shall not be less than $3t_c$. These closure designs are limited to a maximum thickness t_{rc} of 16 mm (0.625 in.) When this construction is used on Type 1 jacketed vessels, the weld dimension Y shall be not less than $0.7t_c$; and when used on Type 2 and 4 jacketed vessels, the weld dimension Y shall be not less than $0.83t_c$.	Min. $2t_c$ but need not exceed 13 mm (0.5 in.) t_s R_s R_j t_j R_j				
		(a) Type 1 Jackets				
		r_c min. r_c r_c				
		$ t_c \min. $ Min. throat dimension = t_c 30° max. t_c				
		(b) Types 2 and 4 Jackets				
2	These closures shall have t_{rc} at least equal to t_{rj} . In addition for Detail (c), t_{rc} shall be not less than the following: $t_{rc} = 0.707 j \sqrt{\frac{P_j}{S_c}}$					
	A groove weld attaching the closure to the inner vessel and fully penetrating the closure thickness t_c may be used with any of the types of jacketed vessels shown in Figure 4.11.1. However, a fillet weld having a minimum throat dimension of $0.7t_c$ may also be used to join the closure of the inner vessel on Type 1 jacketed vessels of Figure 4.11.1.					

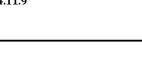

(**23**)

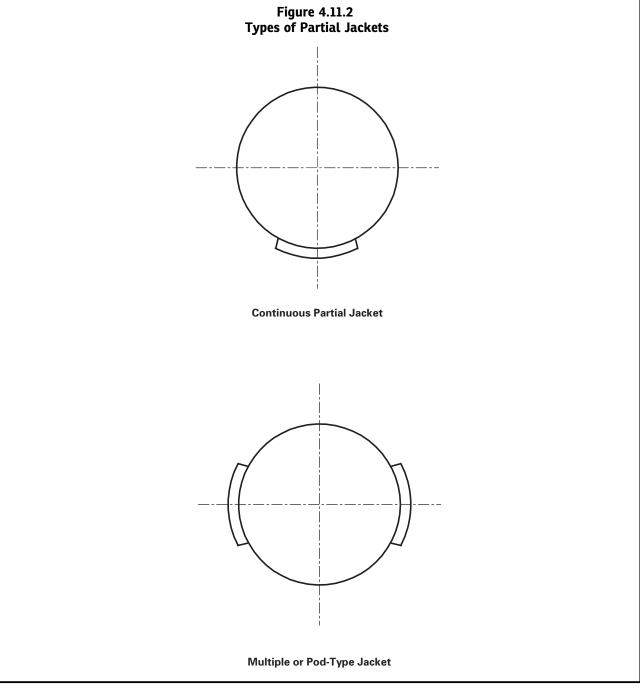


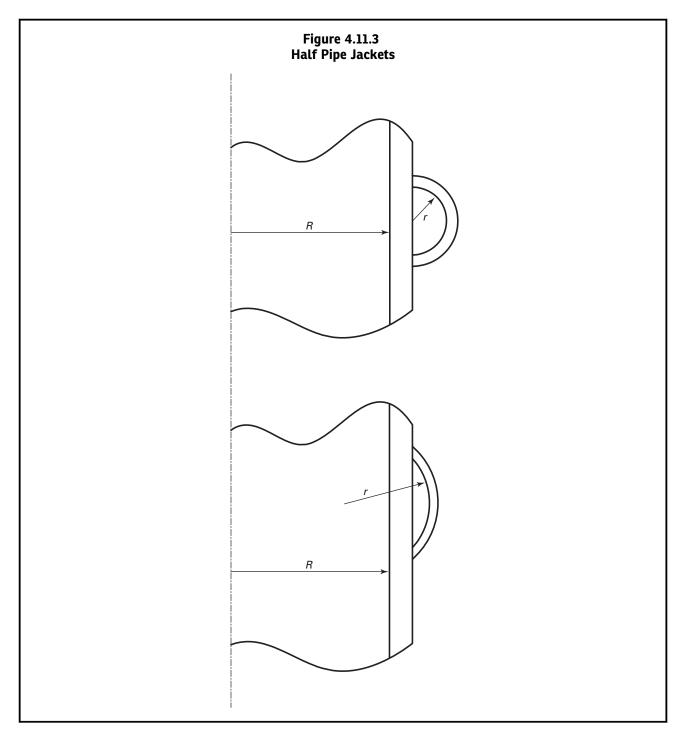



	Table 4.11.1 Design of Closure Member of Jacket to Shell (Cont'd)				
Detail	Requirements	Figure			
		$Z \rightarrow Z \rightarrow$			
6	 Closure details (a), (b), and (c) shall only be used when the requirements of 4.11.3.3 are satisfied. The jacket to closure bar attachment welds shown in Details (a), (b) and (c) may be used on any of the types of jacketed vessels shown in Figure 4.11.1. 				
	Attachment welds shown in Details (d), (e) and (f) may be used on any of the types of jacketed vessels shown in Figure 4.11.1 where t_{rj} does not exceed 16 mm (0.625 in.).				
	The required minimum closure bar thickness and the maximum allowable width of the jacket space shall be determined in accordance with Detail 5.				




Table 4.11.3	
Coefficients for Eq. (4.11.5)	


		Shell Thickness			
D _{pj}	Coefficients	5 mm (³/ ₁₆ in.)	6 mm (¹ / ₄ in.)	10 mm (³ / ₈ in.)	13 mm (¹ / ₂ in.)
DN50 (NPS 2)	<i>C</i> ₁	-3.6674510 E+01	-1.8874043 E+04	4.0083779 E+02	-2.6447784 E+02
	<i>C</i> ₂	1.2306994 E+01	1.7869518 E+04	-5.7029108 E+02	1.8066952 E+02
	С3	3.5701684 E+00	-7.2846419 E+03	3.1989698 E+02	-4.9294965 E+01
	C_4	-7.9516583 E-01	1.6723763 E+03	-9.4286208 E+01	7.1522422 E+00
	C 5	5.8791041 E-02	-2.3648930 E+02	1.6391764 E+01	-5.7900069 E-01
	С ₆	-1.5365397 E-03	2.1101742 E+01	-1.7431218 E+00	2.4758486 E-02
	<i>C</i> ₇	0.0000000 E+00	-1.1608890 E+00	1.1160179 E-01	-4.3667599 E-04
	C ₈	0.0000000 E+00	3.6022711 E-02	-3.9549592 E-03	0.0000000 E+00
	C_{9}	0.0000000 E+00	-4.8303253 E-04	5.9644209 E-05	0.0000000 E+00
	<i>C</i> ₁₀	0.0000000 E+00	0.0000000 E+00	0.0000000 E+00	0.0000000 E+00
DN80 (NPS 3)	<i>C</i> ₁	-3.7588705 E+03	-1.2551406 E+04	-3.8104460 E+04	-1.4263782 E+04
	<i>C</i> ₂	2.9919870 E+03	1.2149900 E+04	4.0491537 E+04	1.6228077 E+04
	Сз	-9.4177823 E+02	-5.0657776 E+03	-1.8844078 E+04	-8.0227888 E+03
	C 4	1.5278500 E+02	1.1910361 E+03	5.0415301 E+03	2.2676555 E+03
	C 5	-1.3452359 E+01	-1.7255075 E+02	-8.5435371 E+02	-4.0440980 E+02
	C_6	6.1167422 E-01	1.5770136 E+01	9.5115501 E+01	4.7257835 E+01
	С7	-1.1235632 E-02	-8.8782173 E-01	-6.9588768 E+00	-3.6233229 E+00
	<i>C</i> ₈	-2.1465752 E-06	2.8148933 E-02	3.2277515 E-01	1.7597455 E-01
	C ₉	0.0000000 E+00	-3.8488963 E-04	-8.6172557 E-03	-4.9179021 E-03
	C ₁₀	0.0000000 E+00	0.0000000 E+00	1.0094910 E-04	6.0315412 E-05
DN100 (NPS 4)	<i>C</i> ₁	-2.1336346 E+04	7.3995872 E+03	8.3115447 E+02	-4.0097574 E+02
	<i>C</i> ₂	1.5982068 E+04	-6.7592710 E+03	-7.6253222 E+02	4.2602525 E+02
	Сз	-4.9936486 E+03	2.6131811 E+03	2.9500674 E+02	-1.7446665 E+02
	C 4	8.4914220 E+02	-5.4873257 E+02	-6.1135935 E+01	3.7753845 E+01
	C 5	-8.4931392 E+01	6.7571708 E+01	7.4233181 E+00	-4.6748939 E+00
	C_6	5.0044853 E+00	-4.8769663 E+00	-5.2938127 E-01	3.3376011 E-01
	<i>C</i> ₇	-1.6105634 E-01	1.9112909 E-01	2.0558271 E-02	-1.2795569 E-02
	<i>C</i> ₈	2.1857714 E-03	-3.1412698 E-03	-3.3593696 E-04	2.0405896 E-04
	C_9	0.0000000 E+00	0.0000000 E+00	0.0000000 E+00	0.0000000 E+00
	C_{10}	0.0000000 E+00	0.0000000 E+00	0.0000000 E+00	0.0000000 E+00


Table 4.11.3Coefficients for Eq. (4.11.5) (Cont'd)					
		Shell Thickness			
D_{pj}	Coefficients	19 mm (³ / ₄ in.)	25 mm (1 in.)	50 mm (2 in.)	
DN50 (NPS 2)	<i>C</i> ₁	-4.0085121 E+02	3.6782666 E+00	1.0000000 E+00	
	<i>C</i> ₂	3.5652906 E+02	-1.2669560 E+00	0.0000000 E+00	
	<i>C</i> ₃	-1.3171601 E+02	4.5491492 E-01	0.0000000 E+00	
	<i>C</i> ₄	2.6480374 E+01	-6.2883969 E-02	0.0000000 E+00	
	C 5	-3.1258388 E+00	3.9401350 E-03	0.0000000 E+00	
	<i>C</i> ₆	2.1680455 E-01	-9.3433360 E-05	0.0000000 E+00	
	С7	-8.1908188 E-03	0.0000000 E+00	0.0000000 E+00	
	<i>C</i> ₈	1.3019970 E-04	0.0000000 E+00	0.0000000 E+00	
	С9	0.0000000 E+00	0.0000000 E+00	0.0000000 E+00	
	<i>C</i> ₁₀	0.0000000 E+00	0.0000000 E+00	0.0000000 E+00	
DN80 (NPS 3)	C_1	-1.5045135 E+03	8.1206324 E+00	-3.2789303 E+03	
	<i>C</i> ₂	1.4487653 E+03	-8.3943593 E+00	3.4419302 E+03	
	<i>C</i> 3	-5.9846696 E+02	3.7870074 E+00	-1.5852932 E+03	
	C_4	1.3910417 E+02	-7.0886182 E-01	4.2063167 E+02	
	C 5	-1.9888205 E+01	6.6972430 E-02	-7.0855807 E+01	
	<i>C</i> ₆	1.7922925 E+00	-3.1488859 E-03	7.8593168 E+00	
	С7	-9.9521276 E-02	5.8511141 E-05	-5.7415834 E-01	
	<i>C</i> ₈	3.1164737 E-03	0.0000000 E+00	2.6647325 E-02	
	Co	-4.2181627 E-05	0.0000000 E+00	-7.1319265 E-04	
	<i>C</i> ₁₀	0.0000000 E+00	0.0000000 E+00	8.3899940 E-06	
DN100 (NPS 4)	C_1	-3.5172282 E+00	-2.5016604 E+02	-5.3121462 E+00	
	<i>C</i> ₂	4.3499616 E+00	1.7178270 E+02	3.4090615 E+00	
	С3	-2.7157682 E-01	-4.6844914 E+01	-5.5605535 E-01	
	<i>C</i> ₄	1.1186450 E-02	6.6874346 E+00	4.2156128 E-02	
	<i>C</i> ₅	-7.1328067 E-04	-5.2507555 E-01	-1.2921987 E-03	
	<i>C</i> ₆	2.2962890 E-05	2.1526948 E-02	6.6740230 E-06	
	С7	0.0000000 E+00	-3.6091550 E-04	0.0000000 E+00	
	C 8	0.0000000 E+00	0.0000000 E+00	0.0000000 E+00	
	C ₉	0.0000000 E+00	0.0000000 E+00	0.0000000 E+00	
	C_{10}	0.0000000 E+00	0.0000000 E+00	0.0000000 E+00	

4.11.9 FIGURES

4.12 DESIGN RULES FOR NONCIRCULAR VESSELS

4.12.1 SCOPE

4.12.1.1 The procedures in 4.12 cover the design requirements for single wall vessels having a rectangular or obround cross section. The design rules cover the walls and parts of the vessels subject to pressure stresses including stiffening, reinforcing and staying members. All other types of loadings shall be evaluated in accordance with the design-by-analysis rules of Part 5.

4.12.1.2 The design rules in this paragraph cover noncircular vessels of the types shown in Table 4.12.1. Vessel configurations other than Types 1 to 12, illustrated in Figures 4.12.1 through 4.12.13, may be used. However, in this case, the design-by-analysis rules of Part 5 shall be used.

4.12.2 GENERAL DESIGN REQUIREMENTS

4.12.2.1 In the noncircular vessel configurations covered in this paragraph, the walls of the vessel can have different thicknesses. Therefore, the design of a noncircular vessel requires an iterative approach where the vessel configuration and wall thickness are initially set and the stresses at locations on the cross section are computed and compared to allowable values. If the allowable values are exceeded, the configuration and/or wall thickness are changed, and the stresses are revaluated. This process is continued until a final configuration including wall thickness is obtained where all allowable stress requirements are satisfied.

4.12.2.2 In the design rules of this paragraph, both membrane and bending stresses shall be computed at locations on the cross section. The membrane stress is added algebraically to the bending stress at both the outermost surface of the shell plate or reinforcement (when used) and the innermost surface of the shell plate to obtain two values of total stress. The total stresses at the section shall be compared to the allowable stress.

4.12.2.3 The total stresses (membrane plus bending) at the cross section of a vessel with and without reinforcement shall be calculated as follows.

(*a*) For a vessel without reinforcement, the total stresses shall be determined at the inside and outside surfaces of the cross section of the shell plate.

(*b*) For a vessel with reinforcement, when the reinforcing member has the same allowable stress as the vessel, the total stress shall be determined at the inside and outside surfaces of the composite cross section. The appropriate value of c (the location from the neutral axis) for the composite section properties shall be used in the bending equations. The total stresses at the inside and outside surfaces shall be compared to the allowable stress.

(c) For a vessel with reinforcement, when the reinforcing member does not have the same allowable stress as the vessel, the total stresses shall be determined at the inside and outside surfaces of each component of the composite cross section. The appropriate value of c (the location from the neutral axis) for the composite section properties shall be used in the bending equations considering location of desired stress with respect to the composite section neutral axis. The total stresses at the inside and outside surfaces shall be compared to the allowable stress.

(1) For locations of stress below the neutral axis, the bending equation used to compute the stress shall be that considered acting on the inside surface.

(2) For locations of stress above the neutral axis, the bending equation used to compute the stress shall be that considered acting on the outside surface.

4.12.2.4 Particular attention shall be given to the effects of local internal and external loads and expansion differentials at design temperature, including reactions at supporting lugs, piping, and other types of attachments (see 4.12.1.1).

4.12.2.5 Except as otherwise specified in 4.12.8, vessel parts of noncircular cross section subject to external pressure shall be designed in accordance with Part 5.

4.12.2.6 The end closures for noncircular vessels covered in this paragraph shall be designed in accordance with the provisions of Part 5 except in cases where the ends are flat plates. For this case, the design rules of 4.6 shall be used except that 0.20 shall be used for the value of the *C* factor in all of the calculations.

4.12.2.7 The design equations in this paragraph are based on vessels in which the ratio of the long side to short-side length is greater than four. These equations are conservatively applicable to vessels of aspect ratio less than four. Vessel side plates with aspect ratios less than four are strengthened by the interaction of the end closures and may be designed in accordance with the provisions of Part 5. Short unreinforced or unstayed vessels of rectangular cross section having an aspect ratio smaller than two may be designed in accordance with 4.12.5.

4.12.2.8 Bolted full side or end plates and flanges may be provided for vessels of rectangular cross section. Many acceptable configurations are possible. Therefore, rules for specific designs are not provided, and these parts shall be designed in accordance with Part 5. The analysis of the components shall consider thermal loads, gasket reactions, bolting forces, and resulting moments, as well as pressure and other mechanical loading.

4.12.2.9 Openings may be provided in vessels of noncircular cross section as follows:

(*a*) Openings in noncircular vessels do not require reinforcement other than that inherent in the construction, provided they meet the conditions given in 4.5.2.

(*b*) Compensation for openings in noncircular vessels must account for the bending strength as well as the membrane strength of the side with the opening. In addition, openings may significantly affect the stresses in adjacent sides. Because many acceptable configurations are possible, rules for specific designs are not provided and the design shall be in accordance with Part 5.

4.12.3 REQUIREMENTS FOR VESSELS WITH REINFORCEMENT

4.12.3.1 Design rules are provided for Types 4, 5, and 6 (see Table 4.12.1) where the welded on reinforcement members are in a plane perpendicular to the long axis of the vessel; however, the spacing between reinforcing members need not be uniform. All reinforcement members attached to two opposite plates shall have the same moment of inertia. The design for any other type of reinforced rectangular cross section vessel shall be in accordance with Part 5.

4.12.3.2 For a Type 4 vessel, when the side plate thicknesses are equal, the plates may be formed to a radius at the corners. The analysis is, however, carried out in the same manner as if the corners were not rounded. For corners that are cold formed, the provisions of Part 6 shall apply. For the special case where $L_1 = 0.0$, the analysis methodology for a Type 11 vessel shall be used.

4.12.3.3 A Type 5 vessel has rounded corners and non-continuous reinforcement. If continuous reinforcement is provided that follows the contour of the vessel, the design requirements for a Type 4 vessel shall be used.

4.12.3.4 For a Type 6 vessel, the corner region consists of a flat, chamfered segment joined to the adjacent sides by curved segments with constant radii. The chamfered segments shall be perpendicular to diagonal lines drawn through the points where the sides would intersect if they were extended.

4.12.3.5 Reinforcing members shall be placed on the outside of the vessel and shall be attached to the plates of the vessel by welding on each side of the reinforcing member. For continuous reinforcement, welding may be either continuous or intermittent. The total length of intermittent welding on each side of the reinforcing member shall be not less than one-half the length being reinforced on the shell. Welds on opposite sides of the reinforcing member may be either staggered or in-line and the distance between intermittent welds shall be no more than eight times the plate thickness of the plate being reinforced. For assuring the composite section properties, for non-continuous reinforcement, the welds must be capable of developing the necessary shear (see Manual of Steel Construction, AISC, American Institute of Steel Construction).

4.12.3.6 The maximum distance between reinforcing members is computed as follows.

(a) The maximum distance between any reinforcing member centerlines is given by eq. (4.12.1). In the equations for calculating stresses for reinforced noncircular vessels, the value of p shall be taken as the sum of one-half the distances to the next reinforcing member on each side.

$$p = \min[p_1, p_2] \tag{4.12.1}$$

where

$$p_1 = t_1 \sqrt{\frac{SJ_1}{p}} \quad \text{for } H \ge p \tag{4.12.2}$$

$$p_1 = \frac{t_1}{\beta_1} \sqrt{\frac{S_1}{P}}$$
 for $H < p$ (4.12.3)

$$\beta_1 = \frac{H}{p_{b1}}$$
 for rectangular vessels (4.12.4)

$$\beta_1 = \frac{2R}{p_{b1}}$$
 for obround vessels (4.12.5)

$$p_{b1} = t_1 \sqrt{\frac{2.1S}{P}} \tag{4.12.6}$$

$$J_{1} = -0.26667 + \frac{24.222}{(\beta_{1})} - \frac{99.478}{(\beta_{1})^{2}} + \frac{194.59}{(\beta_{1})^{3}} - \frac{169.99}{(\beta_{1})^{4}} + \frac{55.822}{(\beta_{1})^{5}}$$
(4.12.7)

$$\beta_{1\max} = \min\left[\max\left[\beta_1, \frac{1}{\beta_1}\right], 4.0\right]$$
(4.12.8)

$$p_2 = t_2 \sqrt{\frac{SJ_2}{p}} \quad \text{for } h \ge p \tag{4.12.9}$$

$$p_2 = \frac{t_2}{\beta_2} \sqrt{\frac{SJ_2}{P}} \quad \text{for } h$$

$$\beta_2 = \frac{h}{p_{b2}}$$
 for rectangular vessels (4.12.11)

$$\beta_2 = \frac{2L_2}{p_{b2}} \quad \text{for obround vessels} \tag{4.12.12}$$

$$J_{2} = -0.26667 + \frac{24.222}{\left(\beta_{2\max}\right)} - \frac{99.478}{\left(\beta_{2\max}\right)^{2}} + \frac{194.59}{\left(\beta_{2\max}\right)^{3}} - \frac{169.99}{\left(\beta_{2\max}\right)^{4}} + \frac{55.822}{\left(\beta_{2\max}\right)^{5}}$$
(4.12.13)

$$\beta_{2\max} = \min\left[\max\left[\beta_2, \frac{1}{\beta_2}\right], 4.0\right]$$
(4.12.14)

$$p_{b2} = t_2 \sqrt{\frac{2.1S}{P}} \tag{4.12.15}$$

(*b*) The allowable effective widths of the shell plate, w_1 and w_2 , shall not be greater than the value given by eq. (4.12.16) or eq. (4.12.17) nor greater than the actual value of *p* if this value is less than that computed in (a). One-half of *w* shall be considered to be effective on each side of the reinforcing member centerline, but the effective widths shall not overlap. The effective width shall not be greater than the actual width available.

$$w_1 = \min\left[w_{\max}, p_1\right] \tag{4.12.16}$$

$$w_2 = \min\left[w_{\max}, p_2\right] \tag{4.12.17}$$

where

$$w_{\max} = \frac{t\Delta}{\sqrt{S_y}} \left(\frac{E_y}{E_{ya}} \right)$$
(4.12.18)

(c) At locations, other than in the corner regions where the shell plate is in tension, the effective moments of inertia I_{11} and I_{21} of the composite section (reinforcement and shell plate acting together) shall be computed based on the values of w_1 and w_2 computed in (b). The equations given in (b) do not include the effects of high-localized stresses. In the corner regions of some Type 4 configurations, the localized stresses may significantly exceed the calculated stress. Only a very small width of the shell plate may be effective in acting with the composite section in the corner region. The localized stresses in this region shall be evaluated using the principles of Part 5.

4.12.4 REQUIREMENTS FOR VESSELS WITH STAYS

4.12.4.1 Three types of stayed construction are considered, Types 7, 8, and 11. In these types of construction the staying members may be plates welded to the side plates for the entire length of the vessel. In this case, the stay plates shall not be constructed so as to create pressure-containing partitions. Alternatively, the stays may be bars of circular cross section fastened to the side plates on a uniform pitch designed in accordance with 4.9.

ASME BPVC.VIII.2-2023

4.12.4.2 The Type 12 noncircular vessel is comprised of a cylindrical shell with a single-stay plate that divides the cylinder into two compartments. The design rules ensure that the various vessel members will not be overstressed when there is full pressure in both vessel compartments or when there is full pressure in one compartment and zero pressure in the other compartment. Stresses may be computed only at the shell-plate junction since this is the location of maximum stress.

4.12.5 REQUIREMENTS FOR RECTANGULAR VESSELS WITH SMALL ASPECT RATIOS

4.12.5.1 Type 1 and Type 2 noncircular vessels with aspect ratios of L_v/H or L_v/h between 1.0 and 2.0, and with flat heads welded to the sides may be designed using the procedure in 4.12.7 except that the following plate parameters shall be utilized in the calculations.

$$J_{2s} = J_2 \left(x = \frac{L_v}{H} \right)$$
(4.12.19)

$$J_{2l} = J_2 \left(x = \frac{L_v}{h} \right)$$
(4.12.20)

$$J_{3s} = J_3 \left(x = \frac{L_v}{H} \right)$$
(4.12.21)

$$J_{3l} = J_3 \left(x = \frac{L_v}{h} \right)$$
(4.12.22)

where

$$J_2(x) = -0.65979 + 1.0052x + 0.86072x^2 - 0.82362x^3 + 0.17483x^4$$
(4.12.23)

$$J_3(x) = -0.37508 + 0.66706x + 0.99709x^2 - 0.84305x^3 + 0.17483x^4$$
(4.12.24)

Note in the above nomenclature, $J_{2s} = J_2\left(x = \frac{L_v}{H}\right)$ is defined as computing J_{2s} using the function $J_2(x)$ evaluated at

$$x = \frac{L_V}{H}.$$

4.12.5.2 For vessels with aspect ratios of L_v/H or L_v/h less than 1.0, the axis of the vessel shall be rotated so that the largest dimension becomes the length L_v , and the new ratios L_v/H or L_v/h are greater than or equal to 1.0. All stresses shall be recalculated using the new orientation.

4.12.6 WELD JOINT FACTORS AND LIGAMENT EFFICIENCY

4.12.6.1 The stress calculations for the noncircular vessel shall include a weld joint factor for weld locations and ligament efficiency for those locations containing holes. In the stress calculations two factors E_m and E_b are used to account for the weld joint factor and ligament efficiency that is to be applied to the membrane and bending stresses, respectively. The weld joint factor shall be determined from 4.2 and the ligament efficiency shall be determined from 4.12.6.3. The correct combination of weld joint factor and ligament efficiencies to be used in the design is shown below.

(a) If there is not a weld or a hole pattern at the stress calculation location, then:

$$E_m = 1.0$$
 (4.12.25)

$$E_b = 1.0$$
 (4.12.26)

ASME BPVC.VIII.2-2023

(b) If there is a weld, and there is not a hole pattern at the stress calculation location, then:

$$E_m = E \tag{4.12.27}$$

$$E_b = E \tag{4.12.28}$$

(c) If there is not a weld, and there is a hole pattern at the stress calculation location, then:

$$E_m = e_m \tag{4.12.29}$$

$$E_b = e_b \tag{4.12.30}$$

(d) If there is a weld and a hole pattern at the stress calculation location, then:

(1) If e_m and e_b are less than the joint efficiency, *E*, which would be used if there were no ligaments in the plate, then use eqs. (4.12.29) and (4.12.30).

(2) If e_m and e_b are greater than the weld joint factor, *E*, which would be used if there were no ligaments in the plate, then use eqs. (4.12.27) and (4.12.28).

4.12.6.2 Cases may arise where application of a weld joint factor, *E*, at nonwelded locations results in unnecessarily increased plate thicknesses. If the butt weld occurs at one of the locations for which equations are provided in this paragraph, then no relief can be provided. However, if the weld occurs at some intermediate location, it is permissible to calculate the bending stress at the weld location and compare it to the allowable stress considering the weld joint factor in the calculation. An alternate location for computing stresses is provided for some of the noncircular geometry types, and is identified as "Maximum Membrane and Bending Stresses - Defined Locations" in the stress calculation tables. The value *X* of *Y* or to be used in the equations is the distance from the midpoint of the side to the location of the weld joint.

4.12.6.3 The ligament efficiency factors e_m and e_b , for membrane and bending stresses, respectively, shall only be applied to the calculated stresses for the plates containing the ligaments.

(a) For the case of uniform diameter holes, the ligament efficiency factors e_m and e_b shall be the same and computed in accordance with 4.10.

(*b*) For the case of multi-diameter holes, the neutral axis of the ligament may no longer be at mid-thickness of the plate; the bending stress is higher at one of the plate surfaces than at the other surface. Therefore, for multi-diameter holes, the ligament efficiency factor shall be computed using the following equations.

(1) The ligament efficiency of plate with multi-diameter holes subject to membrane stress is computed as follows.

$$e_m = \frac{(p_h - D_E)}{P_h}$$
(4.12.31)

where

$$D_E = \frac{1}{t} \Big(d_0 T_0 + d_1 T_1 + d_2 T_2 + \dots + d_n T_n \Big)$$
(4.12.32)

(2) The ligament efficiency and location from the neutral axis of a plate with multi-diameter holes (see Figure 4.12.14) subject to bending stress is computed as follows.

$$e_b = \frac{(p_h - D_E)}{p_h}$$
(4.12.33)

where

$$D_E = p_h - \frac{6I_E}{t^2 c_E}$$
(4.12.34)

$$I_{E} = \frac{1}{12} \left(b_{0} T_{0}^{3} + b_{1} T_{1}^{3} + b_{2} T_{2}^{3} + \dots + b_{n} T_{n}^{3} \right) + \\ b_{0} T_{0} \left(\frac{T_{0}}{2} + T_{1} + T_{2} + \dots + T_{n} - \overline{X} \right)^{2} + b_{1} T_{1} \left(\frac{T_{1}}{2} + T_{2} + \dots + T_{n} - \overline{X} \right)^{2} + \\ b_{2} T_{2} \left(\frac{T_{2}}{2} + \dots + T_{n} - \overline{X} \right)^{2} + \dots + b_{n} T_{n} \left(\overline{X} - \frac{T_{n}}{2} \right)^{2}$$

$$(4.12.35)$$

$$\overline{X} = \begin{bmatrix} b_0 T_0 \left(\frac{T_0}{2} + T_1 + T_2 + \dots + T_n \right) + \\ b_1 T_1 \left(\frac{T_1}{2} + T_2 + \dots + T_n \right) + \\ b_2 T_2 \left(\frac{T_2}{2} + \dots + T_n \right) + \dots + b_n T_n \left(\frac{T_n}{2} \right) \end{bmatrix} \cdot \left(b_0 T_0 + b_1 T_1 + b_2 T_2 + \dots + b_n T_n \right)^{-1}$$
(4.12.36)

where

$$b_0 = p_h - d_0 \tag{4.12.37}$$

$$b_1 = p_h - d_1 \tag{4.12.38}$$

$$b_2 = p_h - d_2 \tag{4.12.39}$$

$$b_n = p_h - d_n \tag{4.12.40}$$

$$c_E = \max\left[\bar{X}, \left(t - \bar{X}\right)\right] \tag{4.12.41}$$

If T_o is measured from the inside surface, then

$$c_i = \bar{X} \tag{4.12.42}$$

$$c_0 = t - \bar{X}$$
 (4.12.43)

If T_o is measured from the outside surface, then

$$c_i = t - \bar{X} \tag{4.12.44}$$

$$c_0 = \bar{X} \tag{4.12.45}$$

(c) Rows of holes may be located in regions of relatively low bending moments to keep the required plate thickness to a minimum. Therefore, it is permissible to calculate the stresses at the centerline of each row of holes closest to the locations where the highest bending moments occurs (i.e., at the midpoint of the sides and at the corners). If the diameter of all the holes is not the same, the stresses must be calculated for each set of e_m and e_b values.

(d) The applied gross area stresses may be calculated using the same procedure as for calculating the stresses at a weld joint (see 4.12.3.2). The value of X or Y to be used in the equations is the distance from the midpoint of the side to the plane containing the centerlines of the holes.

4.12.7 DESIGN PROCEDURE

4.12.7.1 A procedure that can be used to design a noncircular vessel subject to internal pressure is shown below. *Step 1*. Determine the design pressure and temperature.

Step 2. Determine the configuration of the noncircular vessel by choosing a Type from Table 4.12.1.

Step 3. Determine the initial configuration (i.e., width, height, length, etc.) and wall thicknesses of the pressure-containing plates.

(a) If the vessel has stiffeners, then determine the spacing (see 4.12.3) and size of the stiffeners.

(*b*) If the vessel has stays, then determine the stay type and configuration (see 4.12.4), and check the stay plate welds using 4.2.

(c) If the vessel aspect ratio is less than two, then determine the plate parameters in 4.12.5.

Step 4. Determine the location of the neutral axis from the inside and outside surfaces.

(a) If the section under evaluation has stiffeners, then c_i and c_o are determined from the cross section of the combined plate and stiffener section using strength of materials concepts.

(b) If the section under evaluation has multi-diameter holes, then c_i and c_o are determined from 4.12.6.3.

(c) If the section under evaluation does not have a stiffener, does not have holes, or has uniform diameter holes, then $c_i = c_o = t/2$ where t is the thickness of the plate.

Step 5. Determine the weld joint factor and ligaments efficiencies, as applicable (see 4.12.6), and determine the factors E_m or E_b .

Step 6. Complete the stress calculation for the selected noncircular vessel Type (see Table 4.12.1), and check the acceptance criteria. If the criteria are satisfied, then the design is complete. If the criteria are not satisfied, then modify the plate thickness and/or stiffener size and go to Step 3 and repeat the calculation. Continue this process until a design is achieved that satisfies the acceptance criteria.

4.12.7.2 If the vessel is subject to external pressure, the additional requirements of **4.12.8** shall be satisfied.

4.12.8 NONCIRCULAR VESSELS SUBJECT TO EXTERNAL PRESSURE

4.12.8.1 Rectangular vessel Types 1 and 2 subject to external pressure shall meet the following requirements.

(*a*) The stresses shall be calculated in accordance with Tables 4.12.2 and 4.12.3 except that the design external pressure shall be substituted for *P*. These computed stresses shall meet the acceptance criteria defined in these tables.

(b) The four side plates and the two end plates shall be checked for stability in accordance with eq. (4.12.46). The required calculations for S_{mA} , S_{mB} , S^*_{crA} , S^*_{crA} , S^*_{crB} and S^{**}_{crB} are shown in Table 4.12.15. In the equations, the subscript *A* is used to identify stress or load acting in a direction parallel to the long dimension of the panel being considered and the subscript *B* is used to identify stress or load acting in a direction parallel to the short dimension of the panel being considered. In the calculations, the plate thickness *t* shall be adjusted if the plate is perforated. This can be accomplished by multiplying *t* by e_m in the equations for S_{mA} and S_{mB} . It is not necessary to make this adjustment in the equations for S_{crA} and S_{crB} .

$$\frac{2S_{mA}}{S_{crA}} + \frac{2S_{mB}}{S_{crB}} \le 1.0 \tag{4.12.46}$$

where

$$S_{crA} = S_{crA}^{*}$$
 when $S_{crA}^{*} \le \frac{S_y}{2}$ (4.12.47)

$$S_{crA} = S_{crA}^{**}$$
 when $S_{crA}^{*} > \frac{S_y}{2}$ (4.12.48)

$$S_{crB} = S_{crB}^*$$
 when $S_{crB}^* \le \frac{S_y}{2}$ (4.12.49)

$$S_{crB} = S_{crB}^{**}$$
 when $S_{crB}^{*} > \frac{S_y}{2}$ (4.12.50)

(c) In addition to checking each of the four side plates and the two end plates for stability, the cross section shall be checked for column stability using the following equations. eq. (4.12.52) applies to vessels where the long plate thicknesses are equal. If the thicknesses are not equal, replace $2t_2$ with $(t_2 + t_{22})$ in the equation.

$$\frac{S_a}{F_a} + \frac{S_b}{s\left(1 - \frac{S_a}{F_e^*}\right)} \le 1.0$$
(4.12.51)

where

$$S_a = \frac{P_e(h+2t_1)(H+2t_2)}{2t_1(H+2t_2)+2t_2(h+2t_1)}$$
(4.12.52)

$$S_{b} = \frac{\left[P_{e}(h+2t_{1})(H+2t_{2})\bar{y}\right]c_{e}}{I_{e}}$$
(4.12.53)

$$C_{c} = \sqrt{\frac{2\pi^{2}E_{y}}{S_{y}}}$$
(4.12.54)

$$F_{a} = \frac{\left[1 - \frac{1}{2C_{c}^{2}} \left(\frac{2L_{v}}{R_{ge}}\right)^{2}\right] S_{y}}{\frac{5}{3} + \frac{3}{8C_{c}} \left(\frac{2L_{v}}{R_{ge}}\right) - \frac{1}{8C_{c}^{3}} \left(\frac{2L_{v}}{R_{ge}}\right)^{3}} \text{ when } \frac{2L_{v}}{R_{ge}} \le C_{c}$$
(4.12.55)

$$F_{a} = \frac{12\pi^{2}E_{y}}{23\left(\frac{2L_{v}}{R_{ge}}\right)^{2}} \text{ when } \frac{2L_{v}}{R_{ge}} > C_{c}$$
(4.12.56)

$$F_{e}^{*} = \frac{12\pi^{2}E_{y}}{23\left(\frac{2L_{v}}{R_{ge}}\right)^{2}}$$
(4.12.57)

4.12.9 RECTANGULAR VESSELS WITH TWO OR MORE COMPARTMENTS OF UNEQUAL SIZE

Typical rectangular cross section vessels having unequal compartments are shown in Figure 4.12.15. These types of vessels shall be qualified using either of the two methods shown below.

(*a*) A design can be qualified by selecting the compartment having the maximum dimensions and analyzing the vessel as a Type 7 for the case of a two-compartment vessel or Type 8 for the case of a vessel with more than two compartments. For example, if the vessel has two unequal compartments, use the geometry for a Type 7 with each compartment having the maximum dimension of the actual vessel. For a vessel with more than two compartments, use the geometry for a Type 8 with three compartments having the maximum dimensions of the actual vessel. For a vessel with more than two compartments, use the geometry for a Type 8 with three compartments having the maximum dimensions of the actual vessel. Thus a five or six compartment vessel would be analyzed as if it had only three compartments.

(b) The vessel can be designed in accordance with Part 5.

4.12.10 FABRICATION

4.12.10.1 Provided the requirements of the applicable Parts of this Division are satisfied, fabrication methods other than welding are permitted.

4.12.10.2 Category A joints may be of Type 3 when the thickness does not exceed 16 mm (0.625 in.).

4.12.11 NOMENCLATURE

4.12.11.1 The nomenclature used in this paragraph is defined below except for computed stresses. The nomenclature for computed stress is defined in 4.12.11.2.

ASME BPVC.VIII.2-2023

- A_1 = cross-sectional area of the reinforcing member associated with t_1
- A_2 = cross-sectional area of the reinforcing member associated with t_2
- *b* = unit width per cross section. In the equations for the areas, moments of inertia, and bending moments for all vessel configurations without external reinforcements are given for cross sections with a unit width
- *C* = stress factor for braced and stayed surfaces (see Table 4.9.1)
- c_e = location from the neutral axis to the outer most surface of a composite section associated t_v , R, A_R
- c_i = distance from the neutral axis to the inside surface of the shell or reinforcing member on the short side, long side, curved element, or stay plate as applicable (e.g., for a plate with uniform holes without a stiffener, c = t/2 where t is the thickness of the plate); the sign of this parameter is always positive (the sign for the bending stress is included in the applicable equation)
- c_o = distance from the neutral axis to the outside surface of the shell or reinforcing member on the short side, long side, curved element, or stay plate as applicable (e.g., for a plate with uniform holes without a stiffener, c = t/2 where *t* is the thickness of the plate); the sign of this parameter is always positive (the sign for the bending stress is included in the applicable equation)
- d_j = hole diameter *jth* location
- E = weld joint factor
- E_b = factor applied to the bending stress to account for a ligament or weld joint factor
- e_b = bending stress ligament efficiency of a hole pattern
- E_m = factor applied to the membrane stress to account for a ligament or weld joint factor
- e_m = membrane stress ligament efficiency of a hole pattern
- E_y = Young's Modulus from Annex 3-E at design temperature
- E_{ya} = Young's Modulus from Annex 3-E at ambient temperature
- H = inside length of the short side of a rectangular vessel. For Types 5 and 6, $H = 2(L_1 + L_{11})$ and for Type 10 H = 2R
- h = inside length of the long side of a rectangular vessel. For Types 5 and 6, $h = 2(L_2 + L_{21})$ and for Type 10 $H = 2L_2$
- H_1 = centroidal length of the reinforcing member on the short side of a rectangular vessel
- h_1 = centroidal length of the reinforcing member on the long side of a rectangular vessel
- I_1 = moment of inertia of strip thickness t_1
- I_2 = moment of inertia of strip thickness t_2
- I_3 = moment of inertia of strip thickness t_3
- I_{11} = moment of inertia of combined reinforcing member and effective with of plate w of thickness t_1
- I_{21} = moment of inertia of combined reinforcing member and effective with of plate w of thickness t_2
- I_{22} = moment of inertia of strip thickness t_{22}
- I_e = least moment of inertia of noncircular cross-section vessel
- L_1 = half-length of the short side of a rounded vessel without reinforcement or the half-length of reinforcement on the short side for a reinforced rectangular vessel
- L_2 = half-length of the long side of a rounded vessel without reinforcement or the half-length of reinforcement on the long side for a reinforced rectangular vessel
- L_3 = half-length dimension of the short side of Type 5 and Type 6 rectangular vessel
- L_4 = half-length dimension of the long side of Type 5 and Type 6 rectangular vessel
- L_{11} = length measured from the edge of the reinforcement to the end of the straight side of the short side of a Type 5 and Type 6 rectangular vessel
- L_{21} = length measured from the edge of the reinforcement to the end of the straight side of the long side of a Type 5 and Type 6 rectangular vessel
- L_v = length of the vessel
- M_A = bending moment at the mid-side of the long side, a positive sign indicates a compressive stress on the outside surface of the plate
 - N = rectangular vessel parameter
 - P = internal design pressure
 - p = distance between reinforcing members; plate width between edges of reinforcing members
- P_1 = internal design pressure of a two compartment vessel where $P_1 \ge P_2$
- P_2 = internal design pressure of a two compartment vessel where $P_1 \ge P_2$
- p_h = pitch distance between holes
- R = inside radius
- r = radius to centroidal axis of reinforcement member on obround vessel
- R_{ge} = least radius of gyration of a noncircular cross-section vessel
 - S = allowable stress from Annex 3-A at the design temperature
- S_y = yield stress at the design temperature evaluated in accordance Annex 3-D

- *t* = plate thickness
- t_1 = thickness of the short-side plate
- t_2 = thickness of the long-side plate
- t_3 = thickness or diameter of staying member
- t_4 = thickness or diameter of staying member
- t_5 = thickness of end closure plate or head of vessel
- t_{22} = thickness of the thicker long-side plate
- T_i = hole depth *jth* location
- v = Poisson's ratio
- w = width of plate included in the moment of inertia calculation of the reinforced section
- \overline{y} = distance from geometric center of end plate to centroid of cross-sectional area of a rectangular vessel
- Δ = effective width coefficient (see Table 4.12.14)
- **4.12.11.2** The nomenclature for all computed stress quantities is shown in the following tables and figures.

(*a*) For Types 1, 4, 7, and 8 noncircular vessels, see Tables 4.12.2, 4.12.5, 4.12.8, and 4.12.9, and Figures 4.12.1, 4.12.4, 4.12.8, and 4.12.9.

(b) For the Type 2 noncircular vessel, see Table 4.12.3 and Figure 4.12.2.

(c) For the Type 3 noncircular vessel, see Table 4.12.4 and Figure 4.12.3.

(d) For the Type 5 noncircular vessel, see Table 4.12.6 and Figure 4.12.5.

(e) For the Type 6 noncircular vessel, see Table 4.12.7 and Figures 4.12.6 and 4.12.7.

(*f*) For the Types 9, 10, and 11 noncircular vessels, see Tables 4.12.10, 4.12.11. and 4.12.12 and Figures 4.12.10, 4.12.11, and 4.12.12.

(g) For the Type 12 noncircular vessels, see Table 4.12.13 and Figure 4.12.13.

(*h*) For the compressive stress calculations for Type 1 and 2, see Table 4.12.15.

4.12.12 TABLES

Table 4.12.1 Noncircular Vessel Configurations and Types			
Configuration	Туре	Figure Number	Table Containing Design Rules
Rectangular cross-section in which the opposite sides have the same wall thickness. Two opposite sides may have a wall thickness different than that of the other two opposite sides.	1	4.12.1	4.12.2
Rectangular cross-section in which two opposite members have the same thickness and the other two members have two different thicknesses.	2	4.12.2	4.12.3
Rectangular cross section having uniform wall thickness and corners bent to a radius. For corners which are cold formed, the provisions Part 6 shall apply.	3	4.12.3	4.12.4
Rectangular cross-section similar to Type 1 but reinforced by stiffeners welded to the sides.	4	4.12.4	4.12.5
Rectangular cross-section similar to Type 3 but externally reinforced by stiffeners welded to the flat surfaces of the vessel.	5	4.12.5	4.12.6
Rectangular cross section with chamfered corner segments (octagonal cross-section) joined to the adjacent sides by small curved segments with constant radii and reinforced by stiffeners welded to the flat surfaces of the vessel.	6	4.12.6, 4.12.7	4.12.7
vessei. Rectangular cross section similar to Type 1 but having two opposite sides stayed at mid-length.	7	4.12.6, 4.12.7	4.12.7
Rectangular cross section similar to Type 1 but having two opposite sides stayed at the third points.	8	4.12.9	4.12.9

Table 4.12.1 Noncircular Vessel Configurations and Types (Cont'd)			
Configuration	Туре	Figure Number	Table Containing Design Rules
Obround cross-section in which the opposite sides have the same wall thickness. The flat sidewalls may have a different thickness than the			
semicylindrical parts.	9	4.12.10	4.12.10
Obround cross-section similar to Type 9 but reinforced by stiffeners welded to the curved and flat surfaces of the yessel.	10	4.12.11	4.12.11
	10		
Obround cross-section similar to Type 9 but having the flat side plates stayed at mid-length.	11	4.12.12	4.12.12
Circular section with a single-stay plate.	12	4.12.13	4.12.13

Stress Calculations and Acceptance Crite	Table 4.12.2 eria for Type 1 Noncircular Vessels (Rectangular Cross
Membrane and Bending Str	Section) resses — Critical Locations of Maximum Stress
$\overline{S_m^s = \frac{Ph}{2t_1 E_m}}$	
$S_{bi}^{sc} = -S_{bo}^{sc} \left(\frac{c_i}{c_o}\right) = \frac{P b J_{2s} c_i}{12 l_1 E_b} \left[-1.5 H^2 + h^2 \left(\frac{1+\alpha^2 K}{1+K}\right) \right]$	
$S_{bi}^{sB} = -S_{bo}^{sB} \left(\frac{c_i}{c_o}\right) = \frac{Pbh^2 J_{3s} c_i}{12 I_1 E_b} \left(\frac{1+\alpha^2 K}{1+K}\right)$	
$S_m^l = \frac{PH}{2t_2 E_m}$	
$S_{bi}^{lA} = -S_{bo}^{lA} \left(\frac{c_i}{c_o} \right) = \frac{Pbh^2 J_{2S} c_i}{12 I_2 E_b} \left[-1.5 + \left(\frac{1+\alpha^2 K}{1+K} \right) \right]$	
$S_{bi}^{lB} = -S_{bo}^{lB} \left(\frac{c_i}{c_o}\right) = \frac{Pbh^2 J_{3i} c_i}{12 I_2 E_b} \left(\frac{1+\alpha^2 K}{1+K}\right)$	
Membrane and Bending Stre	sses — Defined Locations for Stress Calculation
$S_{bi}^{SX} = -S_{bo}^{SX} \left(\frac{c_i}{c_o} \right) = \frac{Pbc_i}{12I_1E_b} \left[-1.5H^2 + h^2 \left(\frac{1+\alpha^2 K}{1+K} \right) + 6X^2 \right]$	
$S_{bi}^{lY} = -S_{bo}^{lY} \left(\frac{c_i}{c_o}\right) = \frac{Pbc_i}{12l_2 E_b} \left[-1.5h^2 + h^2 \left(\frac{1+\alpha^2 K}{1+K}\right) + 6Y^2 \right]$	
1	Equation Constants
$I_1 = \frac{bt_1^3}{12}$	$J_{2s} = 1.0$ (see 4.12.5 for exception)
12	$J_{3s} = 1.0$ (see 4.12.5 for exception) $J_{2l} = 1.0$ (see 4.12.5 for exception)
$I_2 = \frac{bt_2^3}{12}$	$J_{21} = 1.0$ (see 4.12.5 for exception) $J_{31} = 1.0$ (see 4.12.5 for exception)
$K = \frac{l_2}{l_1} \alpha$	
$\alpha = \frac{H}{h}$	

Acce	eptance Criteria — Critical Locations of Maximum Stress
$S_m^s \leq S$	$S_m^l \leq S$
$S_m^s + S_{bi}^{sC} \le 1.5S$	$S_m^l + S_{bi}^{lA} \le 1.5S$
$S_m^s + S_{bo}^{sC} \le 1.5S$	$S_m^l + S_{bo}^{lA} \le 1.5S$
$S_m^s + S_{bi}^{sB} \le 1.5S$	$S_m^l + S_{bi}^{lB} \le 1.5S$
$S_m^s + S_{bo}^{sB} \le 1.5S$	$S_m^l + S_{ba}^{lB} \le 1.5S$
Accep	ptance Criteria — Defined Locations for Stress Calculation
$S_m^s + S_{bi}^{sX} \le 1.5S$	$S_m^l + S_{bi}^{lY} \le 1.5S$
$S_m^S + S_{bo}^{SX} \le 1.5S$	$S_m^l + S_{bo}^{lY} \le 1.5S$
	Nomenclature for Stress Results
S_m^s = membrane stress in the short sid	e.
	t point B on the inside and outside surfaces, respectively.
	t point C on the inside and outside surfaces, respectively.
	t a point defined by X on the inside and outside surfaces, respectively.
$S_m^l = $ membrane stress in the long side	
	point B on the inside and outside surfaces, respectively.
DI DO	point A on the inside and outside surfaces, respectively.
S_{i}^{D} S_{i}^{D} = bending stress in the long side at	a point defined by Y on the inside and outside surfaces, respectively.
S_m^{st} = membrane stress in the stay bar	

Table 4.12.3Stress Calculations and Acceptance Criteria for Type 2 Noncircular Vessels (Rectangular Cross
Section With Unequal Side Plate Thicknesses)

	Membrane and Bending Stresses — Critical Locations of Maximum Stress
$S_m^s = \frac{1}{2s}$	$\frac{Ph}{t_1 E_m}$
$S_{bi}^{sB} = -$	$-S_{bo}^{SB}\left(\frac{c_{i}}{c_{o}}\right) = \frac{Pbh^{2}J_{3S}c_{i}}{4NI_{1}E_{b}}\left[\left(K_{2}-k_{1}k_{2}\right) + \alpha^{2}k_{2}\left(K_{2}-k_{2}\right)\right]$
$S_{bi}^{sC} = -$	$-S_{bo}^{SC}\left(\frac{c_{i}}{c_{o}}\right) = \frac{Pbh^{2}J_{3S}c_{i}}{4NI_{1}E_{b}}\left[\left(K_{1}k_{1}-k_{2}\right)+\alpha^{2}k_{2}\left(K_{1}-k_{2}\right)\right]$
$S_m^{l2} = \frac{1}{8}$	$\frac{P}{NHt_2 E_m} \bigg\{ 4NH^2 - 2h^2 \bigg[\bigg(K_2 + k_2 \bigg) - k_1 \bigg(K_1 + k_2 \bigg) + \alpha^2 k_2 \big(K_2 - K_1 \big) \bigg] \bigg\}$
$S_{bi}^{lD} = -$	$-S_{bo}^{ID}\left(\frac{c_{i}}{c_{o}}\right) = \frac{Pbh^{2}J_{2l}c_{i}}{8NI_{2}E_{b}}\left\{2\left[\left(K_{1}k_{1}-k_{2}\right)+\alpha^{2}k_{2}\left(K_{1}-k_{2}\right)\right]-N\right\}$
$S_{bi}^{lC} = \cdot$	$-S_{bo}^{lC}\left(\frac{c_{i}}{c_{o}}\right) = \frac{Pbh^{2}J_{3l}c_{i}}{4Nl_{2}E_{b}}\left[\left(K_{1}k_{1}-k_{2}\right) + \alpha^{2}k_{2}(K_{1}-k_{2})\right]$
$S_m^{l22} = -$	$\frac{P}{8NHt_{22}E_m} \left\{ 4NH^2 - 2h^2 \left[-\left(K_2 + k_2\right) + k_1 \left(K_1 + k_2\right) - \alpha^2 k_2 \left(K_2 - K_1\right) \right] \right\}$
$S_{bi}^{lA} = -$	$-S_{bo}^{IA}\left(\frac{c_i}{c_o}\right) = \frac{Pbh^2 J_{2l}c_i}{8N I_{22} E_b} \left\{ 2\left[\left(K_2 - k_1 k_2\right) + \alpha^2 k_2 \left(K_2 - k_2\right) \right] - N \right\} \right.$
$S_{bi}^{lB} =$	$-S_{bo}^{lB}\left(\frac{c_{i}}{c_{o}}\right) = \frac{Pbh^{2}j_{3l}c_{l}}{4Nl_{22}E_{b}}\left[\left(K_{2}-k_{1}k_{2}\right) + \alpha^{2}k_{2}(K_{2}-k_{2})\right]$

Membrai	ie and Bending Stresses — Defined Locatio	ons for Stress Calculation
$= -S_{bo}^{IY_2}\left(\frac{c_i}{c_o}\right) = \frac{Pbc_i}{2I_2E_b}\left\{\frac{h^2}{2N}\left[\left(K_1k_1 - k_2\right)\right]\right\}$	$+ \alpha^{2}k_{2}(K_{1} - k_{2}) - \frac{\hbar^{2}}{4} + Y_{2}^{2}$	
$= -S_{bi}^{IY_{22}}\left(\frac{c_i}{c_o}\right) = \frac{Pbc_i}{2I_{22}E_b} \left[h^2\right]\left(K_2 - k_1 h^2\right)$	$k_2 + \alpha^2 k_2 (k_2 - k_2) - \frac{h^2}{4} + Y_{22}^2$	
	Equation Constants	
$\frac{bt_1^3}{12}$ $\frac{bt_{22}^3}{12}$		$K_1 = 2k_2 + 3$ $K_2 = 3k_1 + 2k_2$ $N = K_1K_2 - k_2^2$
$\frac{l_2}{l_2}$ $\frac{l_2\alpha}{l_2}$ $\frac{l_22\alpha}{l_1}$	J ₃ J ₂	$_{s}$ = 1.0 (see 4.12.5 for exception) $_{s}$ = 1.0 (see 4.12.5 for exception) $_{l}$ = 1.0 (see 4.12.5 for exception) $_{l}$ = 1.0 (see 4.12.5 for exception)
*	cceptance Criteria — Critical Locations of	Maximum Stress
$S_m^S \leq S$	$S_m^{I2} \leq S$	$S_m^{l22} \leq S$
$S_m^s + S_{bi}^{sB} \le 1.5S$	$S_m^{l2} + S_{bi}^{lC} \le 1.5S$	$S_m^{l22} + S_{bi}^{lA} \le 1.5S$
$S_m^s + S_{bo}^{sB} \le 1.5S$	$S_m^{l2} + S_{bo}^{lC} \le 1.5S$	$S_m^{l22} + S_{bo}^{lA} \le 1.5S$
$S_m^s + S_{bi}^{sC} \le 1.5S$	$S_m^{l2} + S_{bi}^{lD} \le 1.5S$	$S_m^{l22} + S_{bi}^{lB} \le 1.5S$
$S_m^s + S_{bo}^{sC} \le 1.5S$	$S_m^{l2} + S_{bo}^{lD} \le 1.5S$	$S_m^{l22} + S_{bo}^{lB} \le 1.5S$
	ceptance Criteria — Defined Locations for	Stress Calculation
Not Applicable	$S_m^{l2} + S_{bi}^{lY_2} \le 1.5S$	$S_m^{l22} + S_{bi}^{lY_{22}} \le 1.5S$
	$S_m^{l2} + S_{bo}^{lY_2} \le 1.5S$	$S_m^{l22} + S_{bo}^{lY_{22}} \le 1.5S$
	Nomenclature for Stress Resu	llts
$C_{bo} = S_{bo}^{SC} = S_{bo}^{SC}$ bending stress in the short $S_m^{12} = S_m^{12}$ membrane stress in the location of the stress in the location of the stress in the	t side at point B on the inside and outside sur t side at point C on the inside and outside sur ng side with thickness t_2 .	rfaces, respectively.
C_{i} , S_{bo}^{lC} = bending stress in the long	side at point D on the inside and outside sur	faces, respectively.
Y_2 , $S_{bo}^{IY_2}$ = bending stress in the long S_m^{I22} = membrane stress in the lo	side at a point defined by Y_2 on the inside an	nd outside surfaces, respectively.
S _m	side at point A on the inside and outside sur	

Stress Calculations and Acc	Table 4.12.4 ceptance Criteria for Type 3 Nonci Rectangular Cross Section)	ircular Vessels (Chamfered
Membrane and	l Bending Stresses — Critical Locations of Ma	uximum Stress
$\hat{S}_m^S = \frac{P(R+L_2)}{t_1 E_m}$		
$S_{bi}^{sc} = -S_{bo}^{sc} \left(\frac{c_i}{c_o}\right) = \frac{bc_i}{2l_1 E_b} \left[2M_A + P \left(2RL_2 - 2RL_1 + \frac{bc_i}{2} \right) \right]$	L_2^2	
${}_{bi}^{SD} = -S_{bo}^{SD} \left(\frac{c_i}{c_o}\right) = \frac{bc_i}{2l_1 E_b} \left[2M_A + P \left(L_2^2 + 2RL_2 - 2L_2^2 \right) \right]$	$RL_1 - L_1^2 \bigg]$	
$l_m = \frac{P(R+L_1)}{t_1 E_m}$		
$l_{bi}^{IA} = -S_{bo}^{Ia} \left(\frac{c_i}{c_o}\right) = \frac{bM_A c_i}{I_1 E_b}$		
${}_{bi}^{IB} = -S_{bo}^{Ib}\left(\frac{c_i}{c_o}\right) = \frac{bc_i}{2l_1E_b}\left(2M_A + PL_2^2\right)$		
$r_m^c = \frac{P}{t_1 E_m} \left(R + \sqrt{L_2^2 + L_1^2} \right)$		
$S_{bi}^{cBC} = -S_{bo}^{cBC} \left(\frac{c_i}{c_o} \right) = \frac{bM_i c_i}{l_1 E_b}$		
4 \u03c8	Bending Stresses — Defined Locations for Str	ress Calculation
$S_{bi}^{SX} = -S_{bi}^{SX} \left(\frac{c_i}{c_o}\right) = \frac{bc_i}{l_1 E_b} \left[M_A + \frac{P}{2} \left(L_2^2 + 2RL_2 - 2RL_2 \right) \right]$	$\left[1-L_1^2+X^2\right]$	
$S_{bi}^{IY} = -S_{bi}^{IY} \left(\frac{c_i}{c_o}\right) = \frac{bc_i}{I_1 E_b} \left(M_A + \frac{PY^2}{2}\right)$		
2	Equation Constants	
$t_1 = \frac{bt_1^3}{12}$		
$M_{A} = \frac{-PL_{1}^{2} \Big(6\phi^{2}\alpha_{3} - 3\pi\phi^{2} + 6\phi^{2} + \alpha_{3}^{3} + 3\alpha_{3}^{2} - 6\phi - 2}{3(2\alpha_{3} + \pi\phi + 2)}$	$+1.5\pi\phi\alpha_3^2+6\phi\alpha_3$	
$\phi = \frac{R}{L_1}$		
$\alpha_3 = \frac{L_2}{L_1}$		
$M_r = M_A + P\left\{R\left[L_2\cos\theta - L_1\left(1 - \sin\theta\right)\right] + \frac{L_2^2}{2}\right\}$		
M_r is a maximum at θ = arctan $\left(\frac{L_1}{L_2}\right)$		
	nce Criteria — Critical Locations of Maximum	1 Stress
$S_m^S \leq S$	$S_m^l \leq S$	$S_m^c \leq S$
$S_m^s + S_{bi}^{sC} \le 1.5S$	$S_m^l + S_{bi}^{lA} \le 1.5S$	$S_m^c + S_{bi}^{cBC} \le 1.5S$
$S_m^S + S_{bo}^{sC} \le 1.5S$	$S_m^l + S_{bo}^{lA} \le 1.5S$	$S_m^c + S_{bo}^{cBC} \le 1.5S$
$S_m^s + S_{bi}^{sD} \le 1.5S$	$S_m^l + S_{bi}^{lB} \le 1.5S$	
$S_m^s + S_{bo}^{sD} \le 1.5S$	$S_m^l + S_{bo}^{lB} \le 1.5S$	

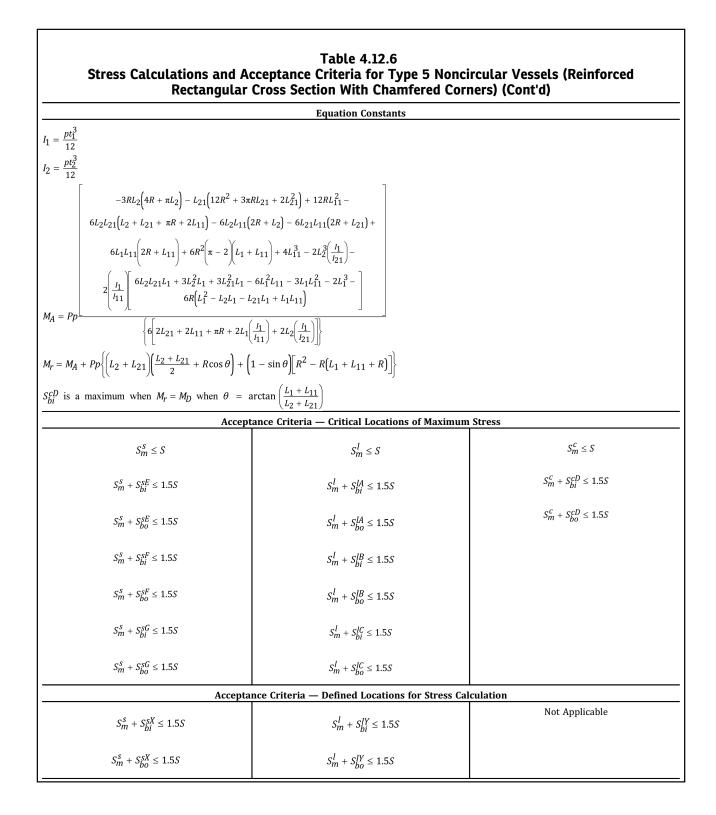

	Table 4.12.4 ceptance Criteria for Type 3 Nonc lectangular Cross Section) (Cont'd	
Acceptan	ce Criteria — Defined Locations for Stress Ca	lculation
$S_m^s + S_{bi}^{sX} \le 1.5S$	$S_m^l + S_{bi}^{lX} \le 1.5S$	Not Applicable
$S_m^S + S_{bo}^{SX} \le 1.5S$	$S_m^l + S_{bo}^{lX} \le 1.5S$	
	Nomenclature for Stress Results	
S_{bi}^{SD} , S_{bo}^{SD} = bending stress in the short side a S_{bi}^{SX} , S_{bo}^{SX} = bending stress in the short side a S_{bi}^{I} , S_{bo}^{I} = membrane stress in the long side. S_{bi}^{IA} , S_{bo}^{IA} = bending stress in the long side at S_{bi}^{IB} , S_{bo}^{IB} = bending stress in the long side at	t point C on the inside and outside surfaces, resp t point D on the inside and outside surfaces, resp t a point defined by X on the inside and outside point A on the inside and outside surfaces, resp point B on the inside and outside surfaces, resp a point defined by Y on the inside and outside s rc between B and C.	pectively. surfaces, respectively. ectively. ectively. surfaces, respectively.

Table 4.12.5 Stress Calculations and Acceptance Criteria for Type 4 Noncircular Vessels (Reinforced Rectangular Cross Section)

Membrane and Bending Stresses — Critical Locations of Maximum Str	ess
$S_m^S = \frac{Php}{2(A_1 + t_1 p)E_m}$	
$S_{bi}^{SC} = -S_{bo}^{SC} \left(\frac{c_i}{c_o}\right) = \frac{Ppc_i}{24I_{11}E_b} \left[-3H^2 + 2h^2 \left(\frac{1+a_1^2k}{1+k}\right) \right]$	
$S_{bi}^{SB} = -S_{bo}^{SB}\left(\frac{c_i}{c_o}\right) = \frac{Ph^2 pc_i}{12I_{11}E_b}\left(\frac{1+\alpha_1^2 k}{1+k}\right)$	
$S_m^l = \frac{PHp}{2(A_2 + t_2p)E_m}$	
$S_{bi}^{lA} = -S_{bo}^{lA} \left(\frac{c_i}{c_o}\right) = \frac{Ph^2 pc_i}{24 l_{21} E_b} \left[-3 + 2 \left(\frac{1 + \alpha_1^2 k}{1 + k}\right) \right]$	
$S_{bi}^{lB} = -S_{bo}^{lB}\left(\frac{c_i}{c_o}\right) = \frac{Ph^2pc_i}{12l_{21}E_b}\left(\frac{1+\alpha_1^2k}{1+k}\right)$	
Membrane and Bending Stresses — Defined Locations for Stress Calcula	ition
$S_{bi}^{SX} = -S_{bo}^{SX} \left(\frac{c_i}{c_o}\right) = \frac{Ppc_i}{24I_{11}E_b} \left[-3H^2 + 2h^2 \left(\frac{1+\alpha_1^2k}{1+k}\right) + 12X^2 \right]$	
$S_{bi}^{IY} = -S_{bo}^{IY} \left(\frac{c_i}{c_o}\right) = \frac{Ph^2 pc_i}{24 I_{21} E_b} \left[-3 + 2\left(\frac{1+\alpha_1^2 k}{1+k}\right) + \frac{12Y^2}{h^2} \right]$	
Equation Constants	
$k = \frac{l_{21}}{l_{11}} \alpha_1 \qquad \qquad \alpha_1$	$=\frac{H_1}{h_1}$

Accentance Criteria -	- Critical Locations of Maximum Stress
$S_m^S \le S$	$S_m^l \leq S$
$S_m^s = S$ $S_m^s + S_{bi}^{sC} \le 1.5S$	$S_m \leq S$ $S_m^l + S_{bl}^{lA} \leq 1.5S$
$S_m^s + S_{bo}^{sc} \le 1.5S$	
$S_m^S + S_{bi}^{SB} \le 1.5S$	$S_m^l + S_{bo}^{lA} \le 1.5S$
$S_m^s + S_{bo}^{sB} \le 1.5S$	$S_m^l + S_{bi}^{lB} \le 1.5S$
	$S_m^l + S_{bo}^{lB} \le 1.5S$
Acceptance Criteria — I	Defined Locations for Stress Calculation
$S_m^s + S_{bi}^{sX} \le 1.5S$	$S_m^l + S_{bi}^{lY} \le 1.5S$
$S_m^s + S_{bo}^{sX} \le 1.5S$	$S_m^l + S_{bo}^{lY} \le 1.5S$
Nomenc	lature for Stress Results
S_m^s = membrane stress in the short side.	
s_B^B , s_{Bac}^{SB} = bending stress in the short side at point B on the in	iside and outside surfaces, respectively.
S_{C}^{C} , S_{C}^{SC} = bending stress in the short side at point C on the in i_{C}^{C} , S_{D}^{SC}	
x_{X}^{X} , x_{S}^{X} = bending stress in the short side at a point defined by x_{X}^{X} , x_{S}^{X}	
S_m^l = membrane stress in the long side.	
B_{B}^{B} = bending stress in the long side at point B on the ins	side and outside surfaces, respectively.
$A_{I} = A_{I} = A_{I}$ = bending stress in the long side at point A on the ins	
bi , ${}^{\prime}_{bo}$ ${}^{IY}_{bi}$, ${}^{Sho}_{bo}$ = bending stress in the long side at a point defined by ${}^{IY}_{bi}$, ${}^{Sho}_{bo}$	
bi, $boS_m^{st} = membrane stress in the stay bar or plate, as application$	

Table 4.12.6 Stress Calculations and Acceptance Criteria for Type 5 Noncircular Vessels (Reinforced Rectangular Cross Section With Chamfered Corners)
Membrane and Bending Stresses — Critical Locations of Maximum Stress
$S_m^s = \frac{P(R + L_2 + L_{21})}{t_1 E_m}$
$S_{bi}^{SE} = -S_{bo}^{SE} \left(\frac{c_i}{c_o}\right) = \frac{C_i}{l_1 E_b} \left\{ M_A + P_p \left[\frac{\left(L_2 + L_{21}\right)^2}{2} + 2R\left(L_2 + L_{21} - L_1 - L_{11}\right) \right] \right\}$
$S_{bi}^{sF} = -S_{bo}^{sF} \left(\frac{c_i}{c_o}\right) = \frac{C_i}{l_1 E_b} \left\{ M_A + \frac{P_p}{2} \left[\begin{array}{c} L_2^2 + 2L_2L_{21} + L_{21}^2 - 2L_1L_{11} - L_{11}^2 + \\ 2R(L_2 + L_{21} - L_1 - L_{11}) \end{array} \right] \right\}$
$S_{bi}^{SG} = -S_{bo}^{SG} \left(\frac{c_i}{c_o}\right) = \frac{C_i}{I_{11}E_b} \left\{ M_A + \frac{P_p}{2} \left[\left(L_2 + L_{21}\right)^2 + 2R \left(L_2 + L_{21} - L_1 - L_{11}\right) - \left(L_1 + L_{11}\right)^2 \right] \right\}$
$S_m^l = \frac{P(R + L_1 + L_{11})}{t_2 E_m}$
$S_{bi}^{IA} = -S_{bo}^{IA} \left(\frac{c_i}{c_o} \right) = \frac{M_A c_i}{I_{21} E_b}$
$S_{bi}^{lB} = -S_{bo}^{lB} \left(\frac{c_i}{c_o} \right) = \frac{c_i}{I_2 E_b} \left(M_A + \frac{PpL_2^2}{2} \right)$
$S_{bi}^{lC} = -S_{bo}^{lC} \left(\frac{c_i}{c_o}\right) = \frac{c_i}{l_2 E_b} \left(M_A + \frac{Pp(L_2 + L_{21})^2}{2}\right)$
$S_{m}^{c} = \frac{P}{t_{1}E_{m}} \left(R + \sqrt{\left(L_{2} + L_{21}\right)^{2} + \left(L_{2} + L_{11}\right)^{2}} \right)$
$\frac{S_{bi}^{CD} = -S_{bo}^{cD} \left(\frac{c_i}{c_o}\right) = \frac{M_r c_i}{l_1 E_b}}{2}$
Membrane and Bending Stresses — Defined Locations for Stress Calculation
$S_{bi}^{SX} = -S_{bo}^{SX} \left(\frac{c_i}{c_o}\right) = \frac{c_i}{l_{11} E_b} \left\{ M_A + \frac{Pp}{2} \left[\left(\begin{array}{c} L_2 + L_{21} \right)^2 + 2R(L_2 + L_{21} - L_1 - L_{11}) - \\ \left(\begin{array}{c} L_1 + L_{11} \end{array} \right)^2 + X^2 \end{array} \right] \right\} \text{ for } X \le L_1$
$S_{bi}^{sX} = -S_{bo}^{sX} \left(\frac{c_i}{c_o}\right) = \frac{c_i}{l_1 E_b} \left[M_A + \frac{P_p}{2} \left[\begin{array}{c} L_2^2 + 2L_2L_{21} + L_{21}^2 - 2L_1L_{11} - L_{11}^2 + \\ 2R\left(L_2 + L_{21} - L_1 - L_{11}\right) + X^2 \end{array} \right] \right] \text{ for } X > L_1$
$S_{bi}^{IY} = -S_{bo}^{IY} \left(\frac{c_i}{c_o} \right) = \frac{c_i}{I_{21}E_b} \left(M_A + \frac{P_P Y^2}{2} \right) \text{ for } Y \le L_2$
$S_{bi}^{IY} = -S_{bo}^{IY} \left(\frac{c_i}{c_o} \right) = \frac{c_i}{l_2 E_b} \left(M_A + \frac{P_p Y^2}{2} \right) \text{ for } Y > L_2$

Table 4.12.6 Stress Calculations and Acceptance Criteria for Type 5 Noncircular Vessels (Reinforced Rectangular Cross Section With Chamfered Corners) (Cont'd)

	Nomenclature for Stress Results
$S_m^s =$	membrane stress in the short side.
S_{bi}^{sE} , S_{bo}^{sE} =	bending stress in the short side at point E on the inside and outside surfaces, respectively.
S_{bi}^{sF} , S_{bo}^{sF} =	bending stress in the short side at point F on the inside and outside surfaces, respectively.
S_{hi}^{sG} , S_{ho}^{sG} =	bending stress in the short side at point G on the inside and outside surfaces, respectively.
	bending stress in the short side at a point defined by X on the inside and outside surfaces, respectively.
$S_m^l =$	membrane stress in the long side.
	bending stress in the long side at point A on the inside and outside surfaces, respectively.
	bending stress in the long side at point B on the inside and outside surfaces, respectively.
	bending stress in the long side at point C on the inside and outside surfaces, respectively.
S_{bi}^{lY} , S_{bo}^{lY} =	bending stress in the long side at a point defined by Y on the inside and outside surfaces, respectively.
$S_m^c =$	membrane stress in the circular arc between B and E.
S_{bi}^{cD} , S_{bo}^{cD} =	bending stress in the circular arc at point B on the inside and outside surfaces, respectively.

Table 4.12.7Stress Calculations and Acceptance Criteria for Type 6 Noncircular Vessels (Reinforced Octagonal
Cross Section With Chamfered Corners)

Membrane and Bending Stresses — Critical Locations of Maximum Stress
$S_m^A = \frac{PpL_3}{A_c E_m}$
$S_{bi}^A = -S_{bo}^A \left(\frac{c_i}{c_o}\right) = \frac{M_A c_i}{I_{21} E_b}$
$S_m^B = \frac{PpL_3}{A_c E_m}$
$S_{bi}^{B} = -S_{bo}^{B} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{l_{1}E_{b}} \left(M_{A} - V_{A}\bar{Y}_{2} + WL_{2}^{2}\right)$
$S_m^C = \frac{PpL_3}{A_c E_m}$
$S_{bi}^{C} = -S_{bo}^{C} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{I_{1}E_{b}} \left(M_{A} + WK_{5}^{2} + 2L_{3}W\bar{Y}_{2}\right)$
$S_m^M = \frac{P_p}{A_c E_m} \left[C_M^2 + \left(L_3 - E_M \right)^2 \right]^{0.5} \cos\left(\theta_M - \beta_M \right)$
$S_{bi}^{M} = -S_{bo}^{M} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{l_{1}E_{b}} \left\{ M_{A} + W \left[C_{M}^{2} + C_{M}V_{M} + E_{M}^{2} - E_{M}W_{M} - L_{3} \left(2E_{M} + t_{1} - W_{M} + 2\bar{Y}_{2} \right) \right] \right\}$
$S_m^D = \frac{P_P O_{DE}}{A_c E_m}$
$S_{bi}^{D} = -S_{bi}^{D} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{l_{1}E_{b}} \left\{ M_{A} + W \left[C_{3}^{2} + C_{3}V_{1} + E_{\theta 1}^{2} - E_{\theta 1}W_{1} - L_{3} \left(2E_{\theta 1} + t_{1} - W_{M} + 2\bar{Y}_{2} \right) \right] \right\}$
$S_m^U = \frac{PpO_{DE}}{A_c E_m}$
$S_{bi}^{U} = -S_{bi}^{U} \begin{pmatrix} c_{i} \\ c_{o} \end{pmatrix} = \frac{c_{i}}{l_{1}E_{b}} \left\{ M_{A} + W \begin{bmatrix} (C_{3} + U_{2Y})^{2} + (C_{3} + U_{2Y})V_{1} + (E_{\theta 1} + U_{2X})^{2} - (E_{\theta 1} + U_{2X})W_{1} - 2L_{3}(\bar{Y}_{2} + \frac{t_{1}(1 - \cos\theta_{1})}{2} + E_{\theta 1} + U_{2X}) \end{bmatrix} \right\}$

	and Bending Stresses — Critic	cal Locations of Maximum Stress
$S_m^E = \frac{PpO_{DE}}{A_c E_m}$		
$S_{bi}^{E} = -S_{bo}^{E} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{l_{1}E_{b}} \left\{ M_{A} + W \left[\begin{array}{c} C_{E1}^{2} + C_{E1}V_{1} \\ 2L_{3} \left(\bar{Y}_{2} + \frac{t_{1}}{2}\right) \right] \right\} \right\}$	$\left. + \frac{C_{E2}^2 - C_{E2}W_1 - 1}{1 - \cos\theta_1} + C_{E2} \right) \right\}$	
$S_m^N = \frac{Pp}{A_c E_m} \Big(C_M^2 + O_K^2 \Big)^{0.5} \cos \Big(\theta_N - \beta_N \Big)$		
$S_{bi}^{N} = -S_{bo}^{N} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{l_{1}E_{b}} \left[M_{A} + W \left[\begin{array}{c} \left(L_{4} - F_{N} \right) \left(M_{1} - G_{N} \right) \right] \right] \right] \right]$	$\int_{-\infty}^{\infty} + \left(L_4 - F_N \right) V_N + \left(M_1 + G_N \right) V_N + \left(M_1 $	$\left N \right ^2 - \left \right $
$S_{bi} = S_{bo}(c_o) = I_1 E_b \begin{bmatrix} M_A + W \\ M_1 - G_N \end{bmatrix} $	$V_N - L_3 (2\overline{Y}_2 + t_1 + 2M_1 - 2G_N - C_N)$	W_N
$S_m^F = \frac{PpL_4}{A_c E_m}$		
$S_{bi}^{F} = -S_{bo}^{F} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{l_{1}E_{b}} \left[M_{A+}W \left(L_{4}^{2} + L_{4}t_{1} + M_{1}^{2} \right) \right]$	$-2L_3J_2$	
$S_m^G = \frac{P_p L_4}{A_c E_m}$		
$S_{bi}^{G} = -S_{bo}^{G} \left(\frac{c_{i}}{c_{o}} \right) = \frac{c_{i}}{l_{1} E_{b}} \left\{ M_{A} + W \left[L_{4}^{2} + L_{4} t_{1} + \left(\frac{c_{i}}{c_{o}} \right) \right] \right\}$	$(I_1 + L_{11})^2 - 2L_3(I_2 + L_{11})$	
$S_m^H = \frac{PpL_4}{A_c E_m}$		
$S_{bl}^{H} = -S_{bo}^{H} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{l_{11}E_{b}} \left\{ M_{A} + W \left[L_{4}^{2} + L_{4}t_{1} + L_{4}t_{1}$	$2L_4\bar{Y}_1 - L_3^2 - 2L_3\left(\bar{Y}_2 + \frac{t_1}{2}\right)$	
		ed Locations for Stress Calculation
$S_{bi}^{Y} = -S_{bo}^{Y} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{I_{21}E_{b}} \left[M_{A} + PpY^{2}\right]$	$0 \le Y \le L_2$	
$S_{bi}^{Y} = -S_{bo}^{Y} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{I_{1}E_{b}} \left[M_{A} + PpY^{2}\right] \qquad L_{b}$	$\leq Y \leq \left(L_2 + L_{21}\right)$	
$S_{bi}^{X} = -S_{bo}^{X} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{l_{11}E_{b}} \begin{cases} M_{A} + M_{A}$	$\frac{PpX^2}{2} + \leftL_3^2 - 2L_3\left(\bar{Y}_2 + \frac{t_1}{2}\right) \right]$	$0 \le X \le L_1$
$S_{bi}^{X} = -S_{bo}^{X} \left(\frac{c_{i}}{c_{o}}\right) = \frac{c_{i}}{l_{1}E_{b}} \begin{cases} M_{A} + M_{A} + M_{A} + M_{A} + L_{A}L_{A}L_{A} + L_{A}L_{A}L_{A} + L_{A}L_{A}L_{A}L_{A} \end{cases}$	$ \begin{bmatrix} \frac{p_p X^2}{2} + \\ -L_3^2 - 2L_3 \left(\bar{Y}_2 + \frac{t_1}{2} \right) \end{bmatrix} $	$L_1 \le X \le \left(L_1 + L_{11}\right)$

Stress Calculations and Acceptance Criteria for	le 4.12.7 r Type 6 Noncircular Vessels (Reinforced Octagonal namfered Corners) (Cont'd)
Equati	on Constants
$I_1 = \frac{pt_1^3}{12}$	
$M_{A} = Pp \frac{\left(K_{AB} + K_{BC} + K_{CD} + K_{DE} + K_{EF} + K_{FG} + K_{GH}\right)}{\left\{-6\left[\left(\frac{I_{1}}{I_{21}}\right)L_{2} + L_{21} + \frac{\pi R}{2} + U_{1} + L_{11} + \left(\frac{I_{1}}{I_{11}}\right)L_{1}\right]\right\}}$	
$K_{AB} = \left(\frac{l_1}{l_{21}}\right) \left(L_2^3 - D_2 L_2\right)$	
$K_{BC} = 3L_2L_{11}K_5 + L_{21}^3 - D_2L_{11}$	
$K_{CD} = 3R\theta_1 \Big[K_5^2 + 2R^2 + Rt_1 - L_3 \big(S_1 + 2\bar{Y}_2 \big) \Big] + 3 \Big[K_5 E_{\theta_1} S_1 + H_{\theta_1} S_1 \big(L_3 + L_3 \big) \Big]$	-
$K_{DE} = \frac{3U_1 \left(C_3^2 + C_3 V_1 + E_{\theta 1}^2 - E_{\theta 1} W_1 \right) - 6L_3 U_1 \left[\bar{Y}_2 + \frac{t_1}{2} \left(1 - \cos \theta_1 \right) + K_{DE} \right]}{2}$	$E_{\Theta 1} \Big] +$
$3U_1^2 \Big[C_3 \cos\theta_1 + \sin\theta_1 \big(E_{\theta_1} - L_3 \big) \Big] + U_1^3$	
$K_{EF} = 3R\alpha_{ab} \left(D_3^2 + M_1^2 - 2L_3J_2 + R^2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1D_3S_1 + 3F_1S_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 + Rt_1 \right) + 3G_1B_1 \left(L_3 - M_2 $	<i>t</i> ₁)
$K_{FG} = 3L_{11} \left(L_4^2 + L_4 t_1 + M_1^2 - 2L_3 J_2 \right) + 3 \left(M_1 - L_3 \right) L_{11}^2 + L_{11}^3$	
$K_{GH} = \left(\frac{l_1}{l_{11}}\right) \left(3L_1 \left[L_4^2 + 2L_4\bar{Y} + L_4t_1 + \left(M_1 + L_{11}\right)^2 - 2L_3(J_2 + L_{11})\right] - 2L_4\bar{Y} + L_4L_4L_4L_4L_4L_4L_4L_4L_4L_4L_4L_4L_4L$	L_1^3
$\overline{A_c = t_1 p}$	$S_1 = 2R + t_1$
$A_{DE} = \left\{ L_4 - \left[L_2 + L_{21} + R \tan\left(\frac{\theta_1}{2}\right) \right] \right\} \sin \theta_1$	$U_1 = \sqrt{\left(M_1 - R\right)^2 + \left(N_1 - R\right)^2}$
	$U_2 = 0.5U_1$
$C_3 = L_2 + L_{21} + R\sin\theta_1$	$U_{2X} = U_2 \sin\theta_1$
$C_{E1} = C_3 + N_1 - R$ $C_{E2} = E_{\theta 1} + M_1 - R$	$U_{2Y} = U_2 \cos \theta_1$
$C_{E2} = L_{\theta 1} + M_1 - K$ $C_M = L_2 + L_{21} + R \sin \theta_M$	$V_1 = t_1 \sin \theta_1$
$C_N = L_2 + L_2 + R \sin \theta_M$ $C_N = L_4 - R + R \sin \beta_N$	$V_A = PpL_3$
$D_2 = 6L_4 \bar{Y}_2$	$V_M = t_1 \sin \theta_M$
$D_2 = 0L_4 T_2$ $D_3 = L_4 - R$	$V_N = t_1 \sin\beta_N$
$D_3 = D_4 - R$ $D_4 = L_1 + L_{11} + R\cos\theta_1$	W = 0.5 Pp
$E_{\theta 1} = R(1 - \cos\theta_1)$	$W_1 = t_1 \cos \theta_1$
$E_{M} = R(1 - \cos\theta_{M})$	$W_M = t_1 \cos \theta_M$
$F_1 = R(1 - \sin\theta_1)$	$W_N = t_1 \cos \theta_N$
	$\alpha_{ab} = \arctan\left[\frac{L_3}{L_4}\right]$
$F_N = R \Big(1 - \sin\beta_N \Big)$	
$G_1 = R\cos\theta_1$	$\beta_{M} = \arctan \left \frac{C_{M}}{L_{3} - E_{\theta 1}} \right $
$G_N = R \cos \beta_N$	
$H_{\theta 1} = R \sin \theta_1$	$\beta_N = \arctan\left[\frac{L_4 - R}{L_1 + L_{11}}\right]$
$J_2 = \overline{Y}_2 + \frac{t_2}{2} + M_1$	$\begin{bmatrix} - & - & - \\ - & - & - & - \end{bmatrix}$
$K_5 = L_2 + L_{21}$	$\theta_1 = \arctan\left\lfloor \frac{L_4}{L_3} \right\rfloor$
$M_1 = L_3 - (L_1 + L_{11})$	$\theta_M = \arctan\left[\frac{-K_5 S_1}{2R^2 - RS_1 - L_3 t_1}\right]$
$N_1 = L_4 - (L_2 + L_{21})$	$M = \operatorname{arctar}\left[\frac{2R^2 - RS_1 - L_3t_1}{2R^2 - RS_1 - L_3t_1}\right]$
$O_{DE} = \sqrt{L_3^2 + L_4^2} - A_{DE}$	$ \theta_N = \arctan\left[\frac{c_N}{o_K}\right] $
$O_K = L_1 + L_{11} + R\cos\beta_N$	

4.12.12	2
---------	---

	Table 4.12.7 ance Criteria for Type 6 Noncircular \ Section With Chamfered Corners) (Co				
	Acceptance Criteria — Critical Locations of Maximum Stress				
$S_m^A \leq S$	$S_m^M \leq S$	$S_m^F \leq S$			
$S_m^A + S_{bi}^A \le 1.5S$	$S_m^M + S_{bi}^M \le 1.5S$	$S_m^F + S_{bi}^F \le 1.5S$			
$S_m^A + S_{bo}^A \le 1.5S$	$S_m^M + S_{bo}^M \le 1.5S$	$S_m^F + S_{ho}^F \le 1.5S$			
$S^B_m \le S$	$S_m^D \leq S$	$S_m^G \leq S$			
$S_m^B + S_{bi}^B \le 1.5S$	$S_m^D + S_{bi}^D \le 1.5S$	$S_m^G + S_{bi}^G \le 1.5S$			
$S_m^B + S_{ho}^B \le 1.5S$	$S_m^D + S_{ho}^D \le 1.5S$	$S_m^G + S_{ho}^G \le 1.5S$			
$S_m^C \leq S$	$S_m^U \leq S$	$S_m^H \leq S$			
$S_m^C + S_{bi}^C \le 1.5S$	$S_m^U + S_{bi}^U \le 1.5S$	$S_m^H + S_{hi}^H \le 1.5S$			
$S_m^C + S_{ho}^C \le 1.5S$	$S_m^U + S_{bo}^U \le 1.5S$	$S_m^H + S_{bo}^H \le 1.5S$			
	$S_m^E \leq S$	ni bo			
	$S_m^E + S_{bi}^E \le 1.5S$				
	$S_m^E + S_{bo}^E \le 1.5S$				
	$S_m^N \le S$				
	$S_m^N + S_{bi}^N \le 1.5S$				
	$S_m^N + S_{ho}^N \le 1.5S$				
Accept	ance Criteria — Defined Locations for Stress Calcu	lation			
$S_m^Y + S_{bi}^Y \le 1.5S$	Not Applicable	$S_m^X + S_{bi}^X \le 1.5S$			
$S_m^Y + S_{bo}^Y \le 1.5S$		$S_m^X + S_{bo}^X \le 1.5S$			

Nomenclature for Stress Results	
S_m^A = membrane stress at point A.	
S_m^{A} = bending stress at point A on the inside and outside surfaces, respectively.	
S_{bi}^{B} , S_{bo}^{B} = membrane stress at point B.	
$S_m^B = bending stress at point B on the inside and outside surfaces, respectively.$	
$S_{bo}^{C} = $ membrane stress at point C.	
$S_m = S_m$ = bending stress at point C on the inside and outside surfaces, respectively.	
S_{bi}^{M} = membrane stress at point M.	
S_{M}^{M} , S_{M}^{M} = bending stress at point M on the inside and outside surfaces, respectively.	
$S_{bi}^{D} = $ membrane stress at point D.	
S_m^D , S_D^D = bending stress at point D on the inside and outside surfaces, respectively.	
$S_{bi}^{U} = \text{membrane stress at point U.}$	
S_{D}^{U} , S_{D}^{U} = bending stress at point U on the inside and outside surfaces, respectively.	
S_{bi}^{E} = membrane stress at point E.	
S_{bc}^{E} , S_{bc}^{E} = bending stress at point E on the inside and outside surfaces, respectively.	
$S_{bi}^{N} = \text{membrane stress at point N.}$	
S_{D}^{N} , S_{D}^{N} = bending stress at point N on the inside and outside surfaces, respectively.	
$S_{bi}^{F} = \text{membrane stress at point F.}$	
S_{F}^{F} , S_{F}^{F} = bending stress at point F on the inside and outside surfaces, respectively.	
$S_{bi}^{H} = \text{membrane stress at point G.}$	
$S_{B_i}^{G}$, $S_{B_o}^{G}$ = bending stress at point G on the inside and outside surfaces, respectively.	
$S_{bi}^{H} = \text{membrane stress at point H.}$	
S_{B}^{H} , S_{Do}^{H} = bending stress at point H on the inside and outside surfaces, respectively.	
S_{bi}^{X} , S_{bo}^{X} = bending stress at a point defined by X on the inside and outside surfaces, respectively.	
S_{bi}^{Y} , S_{bo}^{Y} = bending stress at a point defined by Y on the inside and outside surfaces, respectively.	

	n With Single-Stay Plate or Mul	ttiple Bars)
F 1 1 2	nd Bending Stresses — Critical Locations of	of Maximum Stress
$\frac{dS}{dt} = \frac{Ph}{4t_1 E_m} \left[4 - \left(\frac{2 + K(5 - \alpha^2)}{1 + 2K} \right) \right]$		
${}_{bi}^{SC} = -S_{bo}^{SC} \left(\frac{c_i}{c_o}\right) = \frac{Pbc_i}{24l_1 E_b} \left[-3H^2 + 2h^2 \left(\frac{1+2a}{1+2b}\right) \right]$	$\left[\frac{2K}{K}\right]$	
$S_{bi}^{B} = -S_{bo}^{SB}\left(\frac{c_{i}}{c_{o}}\right) = \frac{Pbh^{2}c_{i}}{12l_{1}E_{b}}\left(\frac{1+2\alpha^{2}K}{1+2K}\right)$		
$\frac{1}{m} = \frac{PH}{2t_2 E_m}$		
$S_{bi}^{lA} = -S_{bo}^{lA} \left(\frac{c_i}{c_o} \right) = \frac{Pbh^2 c_i}{12l_2 E_b} \left(\frac{1+K(3-a^2)}{1+2K} \right)$		
$I_{bi}^{lB} = -S_{bo}^{lB}\left(\frac{c_i}{c_o}\right) = \frac{Pbh^2c_i}{12l_2E_b}\left(\frac{1+2a^2K}{1+2K}\right)$		
$S_m^{St} = \frac{Ph}{2t_3 E_{st}} \left(\frac{2 + K(5 - \alpha^2)}{1 + 2K} \right)$ for a stay plate		
$S_m^{st} = \frac{2Php}{\pi t_3^2 E_{st}} \left(\frac{2 + K(5 - \alpha^2)}{1 + 2K} \right) $ for stay bars		
	Equation Constants	
$I_1 = \frac{bt_1^3}{12}$	$K = \frac{l_2}{l_1} \alpha$	
	$\alpha = \frac{H}{h}$	
$b_2 = \frac{bt_2^3}{12}$	11	
$S_m^s \le S$	tance Criteria — Critical Locations of Maxi	
$S_m \le S$ $S_m^S + S_{hi}^{SC} \le 1.5S$	$S_m^{st} \leq S$	$S_m^l \leq S$
$S_m^s + S_{bi}^{sC} \le 1.5S$		$S_m^l + S_{bi}^{lA} \le 1.5S$
$S_m^S + S_{bi}^{SB} \le 1.55$ $S_m^S + S_{bi}^{SB} \le 1.55$		$S_m^l + S_{bo}^{lA} \le 1.5S$
DI		$S_m^l + S_{bi}^{lB} \le 1.5S$
$S_m^s + S_{bo}^{sB} \le 1.5S$		$S_m^l + S_{bo}^{lB} \le 1.5S$
	Nomenclature for Stress Results	
S_m^s = membrane stress in the short side.		
s_m^{SB} , s_{bo}^{SB} = bending stress in the short side at bo	point B on the inside and outside surfaces, re	spectively.
bi , bo $sc _{sc}$ = bending stress in the short side at bi , bo	noint C on the inside and outside surfaces, re	snectively
bi , Sbo sX ssX = bending stress in the short side at bi , bo		
		e surfaces, respectively.
S_m^l = membrane stress in the long side.	point R on the incide and outcide surfaces res	nectively
bi, bo	point B on the inside and outside surfaces, res	n estively.
S_{bi}^{IA} , S_{bo}^{IA} = bending stress in the long side at p	point A on the inside and outside surfaces, res	pecuvery.
S_{bi}^{IY} , S_{bo}^{IY} = bending stress in the long side at a	point defined by Y on the inside and outside	surfaces, respectively.
S_m^{st} = membrane stress in the stay bar of	plate, as applicable.	

$\tilde{h} = \frac{Ph}{2t_1 E_m} \left[3 - \left(\frac{6 + K(11 - \alpha^2)}{3 + 5K} \right) \right]$		
$S_{i}^{C} = -S_{bo}^{sC}\left(\frac{c_{i}}{c_{o}}\right) = \frac{Pbc_{i}}{24I_{1}E_{b}}\left[-3H^{2} + 2h^{2}\left(\frac{3+5\alpha^{2}K}{3+5K}\right)\right]$		
$B_{i}^{B} = -S_{bo}^{SB}\left(\frac{c_{i}}{c_{o}}\right) = \frac{Pbh^{2}c_{i}}{12l_{1}E_{b}}\left(\frac{3+5\alpha^{2}K}{3+5K}\right)$		
$H_{\rm m} = \frac{PH}{2t_2 E_m}$		
$A_{i} = -S_{bo}^{IA} \left(\frac{c_{i}}{c_{o}} \right) = \frac{Pbh^{2}c_{i}}{12l_{2}E_{b}} \left(\frac{3 + K(6 - \alpha^{2})}{3 + 5K} \right)$		
$B_{i} = -S_{bo}^{IB}\left(\frac{c_{i}}{c_{o}}\right) = \frac{Pbh^{2}c_{i}}{12I_{2}E_{b}}\left(\frac{3+5\alpha^{2}K}{3+5K}\right)$		
$S_n^t = \frac{Ph}{2t_4 E_{st}} \left(\frac{6 + K(11 - \alpha^2)}{3 + 5K} \right)$ for a stay plate		
$r_n^t = \frac{2Php}{\pi t_4^2 E_{st}} \left(\frac{6 + K(11 - \alpha^2)}{3 + 5K} \right)$ for stay bars		
	Equation Constants	
$=\frac{bt_1^3}{12}$	$K = \frac{I_2}{I_1} \alpha$	
$=\frac{bt_2^3}{12}$	$\alpha = \frac{H}{h}$	
	" ce Criteria — Critical Locations of M	Aavimum Stress
$S_m^s \le S$	$S_m^{st} \leq S$	$S_m^l \leq S$
$S_m^s + S_{bi}^{sC} \le 1.5S$	-m = -	$S_m^l + S_{bi}^{lA} \le 1.5S$
$S_m^s + S_{bo}^{sC} \le 1.5S$		$S_m^l + S_{bi}^{lA} \le 1.5S$
$S_m^S + S_{bi}^{SB} \le 1.5S$		
$S_m^s + S_{bp}^{SB} \le 1.5S$		$S_m^l + S_{bi}^{lB} \le 1.5S$
		$S_m^l + S_{bo}^{lB} \le 1.5S$
	Nomenclature for Stress Result	ts
S_m^s = membrane stress in the short side.		
SB_{i}^{B} , SSB_{i}^{SB} = bending stress in the short side at poir	t B on the inside and outside surfaces	s, respectively.
S_{i}^{C} , S_{bo}^{SC} = bending stress in the short side at poir		
<i>X</i> , <i>SsX</i> = bending stress in the short side at a po	int defined by X on the inside and ou	tside surfaces, respectively.
S_m^{l} = membrane stress in the long side.		
$S_m = S_m$ $B_i, S_{bo}^{IB} = B_{bo}$ bending stress in the long side at point	B on the inside and outside surfaces.	, respectively.
A_{i} , S_{bo} bending stress in the long side at point A_{i} , S_{i} = bending stress in the long side at point bi , S_{bo}	A on the inside and outside surfaces	respectively
${}^{IY}_{bi}, S^{IY}_{bo}$ = bending stress in the long side at a poi S^{st}_{m} = membrane stress in the stay bar or pla		side surfaces, respectively.

Γ

Table 4.12.10 Stress Calculations and Acceptance Criteria for Type 9 Noncircular Vessels (Obround Cross Section)				
Section) Membrane and Bending Stresses — Critical Locations of Maximum Stress				
$S_m^{cB} = \frac{PR}{t_1 E_m}$	(91) [Note (1)]			
$S_{bi}^{cB} = -S_{bo}^{cB} \left(\frac{c_i}{c_o}\right) = \frac{PbL_2c_i}{6hE_b} \left(3L_2 - \frac{C_1}{A}\right)$	(94) [Note (1)]			
$S_m^{cC} = \frac{P(R+L_2)}{t_1 E_m}$	(92) [Note (1)]			
$S_{bi}^{cC} = -S_{bo}^{cC} \left(\frac{c_i}{c_o}\right) = \frac{PbL_2c_i}{6I_1E_b} \left[3\left(L_2 + 2R\right) - \frac{C_1}{A}\right]$	(95) [Note (1)]			
$S_m^I = \frac{PR}{t_2 E_m}$	(93) [Note (1)]			
$S_{bi}^{IA} = -S_{bo}^{IA} \begin{pmatrix} c_i \\ c_o \end{pmatrix} = \frac{PbL_2C_1c_i}{6AI_2E_b}$	(96) [Note (1)]			
$S_{bi}^{lB} = -S_{bo}^{lB} \left(\frac{c_i}{c_o}\right) = \frac{PbL_2c_i}{6l_2E_b} \left(3L_2 - \frac{C_1}{A}\right)$	(97) [Note (1)]			
Membrane and Bending S	tresses — Defined Locations for Stress Calculation			
$S_{bi}^{lY} = -S_{bo}^{lY} \left(\frac{c_i}{c_o}\right) = \frac{Pc_i}{l_2 E_b} \left(\frac{-L_2 C_1}{6A} + \frac{Y^2}{2}\right)$				
	Equation Constants			
$h_1 = \frac{bt_1^3}{12}$ bt_2^3				
$I_2 = \frac{bt_2^3}{12}$ $A = R \left[2 \left(\frac{L_2}{R} \right) + \pi \left(\frac{I_2}{I_1} \right) \right]$				
$C_1 = R^2 \left[2 \left(\frac{L_2}{R} \right)^2 + 3\pi \left(\frac{L_2}{R} \right) \left(\frac{L_2}{L_1} \right) + 12 \left(\frac{L_2}{L_1} \right) \right]$				
Acceptance Criter	ia — Critical Locations of Maximum Stress			
$S_m^{cB} \leq S$	$S_m^l \leq S$			
$S_m^{cB} + S_{bi}^{cB} \le 1.5S$	$S_m^l + S_{bi}^{lA} \le 1.5S$			
$S_m^{cB} + S_{bo}^{cB} \le 1.5S$	$S_m^l + S_{bo}^{lA} \le 1.5S$			
$S_m^{cC} \leq S$	$S_m^l + S_{bi}^{lB} \le 1.5S$			
$S_m^{c\mathcal{C}} + S_{bi}^{c\mathcal{C}} \le 1.5S$	$S_m^l + S_{bo}^{lB} \le 1.5S$			
$S_m^{cC} + S_{bo}^{cC} \le 1.5S$				
	— Defined Locations for Stress Calculation			
Not Applicable	$S_m^l + S_{bi}^{lY} \le 1.5S$			
	$S_m^l + S_{bo}^{lY} \le 1.5S$			

Table 4.12.10 Stress Calculations and Acceptance Criteria for Type 9 Noncircular Vessels (Obround Cross Section) (Cont'd)

Section (contra)
Nomenclature for Stress Results
S_m^{cB} = membrane stress in the circular arc at point B.
S_{bi}^{CB} , S_{bo}^{CB} = bending stress in the circular arc at point B on the inside and outside surfaces, respectively.
S_m^{cC} = membrane stress in the circular arc at point C.
S_{bi}^{cC} , S_{bo}^{cC} = bending stress in the circular arc at point C on the inside and outside surfaces, respectively.
S_m^l = membrane stress in the long side.
S_{bi}^{lB} , S_{bo}^{lB} = bending stress in the long side at point B on the inside and outside surfaces, respectively.
S_{bi}^{lA} , S_{bo}^{lA} = bending stress in the long side at point A on the inside and outside surfaces, respectively.
S_{bi}^{IY} , S_{bo}^{IY} = bending stress in the long side at a point defined by Y on the inside and outside surfaces, respectively.
S_m^{st} = membrane stress in stay bar or plate, as applicable.
GENERAL NOTE: The variable <i>b</i> is the nominal width of the vessel flat section, usually corresponding to the vessel or header length. Value will cancel out in the above equation so the actual value selected is not critical. It is sometimes convenient to choose the pitch of multiple holes in a header application.
NOTE: (1) Equation numbers correspond to those in "Pressure Vessels of Noncircular Cross Section (Commentary on New Rules for ASME Code J.P. Faupel, <i>Journal of Pressure Vessel Technology</i> , August 1979, vol. 101.

Table 4.12.11Stress Calculations and Acceptance Criteria for Type 10 Noncircular Vessels (Reinforced Obround
Cross Section)

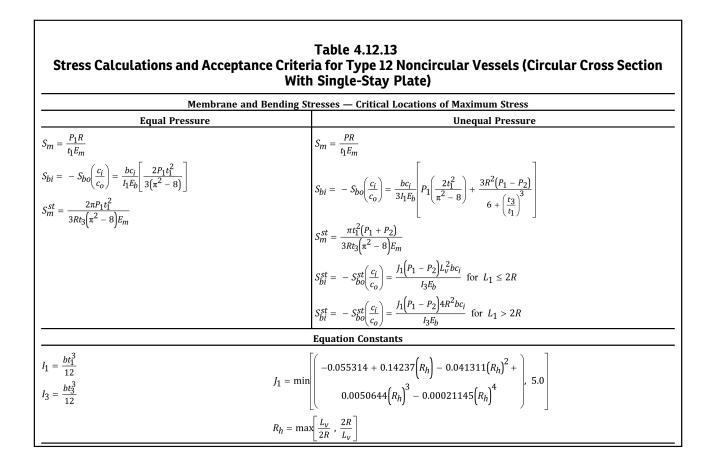
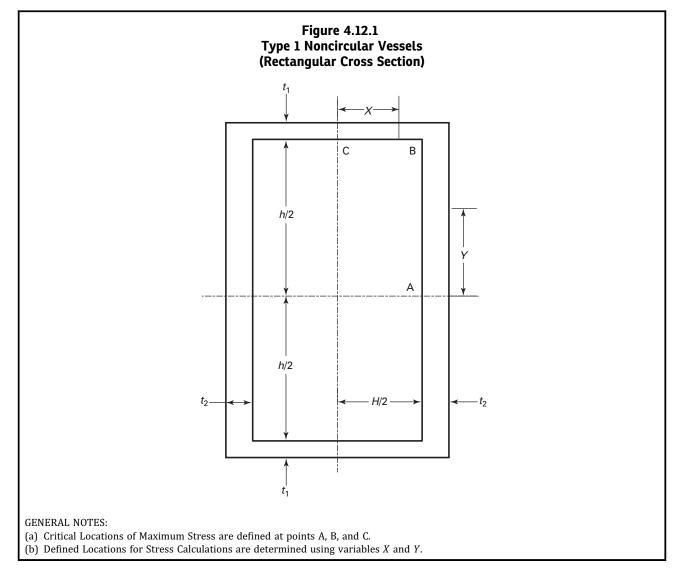

Membrane and Bending Stresses — Critical Locations of Maximum Stress				
$S_m^{cB} = \frac{PRp}{\left(A_1 + pt_1\right)E_m}$				
$S_{bi}^{cB} = -S_{bo}^{cB} \begin{pmatrix} c_i^c \\ c_o^c \end{pmatrix} = \frac{PpL_2c_i^c}{6l_{11}E_b} \begin{pmatrix} 3L_2 - \frac{C_2}{A_3} \end{pmatrix}$				
$S_m^{cC} = \frac{P(R+L_2)p}{(A_1+pt_1)E_m}$				
$S_{bi}^{cC} = -S_{bo}^{cC} \left(\frac{c_i^c}{c_o^c}\right) = \frac{PpL_2c_i^c}{6l_{11}E_b} \left[3\left(L_2 + 2r\right) - \frac{C_2}{A_3}\right]$				
$S_m^l = \frac{PRp}{\left(A_1 + pt_1\right)E_m}$				
$S_{bi}^{lA} = -S_{bo}^{lA} \left(\frac{c_i^l}{c_o^l}\right) = \frac{PL_2 pc_i^l}{6I_{11}E_b} \left(\frac{-C_2}{A_3}\right)$				
$S_{bi}^{IB} = -S_{bo}^{IB} \left(\frac{c_i^l}{c_o^l} \right) = \frac{PL_2 p c_i^l}{6 I_{11} E_b} \left(3L_2 - \frac{C_2}{A_3} \right)$				
Membrane and Bending Stresses — Defined Locations for Stress Calculation				
$S_{bi}^{IY} = -S_{bo}^{Iy} \left(\frac{c_i^{I}}{c_o^{I}}\right) = \frac{Ppc_i^{I}}{l_1 1 E_b} \left(\frac{-L_2 C_2}{6A_3} + \frac{Y^2}{2}\right)$				
Equation Constants				
$A_3 = r \left[2 \left(\frac{L_2}{r} \right) + \pi \right] \qquad \qquad C_2 = r^2 \left[2 \left(\frac{L_2}{r} \right)^2 + 3\pi \left(\frac{L_2}{r} \right) + 12 \right]$				

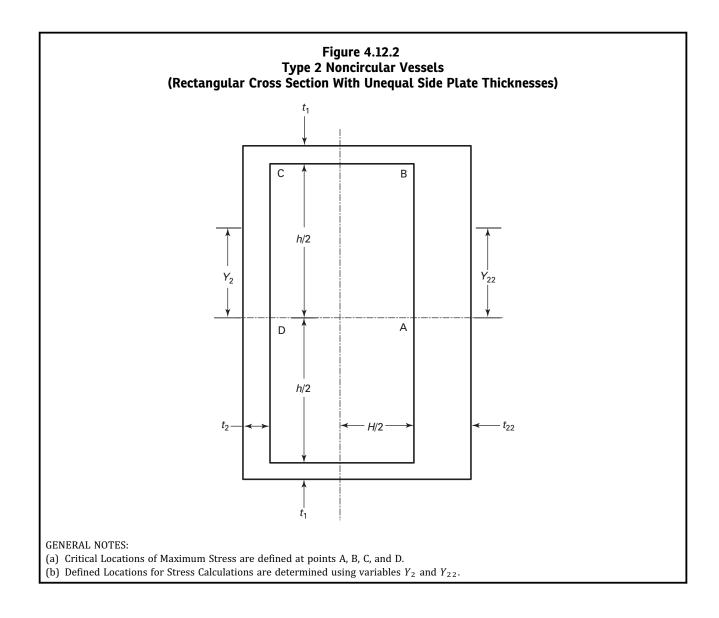
Table 4.12.11 Stress Calculations and Acceptance Criteria for Type 10 Noncircular Vessels (Reinforced Obround Cross Section) (Cont'd) Acceptance Criteria — Critical Locations of Maximum Stress				
$S_m^{cB} + S_{bi}^{cB} \le 1.5S$	$S_m^l + S_{bi}^{lA} \le 1.5S$			
$S_m^{cB} + S_{bo}^{cB} \le 1.5S$	$S_m^l + S_{bo}^{lA} \le 1.5S$			
$S_m^{cC} \leq S$	$S_m^l + S_{hi}^{lB} \le 1.5S$			
$S_m^{cC} + S_{bi}^{cC} \le 1.5S$	$S_m^l + S_{ba}^{lB} \le 1.5S$			
$S_m^{cC} + S_{bo}^{cC} \le 1.5S$				
Acceptance Criteria — D	efined Locations for Stress Calculation			
Not Applicable	$S_m^l + S_{bi}^{lY} \le 1.5S$			
	$S_m^l + S_{bo}^{lY} \le 1.5S$			
Nomencl	ature for Stress Results			
S_m^{cB} = membrane stress in the circular arc at point B.				
S_m S_{bi}^B , S_{cB}^C = bending stress in the circular arc at point B on the inside and outside surfaces, respectively.				
S_m^{CC} = membrane stress in the circular arc at point C.				
c_{cC}^{cC} , c_{bC}^{cC} = bending stress in the circular arc at point C on the	inside and outside surfaces, respectively.			
$S_m^{l} = \text{membrane stress in the long side.}$				
$S_{hi}^{[B]}$, $S_{ho}^{[B]}$ = bending stress in the long side at point B on the ins	side and outside surfaces, respectively.			
B_{II}^{A} , B_{IA}^{A} = bending stress in the long side at point A on the ins	side and outside surfaces, respectively.			
s_{I}^{V} , s_{I}^{V} = bending stress in the long side at a point defined by b_{I}^{V} , b_{O}	y Y on the inside and outside surfaces, respectively.			
S_m^{st} = membrane stress in stay bar or plate, as applicable.				

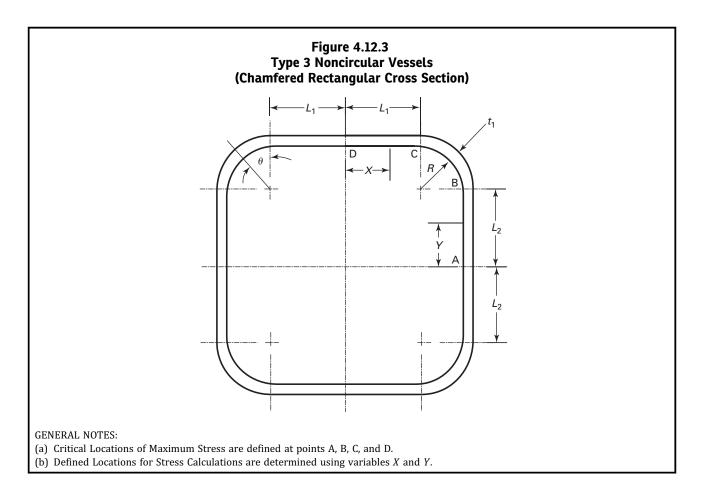
Stress Calculations and Acceptance Criteria for Type 11 Noncircular Vessels (Obround Cross Section With Single-Stay Plate or Multiple Bars)				
$S_m^{CB} = \frac{PR}{t_1 E_m}$	d Bending Stresses — Defined Locations for Stre	ess Calculation		
$ \begin{aligned} & \underset{bi}{\overset{cB}{l}} = S_{bo}^{cB} \left(\frac{c_i}{c_o} \right) = \frac{PbL_2c_i}{2l_1AE_k} \left[F\left(B - AL_2 \right) - \frac{C_1}{3} + AL_2 \right] \end{aligned} $				
$\sum_{bo} \left(\frac{c_o}{c_o} \right) = \frac{2I_1 A E_b}{2I_1 A E_b} \left[\left(\frac{D}{2} - \frac{D}{2I_2} \right) - \frac{D}{2} \right]$ $\sum_{m} \left[\frac{2R}{2I_2 E_m} \left[2\left(R + L_2\right) - L_2 F \right] \right]$				
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	$A(L_2 + 2R)$			
$h = \frac{PR}{t_{5}E_{m}}$				
$ t_{2}E_{m} $ $ l_{Di}^{A} = -S_{Dol}^{IA} \left(\frac{c_{i}}{c_{o}} \right) = \frac{PbL_{2}c_{i}}{2l_{2}AE_{b}} \left(BF - \frac{C_{1}}{3} \right) $				
$bi = S_{bol}^{lb} \begin{pmatrix} c_o \end{pmatrix} = 2I_2AE_b \begin{pmatrix} DI & 3 \end{pmatrix}$ $l_{Di}^{lB} = -S_{bol}^{lB} \begin{pmatrix} c_i \\ c_o \end{pmatrix} = \frac{PbL_2c_i}{2I_2AE_b} \left[F\left(B - AL_2\right) - \frac{C_1}{3} + AL_2 \right]$	_]			
$S_{n}^{t} = -S_{bo}^{t} \left(\frac{1}{c_{o}} \right) = \frac{1}{2l_{2}AE_{b}} \left[r \left(B - AL_{2} \right) - \frac{1}{3} + AL_{c}^{t} \right]$ $S_{n}^{t} = \frac{PL_{2}F}{t_{2}E_{c}} \text{ for a stay plate}$	2]			
$m = \frac{t_{3}E_{st}}{t_{3}E_{st}} \text{ for stay bars}$ $m = \frac{4PL_2Fp}{\pi t_{2}^{2}E_{st}} \text{ for stay bars}$				
$\pi t_3^2 E_{st}$	Equation Constants			
$=rac{bt_1^3}{12}$	$F = \frac{(3AD_1 - 2BC_1)}{(AE_1 - 6B^2)}$			
$r = \frac{bt_2^3}{12}$		$2(l_2)$		
$= R \left[2 \left(\frac{L_2}{R} \right) + \pi \left(\frac{I_2}{I_1} \right) \right]$	$D_1 = R^3 \begin{vmatrix} \left(\frac{L_2}{R}\right)^3 + 2\pi \left(\frac{L_2}{R}\right) \\ 12 \left(\frac{L_2}{R}\right) \left(\frac{L_2}{L_1}\right) + 2\pi \left(\frac{L_2}{L_1}\right) \\ 12 \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) + 2\pi \left(\frac{L_2}{L_1}\right) \\ 12 \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) + 2\pi \left(\frac{L_2}{L_1}\right) \\ 12 \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) \\ 12 \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) \left(\frac{L_2}{L_1}\right) \\ 12 \left(\frac{L_2}{L_1}\right) \left$	$\left(\frac{\overline{h}}{h}\right)^+$		
$= R^2 \left[\left(\frac{L_2}{R} \right)^2 + \pi \left(\frac{L_2}{R} \right) \left(\frac{l_2}{l_1} \right) + 2 \left(\frac{l_2}{l_1} \right) \right]$		-		
$I = R^2 \left[2 \left(\frac{L_2}{R} \right)^2 + 3\pi \left(\frac{L_2}{R} \right) \left(\frac{l_2}{l_1} \right) + 12 \left(\frac{l_2}{l_1} \right) \right]$	$E_1 = R^3 \begin{vmatrix} 4\left(\frac{L_2}{R}\right)^3 + 6\pi\left(\frac{L_2}{R}\right) \\ 24\left(\frac{L_2}{R}\right)\left(\frac{L_2}{L_1}\right) + \end{vmatrix}$	$\left \int_{-1}^{2} \left(\frac{I_{2}}{I_{1}} \right) + \right $		
$I = K \left[2 \left(\frac{R}{R} \right)^{-1} + \frac{3R}{R} \left(\frac{R}{R} \right) \left(\frac{1}{I_1} \right)^{-1} + \frac{12}{I_1} \left(\frac{1}{I_1} \right) \right]$	$24\left(\frac{L_2}{R}\right)\left(\frac{L_2}{l_1}\right) +$	$3\pi\left(\frac{l_2}{l_1}\right)$		
Ассер	ance Criteria — Critical Locations of Maximum	Stress		
$S_m^{cB} \leq S$	$S_m^{st} \leq S$	$S_m^l \leq S$		
$S_m^{cB} + S_{bi}^{cB} \le 1.5S$		$S_m^l + S_{bi}^{lA} \le 1.5S$		
$S_m^{cB} + S_{bo}^{cB} \le 1.5S$		$m + s_{bi} \ge 1.55$		
$S_m^{cC} \le S$		$S_m^l + S_{bo}^{lA} \le 1.5S$		
		$S_m^l + S_{bi}^{lB} \le 1.5S$		
$S_m^{cC} + S_{bi}^{cC} \le 1.5S$		$-m + b_1 = 100$		
$S_m^{cC} + S_{bo}^{cC} \le 1.5S$		$S_m^l + S_{bo}^{lB} \le 1.5S$		

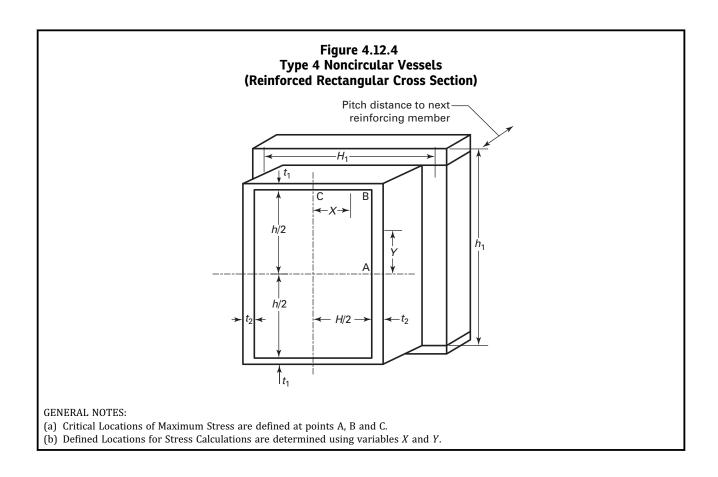
Table 4.12.12 Stress Calculations and Acceptance Criteria for Type 11 Noncircular Vessels (Obround Cross Section With Single-Stay Plate or Multiple Bars) (Cont'd)

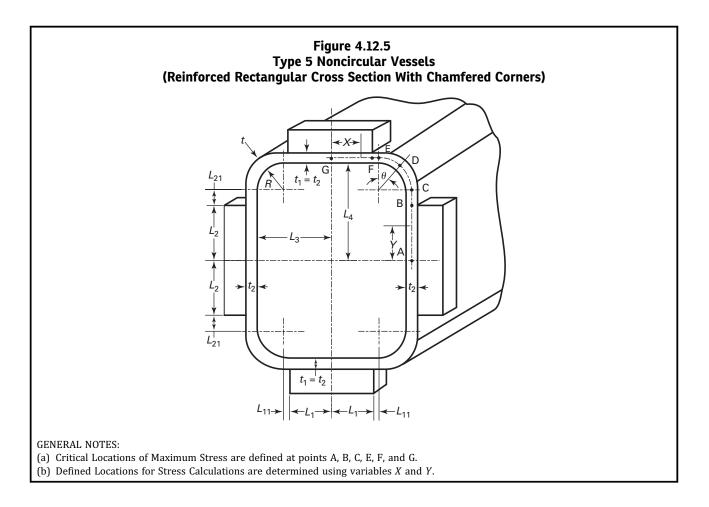
Nomenclature for Stress Results		
S_m^{cB}	= membrane stress in the circular arc at point B.	
Sc ^B , Sc ^B	= bending stress in the circular arc at point B on the inside and outside surfaces, respectively.	
S_m^{cC}	= membrane stress in the circular arc at point C.	
S ^{cC} , S ^{cC}	= bending stress in the circular arc at point C on the inside and outside surfaces, respectively.	
S_m^l	= membrane stress in the long side.	
S ^{lB} , S ^{lB}	= bending stress in the long side at point B on the inside and outside surfaces, respectively.	
SlA , SlA bi	= bending stress in the long side at point A on the inside and outside surfaces, respectively.	
S ^{IY} , S ^{IY} bi	= bending stress in the long side at a point defined by <i>Y</i> on the inside and outside surfaces, respectively.	
S_m^{st}	= membrane stress in stay bar or plate, as applicable.	

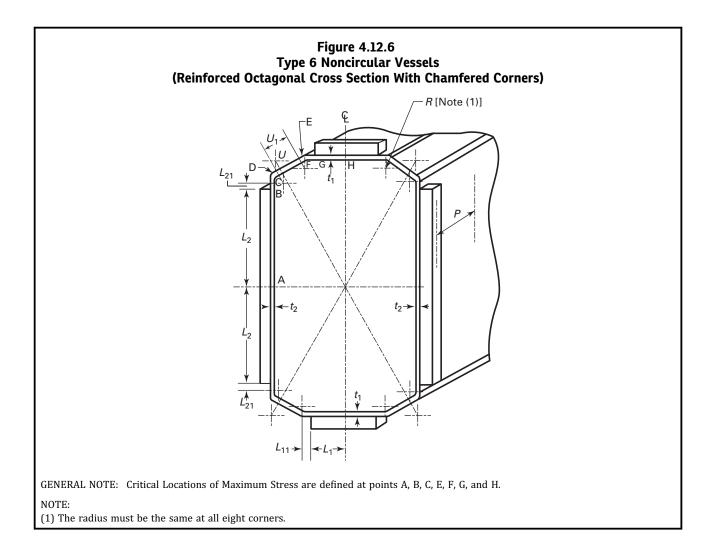

I

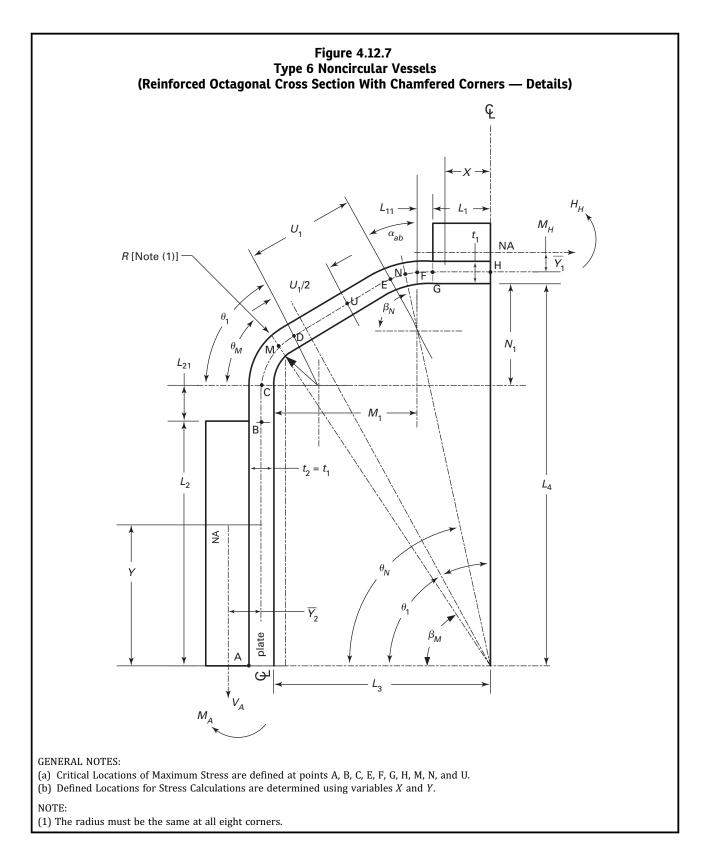

Equal Pressure $S_m \leq S$ $S_m \leq S$ $S_m + S_{bi} \leq 1.5S$ $S_m + S_{bi} \leq S$ $S_m + S_{bo} \leq 1.5S$ $S_m + S_{bo}$ $S_m^{st} \leq S$ $S_m^{st} \leq S$ $S_m^{st} \leq S$ $S_m^{st} + S_{bi}^{st}$ $S_m^{st} + S_{bi}^{st}$ $S_m^{st} + S_{bi}^{st}$	5 1.5 <i>S</i>
$S_m + S_{bi} \le 1.5S$ $S_m + S_{bo} \le 1.5S$ $S_m + S_{bo} \le 1.5S$ $S_m + S_{bo}$ $S_m + S_{bo}$ $S_m^{st} \le S$ $S_m^{st} \le S$ $S_m^{st} + S_{bi}^{st}$ $S_m^{st} + S_{bi}^{st}$	5 1.5 <i>S</i>
$\begin{split} S_m + S_{bo} &\leq 1.5S & S_m + S_{bo} \\ S_m^{st} &\leq S & S_m^{st} &\leq S \\ & S_m^{st} + S_{bi}^{st} \\ & S_m^{st} + S_{bi}^{st} \\ & S_m^{st} + S_{bi}^{st} \end{split}$	5 1.5 <i>S</i>
$S_m^{st} \le S$ $S_m^{st} \le S$ $S_m^{st} + S_{bi}^{st}$ $S_m^{st} + S_{bi}^{st}$	
$S_m^{st} + S_{bi}^{st}$ $S_m^{st} + S_{bo}^{st}$	± 1.5 <i>S</i>
$S_m^{st} + S_{bo}^{st}$	5 1.5 <i>S</i>
Nomonclaturo f	s 1.5 <i>S</i>
Nomenciature	r Stress Results
S_m = membrane stress in the pipe.	
S_{bi} , S_{bo} = bending stress in the pipe.	
S_{bi} , S_{bo} = bending stress in the pipe. S_m^{st} = membrane stress in stay plate, as applicable.	

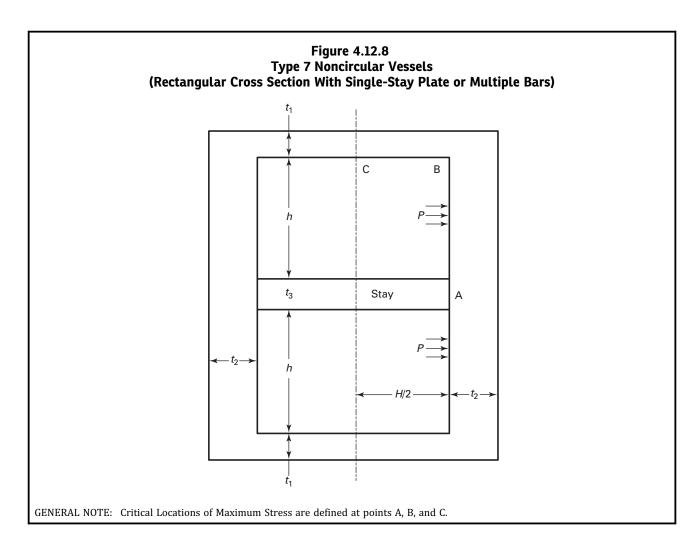

Table 4.12.14 Effective Width Coefficient					
	Effective Width Coefficient, \varDelta				
Material	$\sqrt{\text{psi}}$	\sqrt{kPa}			
Carbon Steel	6,000	15 754			
Austenitic Stainless Steel	5,840	15 334			
Ni–Cr–Fe	6,180	16 229			
Ni-Fe-Cr	6,030	15 834			
Aluminum	3,560	9 348			
Nickel Copper	5,720	15 021			
Unalloyed Titanium	4,490	11 789			

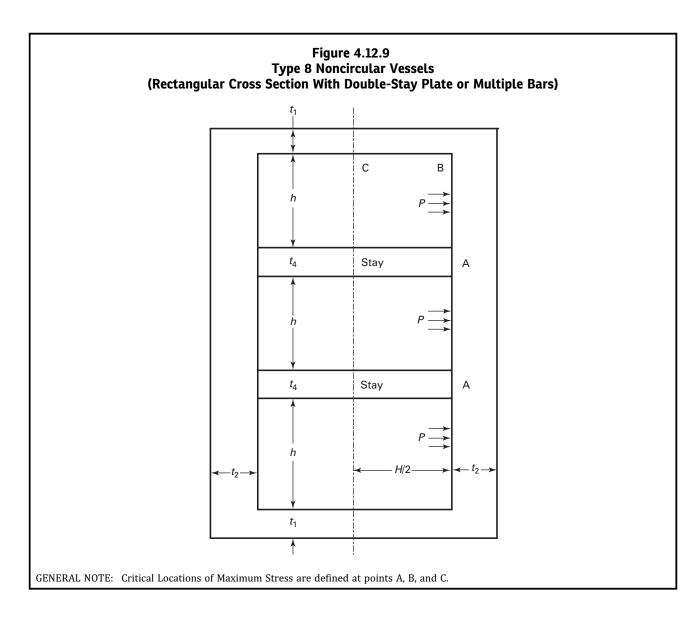

Table 4.12.15 Compressive Stress Calculations				
Short-Side Plates	Long-Side Plates	End Plates		
$S_{mA} = \frac{P_e h H}{2(t_1 H + t_2 h)}$	$S_{mA} = \frac{P_e h H}{2(t_1 H + t_2 h)}$	$S_{mA} = \frac{P_e H L_v}{2(t_2 L_v + t_5 H)}$		
$S_{mB} = \frac{P_e h}{2t_1}$	$S_{mB} = \frac{P_e H}{2t_p}$	$S_{mB} = \frac{P_e h L_v}{2(t_L L_v + t_z H)}$		
$S_{CrA}^{*} = \frac{\pi^2 E_y}{12(1-v^2)} \left(\frac{t_1}{H}\right)^2 K_A$	$S_{CTA}^{*} = \frac{\pi^{2} E_{y}}{12(1-v^{2})} \left(\frac{t_{2}}{h}\right)^{2} K_{A}$	$S_{CTA}^* = \frac{\pi^2 E_y}{12(1-v^2)} \left(\frac{t_5}{H}\right)^2 K_A$		
$S_{CrA}^{**} = S_y - \frac{S_y^2}{4S_{CrA}^*}$	$S_{CrA}^{**} = S_y - \frac{S_y^2}{4S_{CrA}^*}$	$S_{CTA}^{**} = S_y - \frac{S_y^2}{4S_{CTA}^*}$		
$S_{CTB}^* = \frac{\pi^2 E_y}{12(1-v^2)} \left(\frac{t_1}{L_v}\right)^2 K_B$	$S_{CTB}^{*} = \frac{\pi^{2} E_{y}}{12(1-v^{2})} \left(\frac{t_{2}}{L_{v}}\right)^{2} K_{B}$	$S_{CTB}^{*} = \frac{\pi^2 E_{y}}{12(1-v^2)} \left(\frac{t_5}{h}\right)^2 K_B$		
$S_{CTB}^{**} = S_y - \frac{S_y^2}{4S_{CTB}^*}$	$S_{crB}^{**} = S_y - \frac{S_y^2}{4S_{crB}^*}$	$S_{CrB}^{**} = S_y - \frac{S_y^2}{4S_{CrB}^*}$		
$K_A = K_A \left(x = \frac{L_v}{H} \right)$	$K_A = K_A \left(x = \frac{L_v}{h} \right)$	$K_A = K_A \left(x = \frac{h}{H} \right)$		
$K_B = K_B \left(x = \frac{H}{L_v} \right)$	$K_B = K_B \left(x = \frac{h}{L_\nu} \right)$	$K_B = K_B \left(x = \frac{H}{h} \right)$		
	Nomenclature for Stress Results			
S_{mB} = compressive stress applied to th S_{crA} = plate buckling stress when the p	e short edge of the side panels due to external press e long edge of the side panels due to external pressu anel is subjected to stress on the short edge. anel is subjected to stress on the long edge.			
GENERAL NOTES: (a) The equations for K_A and K_B are:				
	$K_A(x) = \max\left[\left(5.2184 + \frac{1.4597}{x} + \frac{0.30384}{x^2}\right)\right]$	5.50 (4.12.58)		
	$K_B(x) = 5.2184 + \frac{1.4597}{x} + \frac{0.30384}{x^2}$ for $x \ge$	e 0.258 (4.12.59)		
	$K_B(x) = 1.0$ for $x < 0.258$	(4.12.60)		
(b) The membrane equations for S_{mA} equal, replace $2t_2$ with $(t_2 + t_{22})$ i		te thicknesses are equal. If the thicknesses are not		
(c) The membrane equation S_{mB} in t		s where the long plate thicknesses are equal. If the termined in accordance with Table 4.12.3.		
-	$K_A = K_A \left(x = \frac{H}{L_V} \right)$ is defined as computing K_A using			

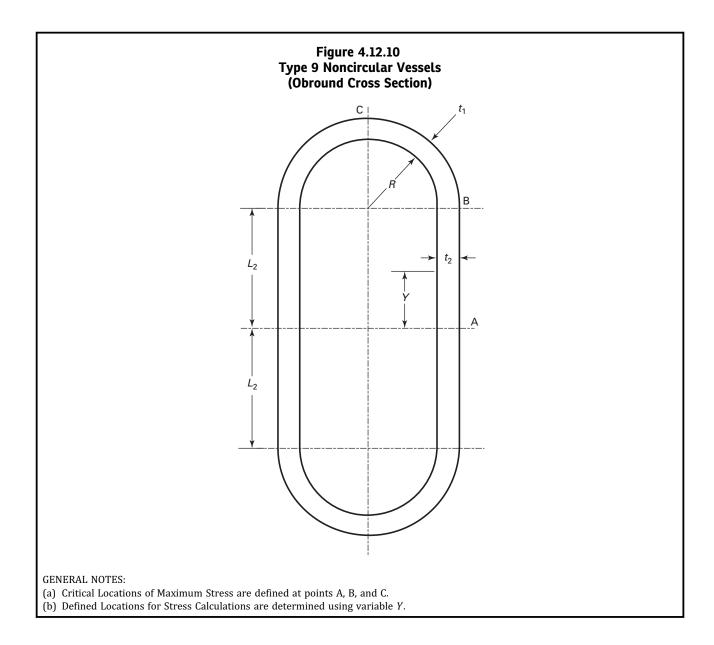

4.12.13 FIGURES

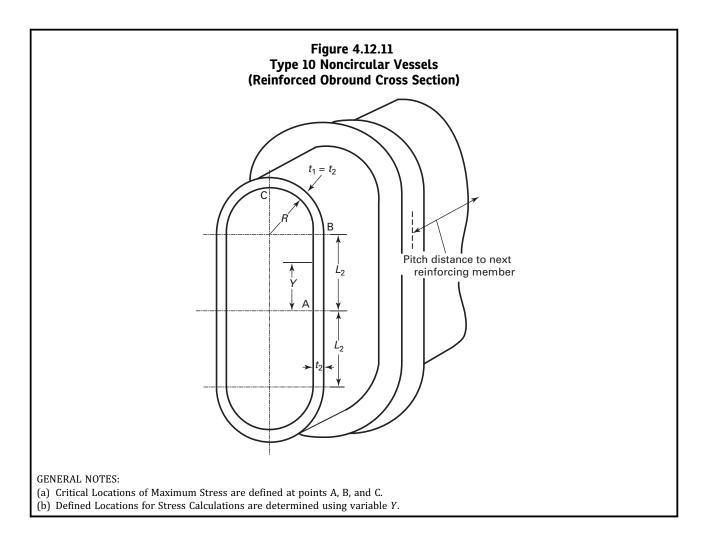


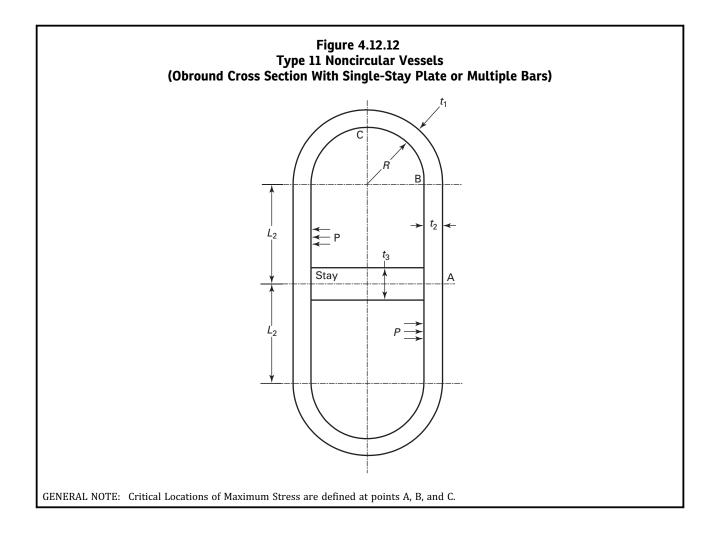


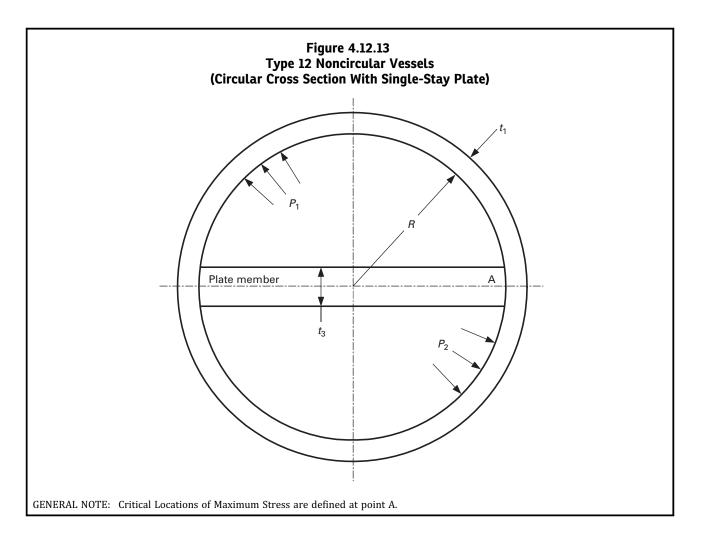


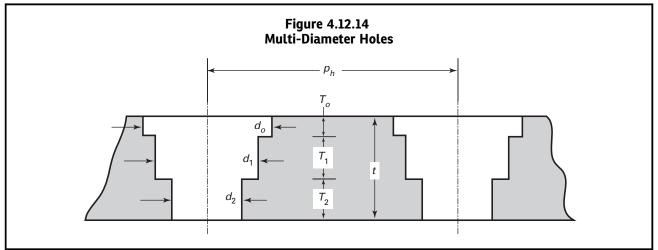


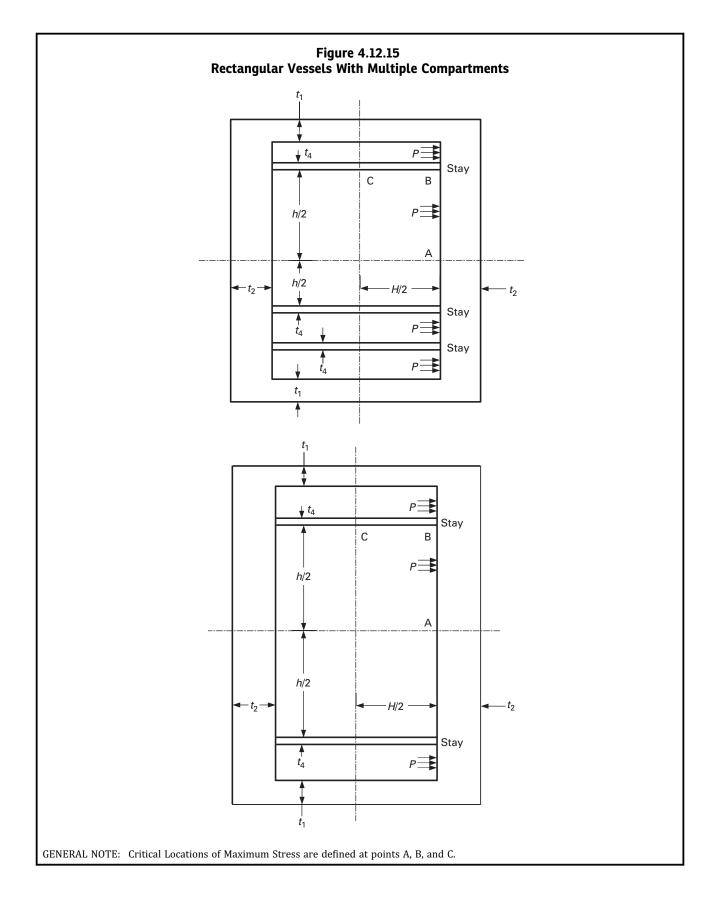












4.13 DESIGN RULES FOR LAYERED VESSELS

4.13.1 SCOPE

Design rules for layered vessels are covered in 4.13. There are several manufacturing techniques used to fabricate layered vessels, and these rules have been developed to cover most techniques used today for which there is extensive documented construction and operational data. Examples of acceptable layered shell and head types are shown in Figures 4.13.1 and 4.13.2.

4.13.2 **DEFINITIONS**

The following terms are used in this paragraph to define components of a layered vessel.

(a) Layered Vessel - a vessel having a shell and/or heads made up of two or more separate layers.

(b) Inner Shell - the inner cylinder that forms the pressure tight membrane.

(c) Inner Head - the inner head that forms the pressure tight membrane.

(*d*) Shell Layer - layers may be cylinders formed from plate, sheet, forgings, or the equivalent formed by coiling. This does not include wire winding.

(e) Head Layer - anyone of the head layers of a layered vessel except the inner head.

(f) Overwraps - layers added to the basic shell or head thickness for the purpose of building up the thickness of a layered vessel for reinforcing shell or head openings, or making a transition to thicker sections of the layered vessel.

(g) Dummy Layer - a layer used as a filler between the inner shell (or inner head) and other layers, and not considered as part of the required total thickness.

4.13.3 GENERAL

4.13.3.1 The design for layered pressure vessels shall conform to the general design requirements given in 4.1.

4.13.3.2 A fatigue analysis in accordance with Part 5 shall be performed in all cases unless the fatigue analysis screening based on experience with comparable equipment in accordance with 5.5.2.2 is satisfied.

4.13.3.3 The Manufacturer's Quality Control System shall include the construction procedure that will outline the sequence and method of application of layers and measurement of layer gaps.

4.13.4 DESIGN FOR INTERNAL PRESSURE

4.13.4.1 The total thickness of layered shells of revolution under internal pressure shall not be less than that computed by the equations in 4.3.

4.13.4.2 An inner shell or inner head material that has a lower allowable design stress than the layer materials may only be included as credit for part of the total wall thickness if S_i is not less than $0.5S_L$ by considering its effective thickness to be:

$$t_{\rm eff} = t_{\rm act} \left(\frac{S_i}{S_L} \right) \tag{4.13.1}$$

4.13.4.3 Layers in which the stress intensity value of the materials is within 20% of the other layers may be used by prorating the allowable stress from Annex 3-A evaluated at the design temperature of the layers in the thickness equation, provided the materials are compatible in modulus of elasticity and coefficient of thermal expansion (see Part 3).

4.13.4.4 The minimum thickness of any layer shall not be less than 3.2 mm (0.125 in.).

4.13.5 DESIGN FOR EXTERNAL PRESSURE

4.13.5.1 When layered shells are used for external pressure, the requirements of 4.4 shall be applied with the following additional requirements.

(*a*) The thickness used for establishing external pressure applied to the outer layer shall be the thickness of the total layers, except as given in (b). The design of the vent holes shall be such that the external pressure is not transmitted through the vent holes in the outer layer.

(b) The thickness used for establishing vacuum pressure shall be only the thickness of the inner shell or inner head.

4.13.5.2 Layered shells under axial compression shall be calculated in accordance with 4.4, utilizing the total layered shell thickness.

4.13.6 DESIGN OF WELDED JOINTS

4.13.6.1 The design of welded joints shall conform to the requirements given in 4.2 except as modified herein.

4.13.6.2 Category A and B joints of inner shells and inner heads of layered sections shall be as follows.

(a) Category A joints shall be Type No. 1 (see 4.2).

(b) Category B joints shall be Type No. 1 or Type No. 2 (see 4.2).

4.13.6.3 Category A joints of layered sections shall be as follows.

(a) Category A joints of layers over 22 mm (0.875 in.) in thickness shall be Type No. 1 (see 4.2).

(b) Category A joints of layers 22 mm (0.875 in.) or less in thickness shall be of Type 1 or 2 (see 4.2), except the final outside weld joint of spiral wrapped layered shells may be a single lap weld.

4.13.6.4 Category B joints of layered shell sections to layered shell sections, or layered shell sections to solid shell sections, shall be of Type 1 or 2 (see 4.2).

(*a*) Category B joints of layered sections to layered sections of unequal thickness shall have transitions as shown in Figure 4.13.3, sketch (a) or (b).

(b) Category B joints of layered sections to solid sections of unequal thickness shall have transitions as shown in Figure 4.13.3, sketch (c), (d), (e), or (f).

(c) Category B joints of layered sections to layered sections of equal thickness shall be as shown in Figure 4.13.4, sketch (b), (c), (d), (f), or (g).

(*d*) Category B joints of layered sections to solid sections of equal thickness shall be as shown in Figure 4.13.4, sketch (a) or (e).

4.13.6.5 Category A joints of solid hemispherical heads to layered shell sections shall be of Type 1 or 2 (see 4.2). *(a)* Transitions shall be as shown in Figure 4.13.5, sketch (a), (b-1), (b-2), or (b-3) when the hemispherical head thickness is less than the thickness of the layered shell section and the transition is made in the layered shell section.

(*b*) Transitions shall be as shown in Figure 4.13.5, sketch (c), (d-1), or (e) when the hemispherical head thickness is greater than the thickness of the layered shell section and the transition is made in the layered shell section.

(c) Transition shall be as shown in Figure 4.13.5, sketch (f) when the hemispherical head thickness is less than the thickness of the layered shell section and the transition is made in the hemispherical head section.

4.13.6.6 Category B joints of solid elliptical, torispherical, or conical heads to layered shell sections shall be of Type 1 or 2 (see 4.2). Transitions shall be as shown in Figure 4.13.5, sketch (c), (d-1), (d-2), (e), or (f).

4.13.6.7 Category C joints of solid flat heads and tube-sheets to layered shell sections shall be of Type 1 or 2 (see 4.2) as indicated in Figure 4.13.6. Transitions, if applicable, shall be used as shown in Figure 4.13.3, sketch (c), (d), (e), or (f).

4.13.6.8 Category C joints attaching solid flanges to layered shell sections and layered flanges to layered shell sections shall be of Type 1 or 2 (see 4.2) as indicated in Figure 4.13.7.

4.13.6.9 Category A joints of layered hemispherical heads to layered shell sections shall be of Type 1 or 2 (see 4.2) with transition as shown in Figure 4.13.8, sketch (a-1) or (a-2).

4.13.6.10 Category B joints of layered conical heads to layered shell sections shall be of Type 1 or 2 (see 4.2) with transitions as shown in Figure 4.13.8, sketch (b).

4.13.6.11 Category B joints of layered shell sections to layered shell sections or layered shells to solid heads or shells may be butt joints as shown in Figure 4.13.4, sketches (c), (d), and (e), or step welds as shown in Figure 4.13.4, sketches (a), (b), (f), and (g).

4.13.6.12 Category D joints of solid nozzles, manholes, and other connections to layered shell or layered head sections shall be full penetration welds as shown in Figure 4.13.9 except as permitted in sketch (i), (j), (k), or (I). Category D joints between layered nozzles and shells or heads are not permitted.

4.13.6.13 When layers of Category A joints as shown in Figure 4.13.5, sketches (a), (b-1), (b-2), and (b-3) and Figure 4.13.8, sketches (a-1) and (a-2) are welded with fillet welds having a taper less than 3:1, an analysis of the head-to-shell junction shall be done in accordance with Part 5. Resistance due to friction shall not be considered in the analysis. The longitudinal load resisted by the weld shall consider the load transferred from the remaining outer layers.

4.13.7 NOZZLES AND NOZZLE REINFORCEMENT

4.13.7.1 All openings, except as provided in 4.13.7.2 shall meet the requirements for reinforcing per 4.5. All reinforcements required for openings shall be integral with the nozzle or provided in the layered section or both. Additional layers may be included for required reinforcement.

4.13.7.2 Openings, DN 50 (NPS 2) and smaller, need not be reinforced when installed in layered construction but may be welded on the inside as shown in Figure 4.13.9, sketch (j). The nozzle nominal wall thickness shall not be less than Schedule 80 pipe as fabricated in addition to meeting the requirements of 4.5.5.

4.13.7.3 Some acceptable nozzle geometries and attachments are shown in Figure 4.13.9.

4.13.7.4 Openings up to and including 6 in. nominal pipe size (DN 150) may be constructed as shown in Figure 4.13.9, sketches (k) and (I). Such partial penetration weld attachments may only be used for instrumentation openings, inspection openings, etc. on which there are no external mechanical loadings, provided the following requirements are met.

(a) The requirements for reinforcing specified in 4.13.7 apply except that the diameter of the finished openings in the wall shall be d^* as specified in Figure 4.13.9, sketches (k) and (l), and the thickness t_n is the required thickness of the layered shells computed by the design requirements.

(*b*) Additional reinforcement, attached to the inside surface of the inner shell, may be included after the corrosion allowance is deducted from all exposed surfaces. The attachment welds shall comply with 4.2 and Figure 4.13.9, sketch (k) or (I).

(c) Metal in the nozzle neck available for reinforcement shall be limited by the boundaries specified in 4.5 except that the inner layer shall be considered the shell.

4.13.7.5 Openings greater than 51 mm (2 in.) may be constructed as shown in Figure 4.13.9, sketch (i). The requirements for reinforcing specified in 4.13.7.4(a) apply except that:

(a) The diameter of the finished openings in the walls shall be d' as specified in Figure 4.13.9, sketch (i), and the thickness t_n is the required thickness of the layered shells computed by the design requirements;

(b) Additional reinforcement may be included in the solid hub section as shown in Figure 4.13.9, sketch (i);

(c) Metal in the nozzle neck available for reinforcement shall be limited by the boundaries specified in 4.5, except that the inner layer shall be considered the shell.

4.13.8 FLAT HEADS

4.13.8.1 Design criteria shall meet the requirements of 4.6.

4.13.8.2 The design of welded joints shall be in accordance with 4.13.6.

4.13.9 BOLTED AND STUDDED CONNECTIONS

4.13.9.1 Design criteria shall meet the requirements of 4.16.

4.13.9.2 The design of welded joints shall be in accordance with 4.13.6.

4.13.10 ATTACHMENTS AND SUPPORTS

4.13.10.1 Supports for layered pressure vessels may be designed in accordance with 4.15. Examples of some acceptable supports are shown in Figure 4.13.10.

4.13.10.2 When attaching supports or other connections to the outside or inside of layered pressure vessels, only the immediate layer shall be used in the calculation, except where provisions are made to transfer the load to other layers.

4.13.10.3 When jacketed closures are used, provisions shall be made for extending layer vents through the jacket (see 4.13.11.1). Partial jackets covering only a portion of the circumference are not permitted on layered shells.

4.13.11 VENT HOLES

4.13.11.1 Vent holes shall be provided to detect leakage of the inner shell and to prevent buildup of pressure within the layers as follows.

4.13.11.2 In each shell course or head segment, a layer may be made up of one or more plates. Each layer plate shall have at least two vent holes 6 mm (0.25 in.) minimum diameter. Holes may be drilled radially through the multiple layers or may be staggered in individual layer plates.

4.13.11.3 For continuous coil wrapped layers, each layered section shall have at least four vent holes 6 mm (0.25 in.) minimum diameter. Two of these vent holes shall be located near each end of the section and spaced approximately 180 deg apart.

4.13.11.4 The minimum requirement for spirally wound strip layered construction shall be 6 mm (0.25 in.) minimum diameter vent holes drilled near both edges of the strip. They shall be spaced for the full length of the strip and shall be located a distance of approximately $\pi R/\tan\theta$ from each other (where *R* is the mean radius of the shell and θ is the acute angle of spiral wrap measured from the longitudinal centerline, deg).

4.13.11.5 If a strip weld covers a vent hole, partially or totally, an additional vent hole shall be drilled on each side of the obstructed hole.

4.13.11.6 In addition to the above, holes may be drilled radially through the multiple layers.

4.13.11.7 Vent holes shall not be obstructed. If a monitoring system is used, it shall be designed to prevent buildup of pressure within the layers.

4.13.12 SHELL TOLERANCES

4.13.12.1 Contact Between Layers. The following requirements shall be satisfied.

(*a*) Category A weld joints shall be ground to ensure contact between the weld area and the succeeding layer, before application of the layer.

(b) Category A weld joints of layered shell sections shall be in an offset pattern so that the centers of the welded longitudinal joints of adjacent layers are separated circumferentially by a distance of at least five times the layer thickness.

(c) Category A weld joints in layered heads may be in an offset pattern; if offset, the joints of adjacent layers shall be separated by a distance of at least five times the layer thickness.

(d) After weld preparation and before welding circumferential seams, the height of the radial gaps between any two adjacent layers shall be measured at the ends of the layered shell section or layered head section at right angles to the vessel axis, and also the length of the relevant radial gap in inches shall be measured (neglecting radial gaps of less than 0.25 mm (0.010 in.) as non relevant). The gap area, A_g , shall not exceed the thickness of a layer expressed in square inches. An approximation of the area of the gap shall be calculated using eq. (4.13.2). The maximum length of any gap shall not exceed the inside diameter of the vessel. Where more than one gap exists between any two adjacent layers, the sum of the gap lengths shall not exceed the inside diameter of the vessel. The maximum height of any gap shall not exceed 4.8 mm (0.1875 in.). It is recognized that there may be vessels of dimensions wherein it would be desirable to calculate a maximum permissible gap height and length, and also when cyclical service conditions require it. This procedure is provided in 4.13.12.3 and may be used in lieu of the maximum gap area given above, (see Figure 4.13.12.3).

$$A_g = \frac{2}{3}bh \tag{4.13.2}$$

(e) In the case of layered spheres or layered heads, if the gaps cannot be measured as required in (d), measurement of gap heights shall be taken through vent holes in each layer course to assure that the height of layer gaps between any two layers does not exceed the gap permitted in (d). The spacing of the vent holes shall be such that gap lengths can be determined. In the event an excessive gap height is measured through a vent hole, additional vent holes shall be drilled as required to determine the gap length. There shall be at least one vent hole per layer segment.

4.13.12.2 Alternative to Measuring Contact Between Layers During Construction. As an alternative to 4.13.12.1(d), the following measurements shall be taken at the time of the hydrostatic test to check on the contact between successive layers, and the effect of gaps which may or may not be present between layers.

(a) The circumference shall be measured at the midpoint between adjacent circumferential joints, or between a circumferential joint and any nozzle in a shell course. Measurements shall be taken at zero pressure and, following application of hydrostatic test pressure, at the design pressure. The difference in measurements shall be averaged for each course in the vessel and the results recorded as average middle circumferential expansion, e_m .

(b) The theoretical circumferential expansion of a solid vessel of the same dimensions and materials as the layered vessel shall be calculated from eq. (4.13.3). The acceptance criterion for circumferential expansion at the design pressure is: $e_m \ge 0.5e_{th}$.

$$e_{th} = \frac{1.7\pi P (2R_m - t_s)^2 (2R_m + t_s)}{8E_v R_m t_s}$$
(4.13.3)

4.13.12.3 Rules for Calculating Maximum Permissible Gaps. The maximum number and size of gaps permitted in any cross section of a layered vessel shall be limited by (a) and (b).

(a) The maximum gap between any layers shall be evaluated as follows:

(1) The circumferential stress of the shell and the bending stress due to the gap can be calculated as

$$S = \frac{R_0^2 + R_1^2}{R_0^2 - R_1^2} P$$
(4.13.4)

$$S_b = \frac{1.812E_y h}{R_g}$$
(4.13.5)

(2) When $S_b \ge 0.71S$

$$\Delta S_n = 0.5S + S_b + P \tag{4.13.6}$$

(3) When $S_b < 0.71S$

$$\Delta S_n = S + 0.3S_b + P \tag{4.13.7}$$

(4) The stress amplitude for fatigue analysis at the gap is

$$S_{ag} = \frac{K_e \Delta S_n}{2} \tag{4.13.8}$$

where

$$K_e = 1.0 \text{ for } \Delta S_n \leq 3S_m$$

$$K_e = 1.0 + \frac{\left(1 - n\right)}{n\left(m - 1\right)} \left(\frac{\Delta S_n}{3S_m} - 1\right) \text{ for } 3S_m < \Delta S_n < 3mS_m$$

$$K_e = \frac{1}{n} \quad \text{for } \Delta S_n \ge 3mS_m$$

(5) The maximum gap shall be determined when the calculated number of fatigue cycles using S_{ag} in eq. (4.13.8) is equal to or greater than the specified number of fatigue cycles.

(b) Maximum permissible number of gaps and their corresponding arc lengths at any cross section of a layered vessel shall be calculated as follows.

(1) Measure each gap and its corresponding length throughout the cross section.

(2) Calculate the value of *F* for each of the gaps using the following equation:

$$F = 0.109 \left(\frac{bh}{R_g^2}\right) \tag{4.13.9}$$

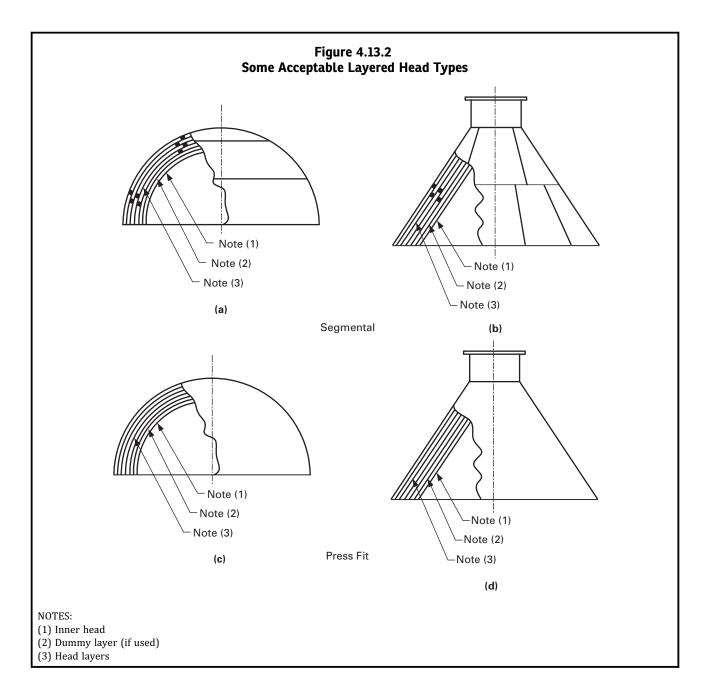
(3) The total sum of the calculated F values shall not exceed the quantity

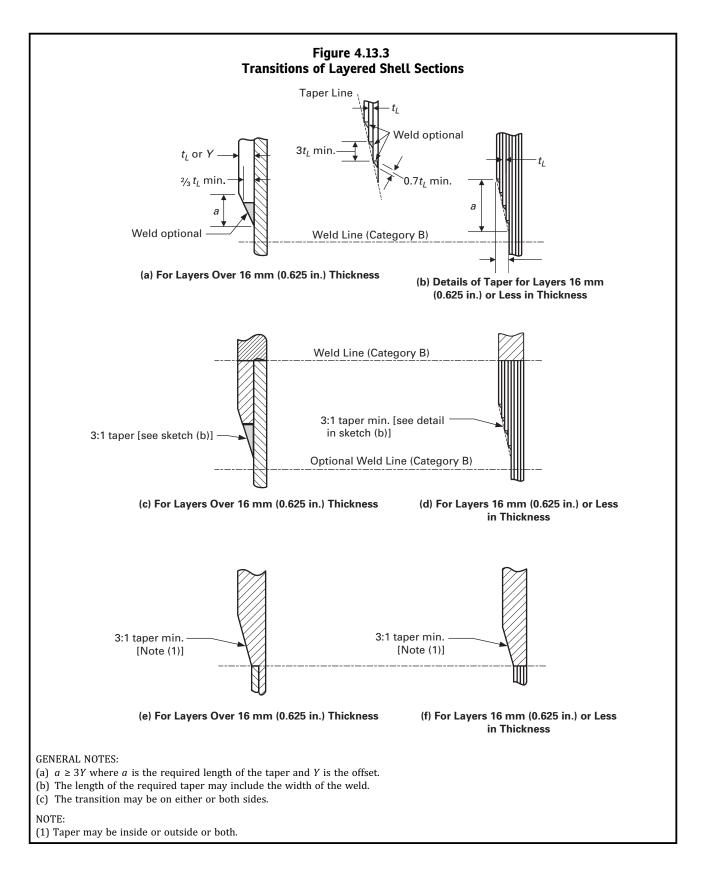
$$F_T = \frac{1 - v^2}{E_y} \left(2S_a / K_e - \frac{2PR_o^2}{R_o^2 - R_i^2} \right)$$
(4.13.10)

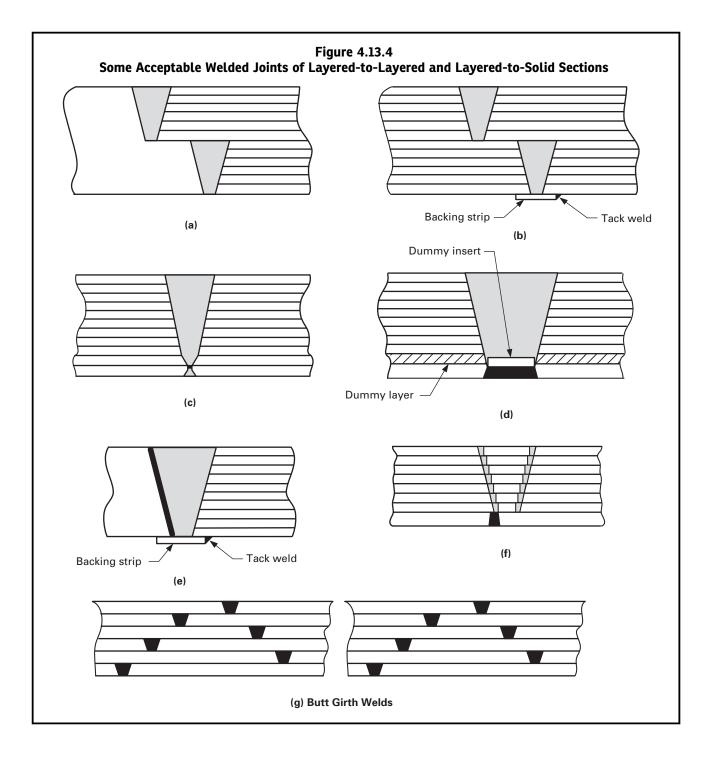
4.13.13 NOMENCLATURE

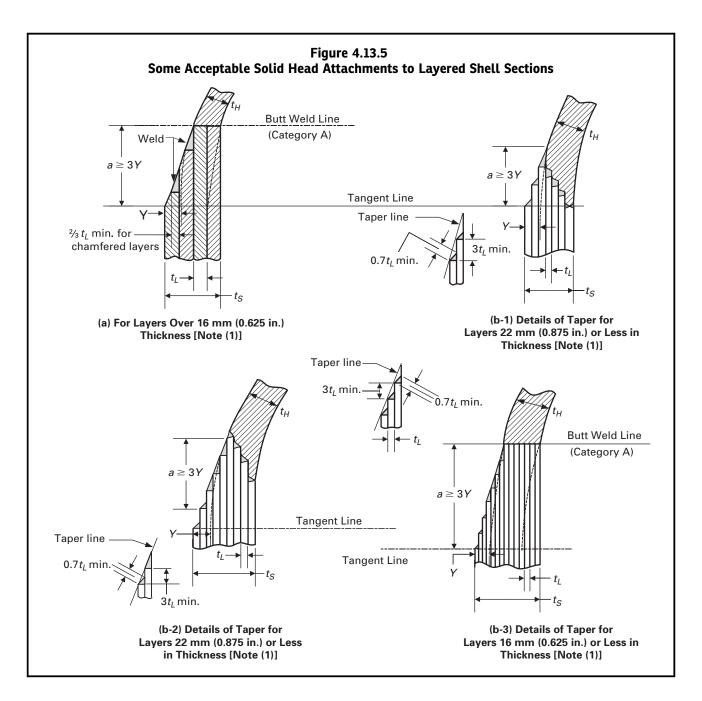
 A_g = gap area


- b = length of the gap between any two layers
- C = equal to 3 mm (0.125 in.) radial clearance between the nozzle neck and vessel opening
- d^* = finished opening in the wall
- e_m = average middle recorded circumferential expansion
- e_{th} = theoretical circumferential expansion
- E_v = modulus of elasticity for the layer material from Part 3
- F = gap value
- F_T = total permissible gap value
- h = gap height between any two layers
- K_e = fatigue penalty factor


m, n = material constants for the fatigue penalty factor used in the simplified elastic-plastic analysis (see Table 5.13)


- P = design pressure of the vessel
- R_q = outside radius of the layer above where the gap is located
- R_i = inside radius of the vessel
- R_m = mean radius of the vessel
- R_o = outside radius of the vessel
- S = shell circumferential stress


- S_a = stress amplitude from the applicable fatigue curve for the layer material from Annex 3-F
- S_{ag} = calculated stress amplitude at the gap
- $\tilde{S_b}$ = bending stress due to gap between layered shell
- S_i = allowable stress for the inner layer from Annex 3-A at the design temperature
- S_L = allowable stress for the layers from Annex 3-A at the design temperature
- S_m = allowable stress for the layer material from Annex 3-A at the design temperature
- $r_1 = \text{equal to min}[0.25t_n, 3 \text{ mm } (0.125 \text{ in.})]$
- r_2 = equal to 6 mm (0.25 in.) minimum
- $r_3 = \text{equal to min}[0.25t_n, 19 \text{ mm} (0.75 \text{ in.})]$
- t =actual thickness of the head or tubesheet or for nozzle details equal to min[t_n , 19 mm (0.75 in.)], as applicable
- t_{act} = actual thickness of inner shell or inner head
- t_c = equal to the larger of 6 mm (0.25 in.) or 0.7 min[t_n , 19 mm (0.75 in.)]
- $t_{\rm eff}$ = effective thickness of inner shell or inner head
- t_H = thickness of the head at the head-to-cylinder joint
- t_L = thickness of the layer
- t_n = nominal thickness of the nozzle wall less corrosion allowance
- t_S = total wall thickness of the layered vessel
- Y = offset
- ΔS_n = total stress range
 - v = Poisson's ratio


4.13.14 FIGURES

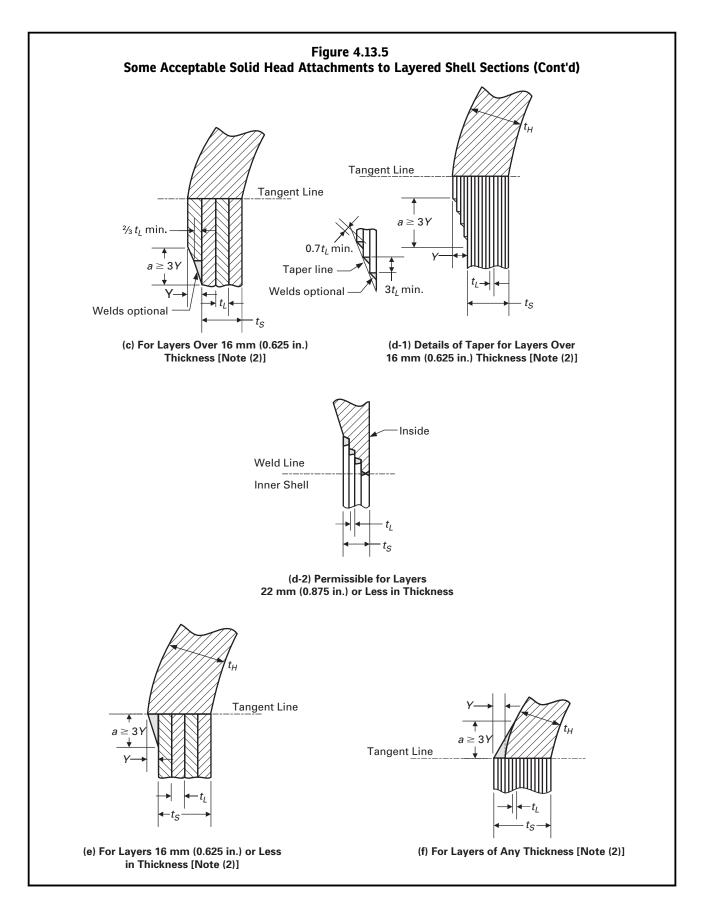
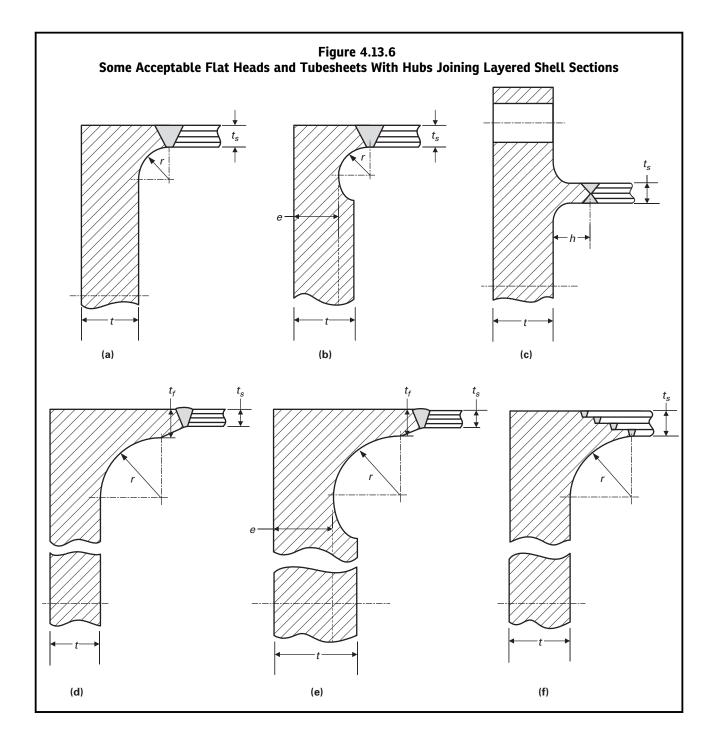
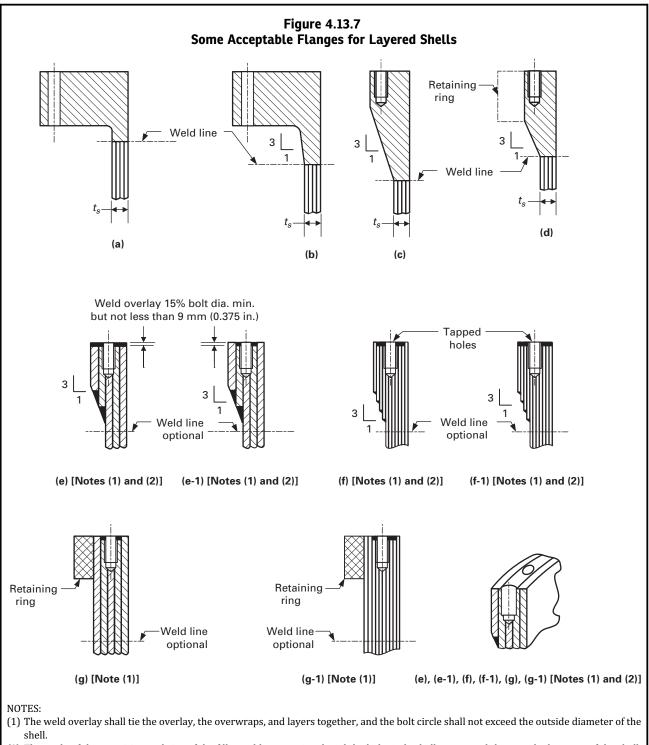


Figure 4.13.5 Some Acceptable Solid Head Attachments to Layered Shell Sections (Cont'd)

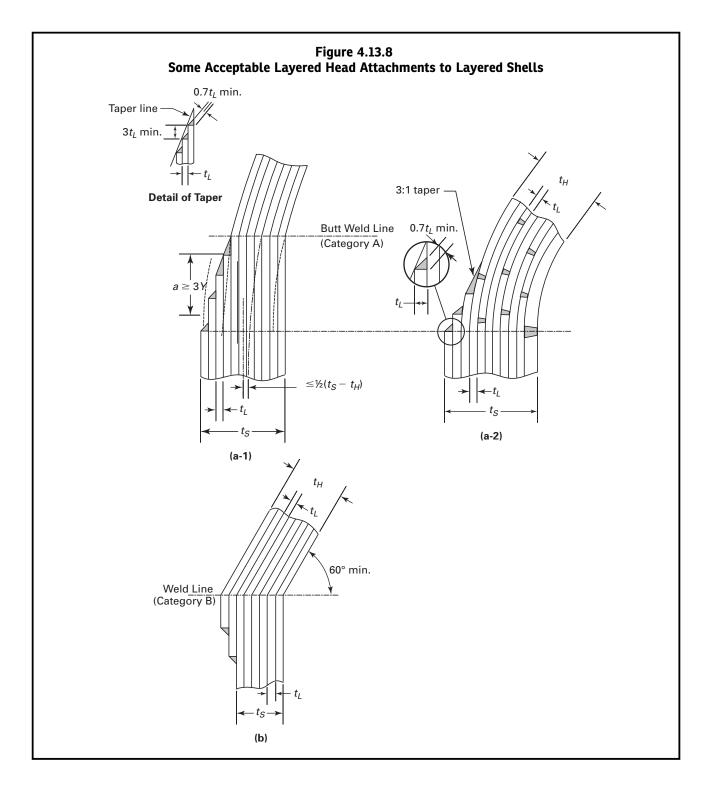
GENERAL NOTES:

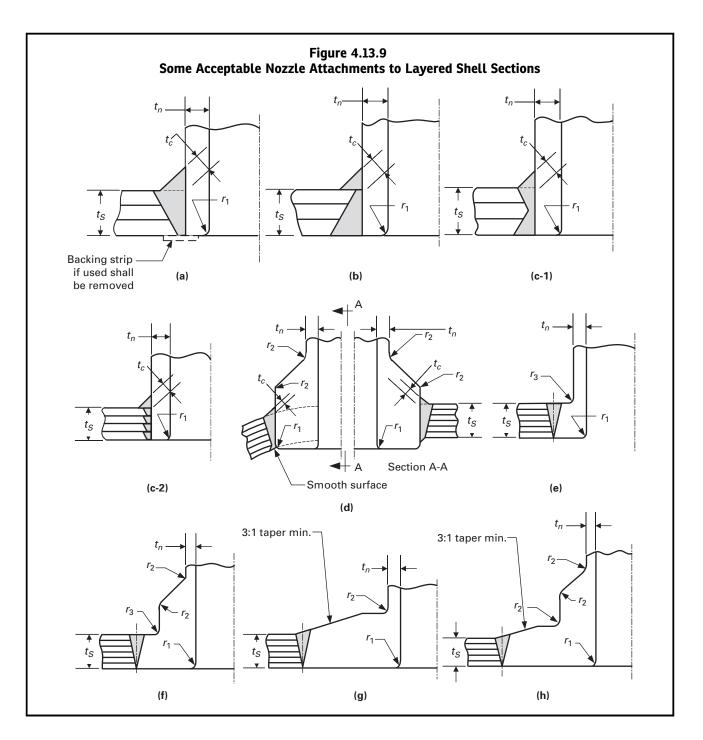

(a) In sketch (e), $Y \le t_L$ shall be satisfied; in sketch (f), $Y \le 0.5t_s$ shall be satisfied.

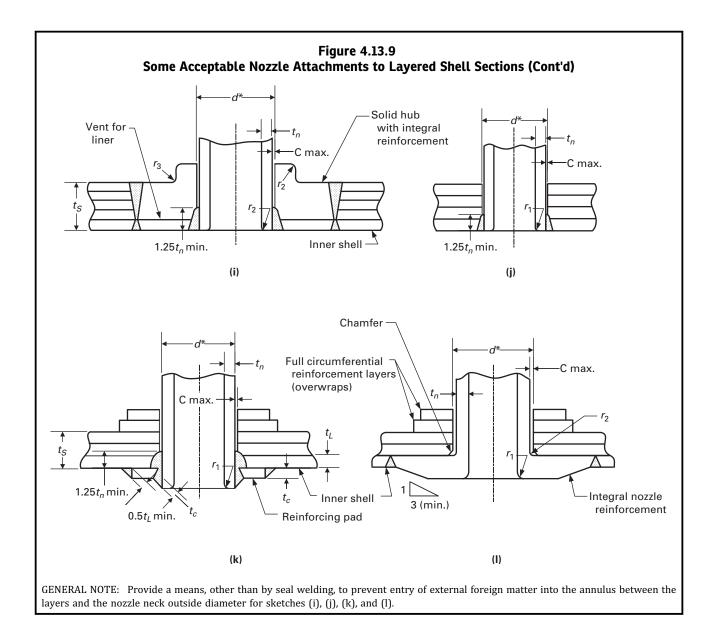

- (b) In all cases, $a \ge 3Y$ shall be satisfied. The shell centerline may be on either side of the head centerline by a maximum distance of $0.5(t_s t_s)$
- t_H). The length of the required taper may include the width of the weld.
- (c) The actual thickness shall not be less than the theoretical head thickness.

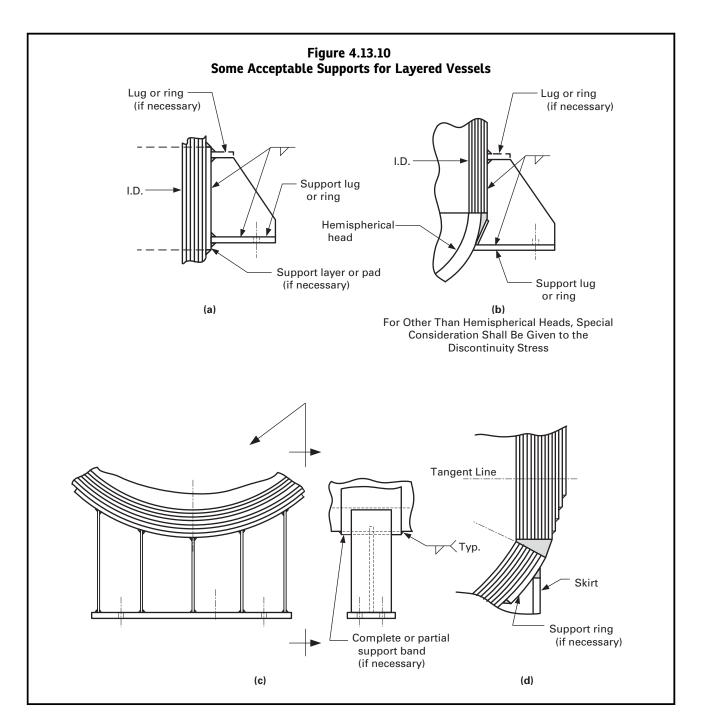
NOTES:

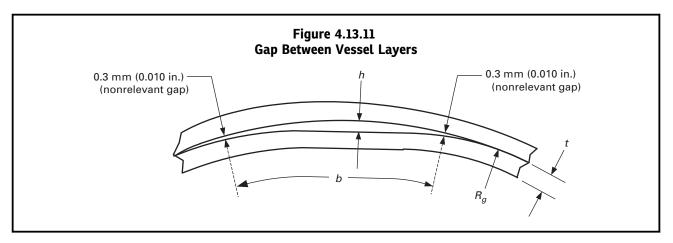
(1) Sketches (a) through (b-3) apply to hemispherical heads only.


(2) Butt weld line may be at or below tangent line depending on Code requirement for type of head and weld.






(2) The angle of the transition and size of the fillet welds are optional, and the bolt circle shall not exceed the outside diameter of the shell.

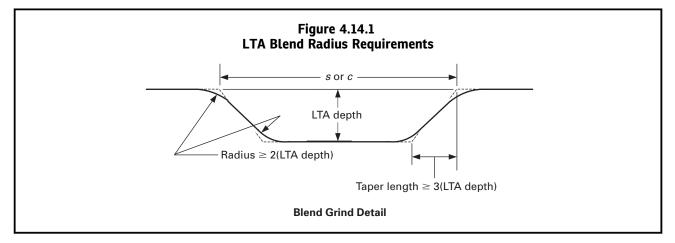


4.14 EVALUATION OF VESSELS OUTSIDE OF TOLERANCE

4.14.1 SHELL TOLERANCES

If agreed to by the user, the assessment procedures in Part 5 or in API 579-1/ASME FFS-1 may be used to qualify the design of components that have shell tolerances that do not satisfy the fabrication tolerances in 4.3.2 and 4.4.4. If API 579-1/ASME FFS-1 is used in the assessment, a Remaining Strength Factor of 0.95 shall be used in the calculations unless another value is agreed to by the user. However, the Remaining Strength Factor shall not be less than 0.90. In addition, a fatigue analysis shall be performed in accordance with API 579-1/ASME FFS-1 as applicable.

4.14.2 LOCAL THIN AREAS


4.14.2.1 If agreed to by the user, the assessment procedures in Part 5 or in API 579-1/ASME FFS-1 may be used to qualify the design of components that have a local thin area. A local thin area (LTA) is a region of metal loss on the surface of the component that has a thickness that is less than required by 4.3 and 4.4, as applicable. If API 579-1/ASME FFS-1 is used in the assessment, a Remaining Strength Factor of 0.98 shall be used in the calculations unless another value is agreed to by the user. However, the Remaining Strength Factor shall not be less than 0.90. In addition, a fatigue analysis shall be performed in accordance with API 579-1/ASME FFS-1 as applicable.

4.14.2.2 The transition between the LTA and the thicker surface shall be made with a taper length not less than three times the LTA depth. The minimum bottom blend radius shall be equal to or greater than two times the LTA depth (see Figure 4.14.1)

4.14.3 MARKING AND REPORTS

The Manufacturer shall maintain records of all calculations including the location and extent of the fabrication tolerances outside the prescribed limits and/or LTAs that are evaluated using 4.14. This information shall be provided to the user if requested and shall be included in the Manufacturer's Design Report.

4.14.4 FIGURES

4.15 DESIGN RULES FOR SUPPORTS AND ATTACHMENTS

4.15.1 SCOPE

The rules in 4.15 cover requirements for the design of structural support system(s) for vessels. The structural support system may be, but not limited to, saddles for a horizontal vessel, a skirt for a vertical vessel, or lug and leg type supports for either of these vessel configurations.

4.15.2 DESIGN OF SUPPORTS

4.15.2.1 Vessels shall be supported for all specified design conditions. The design conditions including load and load case combinations defined in 4.1.5.3 shall be considered in the design of all vessel supports.

4.15.2.2 Unless otherwise defined in this paragraph, if a stress analysis of the vessel and support attachment configuration is performed, the stress results in the vessel and in the support within the scope of this Division shall satisfy the acceptance criteria in Part 5.

4.15.2.3 The vessel support attachment shall be subject to the fatigue screening criteria of 5.5.2. In this evaluation, supports welded to the vessel may be considered as integral attachments.

4.15.2.4 All supports shall be designed to prevent excessive localized stresses due to deformations produced by the internal pressure or to thermal gradients in the vessel and support system.

4.15.2.5 Vessel support systems composed of structural steel shapes shall be designed in accordance with a recognized code or standard that cover structural design (e.g., Specification for Structural Steel Buildings published by the American Institute of Steel Construction). If the support is at a temperature above ambient due to vessel operation and the recognized code or standard does not provide allowable stresses at temperatures above ambient conditions, then the allowable stress, yield strength, and ultimate tensile strength, as applicable, shall be determined from Annex 3-A and Annex 3-D using a material with a similar minimum specified yield strength and ultimate tensile strength.

4.15.2.6 Attachment welds for structural supports shall be in accordance with 4.2.

4.15.2.7 Reinforcing plates and saddles attached to the outside of a vessel shall be provided with at least one vent hole that may be tapped for a preliminary compressed air and soap solution (or equivalent) test for tightness of welds that seal the edge of the reinforcing plates and saddles. These vent holes may be left open or may be plugged when the vessel is in service. If the holes are plugged, the plugging material used shall not be capable of sustaining pressure between the reinforcing plate and the vessel wall. Vent holes shall not be plugged during heat treatment.

4.15.2.8 If nonpressure parts such as support lugs, brackets, leg supports and saddles extend over pressureretaining welds, then these welds shall be ground flush for the portion of weld that is covered, or the nonpressure parts shall be notched or coped to clear these welds.

4.15.3 SADDLE SUPPORTS FOR HORIZONTAL VESSELS

4.15.3.1 Application of Rules.

(*a*) Design Method - The design method in this paragraph is based on an analysis of the longitudinal stresses exerted within the cylindrical shell by the overall bending of the vessel, considered as a beam on two single supports, the shear stresses generated by the transmission of the loads on the supports, and the circumferential stresses within the cylindrical shell, the head shear and additional tensile stress in the head, and the possible stiffening rings of this shell, by this transmission of the loads on the supports. The stress calculation method is based on linear elastic mechanics and covers modes of failure by excessive deformation and elastic instability. Alternatively, saddle supports may be designed in accordance with Part 5.

(*b*) Geometry - A typical horizontal vessel geometry is shown in Figure 4.15.1. Saddle supports for horizontal vessels shall be configured to provide continuous support for at least one-third of the shell circumference, or $\theta \ge 120$ deg.

(c) Reinforcing Plates A reinforcing plate may be included in the design to reduce the circumferential stresses in the cylindrical shell at the saddle support [see 4.15.3.5(c)]. A typical reinforcing plate arrangement is shown in Figure 4.15.2.

(*d*) Stiffening Rings - Stiffening rings may be used at the saddle support location, on either the inside or outside of the cylindrical shell. The stiffening rings may be mounted in the plane of the saddle (see Figure 4.15.3) or two stiffening rings may be mounted on each side of the saddle support equidistant from the saddle support (see Figure 4.15.4). In the later case, the spacing between the two stiffening rings, *h*, as shown in Figure 4.15.4 shall not be greater than R_m . If $h \le 1.56\sqrt{R_m t}$ as shown in Figure 4.15.3, sketch (c), then both of the stiffening rings shall be considered as a single stiffening ring situated in the plane of the saddle in the stress calculations.

ASME BPVC.VIII.2-2023

4.15.3.2 Moment and Shear Force.

(*a*) If the vessel is composed of a cylindrical shell with a formed head (i.e., torispherical, elliptical, or hemispherical) at each end that is supported by two saddle supports equally spaced and with $a \le 0.25L$, then the moment at the saddle, M_1 , the moment at the center of the vessel, M_2 , and the shear force at the saddle, T, may be computed using the following equations.

$$M_{1} = -Qa \left(1 - \frac{1 - \frac{a}{L} + \frac{R_{m}^{2} - h_{m}^{2}}{2aL}}{1 + \frac{4h_{m}}{3L}} \right)$$
(4.15.1)

$$M_{2} = \frac{QL}{4} \left(\frac{1 + \frac{2\left(R_{m}^{2} - h_{m}^{2}\right)}{L^{2}}}{1 + \frac{4h_{m}}{3L}} - \frac{4a}{L} \right)$$
(4.15.2)

$$T = \frac{Q(L-2a)}{L + \frac{4h_m}{3}}$$
(4.15.3)

(*b*) If the vessel supports are not symmetric, or more than two supports are provided, then the highest moment in the vessel, and the moment and shear force at each saddle location shall be evaluated. The moments and shear force may be determined using strength of materials (i.e., beam analysis with a shear and moment diagram). If the vessel is supported by more than two supports, then differential settlement should be considered in the design.

4.15.3.3 Longitudinal Stress.

(*a*) The longitudinal membrane plus bending stresses in the cylindrical shell between the supports are given by the following equations.

$$\sigma_1 = \frac{PR_m}{2t} - \frac{M_2}{\pi R_m^2 t} \qquad \text{(top of shell)} \tag{4.15.4}$$

$$\sigma_2 = \frac{PR_m}{2t} + \frac{M_2}{\pi R_m^2 t}$$
 (bottom of shell) (4.15.5)

(b) The longitudinal stresses in the cylindrical shell at the support location are given by the following equations. The values of these stresses depend on the rigidity of the shell at the saddle support. The cylindrical shell may be considered as suitably stiffened if it incorporates stiffening rings at, or on both sides of the saddle support, or if the support is sufficiently close defined as $a \le 0.5R_m$, to a torispherical or elliptical head (a hemispherical head is not considered a stiffening element), a flat cover, or tubesheet.

(1) Stiffened Shell - The maximum values of longitudinal membrane plus bending stresses at the saddle support are given by the following equations.

$$\sigma_3 = \frac{PR_m}{2t} - \frac{M_1}{\pi R_m^2 t} \qquad \text{(top of shell)} \tag{4.15.6}$$

$$\sigma_4 = \frac{PR_m}{2t} + \frac{M_1}{\pi R_m^2 t} \qquad \text{(bottom of shell)} \tag{4.15.7}$$

(2) Unstiffened Shell - The maximum values of longitudinal membrane plus bending stresses at the saddle support are given by the following equations. The coefficients K_1 and K_1^* are given in Table 4.15.1.

$$\sigma_3^* = \frac{PR_m}{2t} - \frac{M_1}{K_1 \pi R_m^2 t}$$
 (points A and B in Figure 4.15.5) (4.15.8)

$$\sigma_4^* = \frac{PR_m}{2t} + \frac{M_1}{k_1^* \pi R_m^2 t}$$
 (bottom of shell) (4.15.9)

(c) Acceptance Criteria

(1) The absolute value of σ_1 , σ_2 , and σ_3 , σ_4 or σ_3^* , σ_4^* , as applicable shall not exceed *SE*.

ASME BPVC.VIII.2-2023

(2) If the any of the stresses in (a) or (b) above are negative, the absolute value of the stress shall not exceed S_c that is given by eq. (4.15.10) where K = 1.0 for normal operating conditions and K = 1.35 for exceptional operating or hydrotest condition.

$$S_{c} = \frac{KtE_{y}}{16R_{m}}$$
(4.15.10)

4.15.3.4 Shear Stresses.

(*a*) The shear stress in the cylindrical shell with a stiffening ring in the plane of the saddle support is a maximum at Points C and D of Figure 4.15.5, sketch (b) and shall be computed using eq. (4.15.11).

$$r_1 = \frac{T}{\pi R_m t} \tag{4.15.11}$$

(b) The shear stress in the cylindrical shell with stiffening rings on both sides of the saddle support is a maximum at Points E and F of Figure 4.15.5, sketch (c) and shall be computed using eq. (4.15.12). The coefficient K_2 is given in Table 4.15.1.

$$r_2 = \frac{K_2 T}{R_m t} \tag{4.15.12}$$

(c) The shear stress in a cylindrical shell without stiffening ring(s) that is not stiffened by a formed head, flat cover, or tubesheet, ($a > 0.5R_m$) is also at Points E and F of Figure 4.15.5, sketch (c) and shall be computed using eq. (4.15.12).

(*d*) The shear stress in the cylindrical shell without stiffening ring(s) and stiffened by a torispherical or elliptical head, flat cover, or tubesheet, ($a \le 0.5R_m$) is a maximum at Points E and F of Figure 4.15.5, sketch (c) and shall be computed using the equations shown below. In addition to the shear stress, the membrane stress in the formed head, if applicable, shall also be computed using the equations shown below.

(1) Shear stress, the coefficient K_3 is given in Table 4.15.1.

$$\tau_3 = \frac{K_3 Q}{R_m t} \qquad \text{(in the cylindrical shell)} \tag{4.15.13}$$

$$\tau_3^* = \frac{K_3 Q}{R_m t_h} \qquad (in the formed head) \tag{4.15.14}$$

(2) Membrane stress in a torispherical or elliptical head acting as a stiffener, the coefficient K_4 is given in Table 4.15.1.

$$\sigma_5 = \frac{K_4 Q}{R_m t_h} + \frac{P R_{mh}}{2 t_h}$$
 (torispherical head) (4.15.15)

$$\sigma_{5} = \frac{K_{4}Q}{R_{m}t_{h}} + \frac{PR_{mh}}{2t_{h}} \left(\frac{R_{mh}}{h_{m}}\right) \qquad \text{(elliptical head)} \tag{4.15.16}$$

$$\sigma_5 = 0$$
 (flat cover) (4.15.17)

(e) Acceptance Criteria

(1) The absolute value of τ_1 , τ_2 , and τ_3 , as applicable, shall not exceed min(0.8*S*, 0.533*S_y*).

(2) The absolute value of τ_{3}^{*} shall not exceed min $(0.8S_{h}, 0.533S_{hy})$.

(3) The absolute value of σ_5 shall not exceed $1.25S_h$.

(23) 4.15.3.5 Circumferential Stress.

(a) Maximum circumferential bending moment - the distribution of the circumferential bending moment at the saddle support is dependent on the use of stiffeners at the saddle location.

(1) Cylindrical shell without a stiffening ring or with a stiffening ring in the plane of the saddle - the maximum circumferential bending moment is shown in Figure 4.15.6, sketch (a) and shall be computed using eq. (4.15.18). The coefficient K_7 is given in Table 4.15.1.

$$M_{\beta} = K_7 Q R_m \tag{4.15.18}$$

(2) Cylindrical shell with stiffening rings on both side of the saddle - the maximum circumferential bending moment is shown in Figure 4.15.6, sketch (b) and shall be computed using eq. (4.15.19). The coefficient K_{10} is given in Table 4.15.1.

$$M_{\beta} = K_{10}QR_m \tag{4.15.19}$$

(*b*) Width of cylindrical shell - the width of the cylindrical shell that contributes to the strength of the cylindrical shell at the saddle location shall be determined using eq. (4.15.20). If the width x_1 extends beyond the limits in Figures 4.15.2, 4.15.3 or 4.15.4, as applicable, then the width x_1 shall be reduced such as not to exceed this limit.

$$x_1, x_2 \le 0.78\sqrt{R_m t} \tag{4.15.20}$$

(c) Circumferential stresses in the cylindrical shell without stiffening ring(s) (see Figure 4.15.2).

(1) The maximum compressive circumferential membrane stress in the cylindrical shell at the base of the saddle support shall be computed using eq. (4.15.21). The coefficient K_5 is given in Table 4.15.1.

$$\sigma_6 = \frac{-K_5 Qk}{t(b+x_1+x_2)} \tag{4.15.21}$$

(2) The circumferential compressive membrane plus bending stress at Points G and H of Figure 4.15.6, sketch (a) is determined as follows. The coefficient K_7 is given in Table 4.15.1.

(-*a*) If $L \ge 8R_m$, then the circumferential compressive membrane plus bending stress shall be computed using eq. (4.15.22).

$$\sigma_7 = \frac{-Q}{4t(b+x_1+x_2)} - \frac{3K_7Q}{2t^2}$$
(4.15.22)

(-b) If $L < 8R_m$, then the circumferential compressive membrane plus bending stress shall be computed using eq. (4.15.23).

$$\sigma_7^* = \frac{-Q}{4t(b+x_1+x_2)} - \frac{12K_7QR_m}{Lt^2}$$
(4.15.23)

(3) The stresses σ_6 , σ_7 , and σ_7^* may be reduced by adding a reinforcement or wear plate at the saddle location that is welded to the cylindrical shell.

(-*a*) If the width of the reinforcement plate, b_1 , satisfies eq. (4.15.24), the stress σ_6 can be computed as shown in eq. (4.15.25).

$$b_1 = \min[(b + 1.56\sqrt{R_m t}), 2a]$$
 (4.15.24)

$$\sigma_{6,r} = \frac{-K_5 Qk}{b_1 (t + \eta t_r)}$$
(4.15.25)

where

$$\eta = \min\left[\frac{S_r}{S}, \ 1.0\right] \tag{4.15.26}$$

(-*b*) If the reinforcement plate provides a supporting arc length, θ_1 , that satisfies eq. (4.15.27), the stresses σ_7 and σ_7^* can be computed as shown in eq. (4.15.28) and eq. (4.15.29), respectively.

$$\theta_1 = \theta + \frac{\theta}{12} \tag{4.15.27}$$

$$\sigma_{7,r} = \frac{-Q}{4(t+\eta t_r)b_1} - \frac{3K_7Q}{2(t+\eta t_r)^2}$$
(4.15.28)

$$\sigma_{7,r}^* = \frac{-Q}{4(t+\eta t_r)b_1} - \frac{12K_7 QR_m}{L(t+\eta t_r)^2}$$
(4.15.29)

ASME BPVC.VIII.2-2023

4.15.3.5

(4) If $t_r > 2t$, then the compressive membrane plus bending stress at the ends of the reinforcing plate [points G1 and H1 in Figure 4.15.2, sketch (b)] shall be computed using the equations shown below. In these equations, coefficient $K_{7,1}$ is computed using the equation for K_7 in Table 4.15.1 evaluated at the angle θ_1 , see eq. (4.15.27).

(-*a*) If $L \ge 8R_m$, then the circumferential compressive membrane plus bending stress shall be computed using eq. (4.15.30)

$$\sigma_{7,1} = \frac{-Q}{4t(b+x_1+x_2)} - \frac{3K_{7,1}Q}{2t^2}$$
(4.15.30)

(-b) If $L < 8R_m$, then the circumferential compressive membrane plus bending stress shall be computed using eq. (4.15.31).

$$\sigma_{7,1}^* = \frac{-Q}{4t(b+x_1+x_2)} - \frac{12K_{7,1}QR_m}{Lt^2}$$
(4.15.31)

(*d*) Circumferential stresses in the cylindrical shell with a stiffening ring along the plane of the saddle support (see Figure 4.15.3).

(1) The maximum compressive circumferential membrane stress in the cylindrical shell shall be computed using eq. (4.15.32). The coefficient K_5 is given in Table 4.15.1.

$$\sigma_6^* = \frac{-K_5 Qk}{A} \tag{4.15.32}$$

(2) The circumferential compressive membrane plus bending stress at Points G and H of Figure 4.15.6, sketch (a) for stiffening rings located on the inside of the shell are determined as follows. The coefficients K_8 and K_6 are given in Table 4.15.1.

$$\sigma_8 = \frac{-K_8Q}{A} - \frac{K_6QR_mC_1}{I} \qquad \text{(stress in the shell)} \tag{4.15.33}$$

$$\sigma_9 = \frac{-K_8Q}{A} + \frac{K_6QR_mc_2}{I}$$
 (stress in the stiffening ring) (4.15.34)

(3) The circumferential compressive membrane plus bending stress at Points G and H of Figure 4.15.6, sketch (a) for stiffening rings located on the outside of the shell are determined as follows. The coefficients K_8 and K_6 are given in Table 4.15.1.

$$\sigma_8^* = \frac{-K_8 Q}{A} + \frac{K_6 Q R_m C_1}{I} \qquad (\text{stress in the shell}) \tag{4.15.35}$$

$$\sigma_9^* = \frac{-K_8Q}{A} - \frac{K_6QR_mC_2}{I} \qquad (stress in the stiffening ring) \qquad (4.15.36)$$

(e) Circumferential stresses in the cylindrical shell with stiffening rings on both sides of the saddle support (see Figure 4.15.4).

(1) The maximum compressive circumferential membrane stress in the cylindrical shell shall be computed using eq. (4.15.37). The coefficient K_5 is given in Table 4.15.1.

$$\sigma_6 = \frac{-K_5 Q_k}{t(b+2x_2)} \tag{4.15.37}$$

(2) The circumferential compressive membrane plus bending stress at Points I and J of Figure 4.15.6, sketch (b) for stiffening rings located on the inside of the shell are determined as follows. The coefficients K_9 and K_{10} are given in Table 4.15.1.

$$\sigma_{10} = \frac{-K_9Q}{A} + \frac{K_{10}QR_mc_1}{I} \qquad \text{(stress in the shell)} \qquad (4.15.38)$$

$$\sigma_{11} = \frac{-K_9Q}{A} - \frac{K_{10}QR_mc_2}{I}$$
 (stress in the stiffening ring) (4.15.39)

(3) The circumferential compressive membrane plus bending stress at Points I and J of Figure 4.15.6, sketch (b) for stiffening rings located on the outside of the shell are determined as follows. The coefficients K_9 and K_{10} are given in Table 4.15.1.

$$\sigma_{10}^* = \frac{-K_9Q}{A} - \frac{K_{10}QR_mc_1}{I} \qquad \text{(stress in the shell)} \qquad (4.15.40)$$

$$\sigma_{11}^* = \frac{-K_9Q}{A} + \frac{K_{10}QR_mc_2}{l}$$
 (stress in the stiffening ring) (4.15.41)

(f) Acceptance Criteria

(1) The absolute value of σ_6 or $\sigma_{6,r}$, as applicable, shall not exceed *S*.

(2) The absolute value of σ_{6}^{*} , as applicable, shall not exceed min[*S*, *S_r*].

(3) The absolute value of σ_7 , $\sigma^*_{7,r}$, $\sigma_{7,r}^*$, $\sigma_{7,1}^*$, $\sigma_{7,1}^*$, σ_8 , σ^*_{8} , σ_{10} , and σ^*_{10} , as applicable, shall not exceed 1.25*S*. (4) The absolute value of σ_9 , σ^*_{9} , σ_{11} , and σ^*_{11} , as applicable, shall not exceed 1.25*S*.

4.15.3.6 Saddle Support. The horizontal force at the minimum section at the low point of the saddle is given by eq. (4.15.42). The saddle shall be designed to resist this force.

$$F_{h} = Q\left(\frac{1 + \cos\beta - 0.5\sin^{2}\beta}{\pi - \beta + \sin\beta \cos\beta}\right)$$
(4.15.42)

4.15.4 SKIRT SUPPORTS FOR VERTICAL VESSELS

4.15.4.1 The following shall be considered in the design of vertical vessels supported on skirts.

(a) The skirt reaction

(1) The weight of vessel and contents transmitted in compression to the skirt by the shell above the level of the skirt attachment;

(2) The weight of vessel and contents transmitted to the skirt by the weight in the shell below the level of skirt attachment;

(3) The load due to externally applied moments and forces when these are a factor, e.g., wind, earthquake, or piping loads.

(*b*) Localized Stresses at The Skirt Attachment Location - High localized stresses may exist in the shell and skirt in the vicinity of the skirt attachment if the skirt reaction is not in line with the vessel wall. When the skirt is attached below the head tangent line, localized stresses are introduced in proportion to the component of the skirt reaction which is normal to the head surface at the point of attachment. When the mean diameter of the skirt and shell approximately coincide (see Figure 4.15.7) and a minimum knuckle radius in accordance with 4.3 is used, the localized stresses are minimized. In other cases an investigation of local effects may be warranted depending on the magnitude of the loading, location of skirt attachment, etc., and an additional thickness of vessel wall or compression rings may be necessary. Localized stresses at the skirt attachment location may be evaluated by the design by analysis methods in Part 5.

(c) Thermal Gradients - Thermal gradients may produce high localized stresses in the vicinity of the vessel to skirt attachment. A "hot-box" detail (see Figure 4.15.8) shall be considered to minimize thermal gradients and localized stresses at the skirt attachment to the vessel wall. If a hot-box is used, the thermal analysis shall consider convection and thermal radiation in the hot-box cavity.

4.15.4.2 The rules of **4.3.10** shall be used to determine the thickness requirements for the skirt support. Alternatively, skirt supports may be designed using the design by analysis methods in Part 5.

4.15.5 LUG AND LEG SUPPORTS

4.15.5.1 Lug supports may be used on horizontal or vertical vessels.

4.15.5.2 The localized stresses at the lug support locations on the shell may be evaluated using one of the following methods. If an acceptance criterion is not provided, the results from this analysis shall be evaluated in accordance with Part 5.

(a) Part 5 of this Division.

(b) Welding Research Council Bulletin Number 537, Local Stresses in Spherical and Cylindrical Shells Due to External Loadings.

(c) Welding Research Council Bulletin 198, Part 1, Secondary Stress Indices for Integral Structural Attachments to Straight Pipes; Part 2, Stress Indices at Lug Supports on Piping Systems.

(d) Welding Research Council Bulletin 353, Position Paper on Nuclear Plant Pipe Supports.

(e) Welding Research Council Bulletin 448, Evaluation of Welded Attachments on Pipe and Elbows.

(f) Other analytical methods contained in recognized codes and standards for pressure vessel construction (i.e., British Standard PD-5500, Specification for Fusion Welded Pressure Vessels (Advanced Design and Construction) for Use in the Chemical, Petroleum, and Allied Industries).

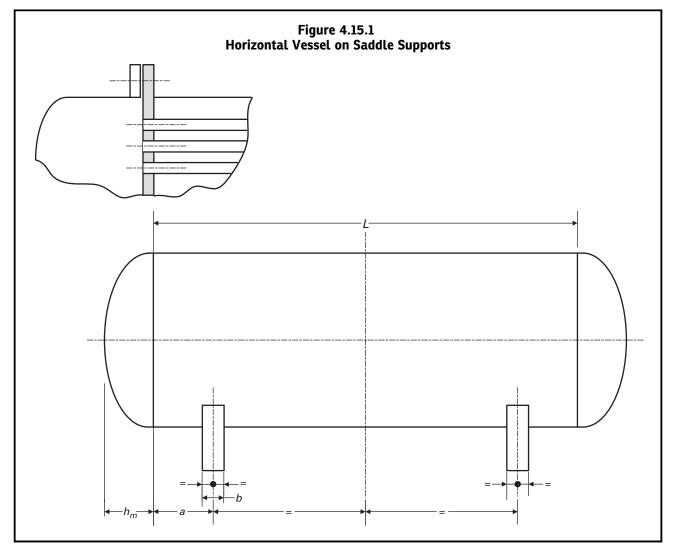
4.15.5.3 If vessels are supported by lugs, legs, or brackets attached to the shell, then the supporting members under these bearing attachments should be as close to the shell as possible to minimize local bending stresses in the shell.

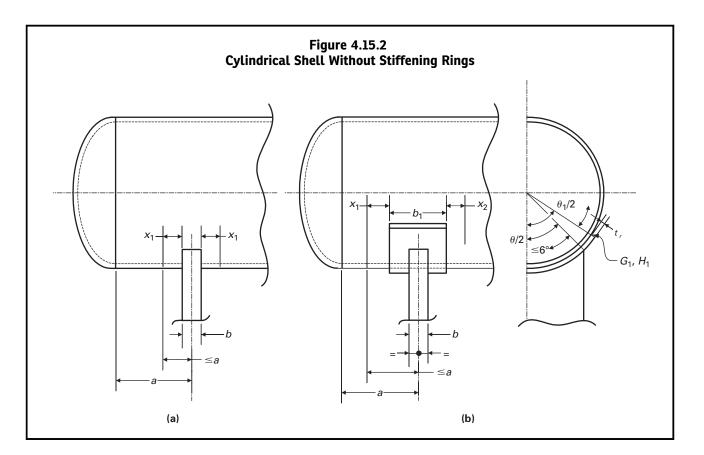
4.15.5.4 Supports, lugs, brackets, stiffeners, and other attachments may be attached with stud bolts to the outside or inside of a vessel wall.

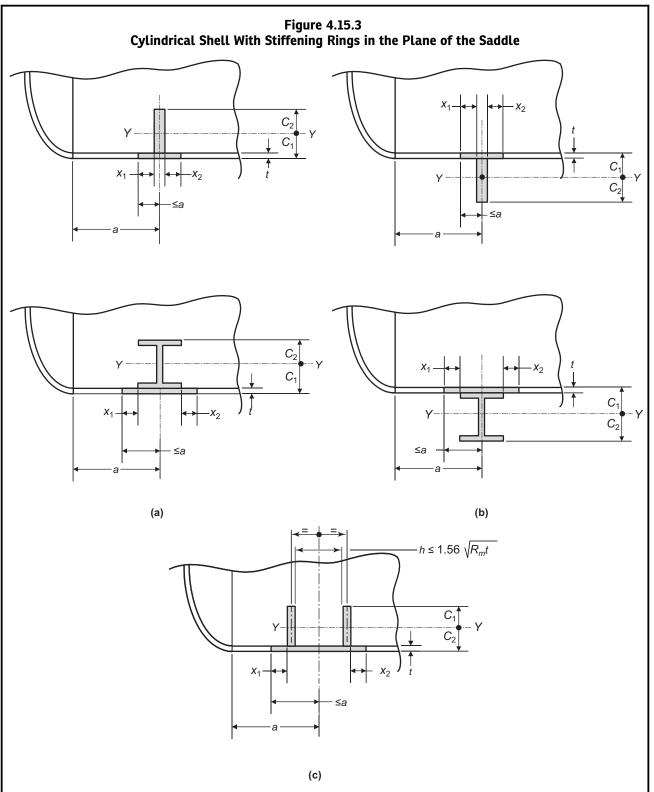
4.15.5.5 Lug and column supports should be located away from structural discontinuities (i.e., cone-to-cylinder junctions) and Category A or B weld seams. If these supports are located within $1.8\sqrt{Dt}$ of these locations, then a stress analysis shall be performed and the results from this analysis shall be evaluated in accordance with 4.15.5.2.

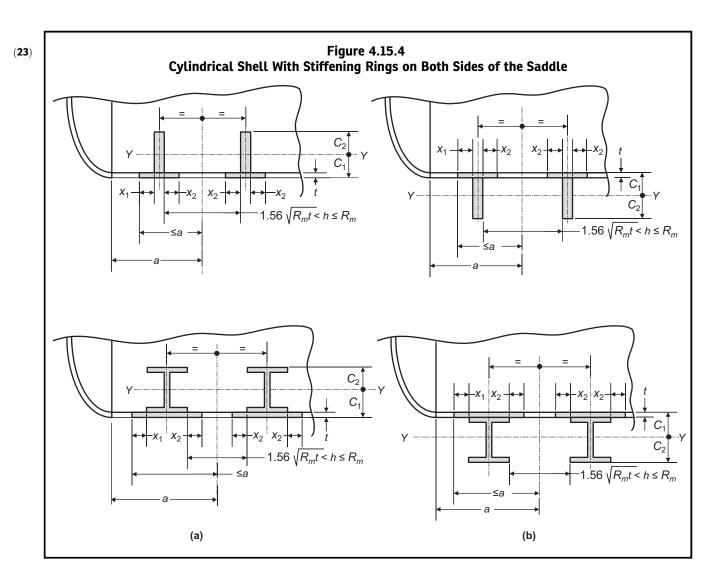
(23) 4.15.6 NOMENCLATURE

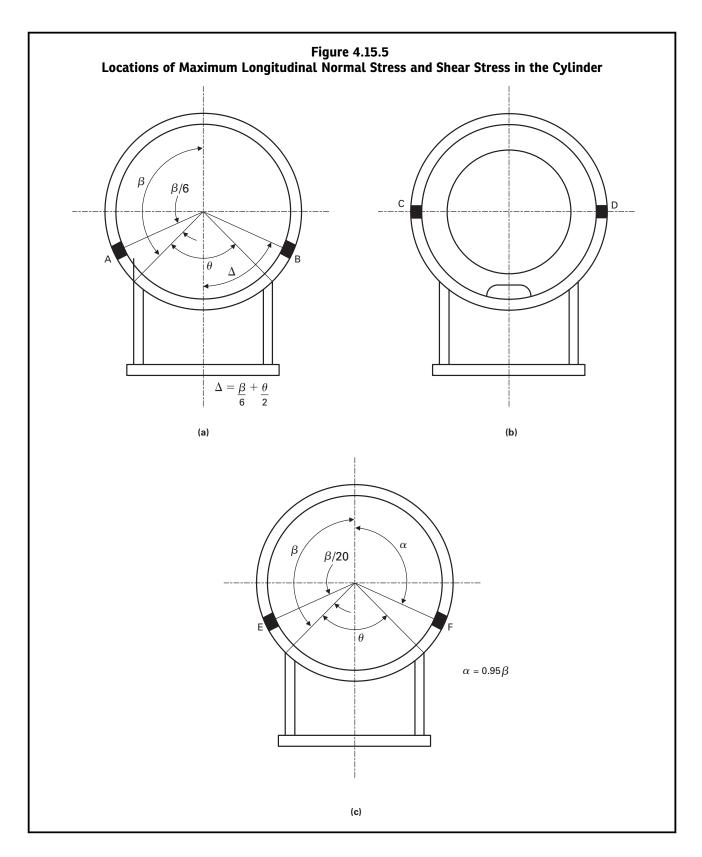
- A = cross-sectional area of the stiffening ring(s) and the associated shell width used in the stress calculation
- a = distance from the axis of the saddle support to the tangent line on the curve for a dished head or to the inner face of a flat cover or tubesheet
- b = width of contact surface of the cylindrical shell and saddle support
- b_1 = width of the reinforcing plate welded to the cylindrical shell at the saddle location
- c_1, c_2 = distance to the extreme axes of the cylinder-stiffener cross section to the neutral axis of the cylinder-stiffener cross-section
 - E = weld joint efficiency (see 4.2.4) for the circumferential weld seam being evaluated
 - E_y = modulus of elasticity
 - F_h = saddle horizontal force
 - h = spacing between two mounted stiffening rings placed on each side of the saddle support
 - h_m = mean depth of formed head
 - I = moment of inertia of cross-sectional area A in relation to its neutral axis that is parallel to the axis of the cylindrical shell
 - K = factor to set the allowable compressive stress for the cylindrical shell material
 - k = factor to account for the vessel support condition; k = 1 is the vessel is resting on the support and k = 0.1 is the vessel is welded to the support
 - L = length of the cylindrical shell measured from tangent line to tangent line for a vessel with dished heads or from the inner face to inner face for vessels with flat covers or tubesheets
 - M_1 = net-section maximum longitudinal bending moment at the saddle support; this moment is negative when it results in a tensile stress on the top of the shell
 - M_2 = net-section maximum longitudinal bending moment between the saddle supports; this moment is positive when it results in a compressive stress on the top of the shell
 - P = design pressure, positive for internal pressure and negative for external pressure
 - Q = maximum value of the reaction at the saddle support from weight and other loads as applicable
 - R_m = mean radius of the cylindrical shell
- R_{mh} = mean radius of the spherical dome or a torispherical head
 - S = allowable stress from Annex 3-A for the cylindrical shell material at the design temperature
 - S_c = allowable compressive stress for the cylindrical shell material at the design temperature
 - S_h = allowable stress from Annex 3-A for the head material at the design temperature
- S_{hy} = yield strength from Annex 3-D for the head material at the design temperature
- S_r = allowable stress from Annex 3-A for the reinforcing plate material at the design temperature
- S_s = allowable stress from Annex 3-A for the stiffener material at the design temperature

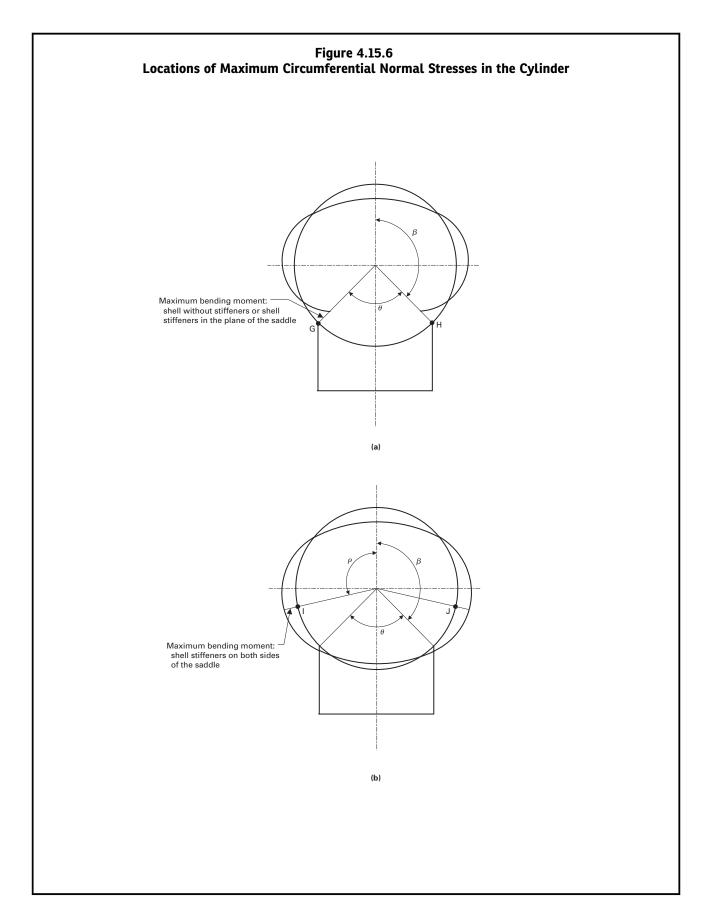

 S_y = yield strength from Annex 3-D for the cylindrical shell material at the design temperature

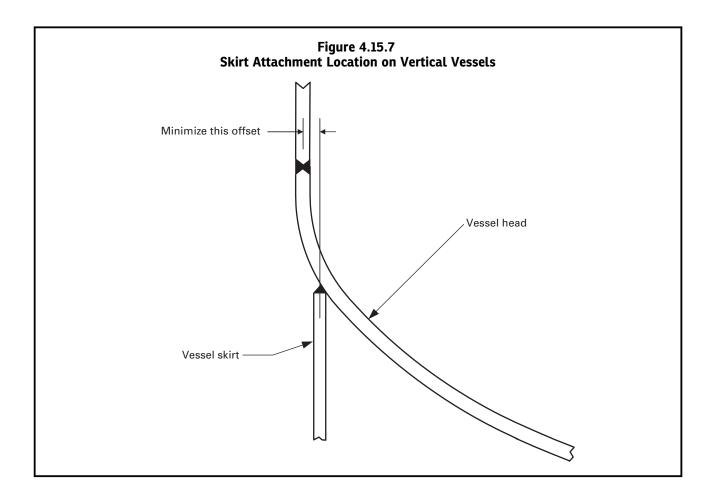

- T = maximum shear force at the saddle
- t = cylindrical shell or shell thickness, as applicable
- t_h = head thickness
- t_r = reinforcing plate thickness
- x_1, x_2 = width of cylindrical shell used in the circumferential normal stress strength calculation
 - η = shell to reinforcing plate strength reduction factor
 - $\dot{\theta}$ = opening of the supported cylindrical shell arc
 - θ_1 = opening of the cylindrical shell arc engaged by a welded reinforcing plate

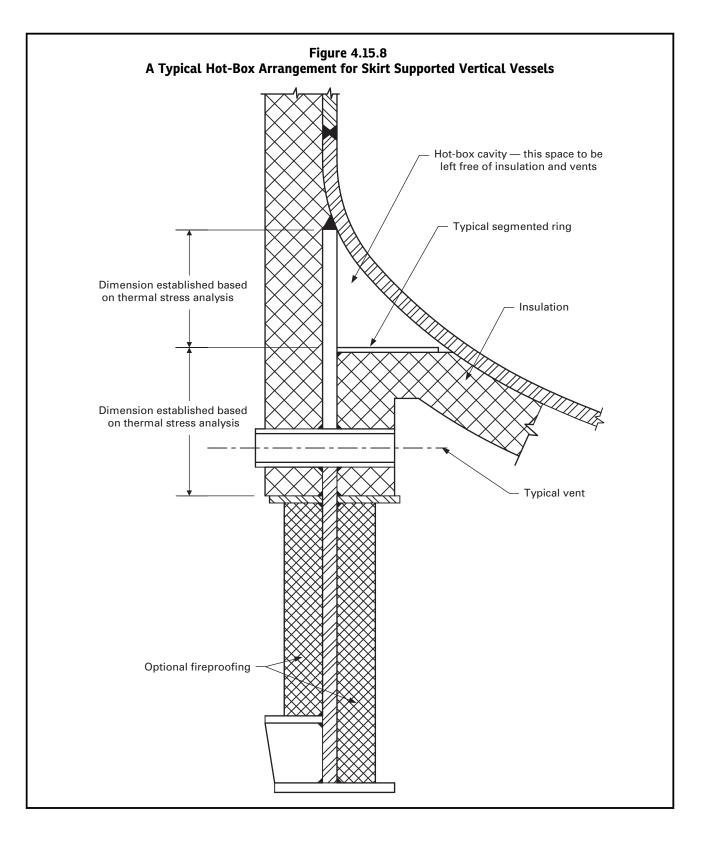

4.15.7 **TABLES**


4.15.8 FIGURES








(**23**)

4.16 DESIGN RULES FOR FLANGED JOINTS

4.16.1 SCOPE

4.16.1.1 The rules in 4.16 shall be used to design circular flanges subject to internal and/or external pressure. These rules provide for hydrostatic end loads, gasket seating, and externally applied axial force and net-section bending moment.

4.16.1.2 The rules in **4.16** apply to the design of bolted flange connections with gaskets that are entirely located within the circle enclosed by the bolt holes. The rules do not cover the case where the gasket extends beyond the bolt hole circle or where metal-metal contact is made outside of the bolt circle.

4.16.1.3 It is recommended that bolted flange connections conforming to the standards listed in **4.1.11** be used for connections to external piping. These standards may be used for other bolted flange connections and dished covers within the limits of size in the standard and pressure-temperature ratings permitted in **4.1.11**. The ratings in these standards are based on the hub dimensions given or on the minimum specified thickness of flanged fittings of integral construction. Flanges fabricated from rings may be used in place of the hub flanges in these standards, provided that their strength and rigidity, calculated by the rules in this paragraph, are not less than that calculated for the corresponding size of hub flange.

4.16.1.4 The rules of this paragraph should not be construed to prohibit the use of other types of flanged connections, provided they are designed in accordance with Part 5.

4.16.2 DESIGN CONSIDERATIONS

4.16.2.1 The design of a flange involves the selection of the flange type, gasket material, flange facing, bolting, hub proportions, flange width, and flange thickness. The flange dimensions shall be selected such that the stresses in the flange and the flange rigidity satisfy the acceptability criteria of this paragraph.

4.16.2.2 In the design of a bolted flange connection, calculations shall be made for the following two design conditions, and the most severe condition shall govern the design of the flanged joint.

(a) Operating Conditions. The conditions required to resist the hydrostatic end force of the design pressure and any applied external forces and moments tending to part the joint at the design temperature.

(b) Gasket Seating Condition. The conditions existing when the gasket or joint-contact surface is seated by applying an initial load with the bolts during assembly of the joint, at atmospheric temperature and pressure.

4.16.2.3 Calculations shall be performed using dimensions of the flange in the corroded and uncorroded conditions.

4.16.2.4 In the design of flange pairs, each flange is designed for its particular design loads of pressure and gasket reactions. The bolt load used to design each flange, however, is that load common to the flange pair and equal to the larger of the bolt loads calculated for each flange individually. No additional rules are required for design of flange pairs. After the loads for the most severe condition are determined, calculations shall be made for each flange following the rules of this paragraph.

4.16.2.5 In the design of flange pairs where pass partitions with gaskets are used, the gasket loads from the partition(s) shall be included in the calculation of bolt loads. Partition gaskets may have different gasket constants than the ring gasket inside the bolt circle. In the design of flanges with noncircular gaskets or with partitions of any shape, gasket reactions from all surfaces with gaskets shall be included in calculating bolt loads.

4.16.3 FLANGE TYPES

4.16.3.1 For the purpose of computation, there are two major categories of flanges:

(*a*) Integral Type Flanges - This type covers designs where the flange is cast or forged integrally with the nozzle neck, vessel or pipe wall, butt welded thereto, or attached by other forms of welding such that the flange and nozzle neck, vessel or pipe wall are structurally equivalent to integral construction. Integral flanges shall be designed considering structural interaction between the flange and the nozzle neck, vessel, or pipe wall, which the rules account for by considering the neck or wall to act as a hub. Integral type flanges are referenced below. The design flange and bolt loads are shown in Figures 4.16.1 and 4.16.2.

- (1) Integral type flanges Figure 4.16.1, sketch (a) and Table 4.2.9, Details 9 and 10
- (2) Integral type flanges where $g_1 = g_0$ Figure 4.16.1, sketch (b)
- (3) Integral type flanges with a hub Figure 4.16.2 and Table 4.2.9, Details 6, 7, and 8
- (4) Integral type flanges with nut stops Figure 4.16.3 and Figure 4.16.4

(*b*) Loose Type Flanges - This type covers those designs in which the flange has no substantial integral connection to the nozzle neck, vessel, or pipe wall, and includes welded flange connections where the welds are not considered to give the mechanical strength equivalent of an integral attachment. Loose type flanges are referenced below. The design flange and bolt loads are shown in Figures 4.16.5 and 4.16.6.

(1) Loose type flanges - Figure 4.16.5 and Table 4.2.9, Details 1,2,3 and 4

(2) Loose type lap joint flanges - Figure 4.16.6 and Table 4.2.9, Detail 5

4.16.3.2 The integral and loose type flanges described above can also be applied to reverse flange configurations. Integral and loose type reverse flanges are shown in Figure 4.16.7.

4.16.4 FLANGE MATERIALS

4.16.4.1 Materials used in the construction of bolted flange connections, excluding gasket materials, shall comply with the requirements given in Part 3.

4.16.4.2 Flanges made from ferritic steel shall be given a normalizing or full-annealing heat treatment when the thickness of the flange, *t* (see Figures 4.16.1 through 4.16.7), exceeds 75 mm (3 in.).

4.16.4.3 Flanges with hubs that are machined from plate, bar stock, or billet shall be in accordance with the following:

(*a*) Flanges with hubs shall not be machined from plate or bar (except as permitted in 3.2.5.2) material unless the material has been formed into a ring and the following additional conditions are met:

(1) In a ring formed from plate, the original plate surfaces are parallel to the axis of the finished flange.

(2) The joints in the ring are welded butt joints that conform to the requirements of Part 6. The thickness to be used to determine postweld heat treatment and radiographic requirements shall be min[t, (A - B)/2].

(3) The back of the flange and outer surface of the hub shall be examined by either the magnetic particle method or the liquid penetrant method in accordance with Part 7.

4.16.4.4 Bolts, studs, nuts, and washers shall comply with the requirements of Part 3 and referenced standards. It is recommended that bolts and studs have a nominal diameter of not less than 12 mm (0.5 in.). If bolts or studs smaller than 12 mm (0.5 in.) are used, then ferrous bolting material shall be of alloy steel. Precautions shall be taken to avoid overstressing small-diameter bolts. When washers are used, they shall be through hardened to minimize the potential for galling.

4.16.5 GASKET MATERIALS

4.16.5.1 The gasket constants for the design of the bolt load (*m* and *y*), are provided in Table 4.16.1. Other values for the gasket constants may be used if based on actual testing or data in the literature, as agreed upon between designer and the user.

4.16.5.2 The minimum width of sheet and composite gaskets, *N*, is recommended to be no less than that given in Table 4.16.2.

NOTE: Gasket materials should be selected that are suitable for the design conditions. Corrosion, chemical attack, creep and thermal degradation of gasket materials over time should be considered.

4.16.6 DESIGN BOLT LOADS

4.16.6.1 The procedure to determine the bolt loads for the operating and gasket seating conditions is shown below. *Step 1*. Determine the design pressure and temperature of the flange joint.

Step 2. Select a gasket and determine the gasket factors *m* and *y* from Table 4.16.1, or other sources. The selected gasket width should comply with the guidelines detailed in Table 4.16.2.

Step 3. Determine the width of the gasket, N, basic gasket seating width, b_0 , the effective gasket seating width, b, and the location of the gasket reaction, G, based on the flange and gasket geometry, the information in Table 4.16.3 and Figure 4.16.8, and the equations shown below. Note that for lap joint flanges, G is equal to the midpoint of contact between the flange and the lap, see Figure 4.16.6 and Figure 4.16.8.

(a) For $b_0 \le 6$ mm (0.25 in.), G is the mean diameter of the gasket contact face and

$$b = b_0$$
 (4.16.1)

(b) For $b_0 > 6 \text{ mm} (0.25 \text{ in.})$

$$b = 0.5C_{ul}\sqrt{\frac{b_0}{C_{ul}}}$$
(4.16.2)

$$G = G_c - 2b$$
 (4.16.3)

Step 4. Determine the design bolt load for the operating condition.

$$W_o = 0.785G^2P + 2b\pi GmP \text{ for non-self-energized gaskets}$$
(4.16.4)

$$W_o = 0.785 G^2 P$$
 for self-energized gaskets (4.16.5)

Step 5. Determine the design bolt load for the gasket seating condition.

$$W_g = \left(\frac{A_m + A_b}{2}\right) S_{bg} \tag{4.16.6}$$

The parameter A_b is the actual total cross-sectional area of the bolts that is selected such that $A_b \ge A_m$, where:

$$A_m = \max\left[\left(\frac{W_o + F_A + \frac{4M_E}{G}}{S_{bo}}\right), \left(\frac{W_{gs}}{S_{bg}}\right)\right]$$
(4.16.7)

$$W_{qs} = \pi bGy$$
 for non-self-energized gaskets (4.16.8)

$$W_{as} = 0.0$$
 for self-energized gaskets (4.16.9)

NOTE: Where significant axial force is required to compress the gasket during assembly of a joint containing a self-energizing gasket, the value of W_{gs} shall be taken as equal to that axial force. In addition, some self-energizing gaskets generate axial load due to their wedging action and this load shall be considered in setting the value of W_{gs} .

4.16.7 FLANGE DESIGN PROCEDURE

4.16.7.1 The procedure in this paragraph can be used to design circular integral, loose or reverse flanges, subject to internal or external pressure, and external loadings. The procedure incorporates both a strength check and a rigidity check for flange rotation.

4.16.7.2 The procedure to design a flange is shown below.

Step 1. Determine the design pressure and temperature of the flange joint, and the external net-section axial force, F_A , and bending moment, M_E . If the pressure is negative, the absolute value of the pressure should be used in this procedure.

Step 2. Determine the design bolt loads for operating condition, W_o , and the gasket seating condition, W_g , and corresponding actual bolt area, A_b , from 4.16.6.

Step 3. Determine an initial flange geometry, in addition to the information required to determine the bolt load, the following geometric parameters are required:

(a) The flange bore, B

(b) The bolt circle diameter, C

(c) The outside diameter of the flange, A

(d) The flange thickness, t

(e) The thickness of the hub at the large end, g_1

(f) The thickness of the hub at the small end, g_0

(g) The hub length, h

Step 4. Determine the flange stress factors using the equations in Tables 4.16.4 and 4.16.5.

Step 5. Determine the flange forces.

$$H_D = 0.785B^2 P \tag{4.16.10}$$

$$H = 0.785G^2P \tag{4.16.11}$$

$$H_T = H - H_D$$
 (4.16.12)

ASME BPVC.VIII.2-2023

$$H_G = W_0 - H \tag{4.16.13}$$

Step 6. Determine the flange moment for the operating condition using eq. (4.16.14) or eq. (4.16.15), as applicable. When specified by the user or his designated agent, the maximum bolt spacing (B_{smax}) and the bolt spacing correction factor (B_{sc}) shall be applied in calculating the flange moment for internal pressure using the equations in Table 4.16.11. The flange moment M_o for the operating condition and flange moment M_g for the gasket seating condition without correction for bolt spacing $B_{sc} = 1$ is used for the calculation of the rigidity index in Step 10. In these equations, h_D , h_T , and h_G are determined from Table 4.16.6. For integral and loose type flanges, the moment M_{oe} is calculated using eq. (4.16.16) where I and I_p in this equation are determined from Table 4.16.7. For reverse type flanges, the procedure to determine M_{oe} shall be agreed upon between the Designer and the Owner.

$$M_o = abs \left[\left(\left(H_D h_D + H_T h_T + H_G h_G \right) B_{sc} + M_{oe} \right) F_s \right] \text{ for internal pressure}$$
(4.16.14)

$$M_o = abs \left[\left(H_D (h_D - h_G) + H_T (h_T - h_G) + M_{oe} \right) F_s \right]$$
for external pressure (4.16.15)

$$M_{oe} = 4M_E \left[\frac{I}{0.3846I_p + I} \right] \left[\frac{h_D}{(C - 2h_D)} \right] + F_A h_D$$
(4.16.16)

Step 7. Determine the flange moment for the gasket seating condition using eq. (4.16.17) or eq. (4.16.18), as applicable.

$$M_g = \frac{W_g(C-G)B_{sc}F_s}{2} \quad \text{for internal pressure}$$
(4.16.17)

$$M_g = W_g h_G F_s$$
 for external pressure (4.16.18)

Step 8. Determine the flange stresses for the operating and gasket seating conditions using the equations in Table 4.16.8.

Step 9. Check the flange stress acceptance criteria. The two criteria shown below shall be evaluated. If the stress criteria are satisfied, go to Step 10. If the stress criteria are not satisfied, re-proportion the flange dimensions and go to Step 4.

(*a*) Allowable Normal Stress - The criteria to evaluate the normal stresses for the operating and gasket seating conditions are shown in Table 4.16.9.

(b) Allowable Shear Stresses - In the case of loose type flanges with lap, as shown in Figure 4.16.6 where the gasket is so located that the lap is subjected to shear, the shearing stress shall not exceed $0.8S_{no}$ or $0.8S_{ng}$, as applicable, for the material of the lap. In the case of welded flanges where the nozzle neck, vessel, or pipe wall extends near to the flange face and may form the gasket contact face, the shearing stress carried by the welds shall not exceed $0.8S_{no}$ or $0.8S_{ng}$, as applicable. The shearing stress shall be calculated for both the operating and gasket seating load cases. Similar situations where flange parts are subjected to shearing stresses shall be checked using the same requirement.

Step 10. Check the flange rigidity criterion in Table 4.16.10. If the flange rigidity criterion is satisfied, then the design is complete. If the flange rigidity criterion is not satisfied, then re-proportion the flange dimensions and go to Step 3. The flange moment M_o for the operating condition (see Step 6) and flange moment M_g for the gasket seating condition (see Step 7) without correction for bolt spacing $B_{sc} = 1$ is used for the calculation of the rigidity index.

4.16.8 SPLIT LOOSE TYPE FLANGES

Loose flanges split across a diameter and designed under the rules given in this paragraph may be used under the following provisions.

(a) When the flange consists of a single split flange or flange ring, it shall be designed as if it were a solid flange (without splits), using 200% of the total moment, $F_s = 2.0$.

(b) When the flange consists of two split rings, each ring shall be designed as if it were a solid flange (without splits), using 75% of the total moment, $F_s = 0.75$. The pair of rings shall be assembled so that the splits in one ring are 90 deg from the splits in the other ring.

(c) The flange split locations should preferably be midway between bolt holes.

(d) It is not a requirement that the flange rigidity rules of 4.6.10 be applied to split loose flanges.

4.16.9 NONCIRCULAR SHAPED FLANGES WITH A CIRCULAR BORE

The outside diameter, *A*, for a noncircular flange with a circular bore shall be taken as the diameter of the largest circle, concentric with the bore, inscribed entirely within the outside edges of the flange. The bolt loads, flange moments, and stresses shall be calculated in the same manner as for a circular flange using a bolt circle whose size is established by drawing a circle through the centers of the outermost bolts.

4.16.10 FLANGES WITH NUT STOPS

When flanges are designed per 4.16, or are fabricated to the dimensions of ASME B16.5 or other acceptable standards, except that the dimension $0.5(C - B) - g_1$ is decreased to provide a nut-stop, the fillet radius shall be as shown in Figures 4.16.3 and 4.16.4 except that:

(a) For flanges designed to this paragraph, the minimum thickness of the hub at the large end, g_1 , shall be the smaller of $2t_n$ or $4r_u$, but not less than 12 mm (0.5 in.).

(b) For ASME B16.5 or other standard flanges, the thickness of the hub at the small end, g_0 , shall be increased as necessary to provide a nut-stop.

4.16.11 JOINT ASSEMBLY PROCEDURES

Bolted joints should be assembled and bolted-up in accordance with a written procedure that has been demonstrated to be acceptable for similar joint configurations in similar services. Further guidance can be found in ASME PCC-1, Guide-lines for Pressure Boundary Bolted Flange Joint Assembly.

4.16.12 EVALUATION OF EXTERNAL FORCES AND MOMENTS FOR FLANGED JOINTS WITH STANDARD FLANGES

External loads (forces and bending moments) may be evaluated for flanged joints with welding neck flanges chosen in accordance with 4.1.11.1(a), 4.1.11.1(g), and 4.1.11.3, using the following requirements:

(*a*) The vessel design pressure (corrected for the static head from liquid or bulk material acting on the flange) at the design temperature cannot exceed the pressure–temperature rating of the flange.

(b) The actual assembly bolt load (see 4.16.11) shall comply with ASME PCC-1, Nonmandatory Appendix 0.

(*c*) The bolt material shall have an allowable stress equal to or greater than SA-193 B8 Cl. 2 at the specified bolt size and temperature.

(*d*) The combination of vessel design pressure, P (corrected for the static head from liquid or bulk material acting on the flange), with external moment and external axial force shall satisfy eq. (4.16.19). (The units of the variables in this equation shall be consistent with the pressure rating.)

$$16M_E + 4F_AG \leq \pi G^3 \Big[\Big(P_R - P \Big) + F_M P_R \Big]$$
(4.16.19)

4.16.13 NOMENCLATURE

A = outside diameter of the flange or, where slotted holes extend to the outside of the flange, the diameter to the bottom of the slots

 A_b = total cross-sectional area of all the bolts based on the smaller of

- (a) the root diameter of the thread
- (b) the least diameter of any unthreaded portion

ASME PCC-1, Appendix H contains root areas for common bolt sizes that may be used.

- A_m = total minimum required cross-sectional area of the bolts
 - *a* = nominal bolt diameter
- B = inside diameter of the flange. When $B < 20g_1, B_1$ may be used for B in the equation for the longitudinal stress
- $B_1 = B + g_1$ for loose type flanges and for integral type flanges that have a value of *f* less than 1.0, (although a mini-
- mum value of f = 1.0 is permitted). B_1 is equal to $B + g_0$ for integral type flanges when $f \ge 1.0$.
- B^* = inside diameter of the reverse flange
- B_s = bolt spacing. The bolt spacing may be taken as the bolt circle circumference divided by the number of bolts or as the chord length between adjacent bolt locations.
- B_{smax} = maximum bolt spacing
 - B_{sc} = bolt spacing correction factor
 - b = effective gasket contact width
 - b_0 = basic gasket seating width

(23)

ASME BPVC.VIII.2-2023

- *C* = bolt circle diameter
- C_{ul} = conversion factor for length, C_{ul} = 1.0 for U.S. Customary Units and C_{ul} = 25.4 for Metric Units
- d = flange stress factor
- d_r = flange stress factor d for a reverse type flange
- E_{yg} = modulus of elasticity at the gasket seating load case temperature
- E_{yo} = modulus of elasticity at the operating load case temperature
- e = flange stress factor
- e_r = flange stress factor e for a reverse type flange
- *F* = flange stress factor for integral type flanges
- F_A = value of the external tensile net-section axial force. Compressive net-section forces are to be neglected and for that case, FA should be taken as equal to zero.
- F_L = flange stress factor for loose type flanges
- F_M = moment factor, in accordance with Table 4.16.12
- F_s = moment factor used to design split rings (see 4.16.8), F_s = 1.0 for non-split rings
 - f = hub stress correction factor for integral flanges
- G = diameter at the location of the gasket load reaction (see Figure 4.16.8)
- G_{avg} = average of the hub thicknesses g_1 and g_0
 - G_c = outside diameter of the gasket contact area (see Figure 4.16.8)
 - g_0 = thickness of the hub at the small end
 - (a) for integral type flanges per Figure 4.16.1(a), $g_0 = t_n$
 - (b) for other integral type flanges, g_0 = the minimum of t_n or the thickness of the hub at the small end
 - g_1 = thickness of the hub at the large end
 - H = total hydrostatic end force
 - H_D = total hydrostatic end force on the area inside of the flange
 - H_G = gasket load for the operating condition
 - H_T = difference between the total hydrostatic end force and hydrostatic end force on the area inside the flange h = hub length
 - h_n = the axial length of the cylinder to which the flange ring is attached. This is measured from the back face of flange to the other end of the cylinder. This is used when $g_0 = g_1$.
 - h_o = hub length parameter
- h_{or} = hub length parameter for a reverse flange
- h_p = effective hub length used to determine I_p
- h_D = moment arm for load H_D
- h_G = moment arm for load H_G
- h_T = moment arm for load H_T
- *I* = bending moment of inertia of the flange cross-section
- I_p = polar moment of inertia of the flange cross-section
- J = flange rigidity index
- K = ratio of the flange outside diameter to the flange inside diameter
- K_R = rigidity index factor
- L = flange stress factor
- L_r = flange stress factor *L* for a reverse type flange
- M_E = absolute value of the external net-section bending moment
- M_q = flange design moment for the gasket seating condition
- M_o = flange design moment for the operating condition
- M_{oe} = component of the flange design moment resulting from a net section bending moment and/or axial force
- m = factor for the gasket operating condition
- N = gasket contact width, N = 0.0 for self-energizing gaskets
- P = design pressure
- P_R = flange pressure rating at design temperature
- r_1 = radius to be at least 0.25 g_1 but not less than 5 mm (0.1875 in.)
- r_u = radius of the undercut on a flange with nut stops
- S_{bq} = allowable stress from Annex 3-A for the bolt evaluated at the gasket seating temperature
- S_{bo} = allowable stress from Annex 3-A for the bolt evaluated at the design temperature
- S_{fg} = allowable stress from Annex 3-A for the flange evaluated at the gasket seating temperature
- S_{fo} = allowable stress from Annex 3-A for the flange evaluated at the design temperature

- S_{ng} = allowable stress from Annex 3-A for the nozzle neck, vessel, or pipe evaluated at the gasket seating temperature
- S_{no} = allowable stress from Annex 3-A for the nozzle neck, vessel, or pipe evaluated at the design temperature
- S_H = flange hub stress
- S_R = flange radial stress
- S_T = flange tangential stress
- S_{T1} = flange tangential stress at the outside diameter of a reverse flange
- S_{T2} = flange tangential stress at the inside diameter of a reverse flange
 - T = flange stress factor
- T_r = flange stress factor T for a reverse flange
- t = flange thickness, including the facing thickness or the groove depth if either do not exceed 2 mm (0.0625 in.); otherwise, the facing thickness or groove depth is not included in the overall flange thickness
- t_n = nominal thickness of the shell, pipe, or nozzle to which the flange is attached
- $t_x = is 2g_o$ when the design is calculated as an integral flange, or two times the minimum required thickness of the shell or nozzle wall when the design is based on a loose flange, but not less than 6 mm (0.25 in.)
- U = flange stress factor
- U_r = flange stress factor U for a reverse type flange
- *V* = flange stress factor for integral type flanges
- V_L = flange stress factor for loose type flanges
- W_a = design bolt load for the gasket seating condition
- W_o = design bolt load for the operating condition
- w = width of the nubbin
- y = factor for the gasket seating condition
- *Y* = flange stress factor
- Y_r = flange stress factor Y for a reverse type flange
- Z = flange stress factor

4.16.14 TABLES

Table 4.16.1 Gasket Factors for Determining the Bolt Loads				
Gasket Material	Gasket Factor, <i>m</i>	Min. Design Seating Stress, y, MPa (psi)	Column in Table 4.16.3	Facing Sketch in Table 4.16.3
Self-energizing types (O rings, metallic, elastomer, other gasket types considered as self-sealing)	0	0 in. 0		
Elastomers without fabric or high percent of mineral fiber: below 75 A Shore Durometer 75 A or higher Shore Durometer	0.50 1.00	0 0 1.4 (200)	II	(1a), (1b), (1c), (1d), (4), (5)
Mineral fiber with suitable binder for operating conditions: 3.2 mm ($^{1}_{/8}$ in.) thick 1.6 mm ($^{1}_{/16}$ in.) thick 0.8 mm ($^{1}_{/32}$ in.) thick	2.00 2.75 3.50	11 (1,600) 26 (3,700) 45 (6,500)	II	(1), (1b), (1c), (1d), (4), (5)
Elastomers with cotton fabric insertion	1.25	2.8 (400)	II	(1a), (1b), (1c), (1d), (4), (5)
Elastomers with mineral fiber insertion (with or without wire reinforcement):				
3-ply 2-ply 1-ply	2.25 2.50 2.75	15 (2,200) 20 (2,900) 26 (3,700)	II	(1), (1b), (1c), (1d), (5)
Vegetable fiber	1.75	7.6 (1,100)	II	(1a), (1b), (1c), (1d), (4), (5)
Spiral-wound metal, mineral fiber filler: Carbon steel Stainless steel, Monel, and nickel-base alloy	2.50 3.00	69 (10,000) 69 (10,000)	II	(1a), (1b)

Gasket Factors for Determ	ining the	Bolt Loads (Cont'o	I)	
	Gasket	Min. Design Seating	Column in	Facing Sketch in
Gasket Material	Factor, m	Stress, y, MPa (psi)	Table 4.16.3	Table 4.16.3
Corrugated metal, mineral fiber inserted, or corrugated metal, jacketed				
mineral fiber filled:				
Soft aluminum	2.50	20 (2,900)		
Soft copper or brass	2.75	26 (3,700)		
Iron or soft steel	3.00	31 (4,500)		
Monel or 4%–6% chrome	3.25	38 (5,500)		
Stainless steels and nickel-base alloys	3.50	45 (6,500)	II	(1a), (1b)
Corrugated metal:				
Soft aluminum	2.75	26 (3,700)		
Soft copper or brass	3.00	31 (4,500)		
Iron or soft steel	3.25	38 (5,500)		
Monel or 4%–6% chrome	3.50	45 (6,500)		(1a), (1b), (1c),
Stainless steels and nickel-base alloys	3.75	52 (7,600)	II	(1d)
Flat metal, jacketed mineral fiber filled:				
Soft aluminum	3.25	38 (5,500)		
Soft copper or brass	3.23	45 (6,500)		
Iron or soft steel	3.30	52 (7,600)		
Monel	3.75	55 (8,000)		
4%–6% chrome	3.30	62 (9,000)		(1a), (1b), (1c),
Stainless steels and nickel-base alloys	3.75	62 (9,000)	Ш	(1d), (1b), (1c), (1d), (2)
	3.73	02 (9,000)	11	(10), (2)
Grooved metal:	0.05	00 (5 500)		
Soft aluminum	3.25	38 (5,500)		
Soft copper or brass	3.50	45 (6,500)		
Iron or soft steel	3.75	52 (7,600)		
Monel or 4%–6% chrome	3.75	62 (9,000)		(1a), (1b), (1c),
Stainless steels and nickel-base alloys	4.25	70 (10,100)	II	(1d), (2), (3)
Sold flat metal:				
Soft aluminum	4.00	61 (8,800)		
Soft copper or brass	4.75	90 (13,000)		
Iron or soft steel	5.50	124 (18,000)		(1a), (1b), (1c),
Monel or 4%–6% chrome	6.00	150 (21,800)		(1d), (2), (3),
Stainless steels and nickel-base alloys	6.50	180 (26,000)	I	(4), (5)
Ring joint:				
Iron or soft steel	5.50	124 (18,000)		
Monel or 4%–6% chrome	6.00	150 (21,800)		
Stainless steel and nickel-base alloys	6.50	180 (26,000)	I	(6)

Table 4.16.1	
Gasket Factors for Determining the Bolt Loads ((Cont'd)

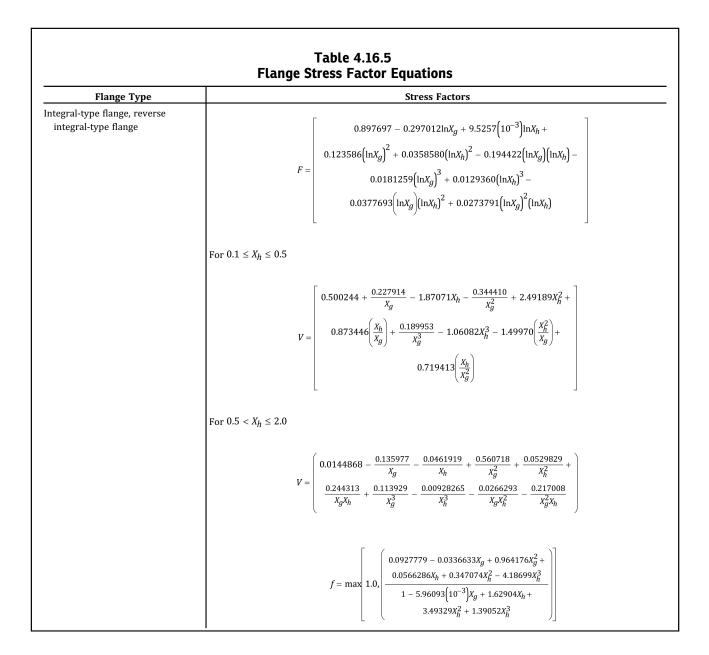
GENERAL NOTE: This table gives a list of commonly used gasket materials and contact facings with suggested values of m and y that have generally proved satisfactory in actual service when using effective gasket seating width b. The design values and other details given in this table are suggested only and are not mandatory.

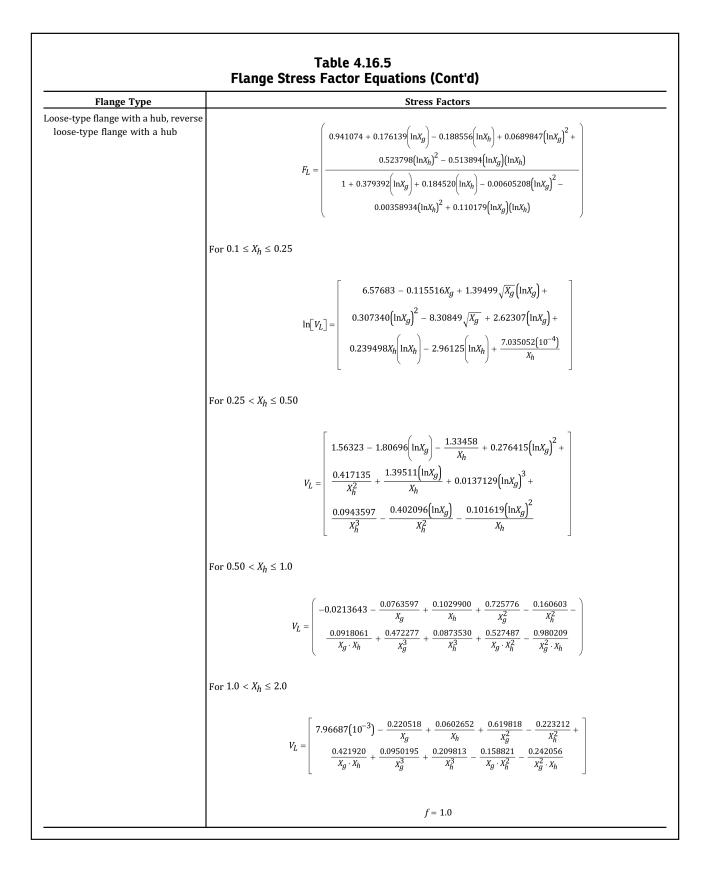
Table 4.16.2 Recommended Minimum Gasket Contact Width					
	Gasket C	ontact Width, N			
_		Ga	sket Outside Dia	neter	
Gasket Type	<150 mm	<300 mm	<600 mm	<900 mm	900 mm (36 in.)
	(6 in.)	(12 in.)	(24 in.)	(36 in.)	and Over
Sheet gaskets including laminated sheets gaskets with or without a metal core	9 mm	12 mm	16 mm	16 mm	19 mm
	(0.375 in.)	(0.5 in.)	(0.625 in.)	(0.625 in.)	(0.75 in.)
Preformed composite gaskets including spiral	6 mm	9 mm	12 mm	16 mm	16 mm
wound, jacketed, and solid flat metal gaskets	(0.25 in.)	(0.375 in.)	(0.5 in.)	(0.625 in.)	(0.625 in.)

	Effective Gasket Width for Dete	_	eating Width, b _o
Facing Sketch	Facing Sketch Detail (Exaggerated)	Column I	Column II
1a		<u>N</u> 2	<u>N</u> 2
1b	<i>► N ► N→</i> Note (1)		
1c	$T \qquad w \leq N$	$\min\left[\frac{w+T}{2},\frac{w+N}{4}\right]$	$\min\left[\frac{w+T}{2},\frac{w+N}{4}\right]$
1d	Note (1) $T \qquad w \leq N$		
2	$w \le N/2$	$\frac{w+N}{4}$	$\frac{w+3N}{8}$

		Basic Gasket Se	ating Width, b _o
acing Sketch	Facing Sketch Detail (Exaggerated)	Column I	Column II
3	$w \le N/2$	<u>N</u> 4	3 <u>N</u> 8
4	Note (1)	3 <u>N</u> 8	7 <u>N</u> 16
5	Note (1) $N = N$	<u>N</u> <u>4</u>	3 <u>N</u> 8
6		<u>w</u> 8	

(2) The gasket factors listed in this table only apply to flanged joints in which the gasket is contained entirely within the inner edges of the bolt holes.


(23)


F	Table 4.16.4 Lange Stress Factors Equations Involving Diameter
Flange Type	Stress Factors Involving Diameter
Integral-type flange and loose-type flange with a hub	$K = \frac{A}{B}$
	$Y = \frac{1}{K - 1} \left[0.66845 + 5.71690 \left(\frac{K^2 \log_{10} K}{K^2 - 1} \right) \right]$
	$T = \frac{K^2 (1 + 8.55246 \log_{10} K) - 1}{(1.04720 + 1.9448 K^2)(K - 1)}$
	$U = \frac{K^2 (1 + 8.55246 \log_{10} K) - 1}{1.36136 (K^2 - 1)(K - 1)}$
	$Z = \frac{\left(\kappa^2 + 1\right)}{\left(\kappa^2 - 1\right)}$
	$L = \frac{te+1}{T} + \frac{t^3}{d}$
	$e = \frac{F}{h_o}$ for integral-type flanges
	$e=rac{F_L}{h_o}$ for loose-type flanges with a hub
	$d = \frac{Ug_o^2 h_o}{V}$ for integral-type flanges
	$d = \frac{Ug_o^2 h_o}{V_L}$ for loose-type flanges with a hub
	$h_o = \sqrt{Bg_0}$
	$X_{g} = \frac{g_{1}}{g_{0}}$
	$X_h = 2.0$ for integral type flanges with $g_1 = g_0$
	$X_h = \frac{h}{h_o} \text{ for all others}$

Flange Type	Stress Factors Involving Diameter
Reverse integral-type flange and	The parameters <i>K</i> , <i>T</i> , <i>U</i> , <i>Y</i> , and <i>Z</i> are determined using the equations for integral- and loose-type flanges with:
reverse loose-type flanges with a	
hub	$K = \frac{A}{B^*}$
	Then, the reverse flange parameters are computed as follows:
	$Y_r = \alpha_r Y$
	$I_r = u_r I$
	$T_r = \frac{(Z+0.3)}{(Z-0.3)}\alpha_r T$
	$I_r = \frac{1}{(Z - 0.3)} u_r I$
	U
	$U_r = \alpha_r U$
	$L_r = \frac{\left(te_r + 1\right)}{T_r} + \frac{t^3}{d_r}$
	$L_r = \frac{T_r}{T_r} + \frac{T_r}{d_r}$
	$lpha_r = rac{1}{K^2} igg(1 + rac{0.668 ig(K+1)}{Y} igg)$
	Λ
	$e_r = rac{F}{h_{or}}$ for integral-type flanges
	h _{or} to might opposition
	$a = \frac{F_L}{E}$ for loss two flanges with a hub
	$e_r = rac{F_L}{h_{or}}$ for loose-type flanges with a hub
	11 a ² h
	$d_r = \frac{U_{fg_o}^2 h_{or}}{V}$ for integral-type flanges
	$d_r = rac{U_f g_0^2 h_{or}}{V_l}$ for loose-type flanges with a hub
	V_L
	$h_{or} = \sqrt{Ag_0}$
	$X_g = \frac{g_1}{g_0}$
	$\sim g_0$
	$X_h = 2.0$ for integral type flanges with $g_1 = g_0$
	$X_h = \frac{h}{h_{or}}$ for all others
	h _{or}

 Table 4.16.4

 Flange Stress Factors Equations Involving Diameter (Cont'd)

Table 4.16.6 Moment Arms for Flange Loads for the Operating Condition				
Flange Type	h _D	h _T	h _G	
Integral-type flanges	$\frac{C-B-g_1}{2}$	$\frac{1}{2}\left(\frac{C-B}{2}+h_G\right)$	$\frac{C-G}{2}$	
Loose-type flanges, except lap joint flanges	$\frac{C-B}{2}$	$\frac{h_D + h_G}{2}$	$\frac{C-G}{2}$	
Loose-type lap joint flanges	$\frac{C-B}{2}$	$\frac{C-G}{2}$	$\frac{C-G}{2}$	
Reverse integral-type flanges	$\frac{\mathcal{C} + g_1 - 2g_0 - B}{2}$	$\frac{1}{2}\left(C-\frac{B+G}{2}\right)$	$\frac{C-G}{2}$	
Reverse loose-type flanges	$\frac{C-B}{2}$	$\frac{1}{2}\left(C-\frac{B+G}{2}\right)$	$\frac{C-G}{2}$	

	Flange	Table 4.16.7 Moments of Inertia
Flange Type	I	Ip
Integral-type flange	$I = \frac{0.0874Lg_o^2 h_o B}{V}$	$I_p = \max\left\{K_{AB} + K_{CD}, A_R t^3 \left[\frac{1}{3} - 0.21 \left(\frac{t}{A_r}\right) \left(1 - \frac{1}{12} \left(\frac{t}{A_R}\right)^4\right)\right]\right\}$
Loose-type flange with a hub	$I = \frac{0.0874Lg_o^2 h_o B}{V_L}$	$K_{AB} = \left(A_A B_B^3\right) \left\{\frac{1}{3} - 0.21 \left(\frac{B_B}{A_A}\right) \left[1 - \frac{1}{12} \left(\frac{B_B}{A_A}\right)^4\right]\right\}$
		$K_{CD} = \left(C_C D_{DG}^3\right) \left\{ \frac{1}{3} - 0.105 \left(\frac{D_{DG}}{C_C}\right) \left[1 - \frac{1}{192} \left(\frac{D_{DG}}{C_C}\right)^4\right] \right\}$
		$A_R = 0.5(A - B)$
		$G_{\rm avg} = 0.5 \bigl(g_0 + g_1 \bigr)$
		For integral-type flanges with $g_1 = g_0$
		$h_p = \max\left\{0.35g_0, \min\left[3g_0, h_n, 0.78\left(0.5Bg_0\right)^{0.5}\right]\right\}$
		For all others
		$h_p = h$
		If $t \ge G_{avg}$
		$A_A = A_R$, $B_B = t$, $C_C = h_p$, $D_{DG} = G_{avg}$
		If $t < G_{avg}$
		$A_A = h_p + t$, $B_B = G_{avg}$, $C_C = A_R - G_{avg}$, $D_{DG} = t$

Table 4.16.7 Flange Moments of Inertia (Cont'd)		
Flange Type	Ι	Ip
Loose-type flange without a hub	$I = \frac{Bt^3 \ln K}{24}$	$I_p = A_R t^3 \Biggl\{ \frac{1}{3} - 0.21 \Biggl(\frac{t}{A_R} \Biggr) \Biggl[1 - \frac{1}{12} \Biggl(\frac{t}{A_R} \Biggr)^4 \Biggr] \Biggr\}$
		$A_R = 0.5(A - B)$

Table 4.16.8 Flange Stress Equations			
Flow as Trans	Stress Equations		
Flange Type Integral-type flange or loose-type flange with a hub	$S_{H} = \frac{fM_{o}}{Lg_{1}^{2}B}$	$S_{H} = \frac{fM_{g}}{Lg_{1}^{2}B}$	
	$S_R = \frac{(1.33te+1)M_o}{Lt^2B}$ $S_T = \frac{YM_o}{t^2B} - ZS_R$	$S_R = \frac{(1.33te + 1)M_g}{Lt^2B}$ $S_T = \frac{YM_g}{r^2B} - ZS_R$	
Loose-type flange without a hub	$S_T = \frac{YM_o}{t^2B}$	$S_T = \frac{YM_g}{t^2B}$	
Reverse integral-type flange or reverse loose-type flange with a hub	$S_{H} = \frac{fM_{o}}{L_{r}g_{1}^{2}B^{*}}$ (1.33 <i>te</i> _r + 1) <i>M</i> _o	$S_H = \frac{fM_g}{L_rg_1^2B^*}$ (1.33te + 1)M	
	$S_{R} = \frac{(1.33te_{r} + 1)M_{o}}{L_{r}t^{2}B^{*}}$ $YM = ZS_{P}(0.67te_{r} + 1)$	$S_{R} = \frac{(1.33te_{r} + 1)M_{g}}{L_{r}t^{2}B^{*}}$	
	$S_{T_1} = \frac{Y_r M_o}{t^2 B^*} - \frac{Z S_R (0.67 t e_r + 1)}{(1.33 t e_r + 1)}$	$S_{T_1} = \frac{Y_r M_g}{t^2 B^*} - \frac{Z S_R (0.67 t e_r + 1)}{(1.33 t e_r + 1)}$	
	$S_{T2} = \left(Y - \frac{2K^2 \left(0.67te_r + 1\right)}{\left(K^2 - 1\right)L_r}\right) \frac{M_o}{t^2 B^*}$	$S_{T2} = \left(Y - \frac{2K^2 \left(0.67te_r + 1\right)}{\left(K^2 - 1\right)L_r}\right) \frac{M_g}{t^2 B^*}$	
Reverse loose-type flange without a hub	$S_T = \frac{YM_o}{t^2B^*}$	$S_T = \frac{YM_g}{t^2B^*}$	

	Table 4.16.9 Flange Stress Acceptanc	e Criteria	
	Stress Acceptance Criteria		
Flange Type	Operating Condition	Gasket Seating Conditions	
Integral-type flange or loose-type flange with a hub	$S_H \leq \min \left[1.5S_{fo}, 2.5S_{no} \right]$ [Note (1)]	$S_H \leq \min \left[1.5 S_{fg}, 2.5 S_{ng} \right] $ [Note (1)]	
hange with a hub	$S_{H} \leq \min \left[1.5S_{fo}, 2.5S_{no} \right] \text{ [Note (1)]}$ $S_{H} \leq 1.5S_{fo} \text{ [Note (2)]}$	$S_{H} \leq \min\left[1.5S_{fg}, 2.5S_{ng}\right] \text{[Note (1)]}$ $S_{H} \leq 1.5S_{fg} \text{ [Note (2)]}$	
	$S_R \leq S_{fo}$	$S_R \leq S_{fg}$	
	$S_T \leq S_{fo}$	$S_T \leq S_{fg}$	
	$\frac{\left(S_H + S_R\right)}{2} \le S_{fo}$	$\frac{(S_H + S_R)}{2} \le S_{fg}$	
	$\frac{(S_H + S_T)}{2} \le S_{fo}$	$\frac{\left(S_H + S_T\right)}{2} \le S_{fg}$	

Table 4.16.9 Flange Stress Acceptance Criteria (Cont'd)				
	Stress Acceptance Criteria			
Flange Type	Operating Condition	Gasket Seating Conditions		
Loose-type flange without a hub	$S_T \leq S_{fo}$	$S_T \leq S_{fg}$		
Reverse integral-type flange or	$S_H \le 1.5 S_{fo}$	$S_H \le 1.5 S_{fg}$		
reverse loose-type flange with a hub	$S_R \leq S_{fo}$	$S_R \leq S_{fg}$		
	$S_{T1} \leq S_{fo}$	$S_{T1} \leq S_{fg}$		
	$\frac{(S_H + S_R)}{2} \le S_{fo}$	$\frac{(S_H + S_R)}{2} \le S_{fg}$		
	$\frac{\left(S_{H}+S_{T1}\right)}{2} \le S_{fo}$	$\frac{\left(S_{H}+S_{T1}\right)}{2} \leq S_{fg}$		
	$S_{T2} \leq S_{fo}$	$S_{T2} \leq S_{fg}$		
Reverse loose-type flanges	$S_T \leq S_{fo}$	$S_T \leq S_{fg}$		

NOTES:

(1) For integral flanges with hubs welded to a nozzle neck, pipe, or vessel shell.

(2) For loose type flanges with a hub.(3) Flanges made of non-ductile material, such as cast iron, are not addressed by this section.

	Rigidity Criterion			
Flange Type	Operating Condition	Gasket Seating Conditions		
ntegral-type flange	$J = \frac{52.14VM_o}{LE_{yo}g_0^2 K_R h_o} \le 1.0$	$J = \frac{52.14VM_g}{LE_{yg}g_0^2 K_R h_o} \le 1.0$		
oose-type flange with a hub	$J = \frac{52.14 V_L M_o}{L E_{ya} g_0^2 K_R h_o} \le 1.0$	$J = \frac{52.14 V_L M_g}{L E_{yg} g_0^2 K_R h_o} \le 1.0$		
everse integral-type flange	$J = \frac{52.14VM_o}{L_r E_{yo} g_0^2 K_R h_o} \le 1.0$	$J = \frac{52.14VM_g}{L_r E_{yg} g_0^2 K_R h_o} \le 1.0$		
Reverse loose-type flange with a hub	$J = \frac{52.14 V_L M_o}{L_r E_{yo} g_0^2 K_R h_o} \le 1.0$	$J = \frac{52.14 V_L M_g}{L_r E_{yg} g_0^2 K_R h_o} \le 1.0$		
Loose-type and reverse loose-type flange without a hub	$J = \frac{109.4M_o}{E_{vot} t^3 K_R (\ln K)} \le 1.0$	$J = \frac{109.4M_g}{E_{yot} t^3 K_R(\ln K)} \le 1.0$		

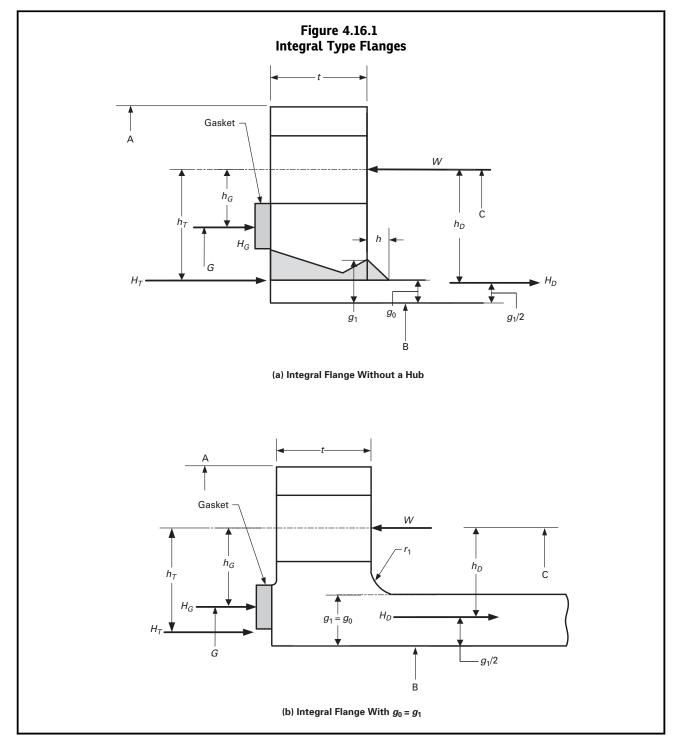
GENERAL NOTES:

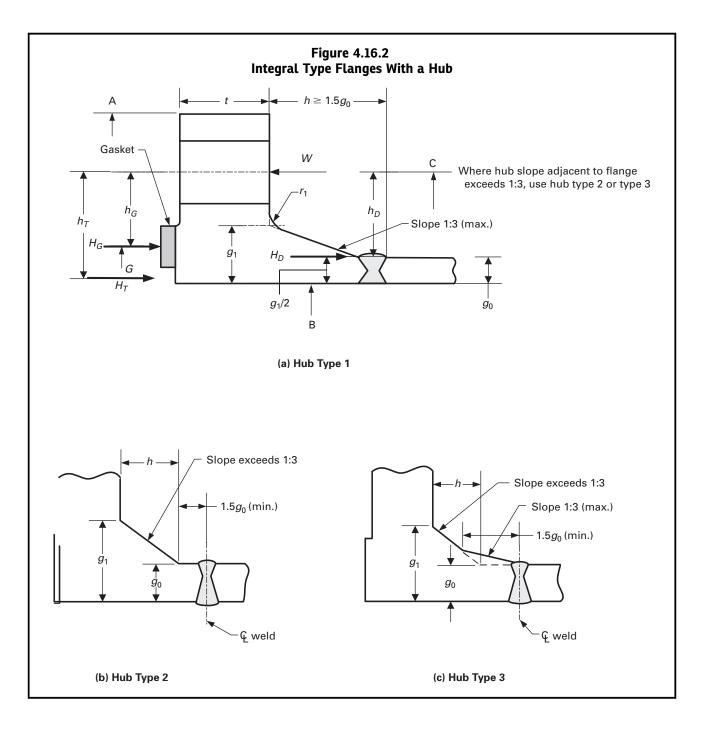
(a) For an integral type flange, K_R = 0.3 unless other values are specified by the user.
(b) For a loose type flange with or without a hub, K_R = 0.2 unless other values are specified by the user.

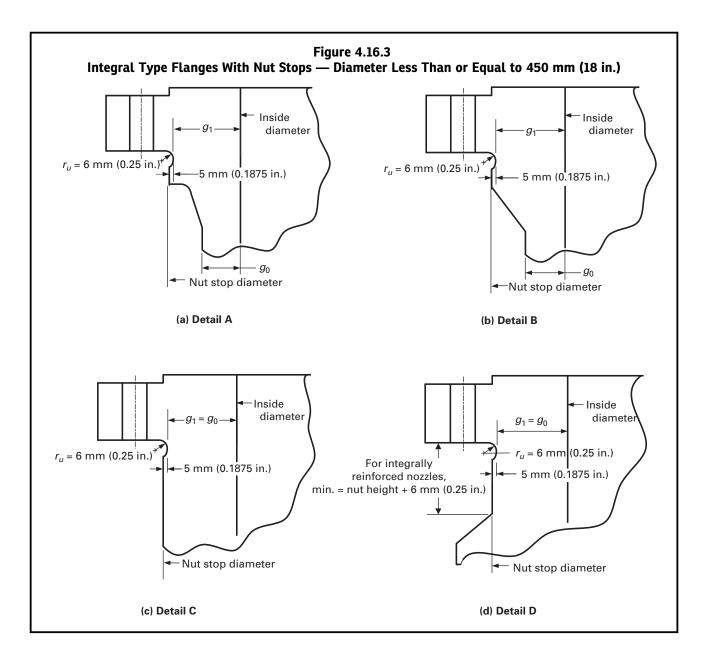
	e 4.16.11 ing Equations
Flange Type	Bolt Spacing Factors
	$B_{s\max} = 2a + \frac{6t}{m+0.5}$
All	$B_{sc} = \max\left(1, \sqrt{\frac{B_s}{2a+t}}\right)$

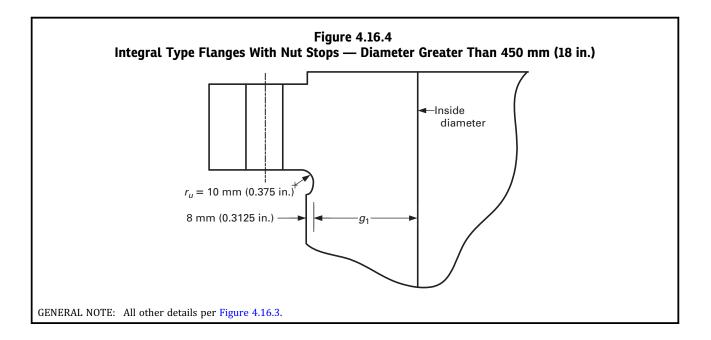
Table 4.16.12Moment Factor, F _M							
	_	Flange Pressure Rating Class					
Standard	Size Range	150	300	600	900	1500	2500
ASME B16.5	≤NPS 12	1.2	0.5	0.5	0.5	0.5	0.5
	>NPS 12 and ≤NPS 24	1.2	0.5	0.5	0.3	0.3	
ASME B16.47							
Series A	All	0.6	0.1	0.1	0.1		
Series B	<nps 48<="" td=""><td>[Note (1)]</td><td>[Note (1)]</td><td>0.13</td><td>0.13</td><td></td><td></td></nps>	[Note (1)]	[Note (1)]	0.13	0.13		
	≥NPS 48	0.1	[Note (2)]				

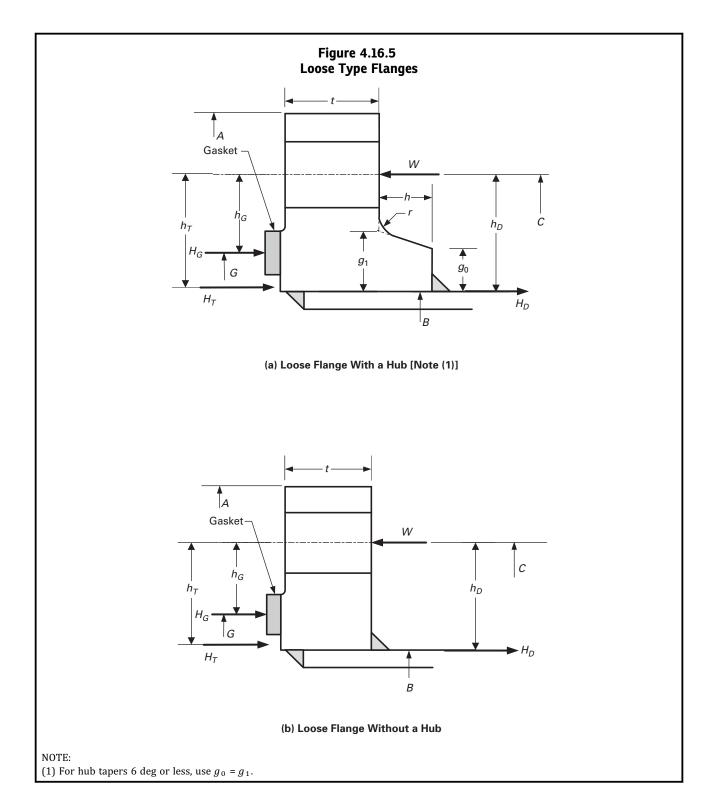
GENERAL NOTES:

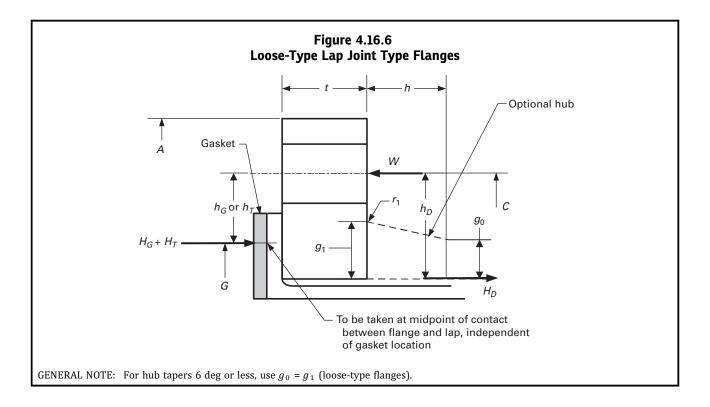

(a) The combinations of size ranges and flange pressure classes for which this Table gives no moment factor value are outside the scope of this table.

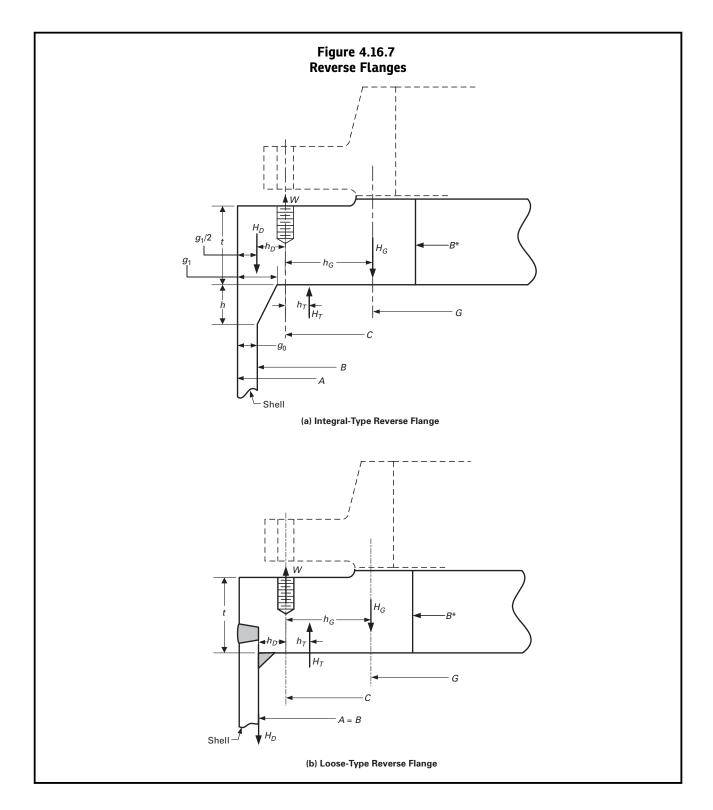

(b) The designer should consider reducing the moment factor if the loading is primarily sustained in nature and the bolted flange joint operates at a temperature where gasket creep/relaxation will be significant.

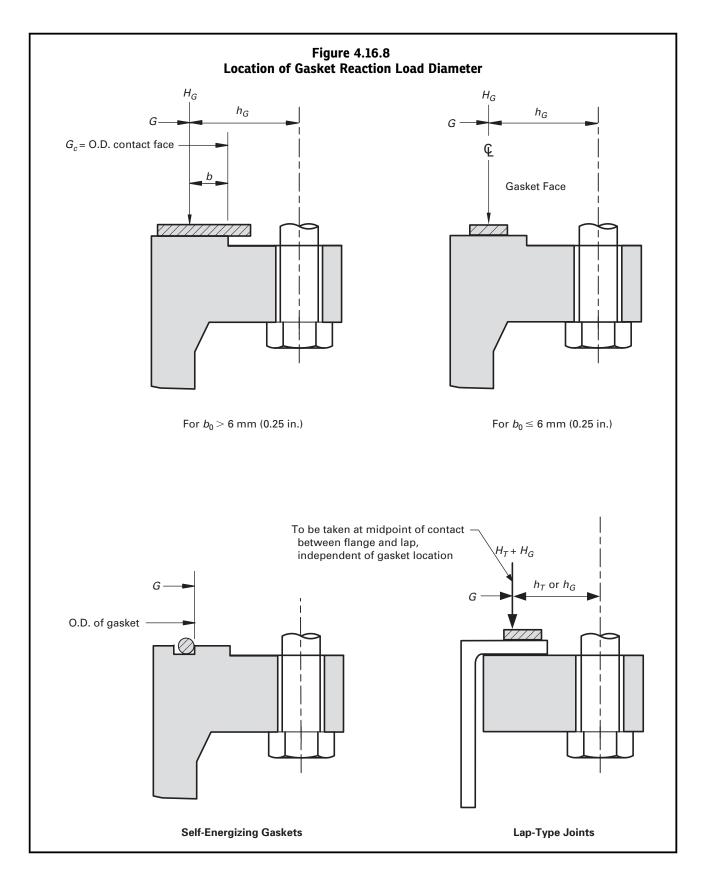

NOTES:


(1) $F_M = 0.1 + (48 - \text{NPS})/56.$ (2) $F_M = 0.1$ except NPS 60, Class 300, in which case $F_M = 0.03.$


4.16.15 FIGURES







4.17 DESIGN RULES FOR CLAMPED CONNECTIONS

4.17.1 SCOPE

The rules in 4.17 apply specifically to the design of clamp connections for pressure vessels and vessel parts. These rules shall not be used for the determination of thickness of tubesheets integral with a hub nor for the determination of thickness of covers. These rules provide only for hydrostatic end loads, assembly, and gasket seating. Consideration shall be given to loads other than pressure, such as piping loads that may act upon the clamp connection (see 2.2.3.1).

4.17.2 DESIGN CONSIDERATIONS

4.17.2.1 The design of a clamp connection involves the selection of the gasket, bolting, hub, and clamp geometry. Connection dimensions shall be such that the calculated stresses in the clamp and the hub do not exceed the acceptability criteria of this paragraph.

4.17.2.2 In the design of a bolted flange connection, calculations shall be made for the following two design conditions, and the most severe condition shall govern the design of the flanged joint.

(a) Operating Conditions - The conditions required to resist the hydrostatic end force of the design pressure and any applied external forces and moments tending to part the joint, and to maintain on the gasket or joint-contact surface sufficient compression to assure a joint that meets the required tightness, all at the design temperature.

(*b*) Gasket Seating and Assembly Condition - The conditions existing when the gasket or joint-contact surface is seated by applying an initial load with the bolts when assembling the joint, at atmospheric temperature and pressure.

4.17.2.3 Calculations shall be performed using dimensions of the flange in the corroded condition and the uncorroded condition, and the more severe case shall control.

4.17.2.4 It is recommended that either a pressure energized and/or low seating load gasket be used to compensate for possible non-uniformity in the gasket seating force distribution. Hub faces shall be designed such as to have metal-to-metal contact outside the gasket seal diameter. This may be provided by recessing the hub faces or by use of a metal spacer (see Figure 4.17.1). The contact area shall be sufficient to prevent yielding of either the hub face or spacer under both operating and assembly loads.

4.17.2.5 It is recognized that there are clamp designs that do not utilize wedging action during assembly since clamping surfaces are parallel to the hub faces. Such designs are acceptable and shall satisfy the bolting and corresponding clamp and hub requirements of a clamp connection designed for a total included clamping angle of 10 degrees.

4.17.2.6 The design method used in this paragraph to calculate stresses, loads, and moments may also be used for designing clamp connections of shapes differing from those shown in Figures 4.17.1 and 4.17.2, and for clamps consisting of more than two circumferential segments. The design equations in this paragraph may be modified when designing clamp connections of shapes differing from those shown in Figures 4.17.1 and 4.17.2, provided that the basis for the modifications is in accordance with 1.1.1.2. The clamp connections designed in this manner shall be provided with a bolt retainer. The retainer shall be designed such that in case of failure of the primary bolting, the retainer shall hold the clamps together independently under the operating loads. Multiple bolting (two or more bolts per lug) is an acceptable alternative for meeting this redundancy requirement. See 4.8.3.2 for additional requirements for bolt retainers and redundant bolting. No credit shall be taken for clamp hub friction toward satisfying the redundancy requirement.

4.17.3 FLANGE MATERIALS

4.17.3.1 Materials used in the construction of clamp connections shall comply with the requirements given in Part 3.

4.17.3.2 Hubs made from ferritic steel and designed in accordance with the rules herein shall be given a normalizing or full-annealing heat treatment when the thickness of the hub neck section exceeds 76 mm (3 in.).

4.17.3.3 Cast steel hubs and clamps shall be examined and repaired, if required, in accordance with Part 3.

4.17.3.4 Hubs and clamps shall not be machined from plate.

4.17.3.5 Bolts, studs, nuts and washers shall comply with Part 3. The minimum bolt diameter shall be 12 mm (0.5 in.).

4.17.4 DESIGN BOLT LOADS

4.17.4.1 During assembly of the clamp connection, the design bolt load *W* is resolved into an effective clamp preload W_e , which is a function of the clamp-to-hub taper angle ϕ and the friction angle μ . An appropriate friction angle shall be established by the manufacturer, based on test results for both assembly and operating conditions.

ASME BPVC.VIII.2-2023

4.17.4.2 The procedure to determine the bolt loads for the operating, and gasket seating and assembly conditions are shown below.

Step 1. Determine the design pressure and temperature of the flange joint.

Step 2. Select a gasket and determine the gasket factors *m* and *y* from Table 4.16.1.

Step 3. Determine the width of the gasket, basic gasket seating width, the location of the gasket reaction, *G*, based on the flange and gasket geometry and the information in Table 4.16.3.

(a) When $b_0 \le 6$ mm (0.25 in.), then G is the mean diameter of the gasket or joint contact face

(b) When $b_0 > 6$ mm (0.25 in.), then G is the outside diameter of the gasket contact face minus 2b.

Step 4. Determine the flange forces for the bolt load calculation.

$$H = 0.785G^2P \tag{4.17.1}$$

 $H_p = 2b\pi GmP$ for non-self-energized gaskets (4.17.2)

$$H_m = \pi b G y$$
 for non-self-energized gaskets (4.17.3)

$$H_p = 0.0$$
 for self-energized gaskets (4.17.4)

$$H_m = 0.0$$
 for self-energized gaskets (4.17.5)

Note that where a significant axial force is required to compress the gasket during assembly of a joint containing a self-energizing gasket, the value of H_m shall be taken as equal to that axial force.

Step 5. Determine the design bolt load for the operating condition.

$$W_{o} = \frac{2}{\pi} \Big(H + H_{p} \Big) \tan \Big[\phi - \mu \Big]$$
(4.17.6)

Step 6. Determine the minimum required total bolt load for gasket seating and assembly conditions.

$$W_{g1} = \frac{2}{\pi} H_m \tan[\phi + \mu]$$
(4.17.7)

$$W_{g2} = \frac{2}{\pi} \Big(H + H_p \Big) \tan[\phi + \mu]$$
(4.17.8)

Step 7. Determine the design bolt load for the gasket seating and assembly condition.

$$W_g = \left(A_m + A_b\right) S_{bg} \tag{4.17.9}$$

Alternatively, if controlled bolting (e.g., torque-control or bold tensioning) techniques are used to assemble the clamp, the assembly design bolt load shall be taken as

$$W_g = 2A_m S_{bg}$$
 (4.17.10)

NOTE: In addition, the Manufacturer shall provide to the User a copy of the bolting instructions that were used. It is recommended that the Manufacturer refer to ASME PCC-1. It is cautioned that bolt loads in excess of those calculated using eq. (4.17.10) can overstress the clamp.

The parameter A_b is the actual total cross-sectional area of the bolts that is selected such that $A_b \ge A_m$, where

$$A_{m} = \max\left[\frac{W_{o}}{2S_{bo}}, \frac{W_{g1}}{2S_{bg}}, \frac{W_{g2}}{2S_{bg}}\right]$$
(4.17.11)

4.17.4.3 In eq. (4.17.6), credit for friction is allowed based on clamp connection geometry and experience, but the bolt load shall not be less than that determined using a value of $(\phi - \mu)$ equal to 5 deg. Friction is also considered in determining bolt loads by eqs. (4.17.7) and (4.17.8), but the μ factor used shall not be less than 5 deg.

4.17.5 FLANGE AND CLAMP DESIGN PROCEDURE

The procedure to design a clamp connection is shown below.

Step 1. Determine the design pressure and temperature of the flange joint.

Step 2. Determine an initial flange and clamp geometry (see Figures 4.17.1 and 4.17.2).

Step 3. Determine the design bolt loads for operating condition, W_o , and the gasket seating and assembly condition, W_g , from 4.17.4.2.

Step 4. Determine the flange forces, H, H_p , and H_m from 4.17.4.2, Step 4, and

$$H_D = 0.785B^2P \tag{4.17.12}$$

$$H_{G} = \frac{1.571W_{o}}{\tan[\phi + \mu]} - (H + H_{p})$$
(4.17.13)

$$H_T = H - H_D \tag{4.17.14}$$

Step 5. Determine the flange moment for the operating condition.

$$M_0 = M_D + M_G + M_T + M_F + M_P + M_R \tag{4.17.15}$$

where

$$M_D = H_D \left(\frac{C - \left(B + g_1\right)}{2}\right) \tag{4.17.16}$$

$$M_G = H_G h_G \tag{4.17.17}$$

$$M_T = H_T \left(\frac{C}{2} - \frac{(B+G)}{4}\right)$$
(4.17.18)

$$M_F = H_D \left(\frac{g_1 - g_0}{2}\right) \tag{4.17.19}$$

$$M_P = PBT\pi \left(\frac{T}{2} - \bar{h}\right) \tag{4.17.20}$$

$$M_{R} = 1.571 W_{o} \left(\bar{h} - T + \frac{(C - N) \tan(\phi)}{2} \right)$$
(4.17.21)

$$C = \frac{(A + C_i)}{2}$$
(4.17.22)

$$\bar{h} = \frac{T^2 g_1 + h_2^2 g_2}{2 \left(T g_1 + h_2 g_2 \right)} \tag{4.17.23}$$

$$h_2 = T - \frac{g_2 \tan[\phi]}{2}$$
(4.17.24)

Step 6. Determine the flange moment for the gasket seating condition.

$$M_g = \frac{0.785W_g(C-G)}{\tan[\phi + \mu]}$$
(4.17.25)

Step 7. Determine the hub factors.

$$F_{H} = 1 + \frac{1.818}{\sqrt{Bg_{1}}} \left(T - \bar{h} + \frac{3.305 l_{h}}{g_{1}^{2} (0.5B + \bar{g})} \right)$$
(4.17.26)

$$I_h = \frac{g_1 T^3}{3} + \frac{g_2 h_2^3}{3} - \left(g_2 h_2 + g_1 T\right) \bar{h}^2$$
(4.17.27)

$$\bar{g} = \frac{Tg_1^2 + h_2g_2\left(2g_1 + g_2\right)}{2\left(Tg_1 + h_2g_2\right)} \tag{4.17.28}$$

Step 8. Determine the reaction shear force at the hub neck for the operating condition.

$$Q_o = \frac{1.818M_o}{F_H \sqrt{Bg_1}} \tag{4.17.29}$$

Step 9. Determine the reaction shear force at the hub neck for the gasket seating condition.

$$Q_g = \frac{1.818M_g}{F_H \sqrt{Bg_1}} \tag{4.17.30}$$

Step 10. Determine the clamp factors.

$$e_b = B_c - \frac{C_i}{2} - l_c - X \tag{4.17.31}$$

$$X = \frac{\left(\frac{C_W}{2} - \frac{C_t}{3}\right)c_t^2 - 0.5\left(C_W - C_g\right)l_c^2}{A_c}$$
(4.17.32)

$$A_c = A_1 + A_2 + A_3 \tag{4.17.33}$$

$$I_{c} = \left(\frac{A_{1}}{3} + \frac{A_{2}}{4}\right)C_{t}^{2} + \frac{A_{3}I_{c}^{2}}{3} - A_{c}X^{2}$$
(4.17.34)

$$A_1 = (C_w - 2C_t)C_t \tag{4.17.35}$$

$$A_2 = 1.571C_t^2 \tag{4.17.36}$$

$$A_3 = (C_w - C_g)l_c \tag{4.17.37}$$

Step 11. Determine the hub stress correction factor, *f*, based on g_1 , g_0 , *h*, and *B* using the equations in Table 4.16.5 and l_m using the following equation.

$$l_m = l_c - 0.5(C - C_i) \tag{4.17.38}$$

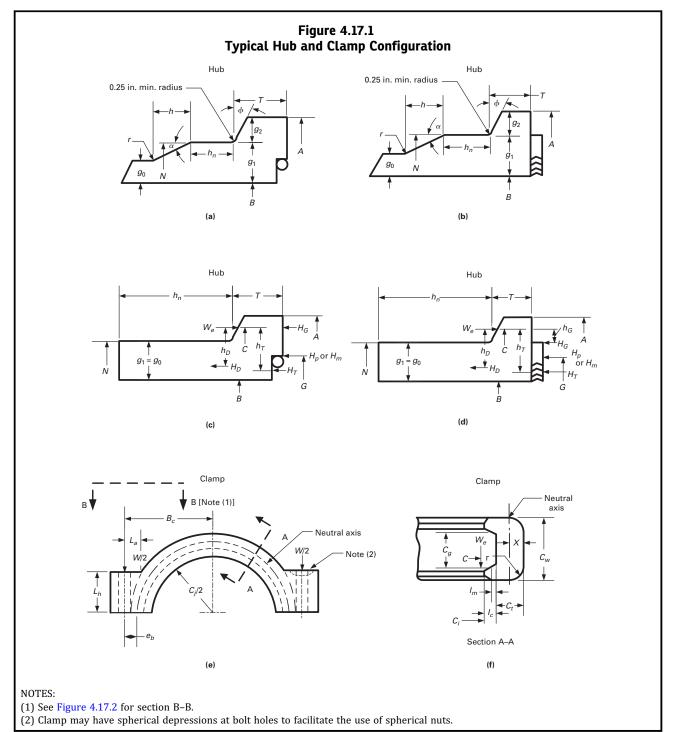
Step 12. Determine the flange and clamp stresses for the operating and gasket seating conditions using the equations in Table 4.17.1.

Step 13. Check the flange stress acceptance criteria for the operating and gasket seating conditions are shown in Table 4.17.2. If the stress criteria are satisfied, then the design is complete. If the stress criteria are not satisfied, then reproportion the flange dimensions and go to Step 2.

4.17.6 NOMENCLATURE

- A = outside diameter of the hub
- A_1 = partial clamp area
- A_2 = partial clamp area
- A_3 = partial clamp area
- A_b = total cross-sectional area of the bolts per lug based on the root diameter or the least diameter of the unthreaded portion, if less
- A_c = effective clamp cross-sectional area
- A_m = total minimum required cross-sectional area of the bolts per lug

- B = inside diameter of the hub
- *b* = effective gasket contact width
- b_0 = basic gasket seating width
- B_c = radial distance from connection center line to the center of the bolts
- *C* = diameter of effective clamp-hub reaction circle
- C_g = effective clamp gap determined at diameter C
- C_i = inside diameter of clamp
- C_t = effective clamp thickness subject to the following condition $C_t \ge r$
- $C_w = \text{clamp width}$
- e_b = radial distance from center of the bolts to the centroid of the clamp cross section
- f = hub stress correction factor
- F_H = factor relating total rotational moment to the reaction moment at the hub neck
- G = location of the gasket reaction
- g_0 = thickness of hub neck at small end
- g_1 = thickness of hub neck at intersection with hub shoulder
- g_2 = height of hub shoulder
- H = total hydrostatic end force
- h = taper hub length
- h_2 = average thickness of hub shoulder
- H_D = hydrostatic end force on bore area
- H_G = difference between total effective axial clamping preload and the sum of total hydrostatic end force and total joint contact surface compression
- h_G = radial distance from effective clamp-hub reaction circle to the circle on which H_G acts
- H_m = total axial gasket seating requirements for makeup
- H_p = total joint contact surface compression load
- H_T = difference between total hydrostatic end force and hydrostatic end force on bore area
- I_c = moment of inertia of clamp relative to neutral axis of entire section
- I_h = moment of inertia of hub shoulder relative to its neutral axis
- L_a = distance from W to the point where the clamp lug joins the clamp body
- l_c = effective clamp lip length
- L_h = clamp lug height
- l_m = effective clamp lip moment arm
- L_w = clamp lug width
- m = gasket factor
- m = gasket factor
- M_D = moment due to H_D
- M_F = offset moment
- M_G = moment due to H_G
- M_g = flange design moment for the gasket seating condition
- M_o = flange design moment for the operating condition
- M_P = pressure moment
- M_R = radial clamp equilibriating moment
- M_T = moment due to H_T
- N = outside diameter of hub neck
- P = design pressure
- Q_g = reaction shear force at the hub neck for the gasket seating condition
- Q_o = reaction shear force at the hub neck for the design operating condition
- r = clamp or hub cross section corner radius
- S_{1g} = hub longitudinal stress on outside at hub neck for the design gasket seating condition
- S_{1o} = hub longitudinal stress on outside at hub neck for the design operating condition
- S_{2g} = maximum Lame hoop stress at bore of hub for the design gasket seating condition
- S_{2o} = maximum Lame hoop stress at bore of hub for the design operating condition
- S_{3g} = maximum hub shear stress at shoulder for the design gasket seating condition
- S_{3o} = maximum hub shear stress at shoulder for the design operating condition
- S_{4g} = maximum radial hub shear stress in neck for the design gasket seating condition
- S_{4o} = maximum radial hub shear stress in neck for the design operating condition
- S_{5g} = clamp longitudinal stress at clamp body inner diameter for the design gasket seating condition


- S_{5o} = clamp longitudinal stress at clamp body inner diameter for the design operating condition
- S_{6g} = clamp tangential stress at clamp body outer diameter for the design gasket seating condition
- S_{6o} = clamp tangential stress at clamp body outer diameter for the design operating condition
- S_{7g} = maximum shear stress in clamp lips for the design gasket seating condition
- S_{7o} = maximum shear stress in clamp lips for the design operating condition
- S_{8g} = clamp lug bending stress for the design gasket seating condition
- S_{8o} = clamp lug bending stress for the design operating condition
- S_{9g} = effective bearing stress between clamp and hub for the design gasket seating condition
- S_{90} = effective bearing stress between clamp and hub for the design operating condition
- S_{bg} = allowable stress from Annex 3-A for the bolt evaluated at the gasket seating temperature
- S_{bo} = allowable stress from Annex 3-A 3 for the bolt evaluated at the design temperature
- S_{cg} = allowable stress from Annex 3-A for the clamp evaluated at the gasket seating temperature
- S_{co} = allowable stress from Annex 3-A for the clamp evaluated at the design temperature
- S_{hg} = allowable stress from Annex 3-A for the hub evaluated at the gasket seating temperature
- S_{ho} = allowable stress from Annex 3-A for the hub evaluated at the design temperature
 - T = thickness of hub shoulder
- W_q = total clamp connection design bolt load on both lugs for the gasket seating and assembly condition
- W_{g1} = total clamp connection design bolt load on both lugs for the gasket seating condition
- W_{g2} = total clamp connection design bolt load on both lugs for the assembly condition
- W_o = total clamp connection design bolt load on both lugs for the operating condition
 - X = clamp dimension to neutral axis
 - *y* = gasket seating stress
 - Z = clamp-hub taper angle
 - \hbar = axial distance from the hub face to the hub shoulder ring centroid
 - \bar{g} = radial distance from the hub inside diameter *B* to the hub shoulder ring centroid
 - α = hub transition angle, maximum 45 deg
 - μ = friction angle
 - ϕ = clamp shoulder angle, maximum 40 deg

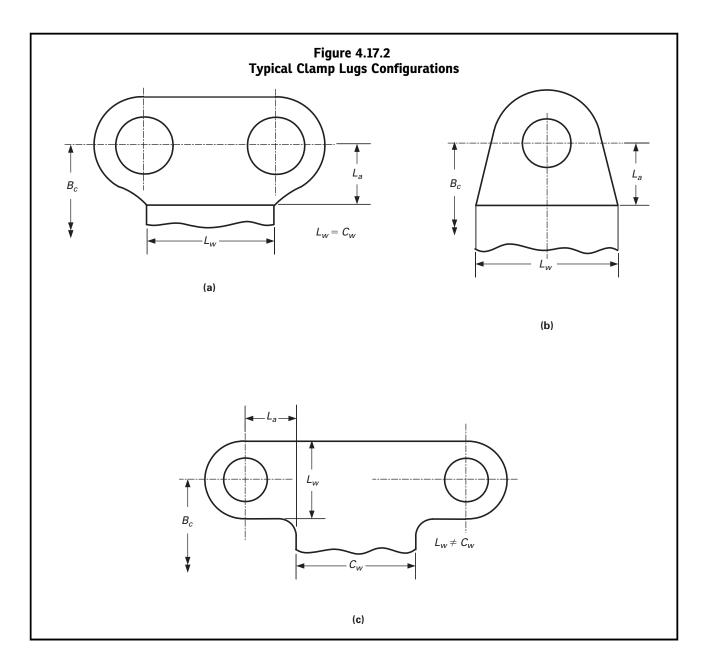

4.17.7 **TABLES**

Table 4.17.1 Flange Stress Equations		
	Stress Equations	
Location	Operating Condition	Gasket Seating/Assembly Conditions
Flange	$S_{1o} = f\left(\frac{PB^2}{4g_1(B+g_1)} + \frac{1.91M_o}{g_1^2(B+g_1)F_H}\right)$	$S_{1g} = f\left(\frac{1.91M_g}{g_1^2(B+g_1)F_H}\right)$
	$S_{2o} = P\left(\frac{N^2 + B^2}{N^2 - B^2}\right)$	$S_{2g} = 0.0$
	$S_{3o} = \frac{0.75W_o}{T(B + 2g_1)\tan(\phi - \mu)}$	$S_{3g} = \frac{0.75W_g}{T(B+2g_1)\tan(\phi+\mu)}$
	$S_{4o} = \frac{0.477Q_o}{g_1(B + g_1)}$	$S_{4g} = \frac{0.477Q_g}{g_1(B+g_1)}$
Clamp		
	$S_{5o} = \frac{W_o}{2C\tan(\phi - \mu)} \left(\frac{1}{C_t} + \frac{3(C_t + 2l_m)}{C_t^2}\right)$	$S_{5g} = \frac{W_g}{2C\tan(\phi + \mu)} \left(\frac{1}{C_t} + \frac{3(C_t + 2l_m)}{C_t^2}\right)$
	$S_{6o} = \frac{W_o}{2} \left(\frac{1}{A_c} + \frac{ e_b \cdot (C_t - X)}{I_c} \right)$	$S_{6g} = \frac{W_g}{2} \left(\frac{1}{A_c} + \frac{ e_b \cdot (C_t - X)}{I_c} \right)$
	$S_{7o} = \frac{1.5W_o}{\left(C_w - C_g\right)C\tan(\phi - \mu)}$	$S_{7g} = \frac{1.5W_g}{\left(C_w - C_g\right)C\tan(\phi + \mu)}$
	$S_{8o} = \frac{3W_oL_a}{L_wL_h^2}$	$S_{8g} = \frac{3W_g L_a}{L_w L_h^2}$
	$S_{9o} = \frac{W_o}{\left(A - C_i\right)C\tan(\phi - \mu)}$	$S_{9g} = rac{W_g}{\left(A - C_i ight)C an\left(\phi + \mu ight)}$

Table 4.17.2 Flange Stress Acceptance Criteria			
	Stress Acceptance Criteria		
Location Flange	Operating Condition $S_{1o} \le 1.5S_{ho}$	Gasket Seating/Assembly Conditions $S_{1g} \leq 1.5S_{hg}$	
	$S_{2o} \leq S_{ho}$	$S_{2g} \leq S_{hg}$	
	$S_{3o} \leq 0.8S_{ho}$	$S_{3g} \leq 0.8S_{hg}$	
	$S_{4o} \leq 0.8S_{ho}$	$S_{4g} \leq 0.8S_{hg}$	
Clamp	$S_{5o} \leq 1.5 S_{co}$	$S_{5g} \leq 1.5S_{cg}$	
	$S_{6o} \le 1.5 S_{co}$	$S_{6g} \le 1.5 S_{cg}$	
	$S_{7o} \leq 0.8S_{co}$	$S_{7g} \leq 0.8S_{cg}$	
	$S_{8o} \leq S_{co}$	$S_{8g} \leq S_{cg}$	
	$S_{9o} \leq 1.6 \min[S_{ho}, S_{co}]$	$S_{9g} \leq 1.6 \min \left[S_{hg} , S_{cg} \right]$	

4.17.8 FIGURES

4.18 DESIGN RULES FOR SHELL-AND-TUBE HEAT EXCHANGERS

4.18.1 SCOPE

(*a*) The rules in 4.18 cover the minimum requirements for design, fabrication, and inspection of shell-and-tube heat exchangers.

(*b*) The rules in 4.18 cover the common types of shell-and-tube heat exchangers and their elements but are not intended to limit the configurations or details to those illustrated or otherwise described herein. Designs that differ from those covered in 4.18 shall be in accordance with 4.1.1.2.

4.18.2 TERMINOLOGY

(*a*) U-Tube Heat Exchanger - A heat exchanger with one stationary tubesheet attached to the shell and channel. The heat exchanger contains a bundle of U-tubes attached to the tubesheet [see Figure 4.18.1, sketch (a)].

(*b*) Fixed Tubesheet Heat Exchanger - A heat exchanger with two stationary tubesheets, each attached to the shell and channel. The heat exchanger contains a bundle of straight tubes connecting both tubesheets [see Figure 4.18.1, sketch (b)].

(c) Floating Tubesheet Heat Exchanger - A heat exchanger with one stationary tubesheet attached to the shell and channel, and one floating tubesheet that can move axially. The heat exchanger contains a bundle of straight tubes connecting both tubesheets [see Figure 4.18.1, sketch (c)].

4.18.3 GENERAL DESIGN CONSIDERATIONS

(a) The design of all components shall be in accordance with the applicable rules of all Parts of this Division.

(b) The design of flanges shall consider the effects of pass partition gasketing in determining the minimum required bolt loads, W_o and W_g , of 4.16. When the tubesheet is gasketed between the shell and channel flanges, the shell and channel flange bolt loads are identical and shall be treated as flange pairs in accordance with 4.16.

(c) Rules for U-tube heat exchangers are covered in 4.18.7.

(*d*) Rules for fixed tubesheet heat exchangers are covered in 4.18.8.

(e) Rules for floating tubesheet heat exchangers are covered in 4.18.9.

(f) Distribution and vapor belts shall be designed in accordance with the following:

(1) Where the shell is not continuous across the belt, the design shall be in accordance with 4.18.12.

(2) Where the shell is continuous across the belt, the design shall be in accordance with 4.11 for Type 1. The longitudinal stress in the shell section with openings (for flow into the shell) shall be based on the net area of the shell (the shell area less that removed by the openings) and shall not exceed the applicable allowable stress criteria. For U-tube and floating head exchangers, the allowable axial stress is S (see 4.1.12) for the shell material, and for fixed tubesheet exchangers, the allowable stress is as defined in 4.18.8.4, Step 10.

(g) Requirements for tubes shall be as follows.

(1) The allowable axial tube stresses in fixed and floating tubesheet heat exchangers shall be in accordance with 4.18.8 and 4.18.9.

(2) The thickness of U-tubes after forming shall not be less than the design thickness.

(*h*) Except as limited in (1) and (2), nozzles in cylindrical shells or cylindrical channels adjacent to integral tubesheets (see Figure 4.18.19) may be located at any distance from the tubesheet (refer to 4.5.18 for nomenclature not defined in this paragraph). These requirements do not apply to nozzles in shells or channels having tubesheets that are calculated as simply supported (see 4.18.7.5, 4.18.8.8, and 4.18.9.7).

(1) For a circular nozzle with *d* greater than 30% of *D*, no part of *d* may be located within $1.8(Dt)^{\frac{1}{2}}$ of the adjacent tubesheet face (see Figure 4.18.19).

(2) For a noncircular nozzle, d_{max} (major axis) is defined as the maximum diameter of d, and d_{min} is defined as the minimum diameter of d.

(-a) For a noncircular nozzle having its major axis not parallel to the tubesheet face and $d_{max}/D > 30\%$, d is limited to the distance specified in (1).

(-b) For a noncircular nozzle having its major axis parallel to the tubesheet face and $d_{\text{max}}/D > 30\%$, no part of d may be within $1.8(Dt)^{\frac{1}{2}} + (d_{\text{max}} - d_{\text{min}})/2$ of the adjacent tubesheet face.

(3) Nozzles subject to the limitations in (1) or (2) may have their required reinforcement located within $1.8(Dt)^{\frac{1}{2}}$ of the adjacent tubesheet face.

NOTE: Tubesheet deflection, especially when the tubesheet thickness is less than the tube diameter, may contribute to tube-to-tubesheet joint leakage; likewise, deflection of a tubesheet or flat bolted cover may result in fluid leakage across a gasketed pass partition plate. Such leakages can be detrimental to the thermal performance of the heat exchanger and deflection may need to be considered by the designer.

4.18.4 GENERAL CONDITIONS OF APPLICABILITY FOR TUBESHEETS

(a) The tubesheet shall be flat and circular.

(*b*) The tubesheet shall be of uniform thickness, except that the thickness of a tubesheet extension as determined in 4.18.5 may differ from the center thickness as determined in 4.18.7, 4.18.8, and 4.18.9. The outside diameter A used for the tubesheet calculations shall not exceed the diameter at which the thickness of the tubesheet extension is less than the minimum of 0.75*h* or h - 10 mm (h - 0.375 in.).

(c) The tubesheet shall be uniformly perforated over a nominally circular area, in either equilateral triangular or square patterns. However, untubed lanes for pass partitions are permitted.

(*d*) The channel component integral with the tubesheet (Configurations a, e, f and A for U-Tube, Fixed, and Floating Tubesheets) shall be either a cylinder, hemispherical head, or concentric conical channel (see Figure 4.18.15).

(e) The hemispherical head rules shall be used when the head is attached directly to the tubesheet and there are no cylindrical straight sections between the head and the tubesheet. If a hemispherical head is attached to the hub of a tubesheet, the hub may be considered part of the hemispherical head and not require an intervening cylinder, provided the hub complies with one of the following conditions:

(1) It is shaped as a continuation of the head in accordance with Figure 4.18.15, sketch (b).

(2) It meets the requirements of Figure 4.18.15, sketch (c).

ASME BPVC.VIII.2-2023

For both cases, the tangent line of the head is coincident with the adjacent face of the tubesheet.

(f) The conical channel rules shall be used when the concentric cone is attached to the tubesheet and there are no cylindrical sections between the cone and the tubesheet. If a concentric cone is attached to the hub of a tubesheet, the hub may be considered part of the cone, provided the hub complies with one of the following conditions:

(1) The hub is shaped as a continuation of the cone in accordance with Figure 4.18.15.

(2) The conical shape is fully within the tubesheet hub.

(g) When a conical channel is used, its half-apex angle, θ_{cc} , shall be less than or equal to 60 deg. If the half-apex angle is less than 5 deg, the channel may be considered in this section as either a cone or a cylinder. For all cone angles, all rules for conical heads in other sections shall be followed, except that reinforcement at the large end of the cone per 4.3.11 and 4.4.13 shall not be considered.

(*h*) The tube side and shell side pressures are assumed to be uniform. These rules do not cover weight loadings or pressure drop.

(i) For the design pressure-only conditions (design loading cases), the design pressure shall be used. For the operating thermal-pressure conditions (operating loading cases), either the operating pressure or design pressure shall be used.

(*j*) The design rules in 4.18.7, 4.18.8, and 4.18.9 are based on a fully assembled heat exchanger. If pressure is to be applied to a partially assembled heat exchanger having a Configuration "d" tubesheet that is extended for bolting, special consideration, in addition to the rules in 4.18.5, 4.18.7, 4.18.8, and 4.18.9, shall be given to ensure that the tubesheet is not overstressed for the condition considered.

4.18.5 TUBESHEET FLANGED EXTENSION

4.18.5.1 Scope.

(a) Tubesheet extensions, if present, may be extended as a flange (flanged) or not extended as a flange (unflanged).

(1) Configuration a tubesheets may have no extension or an unflanged extension.

(2) Configurations b, e, and B tubesheets have flanged extensions.

(3) Configurations c, f, and C tubesheets have unflanged extensions.

(4) Configuration d may have a flanged or unflanged tubesheet extension.

(5) Configurations A and D do not have tubesheet extensions.

(b) These rules cover the design of tubesheet extensions that have loads applied to them.

(c) The required thickness of the tubesheet extension may differ from that required for the interior of the tubesheet as calculated in 4.18.7, 4.18.8, and 4.18.9.

4.18.5.2 Conditions of Applicability.

(a) The general conditions of applicability given in 4.18.4 apply.

(b) These rules do not apply to Configurations a, A, and D.

(c) These rules apply to flanged extensions that have bolt loads applied to them (Configurations b, e, and B). This includes Configuration d, if the extension is flanged and there are bolt loads applied to the extension.

(d) These rules apply to unflanged extensions (Configurations c, d, f, and C) and flanged extensions that have no bolt loads applied to them (Configuration d), if the thickness of the extension is less than the tubesheet thickness, h. If the tubesheet extension is equal to or greater than the tubesheet thickness, h, no analysis is required.

4.18.5.3 Design Considerations.

(*a*) The designer should take appropriate consideration of the stresses resulting from the pressure test required in 4.1.6.2 and Part 8. Special consideration shall be required for tubesheets that are gasketed on both sides when the pressure test in each chamber is conducted independently, and the bolt loading is only applied to the flanged extension during the pressure test.

(b) If the tubesheet is grooved for a peripheral gasket, the thinnest section of the flanged extension shall not be less than h_r . Figure 4.18.16 depicts h_r for some representative configurations

4.18.5.4 Calculation Procedure.

(a) For flanged extensions that have bolt loads applied to them [Configurations b, d (extended for bolting), e, and B], the procedure for calculating the minimum required thickness of the extension, h_r , is as follows:

$$h_r = \max\left(\sqrt{\frac{1.9W_g h_G}{S_a G}}\right), \left(\sqrt{\frac{1.9W_o h_G}{S_{fe} G}}\right)$$
(4.18.1a)

(*b*) For unflanged Configurations c and f, the minimum required thickness of the extension, h_r , shall be calculated in accordance with 4.16.7.2, Step 9(b), for loose type flanges with laps.

(c) For unflanged Configurations d and C and for flanged Configuration d having no bolt loads applied to the extension, the minimum required thickness of the extension, h_r , shall be the maximum of the values determined for each design loading case as follows:

$$h_{r} = \left(\frac{D_{E}}{3.2S_{fe}G}\right) \quad \left| P_{S} - P_{t} \right|$$
(4.18.1b)

4.18.6 TUBESHEET CHARACTERISTICS

4.18.6.1 Scope. These rules cover the determination of the ligament efficiencies, effective depth of the tube side pass partition groove, and effective elastic constants to be used in the calculation of U-tube, fixed, and floating tubesheets.

4.18.6.2 Conditions of Applicability. The general conditions of applicability given in 4.18.4 apply.

4.18.6.3 Design Considerations.

(a) Elastic moduli and allowable stresses shall be taken at the design temperatures. However, for cases involving thermal loading, it is permitted to use the operating metal temperatures instead of the design temperatures.

(b) When the values calculated in this section are to be used for fixed tubesheets, they shall be determined in both the corroded and uncorroded conditions.

(c) The tube expansion depth ratio given by eq. (4.18.4) may be either calculated or chosen as a constant.

4.18.6.4 Calculation Procedure.

(*a*) Determination of Effective Dimensions and Ligament Efficiencies - From the geometry (see Figures 4.18.2 and 4.18.3) and material properties of the exchanger, calculate the required parameters in accordance with (1) or (2).

(1) For geometries where the tubes extend through the tubesheet [see Figure 4.18.2, sketch (b)], calculate the following parameters.

$$D_0 = 2r_0 + d_t (4.18.2)$$

$$\mu = \frac{p - d_t}{p} \tag{4.18.3}$$

$$\rho = \frac{l_{tx}}{h} \text{ where } 0 \le \rho \le 1$$
(4.18.4)

$$d^* = \max\left\{ \left[d_t - 2t_t \left(\frac{E_{tT}}{E} \right) \left(\frac{S_{tT}}{S} \right) \rho \right], \left(d_t - 2t_t \right) \right\}$$
(4.18.5)

$$p^* = p \left(1 - \frac{4 \cdot \min[A_L, (4D_0p)]}{\pi D_0^2} \right)^{-0.5}$$
(4.18.6)

$$u^* = \frac{p^* - d^*}{p^*} \tag{4.18.7}$$

$$h'_g = \max\left[\left(h_g - c_t\right), \ 0.0\right]$$
 (4.18.8)

(2) For tubes welded to the backside of the tubesheet [see Figure 4.18.2, sketch (d)], calculate the following parameters.

$$D_0 = 2r_0 + d (4.18.9)$$

$$\mu = \frac{p-d}{p} \tag{4.18.10}$$

$$p^* = p \left(1 - \frac{4 \cdot \min[A_{L'}(4D_0p)]}{\pi D_0^2} \right)^{-0.5}$$
(4.18.11)

$$\mu^* = \frac{p^* - d}{p^*} \tag{4.18.12}$$

$$h'_g = \max\left[\left(h_g - c_t\right), \ 0.0\right]$$
 (4.18.13)

(b) Determination of Effective Elastic Properties - Determine the values for E^*/E and v^* based on μ^* and h/p using Table 4.18.1 (equilateral triangular pattern) or Table 4.18.2 (square pattern).

4.18.7 RULES FOR THE DESIGN OF U-TUBE TUBESHEETS

4.18.7.1 Scope. These rules cover the design of tubesheets for U-tube heat exchangers. The tubesheet may have one of the six configurations shown in Figure 4.18.4.

(a) Configuration a - tubesheet integral with shell and channel.

(b) Configuration b - tubesheet integral with shell and gasketed with channel, extended as a flange.

(c) Configuration c - tubesheet integral with shell and gasketed with channel, not extended as a flange.

(d) Configuration d - tubesheet gasketed with shell and channel, extended or not extended as a flange.

(e) Configuration e - tubesheet gasketed with shell and integral with channel, extended as a flange.

(f) Configuration f - tubesheet gasketed with shell and integral with channel, not extended as a flange.

4.18.7.2 Conditions of Applicability. The general conditions of applicability given in 4.18.4 apply.

4.18.7.3 Design Considerations.

(*a*) The various loading conditions to be considered shall include, but not be limited to, normal operating, start-up, shutdown, cleaning, and upset conditions, which may govern the design of the tubesheet.

(1) For each of these conditions, the loading cases in Table 4.18.7 shall be considered.

(2) When differential design pressure is specified by the user, the design shall be based only on Loading Case 3. For the design of common elements, P_t and P_s shall be determined as follows:

(-a) If the tube side is the higher-pressure side, P_t shall be the tube-side design pressure and P_s shall be P_t less the differential design pressure.

(-b) If the shell side is the higher-pressure side, P_s shall be the shell-side design pressure and P_t shall be P_s less the differential design pressure.

(3) The designer should take appropriate consideration of the stresses resulting from the pressure test required by 4.1.6.2 and Part 8.

(*b*) As the calculation procedure is iterative, a value h shall be assumed for the tubesheet thickness to calculate and check that the maximum stresses in tubesheet, shell, and channel are within the maximum permissible stress limits. (*c*) The designer may consider the tubesheet as simply supported in accordance with 4.18.7.5.

(23) 4.18.7.4 Calculation Procedure.

Step 1. Determine D_o , μ , μ^* , and h'_g from 4.18.6.4(a). Step 2. Calculate the diameter ratios ρ_s and ρ_c using the following equations.

$$\rho_s = \frac{D_s}{D_o}$$
Configurations a, b, c
(4.18.14)

$$\rho_s = \frac{G_s}{D_o}$$
Configurations d, e, f (4.18.15)

$$\rho_c = \frac{D_c}{D_o}$$
Configurations a, e, f
(4.18.16)

$$\rho_c = \frac{G_c}{D_0}$$
Configurations b, c, d
(4.18.17)

Step 3. Calculate h/p. Determine E^*/E and v^* using 4.18.6.4(b). For Configurations a, b, c, e, and f, proceed to Step 4. For Configuration d, proceed to Step 5.

Step 4. Calculate the shell coefficients.

(a) Configurations a, b, and c:

$$\beta_{s} = \frac{\left[12\left(1 - v_{s}^{2}\right)\right]^{0.25}}{\left[\left(D_{s} + t_{s}\right)t_{s}\right]^{0.5}}$$
(4.18.18)

$$k_{s} = \frac{\beta_{s}E_{s}t_{s}^{3}}{6(1-v_{s}^{2})}$$
(4.18.19)

$$\lambda_{s} = \frac{6k_{s}(D_{s} + t_{s})}{h^{3}} \left(1 + h\beta_{s} + \frac{h^{2}\beta_{s}^{2}}{2} \right)$$
(4.18.20)

$$\delta_{S} = \frac{D_{S}^{2}}{4E_{S}t_{S}} \left[1 - \frac{D_{S}v_{S}}{2(D_{S} + t_{S})} \right]$$
(4.18.21)

$$\omega_s = \rho_s k_s \beta_s \delta_s \Big(1 + h \beta_s \Big) \tag{4.18.22}$$

(b) Configurations a, e, and f:

$$\beta_{c} = \frac{\sqrt[4]{12(1-v_{c}^{2})}}{\sqrt{(D_{c}+t_{c})t_{c}}} \quad \text{for a cylindrical or hemispherical channel}$$
(4.18.23)

$$\beta_{c} = \frac{\sqrt[4]{12(1 - v_{c}^{2})}}{\sqrt{(D_{c} + t_{c})t_{c}\cos(\theta_{cc})}} \quad \text{for a concentric conical channel}$$
(4.18.24)

$$k_{c} = \beta_{c} \frac{E_{c} t_{c}^{3}}{6 \left(1 - v_{c}^{2}\right)}$$
(4.18.25)

$$\lambda_{c} = \frac{6k_{c}\left[D_{c} + \frac{t_{c}}{\cos\left(\theta_{cc}\right)}\right]}{h^{3}}\left[C_{m\theta} + h\beta_{c}\frac{C_{m\delta} + C_{q\theta}}{2} + \frac{h^{2}\beta_{c}^{2}}{2}C_{q\delta}\right]$$
(4.18.26)

$$\delta_c = \frac{D_c^2}{4E_c t_c} \left[1 \frac{D_c v_c}{2(D_c + t_c)} \right] \quad \text{for a cylinder}$$
(4.18.27)

$$\delta_{c} = \frac{D_{c}^{2}}{4E_{c}t_{c}} \left[\frac{1}{2} - \frac{D_{c}v_{c}}{2(D_{c} + t_{c})} \right] \quad \text{for a hemispherical head}$$
(4.18.28)

$$\delta_{c} = \left\{ 1 - \frac{\nu_{c} D_{c}}{2 \left[D_{c} + \frac{t_{c}}{\cos(\theta_{cc})} \right]} \right\} \frac{D_{c}^{2}}{4E_{c} t_{c} \cos(\theta_{cc})} - \frac{\left[D_{c} + \frac{t_{c}}{\cos(\theta_{cc})} \right] \tan(\theta_{cc})}{4k_{c} \beta_{c}^{2} \cos(\theta_{cc})} \quad \text{for concentric conical channel}$$
(4.18.29)

 $\zeta_c = 0$ for a cylinder or a hemisphere

$$\zeta_{c} = \left(\frac{3}{4E_{c}t_{c}} - \frac{1}{4k_{c}\beta_{c}}\right) \left[D_{c} + \frac{t_{c}}{\cos(\theta_{cc})}\right] \left[\frac{\tan(\theta_{cc})}{\cos(\theta_{cc})}\right] \quad \text{for a concentric conical channel}$$
(4.18.30)

$$\omega_{c} = \rho_{c}k_{c}\beta_{c}\left[\delta_{c}\left(C_{m\delta} + C_{q\delta}h\beta_{c}\right) - \zeta_{c}\left(\frac{C_{m\theta}}{\beta_{c}} + \frac{hC_{q\theta}}{2}\right)\right]$$
(4.18.31)

 $CC = C_{m\delta} = C_{m\theta} = C_{q\delta} = C_{q\theta} = 1 \quad \text{for a cylindrical or hemispherical channel}$

$$CC = 1 + \frac{2\tan(\theta_{cc})}{\beta_c D_c} \quad \text{for a concentric conical channel}$$
(4.18.32)

$$C_{q\delta} = C_{m\theta} = C_{m\theta\delta} = \frac{\cos[\theta_{cc}]}{CC}$$
(4.18.33)

$$C_{q\theta} = \frac{\cos\left(\theta_{cc}\right)\left[1 - \frac{2\tan(\theta_{cc})}{\beta_c D_c}\right]}{CC}$$
(4.18.34)

Step 5. Calculate the diameter ratio, *K*, and the coefficient *F*.

$$K = \frac{A}{D_o} \tag{4.18.35}$$

$$F = \frac{(1 - v^*)(\lambda_s + \lambda_c + E \ln K)}{E^*}$$
 Configuration a (4.18.36)

$$F = \frac{(1 - v^*)(\lambda_s + E \ln K)}{E^*}$$
 Configurations b, c (4.18.37)

$$F = \frac{\left(1 - v^*\right)\left(E\ln K\right)}{E^*} \qquad \text{Configuration d} \qquad (4.18.38)$$

$$F = \frac{(1 - v^*)(\lambda_c + E \ln K)}{E^*}$$
 Configurations e, f (4.18.39)

Step 6. For each loading case, calculate moment M_{TS} due to pressures P_s and P_t acting on the unperforated tubesheet rim.

$$M_{TS} = \frac{D_0^2 \left[\left(\rho_s - 1 \right) \left(\rho_s^2 + 1 \right) P_s - \left(\rho_c - 1 \right) \left(\rho_c^2 + 1 \right) P_t \right]}{16}$$
(4.18.40)

$$M^* = M_{TS} + \omega_c P_t - \omega_s P_s \qquad \text{Configuration a} \qquad (4.18.41)$$

$$M^* = M_{TS} - \omega_s P_s - \frac{(C - G_c)W^*}{2\pi D_o} \qquad \text{Configuration b}$$
(4.18.42)

$$M^* = M_{TS} - \omega_s P_s - \frac{(G_1 - G_c)W^*}{2\pi D_o}$$
 Configuration c (4.18.43)

$$M^* = M_{TS} + \frac{\left(G_c - G_s\right)W^*}{2\pi D_o} \qquad \text{Configuration d} \qquad (4.18.44)$$

$$M^* = M_{TS} + \omega_c P_t + \frac{(C - G_s)W^*}{2\pi D_o}$$
 Configuration e (4.18.45)

$$M^{*} = M_{TS} + \omega_{c}P_{t} + \frac{(G_{1} - G_{s})W^{*}}{2\pi D_{0}}$$
 Configuration f (4.18.46)

Step 7. For each loading case, calculate the maximum bending moments acting on the tubesheet at the periphery, M_P , and at the center, M_o .

$$M_P = \frac{M^* - \frac{D_0^2 F(P_S - P_t)}{32}}{1 + F}$$
(4.18.47)

$$M_o = M_p + \frac{D_o^2 (3 + v^*) (P_s - P_t)}{64}$$
(4.18.48)

Determine the maximum bending moment M acting on the tubesheet.

$$M = \max\left[\left| M_o \right|, \left| M_p \right| \right]$$
(4.18.49)

Step 8. For each loading case, check the tubesheet bending stress. (a) Calculate the bending stress

$$\sigma = \frac{6M}{\mu^* (h - h'_g)^2} \tag{4.18.50}$$

(b) Acceptance Criteria. If $\sigma \leq 2S$, the assumed tubesheet thickness is acceptable for bending. Otherwise, increase the assumed tubesheet thickness h and return to Step 1.

Step 9. For each loading case, check the average shear stress in the tubesheet at the outer edge of the perforated region, if required.

(a) Calculate the average shear stress

If $|P_s - P_t| \le \frac{4\mu h}{D_o} \min \left| 0.8S, 0.533S_y \right|$, the shear stress is not required to be calculated; proceed to (c) below.

Otherwise:

$$\tau = \left(\frac{1}{4\mu} \left| \frac{1}{h} \left(\frac{4A_p}{C_p}\right) \right| \left| P_s - P_t \right|$$
(4.18.51)

(b) Acceptance Criteria. If $\tau \leq \min(0.8S, 0.533S_v)$, the assumed tubesheet thickness is acceptable for shear. Otherwise, increase the assumed tubesheet thickness h and return to Step 1.

(c) For Configurations a, b, c, e, and f, proceed to Step 10. For Configuration d, the calculation procedure is complete. Step 10. For each loading case, calculate the stresses in the shell and/or channel integral with the tubesheet.

(a) Shell Stresses (Configurations a, b, and c) - The shell shall have a uniform thickness of t_s for a minimum length of $1.8\sqrt{D_s t_s}$ adjacent to the tubesheet. Calculate the axial membrane stress, $\sigma_{s,m}$, the bending stress, $\sigma_{s,b}$, and total axial stress, σ_s , in the shell at its junction to the tubesheet.

$$\sigma_{s,m} = \frac{D_s^2 P_s}{4t_s \left(D_s + t_s\right)}$$
(4.18.52)

$$\sigma_{S,b} = \frac{6k_s}{t_s^2} \left\{ \beta_S \delta_S P_S + \frac{6(1-v^*)}{E^*} \left(\frac{D_o}{h^3} \right) \left(1 + \frac{h\beta_s}{2} \right) \left[M_p + \frac{D_o^2}{32} \left(P_S - P_t \right) \right] \right\}$$
(4.18.53)

$$\sigma_{s} = \left| \sigma_{s,m} \right| + \left| \sigma_{s,b} \right| \tag{4.18.54}$$

ASME BPVC.VIII.2-2023

(b) Channel Stresses (Configurations a, e, and f) - A cylindrical channel shall have a uniform thickness of t_c or a minimum length of $1.8\sqrt{D_c t_c}$ adjacent to the tubesheet. A concentric conical channel shall have a uniform thickness of t_c for a minimum length of $L_{\min,c}$ adjacent to the tubesheet. Calculate the axial membrane stress, $\sigma_{c,m}$; axial bending stress, $\sigma_{c,b}$; and total axial stress, σ_c , in the channel at its junction to the tubesheet.

$$\sigma_{c,m} = \frac{D_c^2}{4t_c (D_c + t_c) \cos(\theta_{cc})} P_t$$
(4.18.55)

$$\sigma_{c,b} = \frac{6}{t_c^2} k_c \left\{ \left(\delta_c C_{m\delta} \beta_c - \zeta_c C_{m\theta} \right) P_t - 6 \frac{(1-v^*)}{E^*} \frac{D_0}{h^3} \left(C_{m\theta} + \frac{\beta_c h}{2} C_{m\delta} \right) \left[M_p + \frac{D_0^2}{32} \left(P_s - P_t \right) \right] \right\}$$
(4.18.56)

$$\sigma_c = \left| \sigma_{c,m} \right| + \left| \sigma_{c,b} \right| \tag{4.18.57}$$

(c) Acceptance Criteria

(1) Configuration a - If $\sigma_s \le 1.5S_s$ and $\sigma_c \le 1.5S_c$, the shell and channel designs are acceptable and the calculation procedure is complete. Otherwise, proceed to Step 11.

(2) Configurations b and c - If $\sigma_s \le 1.5S_s$, the shell design is acceptable and the calculation procedure is complete. Otherwise, proceed to Step 11.

(3) Configurations e and f - If $\sigma_c \le 1.5S_c$, the channel design is acceptable and the calculation procedure is complete. Otherwise, proceed to Step 11.

Step 11. The design shall be reconsidered. One or a combination of the following three options may be used.

(a) Option 1 - Increase the assumed tubesheet thickness h and return to Step 1.

(b) Option 2 - Increase the integral shell and/or channel thickness as follows, and return to Step 2.

(1) Configurations a, b, and c - If $\sigma_s > 1.5S_s$, increase the shell thickness t_s

(2) Configurations a, e, and f - If $\sigma_c > 1.5S_c$, increase the channel thickness t_c .

(c) Option 3 -Perform a simplified elastic-plastic calculation for each applicable loading case by using a reduced effective modulus for the integral shell and/or channel to reflect the anticipated load shift resulting from plastic action at the integral shell and/or channel-to-tubesheet junction. This may result in a higher tubesheet bending stress, σ . This option shall not be used at temperatures where the time-dependent properties govern the allowable stress.

(1) Configuration a - This option may only be used when $\sigma_s \leq S_{PS, s}$ and $\sigma_c \leq S_{PS, c}$. In Step 4, if $\sigma_s > 1.5S_s$, replace E_s with $E_s^* = E_s \sqrt{1.5S_s/\sigma_s}$ and recalculate k_s and λ_s . If $\sigma_c > 1.5S_c$, replace E_c with $E_c^* = E_c \sqrt{1.5S_c/\sigma_c}$ and recalculate k_c and λ_c .

(2) Configurations b and c - This option may only be used when $\sigma_s \leq S_{PS_s}$. In Step 4, replace E_s with $E_s^* = E_s \sqrt{1.5S_s/\sigma_s}$ and recalculate k_s and λ_s .

(3) Configurations e and f - This option may only be used when $\sigma_c \leq S_{PS, c}$. In Step 4, replace E_c with $E_c^* = E_c \sqrt{1.5S_c/\sigma_c}$ and recalculate k_c and λ_c .

After making the above changes, perform Steps 5 and 7, and recalculate the tubesheet bending stress σ given in Step 8. If $\sigma \leq 2S$, the assumed tubesheet thickness *h* is acceptable and the design is complete. Otherwise, the design shall be reconsidered by using Option 1 or 2.

4.18.7.5 Calculation Procedure for Simply Supported U-Tube Tubesheets.

4.18.7.5.1 Scope. This procedure describes how to use the rules of 4.18.7.4 when the effect of the stiffness of the integral channel and/or shell is not considered.

4.18.7.5.2 Conditions of Applicability. This calculation procedure applies only when the tubeheet is integral with the shell or channel (Configurations a, b, c, e, and f).

4.18.7.5.3 Calculation Procedure. The calculation procedure outlined in 4.18.7.4 shall be performed accounting for the following modifications.

(*a*) Perform 4.18.7.4, Steps 1 through 9.

(b) Perform 4.18.7.4, Step 10 except as follows:

(1) The shell (Configuration a, b, and c) is not required to meet a minimum length requirement.

(2) The channel (Configurations a, e, and f) is not required to meet a minimum length requirements.

(3) Acceptance Criteria

(-*a*) Configuration a: If $\sigma_s \leq S_{PS, s}$ and $\sigma_c \leq S_{PS, c}$, then the shell and channel are acceptable. Otherwise increase the thickness of the overstressed component(s) (shell and/or channel) and return to , 4.18.7.4, Step 1.

(-b) Configuration b and c: If $\sigma_s \leq S_{PS, s}$ then the shell is acceptable. Otherwise increase the thickness of the shell and return to 4.18.7.4, Step 1.

(-c) Configuration e and f: If $\sigma_c \leq S_{PS_c}$ then the channel is acceptable. Otherwise increase the thickness of the channel and return to 4.18.7.4, Step 1.

(c) Do not perform 4.18.7.4, Step 11.

(*d*) Repeat 4.18.7.4, Steps 1 through 8 with the following changes until the tubesheet criteria have been met: (1) 4.18.7.4, Step 4

(-*a*) Configurations a, b, and c: $\beta_s = 0$, $k_s = 0$, $\lambda_s = 0$, $\delta_s = 0$

(-b) Configurations a, e, and f: $\beta_c = 0$, $k_c = 0$, $\lambda_c = 0$, $\delta_c = 0$.

(2) 4.18.7.4, Step 7 $M = |M_o|$

4.18.8 RULES FOR THE DESIGN OF FIXED TUBESHEETS

4.18.8.1 Scope. These rules cover the design of tubesheets for fixed tubesheet heat exchangers. The tubesheets may have one of the four configurations shown in Figure 4.18.5.

(a) Configuration a - tubesheet integral with shell and channel.

(b) Configuration b - tubesheet integral with shell and gasketed with channel, extended as a flange.

(c) Configuration c - tubesheet integral with shell and gasketed with channel, not extended as a flange.

(d) Configuration d - tubesheet gasketed with shell and channel, extended or not extended as a flange.

4.18.8.2 Conditions of Applicability. The two tubesheets shall have the same thickness, material and edge conditions.

4.18.8.3 Design Considerations.

(*a*) It is generally not possible to determine, by observation, the most severe condition of coincident pressure, temperature and differential thermal expansion. Thus, it is necessary to evaluate all the anticipated loading conditions to ensure that the worst load combination has been considered in the design. The user shall specify all the conditions that may govern the design of the main components of the heat exchanger (i.e., tubesheets, tubes, shell, channel, tube-to-tubesheet joint). The loading conditions shall include, but not be limited to, normal operating, start-up, shutdown, cleaning, and upset conditions.

(1) For each of these conditions, the following loading cases shall be considered to determine the effective pressure P_e to be used in the design equations:

(-a) Design Loading Cases. Table 4.18.7 provides the load combinations required to evaluate the heat exchanger for the design condition.

(-*b*) Operating Condition Cases. Table 4.18.8 provides the load combinations required to evaluate the heat exchanger for each operating condition *x*.

(2) When differential design pressure is specified by the user, the design shall be based only on design loading case 3 and operating loading cases 3 and 4 for each specified operating condition. If the tube side is the higher-pressure side, P_t shall be the tube side design pressure and P_s shall be P_t less the differential design pressure. For the design of common elements, P_t and P_s shall be determined as follows:

(-a) If the tube side is the higher-pressure side, P_t shall be the tube-side design pressure and P_s shall be P_t less the differential design pressure.

(-b) If the shell side is the higher-pressure side, P_s shall be the shell-side design pressure and P_t shall be P_s less the differential design pressure.

For the operating loading cases, the differential pressure and the individual operating pressures shall not exceed the values used for design

(3) The designer should take appropriate consideration of the stresses resulting from the pressure test required by 4.1.6.2 and Part 8.

(*b*) The elastic moduli, yield strengths, and allowable stresses shall be taken at the design temperatures for the design loading cases and may be taken at the operating metal temperature of the component under consideration for operating condition *x*.

(c) As the calculation procedure is iterative, a value *h* shall be assumed for the tubesheet thickness to calculate and check that the maximum stresses in tubesheet, tubes, shell, and channel are within the maximum permissible stress limits and that the resulting tube-to-tubesheet joint load is acceptable.

(*d*) Because any increase of tubesheet thickness may lead to overstresses in the tubes, shell, channel, or tube-totubesheet joint, a final check shall be performed, using in the equations the nominal thickness of tubesheet, tubes, shell, and channel, in both corroded and uncorroded conditions.

(e) The designer shall consider the effect of radial differential thermal expansion between the tubesheet and integral shell or channel (Configurations a, b, and c) in accordance with 4.18.8.7.

ASME BPVC.VIII.2-2023

(f) The designer may consider the tubesheet as simply supported in accordance with 4.18.8.8.

(23) 4.18.8.4 Calculation Procedure.

Step 1. Determine D_o , μ , μ^* , and h'_g from 4.18.6.4(a). For the operating loading cases, $h'_g = 0$. Calculate the following quantities.

$$a_0 = \frac{D_0}{2}$$
(4.18.58)

$$a_c = \frac{D_c}{2}$$
 Configuration a (4.18.59)

$$a_c = \frac{G_c}{2}$$
 Configurations b, c, d (4.18.60)

$$a_s = \frac{D_s}{2}$$
 Configurations a, b, c (4.18.61)

$$a_s = \frac{G_s}{2}$$
 Configuration d (4.18.62)

$$\rho_{\rm S} = \frac{a_{\rm S}}{a_0} \tag{4.18.63}$$

$$\rho_c = \frac{a_c}{a_o} \tag{4.18.64}$$

$$x_{s} = 1 - N_{t} \left(\frac{d_{t}}{2a_{o}}\right)^{2}$$
(4.18.65)

$$x_t = 1 - N_t \left(\frac{d_t - 2t_t}{2a_0}\right)^2$$
(4.18.66)

Step 2. Calculate the following parameters.

(a) The shell axial stiffness and the tube axial stiffness.

$$K_{S} = \frac{\pi t_{S} (D_{S} + t_{S}) E_{S}}{L}$$
(4.18.67)

$$K_t = \frac{\pi t_t (d_t - t_t) E_t}{L}$$
(4.18.68)

(b) The stiffness factors.

$$K_{s,t} = \frac{K_s}{N_t K_t}$$
(4.18.69)

$$J = \frac{K_j}{K_j + K_S}$$
(4.18.70)

(c) The shell coefficients for Configurations a, b, and c.

$$\beta_{s} = \frac{\left[12\left(1 - v_{s}^{2}\right)\right]^{0.25}}{\left[\left(D_{s} + t_{s}\right)t_{s}\right]^{0.5}}$$
(4.18.71)

$$k_{s} = \frac{\beta_{s} E_{s} t_{s}^{3}}{6\left(1 - v_{s}^{2}\right)}$$
(4.18.72)

$$\lambda_{s} = \frac{6k_{s}(D_{s}t_{s})}{h^{3}} \left(1 + h\beta_{s} + \frac{h^{2}\beta_{s}^{2}}{2}\right)$$
(4.18.73)

$$\delta_{S} = \frac{D_{S}^{2}}{4E_{S} t_{S}} \left[1 - \frac{D_{S} v_{S}}{2(D_{S} + t_{S})} \right]$$
(4.18.74)

For Configuration d, $\beta_s = k_s = \lambda_s = \delta_s = 0$.

(d) The channel coefficients for Configuration a.

$$\beta_{c} = \frac{4\sqrt{12(1-v_{c}^{2})}}{\sqrt{(D_{c}+t_{c})t_{c}}} \quad \text{for a cylindrical or hemispherical channel}$$
(4.18.75)

$$\beta_{c} = \frac{\sqrt[4]{12(1-v_{c}^{2})}}{\sqrt{(D_{c}+t_{c})t_{c}\cos(\theta_{cc})}} \quad \text{for a concentric conical channel}$$
(4.18.76)

$$k_{c} = \frac{\beta_{c} E_{c} t_{c}^{3}}{6 \left(1 - v_{c}^{2}\right)}$$
(4.18.77)

$$\lambda_{c} = \frac{6k_{c} \left[D_{c} + \frac{t_{c}}{\cos(\theta_{cc})} \right]}{h^{3}} \left[C_{m\theta} + h\beta_{c} \frac{C_{m\delta} + C_{q\theta}}{2} + \frac{h^{2}\beta_{c}^{2}}{2}C_{q\delta} \right]$$
(4.18.78)

$$\delta_{\mathcal{C}} = \frac{D_{\mathcal{C}}^2}{4E_c t_c} \left[1 - \frac{D_c v_c}{2(D_c + t_c)} \right] \quad \text{for a cylinder}$$
(4.18.79)

$$\delta_{c} = \frac{D_{c}^{2}}{4E_{c} t_{c}} \left[\frac{1}{2} - \frac{D_{c}v_{c}}{2(D_{c} + t_{c})} \right] \quad \text{for a hemispherical channel}$$
(4.18.80)

$$\delta = \left\{ 1 - \frac{v_c D_c}{2 \left[D_c + \frac{t_c}{\cos(\theta_{cc})} \right]} \right\} \frac{D_c^2}{4E_c t_c \cos(\theta_{cc})} - \frac{\left[D_c + \frac{t_c}{\cos(\theta_{cc})} \right]}{4k_c \beta_c^2 \cos(\theta_{cc})} \quad \text{for a concentric conical channel}$$
(4.18.81)

$\zeta_c = 0$ for a cylindrical or hemispherical channel

$$\zeta_{c} = \left(\frac{3}{4E_{c}t_{c}} - \frac{1}{4k_{c}\beta_{c}}\right) \left[D_{c} + \frac{t_{c}}{\cos(\theta_{cc})}\right] \left[\frac{\tan(\theta_{cc})}{\cos(\theta_{cc})}\right] \quad \text{for a concentric conical channel}$$
(4.18.82)

 $CC = C_{m\delta} = C_{m\theta} = C_{q\delta} = C_{q\theta} = 1$ for a cylindrical or hemispherical channel

$$CC = 1 + \frac{2\tan(\theta_{cc})}{\beta_c D_c} \quad \text{for a concentric conical channel}$$
(4.18.83)

$$C_{q\delta} = C_{m\theta} = C_{m\delta} = \frac{\cos(\theta_{cc})}{CC}$$
(4.18.84)

$$C_{q\theta} = \frac{\cos\left(\theta_{cc}\right) \left[1 - \frac{2\tan(\theta_{cc})}{\beta_c D_c}\right]}{CC}$$
(4.18.85)

For Configurations b, c, and d, $\beta_c = k_c = \lambda_c = \delta_c = 0$. Step 3. Calculate h/p. Determine E^*/E and v^* using 4.18.6.4(b). Calculate X_a .

$$X_{a} = \left(\frac{24\left[1 - \left(v^{*}\right)^{2}\right]N_{t}E_{t}t_{t}\left(d_{t} - t_{t}\right)a_{o}^{2}}{E^{*}Lh^{3}}\right)^{0.25}$$
(4.18.86)

Using the calculated value of X_a , determine Z_d , Z_v , Z_w , and Z_m from either Table 4.18.3 or Figure 4.18.6. *Step 4*. Calculate the following parameters

$$K = \frac{A}{D_o} \tag{4.18.87}$$

$$F = \frac{(1 - v^*)(\lambda_s + \lambda_c + E \ln K)}{E^*}$$
(4.18.88)

$$\Phi = (1 + v^*)F \tag{4.18.89}$$

$$Q_1 = \frac{\rho_s - 1 - \Phi Z_v}{1 + \Phi Z_m} \tag{4.18.90}$$

$$Q_{z1} = \frac{(Z_d + Q_1 Z_w) X_a^4}{2}$$
(4.18.91)

$$Q_{Z2} = \frac{(Z_v + Q_1 Z_m) X_a^4}{2}$$
(4.18.92)

$$U = \frac{\left[Z_{w} + \left(\rho_{s} - 1\right)Z_{m}\right]X_{a}^{4}}{1 + \Phi Z_{m}}$$
(4.18.93)

Step 5. Calculate the following quantities.

(a) γ for the operating loading cases. For the design loading cases, $\gamma = 0$.

$$\gamma = \left[\alpha_{t,m} \left(T_{t,m} - T_a\right) - \alpha_{s,m} \left(T_{s,m} - T_a\right)\right] L$$
(4.18.94)

(b) ω_s , ω_s^* , ω_c , and ω_c^*

$$\omega_s = \rho_s k_s \beta_s \delta_s \left(1 + h \beta_s \right) \tag{4.18.95}$$

$$\omega_{s}^{*} = \frac{a_{o}^{2} \left(\rho_{s}^{2} - 1\right) \left(\rho_{s} - 1\right)}{4} - \omega_{s}$$
(4.18.96)

$$\omega_{c} = \rho_{c}k_{c}\beta_{c}\left[\delta_{c}\left(C_{m\delta} + C_{q\delta}h\beta_{c}\right) - \zeta_{c}\left(\frac{c_{m\theta}}{\beta_{c}} + \frac{hc_{q\theta}}{2}\right)\right]$$
(4.18.97)

$$\omega_c^* = a_o^2 \left(\frac{\left(\rho_c^2 + 1\right)\left(\rho_c - 1\right)}{4} - \frac{\left(\rho_s - 1\right)}{2} \right) - \omega_c$$
(4.18.98)

(c) γ_b

$$\gamma_b = 0$$
 Configuration a (4.18.99)

$$\gamma_b = \frac{G_c - C}{D_o}$$
 Configuration b (4.18.100)

$$\gamma_b = \frac{G_c - G_1}{D_o} \qquad \qquad \text{Configuration c} \qquad (4.18.101)$$

$$\gamma_b = \frac{G_c - G_s}{D_o}$$
 Configuration d (4.18.102)

Step 6. For each loading case, calculate the effective pressure.

$$P_{e} = \frac{JK_{s,t} \left(P_{s}' - P_{t}' + P_{\gamma} + P_{w} + P_{\text{rim}} \right)}{1 + JK_{s,t} \left[Q_{Z1} + \left(\rho_{s} - 1 \right) Q_{Z2} \right]}$$
(4.18.103)

where

$$P_{s}' = \left[x_{s} + 2\left(1 - x_{s}\right)v_{t} + \frac{2}{K_{s,t}} \left(\frac{D_{s}}{D_{o}}\right)^{2} v_{s} - \frac{\rho_{s}^{2} - 1}{JK_{s,t}} - \frac{(1 - J)}{2JK_{s,t}} \left(\frac{D_{f}^{2} - D_{s}^{2}}{D_{o}^{2}}\right) \right] P_{s}$$
(4.18.104)

$$P'_{t} = \left[x_{t} + 2(1 - x_{t})v_{t} + \frac{1}{JK_{s,t}} \right] P_{t}$$
(4.18.105)

$$P_{\gamma} = \frac{N_t k_t \gamma}{\pi a_o^2} \tag{4.18.106}$$

$$P_{W} = -\frac{U\gamma_{b}W^{*}}{2\pi a_{o}^{2}}$$
(4.18.107)

$$P_{\rm rim} = -\frac{U(\omega_s^* P_s - \omega_c^* P_t)}{a_o^2}$$
(4.18.108)

Step 7. For each loading case check the bending stress. (a) Calculate Q_2

$$Q_2 = \frac{\left(\omega_s^* P_s - \omega_c^* P_t\right) + \frac{\gamma_b W^*}{2\pi}}{1 + \Phi Z_m}$$
(4.18.109)

(b) Calculate the tubesheet bending stress.

(1) If $P_e \neq 0$, calculate Q_3

$$Q_3 = Q_1 + \frac{2Q_2}{P_e a_o^2} \tag{4.18.110}$$

For each loading case, determine coefficient F_m from either Table 4.18.3 or Figures 4.18.7 and 4.18.8. Calculate the tubesheet maximum bending stress

$$\sigma = \left(\frac{1.5F_m}{\mu^*}\right) \left(\frac{2a_o}{h - h'_g}\right)^2 P_e \tag{4.18.111}$$

(2) If $P_e = 0$, calculate the tubesheet maximum bending stress

$$\sigma = \frac{6Q_2}{\mu^* (h - h_g)^2}$$
(4.18.112)

(c) Acceptance Criteria. For the design loading cases, if $|\sigma| \le 1.5S$, and for the operating loading cases, if $|\sigma| \le S_{PS}$, the assumed tubesheet thickness is acceptable for bending. Otherwise, increase the assumed tubesheet thickness *h* and return to Step 1.

Step 8. For each loading case, check the average shear stress in the tubesheet at the outer edge of the perforated region, if required.

(a) Calculate the average shear stress.

If
$$\left| P_{e} \right| \leq \frac{2\mu h}{a_{o}} \min \left[0.8S, 0.533S_{y} \right]$$
, the shear stress is not required to be calculated; proceed to Step 9. Otherwise:
 $\tau = \frac{A_{p}P_{e}}{a_{o}}$

$$\tau = \frac{A_p P_e}{\mu h C_p} \tag{4.18.113}$$

(b) Acceptance Criteria. If $|\tau| \le \min(0.8S, 0.533S_y)$, the assumed tubesheet thickness is acceptable for shear. Otherwise, increase the assumed tubesheet thickness *h* and return to Step 1.

Step 9. Check the tube stress and tube-to-tubesheet joint design for each loading case.

(a) Check the axial tube stress.

(1) For each loading case, determine coefficients $F_{t,min}$ and $F_{t,max}$ from Table 4.18.4 and calculate the two extreme values of tube stress, $\sigma_{t,1}$ and $\sigma_{t,2}$, $\sigma_{t,1}$ and $\sigma_{t,2}$ may be positive or negative.

When $P_e \neq 0$

$$\sigma_{t,1} = \frac{1}{x_t - x_s} \Big[\Big(P_s x_s - P_t x_t \Big) - P_e F_{t,\min} \Big]$$
(4.18.114)

$$\sigma_{t,2} = \frac{1}{x_t - x_s} \Big[\Big(P_s x_s - P_t x_t \Big) - P_e F_{t,\max} \Big]$$
(4.18.115)

When $P_e = 0$

$$\sigma_{t,1} = \frac{1}{x_t - x_s} \left[\left(P_s x_s - P_t x_t \right) - \frac{2Q_2}{a_o^2} F_{t,\min} \right]$$
(4.18.116)

$$\sigma_{t,2} = \frac{1}{x_t - x_s} \left[\left(P_s x_s - P_t x_t \right) - \frac{2Q_2}{a_o^2} F_{t,\max} \right]$$
(4.18.117)

(2) Determine $\sigma_{t, \max}$

$$\sigma_{t,\max} = \max\left[\left|\sigma_{t,1}\right|, \left|\sigma_{t,2}\right|\right]$$
(4.18.118)

(b) Acceptance Criteria. For the design loading cases, if $\sigma_{max} > S$, and for the operating loading cases, if $\sigma_{max} > 2S$, reconsider the tube design and return to Step 1. Otherwise, proceed to (c).

(c) Check the tube-to-tubesheet joint design.

(1) Calculate the largest tube-to-tubesheet joint load, W_t

$$W_t = \sigma_{t,\max} \pi (d_t - t_t) t_t$$
(4.18.119)

(2) Determine the maximum allowable load for the tube-to-tubesheet joint design, L_{max} . For tube-to-tubesheet joints with full-strength welds, L_{max} shall be determined in accordance with 4.21.2.2. For tube-to-tubesheet joints with partial-strength welds, L_{max} shall be determined in accordance with 4.21.2.3 or 4.21.3, as applicable. For all other tube joints, L_{max} shall be determined in accordance with 4.21.3.

(3) Acceptance Criteria

If $W_t > L_{\max}$, tube-to-tubesheet joint design shall be reconsidered.

If $W_t \leq L_{\text{max}}$, tube-to-tubesheet joint design is acceptable. Proceed to (d).

(*d*) If $\sigma_{t,1}$ or $\sigma_{t,2}$ is negative, proceed to (f).

(e) If $\sigma_{t,1}$ and $\sigma_{t,2}$ are positive, the tube design is acceptable. Proceed to Step 10.

(f) Check the tubes for buckling.

(1) Calculate the largest equivalent unsupported buckling length of the tube l_t considering the unsupported tube spans l and their corresponding method of support defined by the parameter k.

$$l_t = kl$$
 (4.18.120)

(2) Determine the maximum permissible buckling stress limit for the tubes.

$$S_{tb} = \min\left[\left(\frac{\pi^2 E_t}{F_s F_t^2}\right), S_t\right] \quad \text{for } C_t \le F_t \tag{4.18.121}$$

$$S_{tb} = \min\left[\left\{\frac{S_{y,t}}{F_s}\left(1 - \frac{F_t}{2C_t}\right)\right\}, S_t\right] \quad \text{for } C_t > F_t \tag{4.18.122}$$

where

$$C_t = \sqrt{\frac{2\pi^2 E_t}{S_{y,t}}}$$
(4.18.123)

$$F_t = \frac{l_t}{r_t} \tag{4.18.124}$$

$$r_t = \frac{\sqrt{d_t^2 + (d_t - 2t_t)^2}}{4}$$
(4.18.125)

When $P_e \neq 0$

$$F_{s} = \min\left\{\max\left[\left(3.25 - 0.25(Z_{d} + Q_{3}Z_{w})X_{a}^{4}\right), 1.25\right], 2.0\right\}$$
(4.18.126)

When $P_e = 0$

$$F_s = 1.25$$
 (4.18.127)

(3) Determine $\sigma_{t,\min}$

$$\sigma_{t,\min} = \min\left[\sigma_{t,1}, \sigma_{t,2}\right] \tag{4.18.128}$$

(4) Acceptance Criteria. If $|\sigma_{t,\min}| > S_{tb}$, reconsider the tube design and return to Step 1. If $|\sigma_{t,\min}| \le S_{tb}$ the tube design is acceptable. Proceed to Step 10.

Step 10. Perform this Step for each loading case.

(*a*) Calculate the axial membrane stress $\sigma_{s,m}$ in each different shell section. For shell sections integral with the tubesheet having a different material and/or thickness than the shell, refer to 4.18.8.5.

$$\sigma_{s,m} = \frac{a_o^2 \left[P_e + \left(\rho_s^2 - 1 \right) \left(P_s - P_t \right) \right]}{\left(D_s + t_s \right) t_s} + \frac{a_s^2 P_t}{\left(D_s + t_s \right) t_s}$$
(4.18.129)

(b) Acceptance Criteria

(1) For the design loading cases, if $|\sigma_{s,m}| > S_s E_{s,w}$, and for the operating loading cases, if $|\sigma_{s,m}| > S_{PS,s}$ reconsider the shell design and return to Step 1.

(2) If $\sigma_{s,m}$ is negative, proceed to (c) below.

(3) If $\sigma_{s,m}$ is positive, the shell design is acceptable. Configurations a, b, and c: Proceed to Step 11. Configuration d: the calculation procedure is complete.

(c) Determine the maximum allowable longituidinal compressive stress, $S_{s,b}$

(1) If $|\sigma_{s,m}| > S_{s,b}$, reconsider the shell design and return to Step 1

(2) If $|\sigma_{s,m}| \le S_{s,b}$, the shell design is acceptable. Configuration a, b, and c: Proceed to Step 11. Configuration d: The calculation procedure is complete.

Step 11. For each loading case, check the stresses in the shell and/or channel when integral with the tubesheet (Configurations a, b, and c).

(a) Shell Stresses (Configurations a, b and c) - The shell shall have a uniform thickness of t_s for a minimum length of $1.8\sqrt{D_S t_s}$ adjacent to the tubesheet. Calculate the axial membrane stress, $\sigma_{s,m}$; the bending stress, $\sigma_{s,b}$; and total axial stress, $\sigma_{s,i}$ in the shell at its junction to the tubesheet.

$$\sigma_{s,m} = \frac{a_o^2 \left[P_e + \left(\rho_s^2 - 1 \right) \left(P_s - P_t \right) \right]}{(D_s + t_s) t_s} + \frac{a_s^2 P_t}{(D_s + t_s) t_s}$$
(4.18.130)

$$\sigma_{s,b} = \frac{6k_s}{t_s^2} \left[\beta_s \delta_s P_s + \frac{6\left[1 - \left(\nu^*\right)^2\right]}{E^*} \left(\frac{a_o^3}{h^3}\right) \left(1 + \frac{h\beta_s}{2}\right) H \right]$$
(4.18.131)

$$H = P_e \Big(Z_v + Z_m Q_1 \Big) + \frac{2Z_m Q_2}{a_o^2}$$
(4.18.132)

$$\sigma_{s} = \left| \sigma_{s,m} \right| + \left| \sigma_{s,b} \right| \tag{4.18.133}$$

(b) Channel Stresses (Configuration a) - When the channel is cylindrical, it shall have a uniform thickness of t_c for a minimum length of $1.8\sqrt{D_c t_c}$ adjacent to the tubesheet. A concentric conical channel shall have a uniform thickness of t_c for a minimum length of $L_{\min,c}$ adjacent to the tubesheet. Calculate the axial membrane stress, $\sigma_{c,m}$; the bending stress, $\sigma_{c,b}$; and total axial stress, σ_c , in the channel at its junction to the tubesheet.

$$\sigma_{c,m} = \frac{a_c^2}{t_c (D_c + t_c) \cos(\theta_{cc})} P_t$$
(4.18.134)

$$\sigma_{c,b} = \frac{6}{t_c^2} k_c \Biggl\{ \Biggl\{ \delta_c C_{m\delta} \beta_c - \zeta_c C_{m\theta} \Biggr\} P_t - 6 \frac{\left(1 - \nu^{*2}\right)}{E^*} \Biggl\{ \frac{a_0}{h} \Biggr\}^3 \Biggl\{ C_{m\theta} + \frac{\beta_c h}{2} C_{m\delta} \Biggr\} \Biggl[P_e \Biggl\{ Z_\nu + Q_1 Z_m \Biggr\} + \frac{2}{a_0^2} Q_2 Z_m \Biggr] \Biggr\}$$
(4.18.135)

$$\sigma_c = \left| \sigma_{c,m} \right| + \left| \sigma_{c,b} \right| \tag{4.18.136}$$

(c) Acceptance Criteria

(1) Configuration a - For the design loading cases, if $\sigma_s \le 1.5S_s$ and $\sigma_c \le 1.5S_c$, and for the operating loading cases, if $\sigma_s \le S_{PS,s}$ and $\sigma_c \le S_{PS,c}$, the shell and channel designs are acceptable and the calculation procedure is complete. Otherwise, proceed to Step 12.

(2) Configurations b and c - For the design loading cases, if $\sigma_s \le 1.5S_s$, and for the operating loading cases, if $\sigma_s \le S_{PS,s}$, the shell design is acceptable and the calculation procedure is complete. Otherwise, proceed to Step 12.

Step 12. The tubesheet design shall be reconsidered. One or a combination of the following three options may be used. (a) Option 1 - Increase the assumed tubesheet thickness h and return to Step 1.

(b) Option 2 - Increase the integral shell and/or channel thickness as follows and return to Step 1.

(1) Configurations a, b, and c - If $\sigma_s > 1.5S_s$, increase the shell thickness t_s . It is permissible to increase the shell thickness adjacent to the tubesheet only (see Figure 4.18.9.)

(2) Configuration a - If $\sigma_c > 1.5S_c$, increase the channel thickness t_c .

(c) Option 3 - Perform the elastic-plastic calculation procedure as defined in 4.18.8.6 only when the conditions of applicability stated in 4.18.8.6(b) are satisfied.

4.18.8.5 Calculation Procedure for Effect of Different Shell Material and Thickness Adjacent to the Tubesheet. (23) *(a)* Scope

(1) This procedure describes how to use the rules of 4.18.8.4 when the shell has a different thickness and/or a different material adjacent to the tubesheet (see Figure 4.18.9).

(2) Use of this procedure may result in a smaller tubesheet thickness and should be considered when optimization of the tubesheet thickness or shell stress is desired.

(b) Conditions of Applicability - This calculation procedure applies only when the shell is integral with the tubesheet (Configurations a, b, and c).

(*c*) Calculation Procedure - The calculation procedure outlined in 4.18.8.4 shall be performed with the following modifications:

(1) The shell shall have a thickness of $t_{s,1}$ for a minimum length of $1.8\sqrt{D_s t_{s,1}}$ adjacent to the tubesheets.

(2) In 4.18.8.4, Step 2, replace the equation for K_s with

$$K_{S}^{*} = \frac{\pi \left(D_{S} + t_{S} \right)}{\left(\frac{L - l_{1} - l_{1}}{E_{S} t_{S}} \right) + \left(\frac{l_{1} + l_{1}'}{E_{S, 1} t_{S, 1}} \right)}$$
(4.18.137)

Calculate $K_{s,t}$ and J, replacing K_s with K_s^* , and calculate β_s , k_s , λ_s , and δ_s , replacing t_s with $t_{s,1}$ and E_s with $E_{s,1}$. (3) In 4.18.8.4, Step 5, replace the equation for γ with

$$\gamma^* = (T_{t,m} - T_a)\alpha_{t,m}L - (T_{s,m} - T_a)[\alpha_{s,m}(L - l_1 - l_1') + \alpha_{s,m,1}(l_1 + l_1')]$$
(4.18.138)

(4) In 4.18.8.4, Step 6, calculate P_{γ} , replacing γ with γ^* .

(5) In 4.18.8.4, Step 10, calculate $\sigma_{s,m}$, replacing t_s with $t_{s,1}$. Replace S with $S_{s,1}$, and $S_{s,b}$ with $S_{s,b,1}$.

(6) In 4.18.8.4, Step 11, calculate $\sigma_{s,m}$ and $\sigma_{s,b}$, replacing t_s with $t_{s,1}$, and E with $E_{s,1}$. Replace S_s with $S_{s,1}$, and $S_{PS,s}$ with $S_{SP,s,1}$.

(7) If the elastic-plastic calculation procedure of 4.18.8.6 is being performed, replace $S_{y,s}$ with $S_{y,s,1}$, $S_{PS,s}$ with $S_{SP,s,1}$, and E with $E_{s,1}$ in this calculation.

(8) If the radial thermal expansion procedure of 4.18.8.7 is being performed, replace t_s with $t_{s,1}$, and E with $E_{s,1}$ in this calculation.

4.18.8.6 Calculation Procedure for Effect of Plasticity at Tubesheet/Channel or Shell Joint.

(*a*) Scope - This procedure describes how to use the rules of 4.18.8.4 when the effect of plasticity at the shell-tubesheet and/or channel-tubesheet joint is to be considered.

(1) If the discontinuity stresses at the shell-tubesheet and/or channel-tubesheet joint exceed the allowable stress limits, the thickness of the shell, channel, or tubesheet may be increased to meet the stress limits given in 4.18.8.4. As an alternative, when the calculated tubesheet stresses are within the allowable stress limits, but either or both of the calculated shell or channel total stresses exceed their allowable stress limits, one additional "elastic-plastic solution" calculation may be performed.

(2) This calculation permits a reduction of the shell and/or channel modulus of elasticity, where it affects the rotation of the joint, to reflect the anticipated load shift resulting from plastic action at the joint. The reduced effective modulus has the effect of reducing the shell and/or channel stresses in the elastic-plastic calculation; however, due to load shifting this usually leads to an increase in the tubesheet stress. In most cases, an elastic-plastic calculation using the appropriate reduced shell or channel modulus of elasticity results in a design where the calculated tubesheet stresses are within the allowable stress limits.

(b) Conditions of Applicability

(1) This procedure shall not be used at temperatures where the time-dependent properties govern the allowable stress.

(2) This procedure applies only for the design loading cases.

(3) This procedure applies to Configuration a when $\sigma_s \leq S_{PS,s}$ and $\sigma_c \leq S_{PS,c}$.

(4) This procedure applies to Configurations b and c when $\sigma_s \leq S_{PS,s}$.

(5) This procedure may only be used once for each iteration of tubesheet, shell, and channel thickness and change of materials.

ASME BPVC.VIII.2-2023

(c) Calculation Procedure - After the calculation procedure given in 4.18.8.4 (Steps 1 through 11) has been performed for the elastic solution, an elastic-plastic calculation using the referenced steps from 4.18.8.4 shall be performed in accordance with the following procedure for each applicable loading case. Except for those quantities modified below, the quantities to be used for the elastic-plastic calculation shall be the same as those calculated for the corresponding elastic loading case.

(1) Define the maximum permissible bending stress limit in the shell and channel.

$$S_{S}^{*} = \min\left[S_{\mathcal{Y},S'}\left(\frac{S_{PS,S}}{2}\right)\right] \qquad \text{Configurations a, b, c} \qquad (4.18.139)$$

$$S_{c}^{*} = \min \left[S_{y,c'} \left(\frac{S_{PS,c}}{2} \right) \right]$$
 Configuration a (4.18.140)

(2) Using bending stresses $\sigma_{s,b}$ and $\sigma_{c,b}$ calculated in 4.18.8.4, Step 11 for the elastic solution, determine fact_s and fact_c as follows.

$$fact_{s} = \min\left[\left(1.4 - \frac{0.4|\sigma_{s,b}|}{S_{s}^{*}}\right), 1.0\right] \qquad \text{Configurations a, b, c}$$
(4.18.141)

$$fact_{c} = \min\left[\left(1.4 - \frac{0.4|\sigma_{c,b}|}{S_{c}^{*}}\right), 1.0\right] \qquad \text{Configuration a}$$
(4.18.142)

(3) For Configuration a, if fact_s = 1.0 and fact_c = 1.0, the design is acceptable, and the calculation procedure is complete. Otherwise, proceed to (4). For Configurations b and c, if fact_s = 1.0, the design is acceptable, and the calculation procedure is complete. Otherwise, proceed to (4).

(4) Calculate reduced values of E_s and E_c as follows:

$$E_s^* = E_s \cdot \text{fact}_s$$
 Configurations a, b, c (4.18.143)

$$E_c^* = E_c \cdot \text{fact}_c$$
 Configuration a (4.18.144)

(5) In 4.18.8.4, Step 2, recalculate k_s , and λ_s by replacing E_s with E_s^* , and k_c and λ_c by replacing E_c with E_c^* .

(6) In 4.18.8.4, Step 4, recalculate F, Φ , Q_1 , Q_{Z1} , Q_{Z2} , and U.

(7) In 4.18.8.4, Step 6, recalculate P_W , P_{rim} , and P_e .

(8) In 4.18.8.4, Step 7, recalculate Q_2 , Q_3 , and F_m , as applicable, and the tubesheet bending stress σ . If $|\sigma| \le 1.5S$, the design is acceptable and the calculation procedure is complete. Otherwise, the unit geometry shall be reconsidered.

(23) 4.18.8.7 Calculation Procedure for Effect of Radial Differential Thermal Expansion Adjacent to the Tubesheet. (a) Scope

(1) This procedure describes how to use the rules of 4.18.8.4 when the effect of radial differential thermal expansion between the tubesheet and integral shell or channel is to be considered.

(2) This procedure shall be used when cyclic or dynamic reactions due to pressure or thermal variations are specified.

(3) This procedure shall be used when specified by the user. The user shall provide the Manufacturer with the data necessary to determine the required tubesheet, channel, and shell metal temperatures.

(4) Optionally, the designer may use this procedure to consider the effect of radial differential thermal expansion even when it is not required by (2) or (3).

(b) Conditions of Applicability - This calculation procedure applies only for the operating load cases when the tubesheet is integral with the shell or channel (Configurations a, b, and c).

(c) Calculation Procedure - The calculation procedure outlined in 4.18.8.4 and 4.18.8.5, if applicable, shall be performed only for the operating loading cases, accounting for the following modifications.

Table 4.18.9 provides the load combinations required to evaluate the heat exchanger for each operating condition x. (1) Determine the average temperature of the unperforated rim T_r .

$$T_r = \frac{T' + T'_s + T'_c}{3}$$
 Configuration a (4.18.145)

$$T_r = \frac{T' + T'_s}{2}$$
 Configurations b, c (4.18.146)

For conservative values of P_s^* and P_c^* , $T_r = T'$ may be used.

(2) Determine the average temperature of the shell T_s^* and channel T_c^* at their junction to the tubesheet using the equations shown below.

$$T_{\mathcal{S}}^* = \frac{T_{\mathcal{S}} + T_{\mathcal{F}}}{2} \qquad \text{Configurations a, b, c} \qquad (4.18.147)$$

$$T_c^* = \frac{T_c' + T_r}{2}$$
 Configuration a (4.18.148)

For conservative values of P_s^* and P_c^* , $T_s^* = T_s'$ and $T_c^* = T_c'$ may be used. (3) Calculate P_s^* and P_c^* .

$$P_{S}^{*} = \frac{E_{S}t_{S}\left[\alpha_{S}'\left(T_{S}^{*}-T_{a}\right)-\alpha'\left(T_{r}-T_{a}\right)\right]}{a_{S}} \qquad \text{Configurations a, b, c}$$

$$(4.18.149)$$

$$P_c^* = \frac{E_c t_c \left[\alpha_c' (T_c^* - T_a) - \alpha' (T_r - T_a) \right]}{a_c} \qquad \text{Configuration a}$$
(4.18.150)

$$P_c^* = 0.0$$
 Configurations b, c (4.18.151)

(4) Calculate P_{ω} .

$$P_{\omega} = \frac{U(\omega_{s}P_{s}^{*} - \omega_{c}P_{c}^{*})}{a_{o}^{2}}$$
(4.18.152)

(5) In 4.18.8.4, Step 6, replace the equation for P_e with:

$$P_{e} = \frac{JK_{s,t}(P'_{s} - P'_{t} + P_{\gamma} + P_{\omega} + P_{W} + P_{\text{rim}})}{1 + JK_{s,t}[Q_{Z1} + (\rho_{s} - 1)Q_{Z2}]}$$
(4.18.153)

(6) In 4.18.8.4, Step 7, replace the equation for Q_2 with:

$$Q_{2} = \frac{\left(\omega_{s}^{*}P_{s} - \omega_{c}^{*}P_{t}\right) - \left(\omega_{s}P_{s}^{*} - \omega_{c}P_{c}^{*}\right) + \frac{\gamma_{b}W^{*}}{2\pi}}{1 + \Phi Z_{m}}$$
(4.18.154)

(7) In 4.18.8.4, Step 11, replace the equations for $\sigma_{s,b}$ and $\sigma_{c,b}$ with the following equations where *H* is given by eq. (4.18.131).

$$\sigma_{s,b} = \frac{6k_s}{t_s^2} \left[\beta_s \left(\delta_s P_s + \frac{a_s^2 P_s^*}{E_s t_s} \right) + \frac{6\left(1 - v^{*2}\right)}{E^*} \left(\frac{a_o^3}{h^3} \right) \left(1 + \frac{h\beta_s}{2} \right) H \right]$$
(4.18.155)

$$\sigma_{c,b} = \frac{6}{t_c^2} k_c \Biggl\{ \Biggl\{ \delta_c C_{m\delta} \beta_c - \zeta_c C_{m\theta} \Biggr\} P_t + \beta_c \frac{a_c^2}{E_c t_c} P_c^* - 6 \frac{\left(1 - v^{*2}\right)}{E^*} \Biggl\{ \frac{a_o}{h} \Biggr\}^3 \Biggl\{ C_{m\theta} + \frac{\beta_c h}{2} C_{m\delta} \Biggr\} \Biggl[P_e \Biggl\{ Z_v + Q_1 Z_m \Biggr\} + \frac{2}{a_o^2} Q_2 Z_m \Biggr] \Biggr\}$$
(4.18.156)

4.18.8.8 Calculation Procedure for Simply Supported Fixed Tubesheets.

4.18.8.8.1 Scope. This procedure describes how to use the rules of 4.18.8.4 when the effect of the stiffness of the integral channel and/or shell is not considered.

4.18.8.8.2 Conditions of Applicability. This calculation applies only when the tubesheet is integral with the shell or channel (Configurations a, b, and c).

4.18.8.8.3 Calculation Procedure. The calculation procedure outlined in **4.18.8.4** shall be performed accounting (**23**) for the following modifications;

(a) Perform 4.18.8.4, Steps 1 through 10.

(b) Perform 4.18.8.4, Step 11 except as follows:

(1) The shell is not required to meet a minimum length requirement.

(2) The channel (Configuration a) is not required to meet a minimum length requirement.

(3) Acceptance Criteria

(-*a*) Configuration a: If $\sigma_s \leq S_{PS,s}$ and $\sigma_c \leq S_{PS,c}$, then the shell and channel are acceptable. Otherwise increase the thickness of the overstressed component(s) (shell and/or channel) and return to 4.18.8.4, Step 1.

(-b) Configuration b and c: If $\sigma_s \leq S_{PS,s}$ then the shell is acceptable. Otherwise increase the thickness of the shell and return to 4.18.8.4, Step 1.

(c) Do not perform 4.18.8.4, Step 12

(*d*) Repeat 4.18.8.4, Steps 1 through 7through for the design loading cases, with the following changes to 4.18.8.4, Step 2 until the tubesheet stress criteria have been met:

(1) Configurations a, b, and c: $\beta_s = 0$, $k_s = 0$, $\lambda_s = 0$, $\delta_s = 0$.

(2) Configuration a: $\beta_c = 0$, $k_c = 0$, $\lambda_c = 0$, $\delta_c = 0$.

4.18.8.9 Calculation Procedure for Kettle Shell Exchangers With Fixed Tubesheets.

4.18.8.9.1 Scope. This procedure describes how to use the rules of **4.18.8.4** when an eccentric cone and small cylinder exist between the large shell side cylinder and the tubesheet on both sides.

4.18.8.9.2 Conditions of Applicability.

(a) The two eccentric cones are identical in geometry and material.

(b) The small shell cylinders adjacent to the tubesheet are identical in geometry and material. They shall meet the length requirements of 4.18.8.4, Step 11(a) unless the simply supported rules of 4.18.8.8 are applied. The rules of 4.18.8.5 shall not be used. The rules of 4.18.8.7 may be used only if the length requirements of 4.18.8.4, Step 11(a) are met by the small shell cylinders.

(c) This procedure applies only when $\theta_{ecc} \le 60$ deg. This procedure accounts for the stiffness and loadings in the shell of the eccentric cones used in the design of the tubesheet. This procedure does not evaluate the acceptability of the shell-to-cone transition. Other requirements in this Division pertaining to shell-to-cone transitions shall be satisfied [e.g., 4.2.5.3(f), 4.3.11, and 4.4.13].

(d) This procedure applies only when

$$0.5 \leq \frac{L_{\rm ecc}}{D_{\rm ecc, S}} \leq 1.5$$

(e) This procedure applies only when $D_{ecc,L} \leq 2.17 D_{ecc,S}$.

(f) These rules assume that an expansion joint, if present, is located in the small shell cylinder.

(g) For cone-to-cylinder junctions, use the following for the design cases (pressure-only cases) in 4.3.11, 4.3.12, 4.4.13, or 4.4.14, as applicable. The cone-to-cylinder junctions do not need to be evaluated for the operating cases (cases including differential thermal expansion).

$$X'_{L} = \sigma_{\text{ecc},L,m} t_{\text{ecc}} \cos\left(\theta_{\text{ecc}}\right) - \frac{P_{S} D_{\text{ecc},L}}{4}$$
$$X'_{S} = \sigma_{\text{ecc},S,m} t_{\text{ecc}} \cos\left(\theta_{\text{ecc}}\right) - \frac{P_{S} D_{\text{ecc},S}}{4}$$

Substitute the following for eq. (4.3.50):

$$X_L = \frac{F_L}{2\pi R_L} \pm \frac{M_L}{\pi R_L^2} + X'_L$$

Substitute the following for eq. (4.3.59):

$$X_S = \frac{F_S}{2\pi R_S} \pm \frac{M_S}{\pi R_S^2} + X'_S$$

4.18.8.9.3 Calculation Procedure. The calculation procedure outlined in **4.18.8.4** shall be performed accounting for the following modifications:

r

(a) Perform 4.18.8.4, Step 2 with the following changes:

$$K_{\text{ecc}} = 0.8 \frac{\pi t_{\text{ecc}} \left(D_{\text{ecc},S} + t_{\text{ecc}} \right) E_{\text{ecc}}}{L_{\text{ecc}}}$$

$$K_{s,L} = \frac{\pi t_{s,L} \left(D_{s,L} + t_{s,L} \right) E_{s,L}}{L_{s,L}}$$

$$K_{s} = \frac{\pi t_{s} \left(D_{s} + t_{s} \right) E_{s}}{L_{s}}$$

$$K_{s}^{*} = \frac{K_{s} K_{s,L} K_{\text{ecc}}}{2K_{\text{ecc}} K_{s,L} + 2K_{s,L} K_{s} + K_{s} K_{\text{ecc}}}$$

$$K_{s,t} = \frac{K_{s}^{*}}{N_{t} K_{t}}$$

$$J = \frac{1}{1 + \frac{K_{s}^{*}}{K_{f}}}$$

(b) Perform 4.18.8.4, Step 5 with the following change:

$$\gamma = \alpha_{t,m} (T_{t,m} - T_a) L - \alpha_{s,m,L} (T_{s,m} - T_a) L_{s,L} - 2\alpha_{ecc,m} (T_{s,m} - T_a) L_{ecc} - 2\alpha_{s,m} (T_{s,m} - T_a) L_{s,L}$$

(c) Perform 4.18.8.4, Step 6 with the following changes; use v_s^* instead of v_s :

$$A_{S} = D_{S}(D_{S} + t_{S})$$

$$A_{S,L} = D_{S,L}(D_{S,L} + t_{S,L})$$

$$\Delta_{ecc} = D_{ecc,L} - D_{ecc,S}$$

$$v_{S}^{*} = \frac{2K_{S}^{*}}{A_{S}} \left\{ \frac{A_{S}v_{S}}{K_{S}} + \left[v_{ecc} - \frac{L_{ecc}^{2} - 2v_{ecc}L_{ecc}^{2} - 3\Delta_{ecc}^{2}}{8L_{ecc}^{3}} \left(\Delta_{ecc}^{2} + L_{ecc}^{2} \right)^{0.5} \right] \frac{(D_{ecc,L} + D_{ecc,S})(D_{ecc,S} + t_{ecc})}{5K_{ecc}} + \frac{A_{S,L}v_{S,L}}{2K_{S,L}} \right\}$$

(d) Perform 4.18.8.4, Step 10 with the following changes:

(1) Calculate the axial membrane stress for the small cylinder.

$$\sigma_{s,m} = \frac{a_o^2}{t_s(D_s + t_s)} \left[P_e + \left(\frac{D_s^2}{4a_o^2} - 1 \right) \left(P_s - P_t \right) \right] + \frac{D_s^2}{4t_s(D_s + t_s)} P_t$$

(2) Calculate the axial membrane stress for the eccentric cone at the small end.

$$\sigma_{\text{ecc},S,m} = \frac{a_o^2}{t_{\text{ecc}}(D_{\text{ecc},S} + t_{\text{ecc}})\cos\left(\theta_{\text{ecc}}\right)} \left[P_e + \left(\frac{D_{\text{ecc},S}^2}{4a_o^2} - 1\right) \left(P_s - P_t\right) \right] + \frac{D_{\text{ecc},S}^2}{4t_{\text{ecc}}\left(D_{\text{ecc},S} + t_{\text{ecc}}\right)\cos\left(\theta_{\text{ecc}}\right)} P_t$$

(3) Calculate the axial membrane stress for the eccentric cone at the large end.

$$\sigma_{\text{ecc},L,m} = \frac{a_o^2}{t_{\text{ecc}} \left(D_{\text{ecc},L} + t_{\text{ecc}} \right) \cos \left(\theta_{\text{ecc}} \right)} \left[P_e + \left(\frac{D_{\text{ecc},L}^2}{4a_o^2} - 1 \right) \left(P_s - P_t \right) \right] + \frac{D_{\text{ecc},L}^2}{4t_{\text{ecc}} \left(D_{\text{ecc},L} + t_{\text{ecc}} \right) \cos \left(\theta_{\text{ecc}} \right)} P_t$$

(4) Calculate the axial membrane stress for the large cylinder.

$$\sigma_{s,L,m} = \frac{a_o^2}{t_{s,L}(D_{s,L} + t_{s,L})} \left[P_e + \left(\frac{D_{s,L}^2}{4a_o^2} - 1 \right) \left(P_s - P_t \right) \right] + \frac{D_{s,L}^2}{4t_{s,L}(D_{s,L} + t_{s,L})} P_t$$

(5) Acceptance Criteria

(-a) Design loading case acceptance criteria: $|\sigma_{s,m}| \leq S_s E_{s,w}$ and $|\sigma_{ecc,S,m}| \leq S_{ecc} E_{ecc,w}$ and $|\sigma_{ecc,L,m}| \leq S_{ecc} E_{ecc,w}$ and $|\sigma_{s,L,m}| \leq S_{s,L} E_{s,L,w}$

(-b) Operating loading case acceptance criteria: $|\sigma_{s,m}| \leq S_{PS,s}$ and $|\sigma_{ecc,S,m}| \leq S_{PS,ecc}$ and $|\sigma_{ecc,L,m}| \leq S_{PS,ecc}$ and $|\sigma_{s,L,m}| \leq S_{PS,s,L}$

(-c) If axial membrane stress is negative (design and operating): $|\sigma_{s,m}| \leq S_{s,b}$ and $|\sigma_{ecc,S,m}| \leq S_{ecc,b}$ and $|\sigma_{ecc,L,m}| \leq S_{ecc,b}$ and $|\sigma_{s,L,m}| \leq S_{s,L,b}$

If the acceptance criteria is not satisfied, reconsider the design of the failing components and return to (a).

4.18.9 RULES FOR THE DESIGN OF FLOATING TUBESHEETS

4.18.9.1 Scope.

(*a*) These rules cover the design of tubesheets for floating tubesheet heat exchangers that have one stationary tubesheet and one floating tubesheet. Three types of floating tubesheet heat exchangers are covered as shown in Figure 4.18.10.

(1) Sketch (a), immersed floating head;

(2) Sketch (b), externally sealed floating head;

(3) Sketch (c), internally sealed floating tubesheet.

(b) Stationary tubesheets may have one of the six configurations shown in Figure 4.18.11.

(1) Configuration a: tubesheet integral with shell and channel;

(2) Configuration b: tubesheet integral with shell and gasketed with channel, extended as a flange;

(3) Configuration c: tubesheet integral with shell and gasketed with channel, not extended as a flange;

(4) Configuration d: tubesheet gasketed with shell and channel, extended or not extended as a flange;

(5) Configuration e: tubesheet gasketed with shell and integral with channel, extended as a flange;

(6) Configuration f: tubesheet gasketed with shell and integral with channel, not extended as a flange.

(c) Floating tubesheets may have one of the four configurations shown in Figure 4.18.12.

(1) Configuration A: tubesheet integral;

(2) Configuration B: tubesheet gasketed, extended as a flange;

(3) Configuration C: tubesheet gasketed, not extended as a flange;

(4) Configuration D: tubesheet internally sealed.

(*d*) These rules may be used to design a single-pass floating tubesheet heat exchanger with an immersed floating head, provided the design of the nozzle between the floating head and shell cover accounts for the axial differential thermal expansion.

CAUTION: Addition of the nozzle between the floating head and the shell cover may change the tube force balance, which should be considered in the design.

4.18.9.2 Conditions of Applicability. The two tubesheets shall have the same thickness and material.

4.18.9.3 Design Considerations.

(a) The calculation shall be performed for the stationary end and for the floating end of the exchanger. Since the edge configurations of the stationary and floating tubesheets are different, the data may be different for each set of calculations. However the conditions of applicability given in 4.18.9.2 must be maintained. For the stationary end, diameters A, C, D_s , D_c , G_s , G_c , G_1 and the thickness t_c shall be taken from Figure 4.18.11. For the floating end, diameters A, C, D_c , G_c and the thickness t_c shall be taken from Figure 4.18.12, and the radial shell dimension a_s shall be taken equal to a_c

(*b*) It is generally not possible to determine, by observation, the most severe condition of coincident pressure, temperature and radial differential thermal expansion. Thus, it is necessary to evaluate all the anticipated loading conditions to ensure that the worst load combination has been considered in the design. The various loading conditions to be considered shall include the normal operating conditions, the startup conditions, the shutdown conditions, and the upset conditions, which may govern the design of the main components of the heat exchanger (i.e., tubesheets, tubes, shell, channel, tube-to-tubesheet joint).

(1) For each of these conditions, the following loading cases shall be considered to determine the effective pressure P_e to be used in the design equations:

(-a) Design Loading Cases. Table 4.18.7 provides load combinations required to evaluate the heat exchanger for the design condition.

(-b) Operating Loading Cases. The operating loading cases are only required when the effect of radial differential thermal expansion is to be considered (see 4.18.9.6).

(2) When differential design pressure is specified by the user, the design shall be based only on design loading case 3 and operating loading cases 3 and 4 for each specified operating condition. For the design of common elements, P_t and P_s shall be determined as follows:

(-a) If the tube side is the higher-pressure side, P_t shall be the tube-side design pressure and P_s shall be P_t less the differential design pressure.

(-b) If the shell side is the higher-pressure side, P_s shall be the shell-side design pressure and P_t shall be P_s less the differential design pressure.

For the operating loading cases, the differential pressure and the individual operating pressures shall not exceed the values used for design.

(3) The designer should take appropriate consideration of the stresses resulting from the pressure test required by 4.1.6.2 and Part 8.

(c) The elastic moduli, yield strengths, and allowable stresses shall be taken at the design temperatures for the design loading cases and may be taken at the operating temperature of the component under consideration for operating condition *x*.

(d) As the calculation procedure is iterative, a value h shall be assumed for the tubesheet thickness to calculate and check that the maximum stresses in tubesheet, tubes, shell, and channel are within the maximum permissible stress limits and that the resulting tube-to-tubesheet joint load is acceptable.

(e) The designer shall consider the effect of radial differential thermal expansion between the tubesheet and integral shell or channel (Configurations a, b, c, e, f, and A) in accordance with 4.18.9.6.

(f) The designer may consider the tubesheet as simply supported in accordance with 4.18.9.7.

 $a_s =$

a

4.18.9.4 Calculation Procedure. The procedure for the design of tubesheets for a floating tubesheet heat exchanger (23) is as follows. Calculations shall be performed for both the stationary tubesheet and the floating tubesheet.

Step 1. Determine D_o , μ , μ^* , and h'_g from 4.18.6.4(a). For the operating loading cases, $h'_g = 0$ Calculate the following quantities.

$$a_o = \frac{D_o}{2}$$
(4.18.157)

$$\frac{D_s}{2}$$
 Configurations a, b, c (4.18.158)

$$a_s = \frac{G_s}{2}$$
 Configurations d, e, f (4.18.159)

$$= a_c$$
 Configurations A, B, C, D (4.18.160)

$$\frac{D_c}{2}$$
 Configurations a, e, f, A (4.18.161)

$$c_c = \frac{G_c}{2}$$
 Configurations b, c, d, B, C (4.18.162)

$$a_c = \frac{A}{2}$$
 Configuration D (4.18.163)

$$\rho_{\rm S} = \frac{a_{\rm S}}{a_{\rm O}} \tag{4.18.164}$$

$$\rho_c = \frac{a_c}{a_o} \tag{4.18.165}$$

$$x_{s} = 1 - N_{t} \left(\frac{d_{t}}{2a_{o}}\right)^{2}$$
(4.18.166)

ASME BPVC.VIII.2-2023

$$x_t = 1 - N_t \left(\frac{d_t - 2t_t}{2a_0}\right)^2$$
(4.18.167)

Step 2. Calculate the shell and channel coefficients.

(a) The shell coefficients for Configurations a, b and c.

$$\beta_{s} = \frac{\left[12\left(1 - v_{s}^{2}\right)\right]^{0.25}}{\left[\left(D_{s} + t_{s}\right)t_{s}\right]^{0.5}}$$
(4.18.168)

$$k_{s} = \frac{\beta_{s} E_{s} t_{s}^{3}}{6\left(1 - v_{s}^{2}\right)}$$
(4.18.169)

$$\lambda_{s} = \frac{6k_{s}(D_{s}t_{s})}{h^{3}} \left(1 + h\beta_{s} + \frac{h^{2}\beta_{s}^{2}}{2}\right)$$
(4.18.170)

$$\delta_{S} = \frac{D_{S}^{2}}{4E_{S}t_{S}} \left[1 - \frac{D_{S}v_{S}}{2(D_{S} + T_{S})} \right]$$
(4.18.171)

For Configurations d, e, f, A, B, C, and D, $\beta_s = k_s = \lambda_s = \delta_s = 0$. (*b*) The channel coefficients for Configurations a, e, f, and A.

$$\beta_c = \frac{4\sqrt{12(1-v_c^2)}}{\sqrt{(D_c+t_c)t_c}} \quad \text{for a cylindrical or hemispherical channel}$$
(4.18.172)

$$\beta_{c} = \frac{\sqrt[4]{12(1-v_{c}^{2})}}{\sqrt{(D_{c}+t_{c})t_{c}\cos(\theta_{cc})}} \quad \text{for a concentric conical channel}$$
(4.18.173)

$$k_c = \beta_c \frac{E_c t_c^3}{6\left(1 - v_c^2\right)}$$
(4.18.174)

$$\lambda_{c} = \frac{6k_{c} \left[D_{c} + \frac{t_{c}}{\cos(\theta_{cc})} \right]}{h^{3}} \left(C_{m\theta} + h\beta_{c} \frac{C_{m\delta} + C_{q\theta}}{2} + \frac{h^{2}\beta_{c}^{2}}{2} C_{q\delta} \right)$$
(4.18.175)

$$\delta_c = \frac{D_c^2}{4E_c t_c} \left[1 - \frac{D_c v_c}{2(D_c + t_c)} \right] \quad \text{for a cylinder}$$
(4.18.176)

$$\delta_{c} = \frac{D_{c}^{2}}{4E_{c}t_{c}} \left[\frac{1}{2} - \frac{D_{c}v_{c}}{2(D_{c} + t_{c})} \right] \quad \text{for a hemispherical head}$$
(4.18.177)

$$\delta_{c} = \left\{ 1 - \frac{v_{c}D_{c}}{2\left[D_{c} + \frac{t_{c}}{\cos(\theta_{cc})}\right]} \right\} \frac{D_{c}^{2}}{4E_{c}t_{c}\cos(\theta_{cc})} - \frac{\left[D_{c} + \frac{t_{c}}{\cos(\theta_{cc})}\right]\tan(\theta_{cc})}{4k_{c}\beta_{c}^{2}\cos(\theta_{cc})} \quad \text{for a concentric conical channel}$$
(4.18.178)

 $\zeta_c = 0$ for a cylindrical or hemispherical channel

$$\zeta_{c} = \left(\frac{3}{4E_{c}t_{c}} - \frac{1}{4k_{c}\beta_{c}}\right) \left[D_{c} + \frac{t_{c}}{\cos(\theta_{cc})}\right] \left[\frac{\tan(\theta_{cc})}{\cos(\theta_{cc})}\right]$$
for a concentric conical channel (4.18.179)

 $CC = C_{m\delta} = C_{m\theta} = C_{q\delta} = C_{q\theta} = 1$ for a cylindrical or hemispherical channel

$$CC = 1 + \frac{2\tan(\theta_{cc})}{\beta_c D_c} \quad \text{for a concentric conical channel}$$
(4.18.180)

$$C_{q\delta} = C_{m\theta} = C_{m\delta} = \frac{\cos(\theta_{cc})}{CC}$$
(4.18.181)

$$C_{q\theta} = \frac{\cos\left(\theta_{cc}\right) \left[1 - \frac{2\tan(\theta_{cc})}{\beta_c D_c}\right]}{CC}$$
(4.18.182)

For Configurations b, c, d, B, C, and D, $\beta_c = k_c = \lambda_c = \delta_c = 0$. Step 3. Calculate h/p. Determine E^*/E and v^* using 4.18.6.4(b). Calculate X_a .

$$X_{a} = \left(\frac{24\left[1 - \left(v^{*}\right)^{2}\right]N_{t}E_{t}t_{t}\left(d_{t} - t_{t}\right)a_{o}^{2}}{E^{*}Lh^{3}}\right)^{0.25}$$
(4.18.183)

Using the calculated value of X_a enter either Table 4.18.3 or Figure 4.18.6 to determine Z_d , Z_v , Z_w , and Z_m . *Step 4*. Calculate the following parameters:

$$K = \frac{A}{D_0}$$
(4.18.184)

$$F = \frac{(1 - v^*)(\lambda_s + \lambda_c + E \ln K)}{E^*}$$
(4.18.185)

$$\Phi = (1 + v^*)F \tag{4.18.186}$$

$$Q_1 = \frac{\rho_s - 1 - \Phi Z_v}{1 + \Phi Z_m} \tag{4.18.187}$$

Step 5. Calculate the following quantities: (a) ω_s , ω_s^* , ω_c , and ω_c^* .

$$\omega_s = \rho_s k_s \beta_s \delta_s \left(1 + h \beta_s \right) \tag{4.18.188}$$

$$\omega_{s}^{*} = \frac{a_{o}^{2} \left(\rho_{s}^{2} - 1\right) \left(\rho_{s} - 1\right)}{4} - \omega_{s}$$
(4.18.189)

$$\omega_{c} = \rho_{c} k_{c} \beta_{c} \left[\delta_{c} \left(C_{m\delta} + C_{q\delta} h \beta_{c} \right) - \zeta_{c} \left(\frac{C_{m\theta}}{\beta_{c}} + \frac{h C_{q\theta}}{2} \right) \right]$$
(4.18.190)

$$\omega_{c}^{*} = a_{o}^{2} \left(\frac{\left(\rho_{c}^{2} + 1\right)\left(\rho_{c} - 1\right)}{4} - \frac{\left(\rho_{s} - 1\right)}{2} \right) - \omega_{c}$$
(4.18.191)

(b)
$$\gamma_b$$
.

$$= \frac{G_c - C}{D_c}$$
 Configurations b, B (4.18.193)

$$\gamma_b = \frac{G_c - G_1}{D_c} \qquad \text{Configurations c, C} \qquad (4.18.194)$$

$$\gamma_b = \frac{G_c - G_s}{D_o}$$
 Configuration d (4.18.195)

$$\gamma_b = \frac{C - G_s}{D_o}$$
 Configuration e (4.18.196)

$$\gamma_b = \frac{G_1 - G_s}{D_0} \qquad \text{Configuration f} \qquad (4.18.197)$$

Step 6. For each loading case, calculate the effective pressure P_e .

 γ_b

γ_b

(a) For an exchanger with an immersed floating head [see Figure 4.18.10, sketch (a)]:

$$P_e = P_s - P_t \tag{4.18.198}$$

(b) For an exchanger with an externally sealed floating head [see Figure 4.18.10, sketch (b)]:

$$P_e = P_s \left(1 - \rho_s^2 \right) - P_t \tag{4.18.199}$$

(c) For an exchanger with an internally sealed floating tubesheet [see Figure 4.18.10, sketch (c)]:

$$P_e = (P_s - P_t) (1 - \rho_s^2)$$
(4.18.200)

Step 7. For each loading case check the bending stress. (a) Calculate Q_2 .

$$Q_{2} = \frac{\left(\omega_{s}^{*}P_{s} - \omega_{c}^{*}P_{t}\right) + \frac{\gamma_{b}W^{*}}{2\pi}}{1 + \Phi Z_{m}}$$
(4.18.201)

(b) Calculate the tubesheet bending stress.

(1) If $P_e \neq 0$, calculate Q_3 .

$$Q_3 = Q_1 + \frac{2Q_2}{P_e a_o^2} \tag{4.18.202}$$

For each loading case, determine coefficient F_m from either Table 4.18.3 or Figures 4.18.7 and 4.18.8. Calculate the maximum tubesheet bending stress.

$$\sigma = \left(\frac{1.5F_m}{\mu^*}\right) \left(\frac{2a_o}{h - h'_g}\right)^2 P_e \tag{4.18.203}$$

(2) If $P_e = 0$, calculate the maximum tubesheet bending stress.

$$\sigma = \frac{6Q_2}{\mu^* (h - h'_g)^2} \tag{4.18.204}$$

(c) Acceptance Criteria. For the design loading cases, if $|\sigma| \le 1.5S$, and for the operating loading cases, if $|\sigma| \le S_{PS}$, the assumed tubesheet thickness is acceptable for bending. Otherwise, increase the assumed tubesheet thickness *h* and return to Step 1.

4.18.9.4

For Configurations a, b, c, d, e, and f, proceed to Step 8. For Configuration A, proceed to Step 10. For Configurations B, C, and D, the calculation is complete.

Step 8. For each loading case, check the average shear stress in the tubesheet at the outer edge of the perforated region, if required.

(a) Calculate the average shear stress.

If
$$\left| P_{e} \right| \leq \frac{2\mu h}{a_{o}} \min \left[0.8S, 0.533S_{y} \right]$$
, the shear stress is not required to be calculated; proceed to Step 9. Otherwise:
 $\tau = \frac{A_{p}P_{e}}{\mu hC_{p}}$

(b) Acceptance Criteria. If $\tau \le \min(0.8S, 0.533S_y)$, the assumed tubesheet thickness is acceptable for shear. Otherwise, increase the assumed tubesheet thickness h and return to Step 1.

Step 9. Check the tube stress and tube-to-tubesheet joint design for each loading case.

(a) Check the axial tube stress.

(1) For each loading case, determine the coefficients $F_{t,\min}$ and $F_{t,\max}$ from Table 4.18.4 and calculate the two extreme values of tube stress, $\sigma_{t,1}$ and $\sigma_{t,2}$. $\sigma_{t,1}$ and $\sigma_{t,2}$ may be positive or negative.

When $P_e \neq 0$

$$\sigma_{t,1} = \frac{1}{x_t - x_s} \Big[\Big(P_s x_s - P_t x_t \Big) - P_e F_{t,\min} \Big]$$
(4.18.205)

$$\sigma_{t,2} = \frac{1}{x_t - x_s} \Big[\left(P_s x_s - P_t x_t \right) - P_e F_{t,\max} \Big]$$
(4.18.206)

When $P_e = 0$

$$\sigma_{t,1} = \frac{1}{x_t - x_s} \left[\left(P_s x_s - P_t x_t \right) - \frac{2Q_2}{a_0^2} F_{t,\min} \right]$$
(4.18.207)

$$\sigma_{t,2} = \frac{1}{x_t - x_s} \left[\left(P_s x_s - P_t x_t \right) - \frac{2Q_2}{a_0^2} F_{t,\max} \right]$$
(4.18.208)

(2) Determine $\sigma_{t, \max}$

$$\sigma_{t,\max} = \max\left[\left|\sigma_{t,1}\right|, \left|\sigma_{t,2}\right|\right]$$
(4.18.209)

(b) Acceptance Criteria. For the design loading cases, if $\sigma_{t.max} > S_t$, and for the operating loading cases, if $\sigma_{t.max} > 2S_t$ reconsider the design and return to Step 1.

Otherwise, proceed to (c).

(c) Check the tube-to-tubesheet joint design.

(1) Calculate the largest tube-to-tubesheet joint load, W_t

$$W_t = \sigma_{t,\max} \pi \left(d_t - t_t \right) t_t \tag{4.18.210}$$

(2) Determine the maximum allowable load for the tube-to-tubesheet joint design, L_{max} . For tube-to-tubesheet joints with full-strength welds, L_{max} shall be determined in accordance with 4.21.2.2. For tube-to-tubesheet joints with partial-strength welds, L_{max} shall be determined in accordance with 4.21.2.3 or 4.21.3, as applicable. For all other tube joints, L_{max} shall be determined in accordance with 4.21.3.

(3) Acceptance Criteria. If $W_t > L_{max}$, tube-to-tubesheet joint design shall be reconsidered. If $W_t \le L_{max}$, tube-to-tubesheet joint design is acceptable. Proceed to (d).

(*d*) If $\sigma_{t,1}$ or $\sigma_{2,1}$ is negative, proceed to (f).

(e) If $\sigma_{t,1}$ and $\sigma_{2,1}$ are positive, the tube design is acceptable. Proceed to Step 10.

(f) Check the tubes for buckling.

(1) Calculate the largest equivalent unsupported buckling length of the tube l_t considering the unsupported tube spans l and their corresponding method of support defined by the parameter k.

$$l_t = kl$$
 (4.18.211)

(2) Determine the maximum permissible buckling stress limit S_{tb} for the tubes.

$$S_{tb} = \min\left[\left\{\frac{\pi^2 E_t}{F_s F_t^2}\right\}, S_t\right] \qquad \qquad C_t \le F_t \qquad (4.18.212)$$

$$S_{tb} = \min\left[\left\{\frac{S_{y,t}}{F_s}\left(1 - \frac{F_t}{2C_t}\right)\right\}, S_t\right] \qquad \qquad C_t > F_t \qquad (4.18.213)$$

where

$$F_q = \frac{\left(Z_d + Q_3 Z_v\right) X_a^4}{2} \tag{4.18.214}$$

$$C_t = \sqrt{\frac{2\pi^2 E_t}{S_{y,t}}}$$
(4.18.215)

$$F_t = \frac{l_t}{r_t} \tag{4.18.216}$$

$$r_t = \frac{\sqrt{d_t^2 + (d_t - 2t_t)^2}}{4}$$
(4.18.217)

When $P_e \neq 0$

$$F_{s} = \min\left\{\max\left[\left(3.25 - 0.25\left(Z_{d} + Q_{3}Z_{w}\right)X_{a}^{4}\right), 1.25\right], 2.0\right\}$$
(4.18.218)

When $P_e = 0$

$$F_s = 1.25$$
 (4.18.219)

(3) Determine $\sigma_{t,\min}$

$$\sigma_{t,\min} = \min\left[\sigma_{t,1}, \sigma_{t,2}\right] \tag{4.18.220}$$

(4) Acceptance Criteria. If $|\sigma_{t,\min}| > S_{tb}$, reconsider the tube design and return to Step 1. If $|\sigma_{t,\min}| \le S_{tb}$, the tube design is acceptable. Proceed to Step 10.

Step 10. For each loading case, check the stresses in the shell and/or channel integral with the tubesheet.

(a) Shell Stresses (Configurations a, b, and c) - The shell shall have a uniform thickness of t_s for a minimum length of $1.8\sqrt{D_s t_s}$ adjacent to the tubesheet. Calculate the axial membrane stress, $\sigma_{s,m}$, the bending stress, $\sigma_{s,b}$, and total axial stress, $\sigma_{s,r}$ in the shell at its junction to the tubesheet, where *H* is given by eq. (4.18.132).

$$\sigma_{s,m} = \frac{a_o^2 \left[P_e + \left(\rho_s^2 - 1 \right) \left(P_s - P_t \right) \right]}{(D_s + t_s) t_s} + \frac{a_s^2 P_t}{(D_s + t_s) t_s}$$
(4.18.221)

$$\sigma_{S,b} = \frac{6k_s}{t_s^2} \left[\beta_s \delta_s P_s + \frac{6\left[1 - \left(v^*\right)^2\right]}{E^*} \left(\frac{a_o^3}{h^3}\right) \left(1 + \frac{h\beta_s}{2}\right) H \right]$$
(4.18.222)

 $\sigma_{s} = \left| \sigma_{s,m} \right| + \left| \sigma_{s,b} \right| \tag{4.18.223}$

(b) Channel Stresses (Configurations a, e, f, and A) - A concentric conical channel shall have a uniform thickness of t_c for a minimum length of $L_{\min,c}$ adjacent to the tubesheet. A concentric conical channel shall have a uniform thickness of t_c for a minimum length of $L_{\min,c}$ adjacent to the tubesheet. Calculate the axial membrane stress, $\sigma_{c,m}$; the bending stress, $\sigma_{c,b}$; and total axial stress, σ_c , in the channel at its junction to the tubesheet.

$$\sigma_{c,m} = \frac{a_c^2}{t_c (D_c + t_c) \cos(\theta_{cc})}$$
(4.18.224)

$$Q\sigma_{c,b} = \frac{6}{t_c^{-2}} k_c \Biggl\{ \Biggl\{ \delta_c C_{m\delta} \beta_c - \zeta_c C_{m\theta} \Biggr\} P_t - 6 \frac{\left(1 - \nu^{*2}\right)}{E^*} \Biggl\{ \frac{a_0}{h} \Biggr\}^3 \Biggl\{ C_{m\theta} + \frac{\beta_c h}{2} C_{m\delta} \Biggr\} \Biggl[P_e \Biggl\{ Z_{\nu} + Q_1 Z_m \Biggr\} + \frac{2}{a_0^{-2}} Q_2 Z_m \Biggr] \Biggr\}$$
(4.18.225)

$$\sigma_c = \left| \sigma_{c,m} \right| + \left| \sigma_{c,b} \right| \tag{4.18.226}$$

(c) Acceptance Criteria

(1) Configuration a - For the design loading cases, if $\sigma_s \le 1.5S_s$ and $\sigma_c \le 1.5S_c$, and for the operating loading cases, if $\sigma_s \le S_{PS,s}$ and $\sigma_c \le S_{PS,c}$, the shell and channel designs are acceptable and the calculation procedure is complete. Otherwise, proceed to Step 11.

(2) Configurations b and c - For the design loading cases, if $\sigma_s \le 1.5S_s$, and for the operating loading cases, if $\sigma_s \le S_{PS,s}$, the shell design is acceptable and the calculation procedure is complete. Otherwise, proceed to Step 11.

(3) Configurations e, f, and A - For the design loading cases, if $\sigma_c \le 1.5S_c$, and for the operating loading cases, if $\sigma_c \le S_{PS,c}$, the channel design is acceptable and the calculation procedure is complete. Otherwise, proceed to Step 11.

Step 11. The design shall be reconsidered. One or a combination of the following three options may be used.

(a) Option 1 - Increase the assumed tubesheet thickness h and return to Step 1.

(b) Option 2 - Increase the integral shell and/or channel thickness and return to Step 1.

(1) Configurations a, b, and c - If $\sigma_s \leq 1.5S_s$, increase the shell thickness t_s .

(2) Configurations a, e, f, and A - If $\sigma_c \leq 1.5S_c$, increase the channel thickness t_c .

(c) Option 3 - Perform the elastic-plastic calculation procedure as defined in 4.18.9.5 only when the conditions of applicability stated in 4.18.9.5(b) are satisfied.

4.18.9.5 Calculation Procedure for Effect of Plasticity at Tubesheet/Channel or Shell Joint.

(*a*) Scope - This procedure describes how to use the rules of 4.18.9.4 when the effect of plasticity at the shell-tubesheet and/or channel-tubesheet joint is to be considered.

(1) When the calculated tubesheet stresses are within the allowable stress limits, but either or both of the calculated shell or channel total stresses exceed their allowable stress limits, an additional "elastic-plastic solution" calculation may be performed.

(2) This calculation permits a reduction of the shell and/or channel modulus of elasticity, where it affects the rotation of the joint, to reflect the anticipated load shift resulting from plastic action at the joint. The reduced effective modulus has the effect of reducing the shell and/or channel stresses in the elastic-plastic calculation; however, due to load shifting this usually leads to an increase in the tubesheet stress. In most cases, an elastic-plastic calculation using the appropriate reduced shell or channel modulus of elasticity results in a design where the calculated tubesheet stresses are within the allowable stress limits.

(b) Conditions of Applicability

(1) This procedure shall not be used at temperatures where the time-dependent properties govern the allowable stress.

(2) This procedure applies only for the design loading cases.

(3) This procedure applies to Configuration a when $\sigma_s \leq S_{PS,s}$ and $\sigma_c \leq S_{PS,c}$.

(4) This procedure applies to Configurations b and c when $\sigma_s \leq S_{PS,s}$.

(5) This procedure applies to Configurations e, f, and A when $\sigma_s \leq S_{PS,c}$.

(6) This procedure may only be used once for each iteration of tubesheet, shell, and channel thickness and change of materials.

(c) Calculation Procedure - After the calculation procedure given in 4.18.9.4 (Steps 1 through 10) has been performed for the elastic solution, an elastic-plastic calculation using the referenced steps from 4.18.9.4 shall be performed in accordance with the following procedure for each applicable loading case. Except for those quantities modified below, the quantities to be used for the elastic-plastic calculation shall be the same as those calculated for the corresponding elastic loading case.

(1) Define the maximum permissible bending stress limit in the shell and channel.

(23)

$$S_{S}^{*} = \min\left[S_{\mathcal{Y},S'}\left(\frac{S_{PS,S}}{2}\right)\right]$$
 Configurations a, b, c (4.18.227)

$$S_{c}^{*} = \min\left[S_{y,c}\left(\frac{S_{PS,c}}{2}\right)\right]$$
 Configurations a, e, f, A (4.18.228)

(2) Using bending stresses $\sigma_{s,b}$ and $\sigma_{c,b}$ calculated in Step 10 for the elastic solution, determine fact_s and fact_c as follows.

$$fact_{s} = \min\left[\left(1.4 - \frac{0.4|\sigma_{s,b}|}{S_{s}^{*}}\right), 1.0\right]$$
 Configurations a, b, c (4.18.229)

$$fact_{c} = \min\left[\left(1.4 - \frac{0.4 \left|\sigma_{c,b}\right|}{S_{c}^{*}}\right), 1.0\right]$$
 Configurations a, e, f, A (4.18.230)

(3) For Configuration a, if fact_s = 1.0 and fact_c = 1.0, the design is acceptable, and the calculation procedure is complete. Otherwise, proceed to 4.18.9.5(c)(4). For Configurations b and c, if fact_s = 1.0, the design is acceptable, and the calculation procedure is complete. Otherwise, proceed to 4.18.9.5(c)(4).

(4) Calculate reduced values of E_s and E_c as follows:

$$E_S^* = E_S \cdot \text{fact}_S$$
 Configurations a, b, c (4.18.231)

$$E_c^* = E_c \cdot \text{fact}_c$$
 Configurations a, e, f, A (4.18.232)

(5) In 4.18.8.4, Step 2, recalculate k_s and λ_s by replacing E_s with E_s^* , and k_c and λ_c by replacing E_c with E_c^* . (6) In 4.18.8.4, Step 4, recalculate F, ϕ , and Q_1 .

(7) In 4.18.8.4, Step 7, recalculate Q_2 , Q_3 , F_m , as applicable, and the tubesheet bending stress σ . If $|\sigma| \le 1.5S$, the design is acceptable and the calculation procedure is complete. Otherwise, the unit geometry shall be reconsidered.

(23) 4.18.9.6 Calculation Procedure for Effect of Radial Differential Thermal Expansion Adjacent to the Tubesheet. (a) Scope

(1) This procedure describes how to use the rules of 4.18.9.4 when the effect of radial differential thermal expansion between the tubesheet and integral shell or channel is to be considered.

(2) This procedure shall be used when cyclic or dynamic reactions due to pressure or thermal variations are specified.

(3) This procedure shall be used when specified by the user. The user shall provide the Manufacturer with the data necessary to determine the required tubesheet, channel, and shell metal temperatures.

(4) Optionally, the designer may use this procedure to consider the effect of radial differential thermal expansion even when it is not required by 4.18.9.6(a)(2) or 4.18.9.6(a)(3).

(*b*) Conditions of Applicability - This calculation procedure applies only when the tubesheet is integral with the shell or channel (Configurations a, b, c, e, f, and A).

(c) Calculation Procedure - The calculation procedure outlined in 4.18.9.4 shall be performed only for the operating loading cases, accounting for the following modifications.

(1) Determine the average temperature of the unperforated rim T_r .

$$T_r = \frac{T' + T'_s + T'_c}{3} \qquad \text{Configuration a} \qquad (4.18.233)$$

$$T_r = \frac{T' + T'_s}{2}$$
 Configurations b, c (4.18.234)

$$T_r = \frac{T' + T_c'}{2}$$
 Configurations e, f, A (4.18.235)

For conservative values of P_s^* and P_c^* , $T_r = T'$ may be used.

(2) Determine the average temperature of the shell T_s^* and channel T_c^* at their junction to the tubesheet using the equations shown below.

$$T_{s}^{*} = \frac{T_{s}' + T_{r}}{2}$$
 Configurations a, b, c (4.18.236)

$$T_c^* = \frac{T_c' + T_r}{2}$$
 Configurations a, e, f, A (4.18.237)

For conservative values of P_s^* and P_c^* , $T_s^* = T_s'$ and $T_c^* = T_c'$ may be used. (3) Calculate P_s^* and P_c^* .

$$P_{s}^{*} = \frac{E_{s}t_{s}\left[\alpha_{s}'\left(T_{s}^{*}-T_{a}\right)-\alpha'\left(T_{r}-T_{a}\right)\right]}{a_{s}}$$
 Configurations a, b, c (4.18.238)

$$P_{s}^{*} = 0$$
 Configurations e, f, A (4.18.239)

$$P_c^* = \frac{E_c t_c \left[\alpha'_c \left(T_c^* - T_a \right) - \alpha' \left(T_r - T_a \right) \right]}{a_c}$$
 Configurations a, e, f, A (4.18.240)

$$P_c^* = 0$$
 Configurations b, c (4.18.241)

(4) In Step 7, replace the equation for Q_2 with

$$Q_{2} = \frac{\left(\omega_{s}^{*}P_{s} - \omega_{c}^{*}P_{t}\right) - \left(\omega_{s}P_{s}^{*} - \omega_{c}P_{c}^{*}\right) + \frac{\gamma_{b}W^{*}}{2\pi}}{1 + \Phi Z_{m}}$$
(4.18.242)

(5) In Step 10, replace the equations for $\sigma_{s,b}$ and $\sigma_{c,b}$ with the following equations, where *H* is given by eq. (4.18.131).

$$\sigma_{s,b} = \frac{6k_s}{t_s^2} \left[\beta_s \left(\delta_s P_s + \frac{a_s^2 P_s^*}{E_s t_s} \right) + \frac{6 \left[1 - \left(\nu^* \right)^2 \right]}{E^*} \left(\frac{a_o^3}{h^3} \right) \left(1 + \frac{h\beta_s}{2} \right) H \right]$$
(4.18.243)

$$\sigma_{c,b} = \frac{6}{t_c^2} k_c \Biggl\{ \Biggl\{ \delta_c C_{m\delta} \beta_c - \zeta_c C_{m\theta} \Biggr\} P_t + \beta_c \frac{a_c^2}{E_c t_c} P_c^* - 6 \frac{\left(1 - \nu^{*2}\right)}{E^*} \Biggl\{ \frac{a_0}{h} \Biggr\}^3 \Biggl\{ C_{m\theta} + \frac{\beta_c h}{2} C_{m\delta} \Biggr\} \Biggl[P_e \Biggl\{ Z_\nu + Q_1 Z_m \Biggr\} + \frac{2}{a_o^2} Q_2 Z_m \Biggr] \Biggr\}$$
(4.18.244)

4.18.9.7 Calculation Procedure for Simply Supported Floating Tubesheets.

4.18.9.7.1 Scope. This procedure describes how to use the rules of 4.18.9.4 when the effect of the stiffness of the integral channel and/or shell is not considered.

4.18.9.7.2 Conditions of Applicability. This calculation applies only when the tubesheet is integral with the shell or channel (Configurations a, b, c, e, f, and A.)

4.18.9.7.3 Calculation Procedure. The calculation procedure outlined in **4.18.9.4** shall be performed accounting for the following modifications;

(a) Perform Steps 1 through 9.

(b) Perform Step 10 except as follows:

(1) The shell (Configuration a, b, and c) is not required to meet a minimum length requirement.

(2) The channel (Configurations a, e, f, and A) is not required to meet a minimum length requirement.

(3) Acceptance Criteria

(-*a*) Configuration a: If $\sigma_s \leq S_{PS,s}$ and $\sigma_c \leq S_{PS,c}$, then the shell and channel are acceptable. Otherwise increase the thickness of the overstressed component(s) (shell and/or channel) and return to Step 1.

(-b) Configuration b and c: If $\sigma_s \leq S_{PS,s}$ then the shell is acceptable. Otherwise increase the thickness of the shell and return to Step 1.

(-c) Configuration e, f and A: If $\sigma_c \leq S_{PS,c}$, then the channel is acceptable. Otherwise increase the thickness of the channel and return to Step 1.

(c) Do not perform Step 11

(*d*) Repeat Steps 1 through 7 for the design loading cases, with the following changes to Step 2 until the tubesheet stress criteria have been met:

(1) Configurations a, b, and c: $\beta_s = 0$, $k_s = 0$, $\lambda_s = 0$, $\delta_s = 0$.

(2) Configurations a, e, f, and A: $\beta_c = 0$, $k_c = 0$, $\lambda_c = 0$, $\delta_c = 0$.

4.18.11 BELLOWS EXPANSION JOINTS

Bellows expansion joints shall be designed in accordance with 4.19, as applicable. The expansion joint shall be designed for the axial displacement range over all load cases from one of the following equations for the axial displacement over the length of the thin-walled bellows element. Note that these may be used for flanged-and-flued or flanged-only expansion joints when the expansion joint analysis method uses the displacement over the expansion element only [see 4.18.12.1(c)].

(a) For heat exchangers with constant shell thickness and material, use the following equation:

$$\Delta_J = \frac{\sigma_{s,m} \left[t_s \left(D_s + t_s \right) \pi \right]}{J K_s} + \frac{\pi}{8} \frac{D_J^2 - D_s^2}{K_J} P_s$$

(*b*) For heat exchangers that have a different shell thickness and/or material adjacent to the tubesheet per 4.18.8.5, use the following equation:

$$\Delta J = \frac{\sigma_{s,m} \left[t_{s,1} \left(D_s + t_{s,1} \right) \pi \right]}{J K_s^*} + \frac{\pi}{8} \frac{D_J^2 - D_s^2}{K_I} P_s$$

4.18.12 FLEXIBLE SHELL ELEMENT EXPANSION JOINTS

4.18.12.1 Design.

(a) Flexible shell element expansion joints shall be designed in accordance with 4.20, as applicable.

-

(*b*) The higher stress limits shown in Table 4.18.5 may be applied in lieu of those in 4.20.5(a). These limits allow the expansion joint to yield, which decreases its stiffness. All calculations must be performed in both the corroded and uncorroded condition. To apply these limits it shall be shown that

(1) the design of the other components of the heat exchanger (i.e., tubesheet, tubes, shell, channel, etc.) is acceptable considering the decreased stiffness of the expansion joint. This may be accomplished by performing an additional evaluation of all of the components of the exchanger for design loading cases 1 through 4 (when $P_{sd,\min}$ and $P_{td,\min}$ are both zero, design loading case 4 does not need to be considered) with zero expansion joint stiffness. In 4.18.8, this may be accomplished by replacing the equation for P_e in 4.18.8.4, Step 6 with

$$P_e = \left[1 - \frac{1}{2}\left(\rho_s^2 + \frac{D_f^2}{D_o^2}\right)\right]P_s - P_t$$

(2) the rotational stiffness at the expansion joint corners and torus is not necessary to meet the stress limits for annular plates and straight flanges for the design loading cases shown in Table 4.18.5. This may be accomplished by modeling the corners and torus as simply supported to determine the stress in the annular plates and straight flanges.

(c) Displacements arising from pressure and differential thermal expansion shall be calculated for use in the expansion joint analysis. The length over which the displacement is taken is dependent upon the expansion joint analysis method. If the expansion joint analysis method utilizes displacements over the length of the expansion joint only, use the appropriate equation from 4.18.11. If the expansion joint analysis method utilizes displacements over the length between the inner tubesheet faces, L, use the appropriate equation from below.

(1) For heat exchangers with a constant shell thickness and material, use one of the following:

(-a) If the expansion joint analysis includes thermal expansion effects

$$\Delta_{S}^{T} = \frac{\sigma_{s,m} \left[t_{s} \left(D_{s} + t_{s} \right) \pi \right]}{J K_{s}} + L \alpha_{s,m} \left(T_{s,m} - T_{a} \right) - \frac{\pi D_{s}^{2} P_{s}}{2 K_{s}} v_{s} + \frac{\pi}{8} \frac{D_{f}^{2} - D_{s}^{2}}{K_{f}} P_{s}$$

(-b) If the expansion joint analysis does not include thermal expansion effects

$$\Delta_{S}^{M} = \frac{\sigma_{s,m} \left[t_{s} \left(D_{s} + t_{s} \right) \pi \right]}{J K_{s}} - \frac{\pi D_{s}^{2} P_{s}}{2 K_{s}} v_{s} + \frac{\pi}{8} \frac{D_{J}^{2} - D_{s}^{2}}{K_{J}} P_{s}$$

(2) For heat exchangers that have a different shell thickness and/or material adjacent to the tubesheet per 4.18.8.5, use one of the following:

(-a) If the expansion joint analysis includes thermal expansion effects

$$\Delta_{S}^{T} = \frac{\sigma_{s,m}[t_{s,1}(D_{s} + t_{s,1})\pi]}{JK_{s}^{*}} + \left[\left(L - \ell_{1} - \ell_{1}' \right) \alpha_{s,m} + \left(\ell_{1} + \ell_{1}' \right) \alpha_{s,m,1} \right] \left(T_{s,m} - T_{a} \right) - \frac{\pi D_{s}^{2} P_{s}}{2K_{s}^{*}} v_{s} + \frac{\pi}{8} \frac{D_{f}^{2} - D_{s}^{2}}{K_{f}} P_{s} \frac{D_{s}^{2}}{K_{s}} + \frac{\pi}{8} \frac{D_{f}^{2} - D_{s}^{2}}{K_{f}} P_{s} \frac{D_{s}^{2}}{K_{s}} + \frac{\pi}{8} \frac{D_{f}^{2} - D_{s}^{2}}{K_{f}} P_{s} \frac{D_{s}^{2}}{K_{s}} + \frac{\pi}{8} \frac{D_{f}^{2} - D_{s}^{2}}{K_{s}} + \frac{\pi}{8} \frac{D_{s}^{2} - D_{s}^{2}}{K_{s}} + \frac$$

(-b) If the expansion joint analysis does not include thermal expansion effects

$$\Delta_{S}^{M} = \frac{\sigma_{s,m} \left[t_{s,1} \left(D_{s} + t_{s,1} \right) \pi \right]}{J K_{s}^{*}} - \frac{\pi D_{s}^{2} P_{s}}{2 K_{s}^{*}} v_{s} + \frac{\pi}{8} \frac{D_{J}^{2} - D_{s}^{2}}{K_{J}} P_{s}$$

4.18.13 PRESSURE TEST REQUIREMENTS

(*a*) The shell side and the tube side of the heat exchanger shall be subjected to a pressure test in accordance with 4.1 and Part 8.

(*b*) Shipping bars on bellows expansion joints may be required to maintain assembly length during shipment and vessel fabrication. Shipping bars shall not be engaged or otherwise provide any restraint of the expansion joint during vessel pressure testing and operation [see 4.19.3.1(c) and 4.19.3.1(d)].

4.18.14 HEAT EXCHANGER MARKING AND REPORTS

4.18.14.1 Required Marking. The marking of heat exchangers shall be in accordance with Annex 2-F using the specific requirements for combination units (multi-chamber vessels). When the markings are grouped in one location and abbreviations for each chamber are used, they shall be as follows:

(*a*) The chambers shall be abbreviated SHELL for shell side and TUBES for tube side. This abbreviation shall precede the appropriate design data. For example, use the following for the shell side maximum allowable working pressure and for the tube side maximum allowable working pressure:

(1) SHELL FV & 2 000 kPa (FV & 300 psi) at 280°C (500°F)

(2) TUBES 1 000 kPa (150 psi) at 175°C (350°F)

(*b*) When the markings are different for each chamber, the chambers shall be abbreviated with a S for shell side and T for the tube side. For example, use "F-T" for forged construction on the tube side.

4.18.14.2 Supplemental Marking. A supplemental tag or marking shall be supplied on the heat exchanger to caution the user if there are any restrictions on the design, testing, or operation of the heat exchanger. The marking shall meet the requirements of 2-F.7, except that height of the characters for the caution required by (b) shall be at least 3 mm ($\frac{1}{8}$ in.) high. Supplemental marking shall be required for, but not limited to, the following:

(*a*) Common Elements - Shell-and-tube heat exchangers are combination units as defined in 4.1.8.1, and the tubes and tubesheets are common elements. The following marking is required when the common elements are designed for conditions less severe than the design conditions for which its adjacent chambers are stamped.

(1) Differential Pressure Design - When common elements such as tubes and tubesheets are designed for a differential design pressure, the heat exchanger shall be marked "Differential Design" in addition to meeting the requirements of 4.1.8.1. If the tubes and tubesheets are designed for a differential pressure of 150 psi, an example of the marking would be:

DIFFERENTIAL DESIGN: TUBES & TUBESHEETS 150 psi

(2) Mean Metal Temperature Design - When common elements such as tubes and tubesheets are designed for a maximum mean metal design temperature that is less than the maximum of the shell side and tube side design temperatures, the heat exchanger shall be marked "Max Mean Metal Temp" in addition to meeting the requirements of 4.1.8.1. If the tubes are designed for a maximum mean metal temperature of 400°F, an example of the marking would be:

MAX MEAN METAL TEMP: TUBES 400°F

(b) Fixed Tubesheet Heat Exchangers - Fixed tubesheet heat exchangers shall be marked with the following caution:

"The heat exchanger design has been evaluated for the range of conditions listed on Form A-4 of the MDR. It shall be reevaluated for conditions outside this range before being operated at them."

4.18.14.3 Manufacturer's Data Reports.

(*a*) *Common Elements.* When common elements such as tubes and tubesheets are designed for a differential pressure or a mean metal temperature, or both, that is less severe than the design conditions for which its adjacent chambers are stamped, the data for each common element that differs from the data for the corresponding chamber shall be indicated as required in 4.1.8.2 in the "Remarks" section of the Manufacturer's Data Report.

(b) Fixed Tubesheet Heat Exchangers. For each design and operating condition, the following information shall be indicated on Form A-4 of the Manufacturer's Data Report Supplementary Sheet for Shell-and-Tube Heat Exchangers. The operating conditions may be combined on this form where they are bounded by the operating pressure range, maximum metal temperatures, and axial differential thermal expansion range.

(1) Name of Condition. The first condition shown shall be the design condition. If there is more than one design condition or a differential pressure design condition, multiple lines may be used. Each different operating condition or range of operating conditions shall be listed.

(2) Design/Operating Pressure Ranges. Range of shell side and tube side pressures for each condition listed.

(3) Design/Operating Metal Temperatures. For each condition, the temperature at which the allowable stress was taken for the shell, channel, tube, and tubesheet shall be listed. Any metal temperature between the MDMT and the listed temperature is permitted, provided the resulting axial differential thermal expansion is within the listed range.

(4) Axial Differential Thermal Expansion Range. The minimum and maximum axial differential thermal expansion for each operating condition listed. If the minimum value is positive, zero shall be used for the minimum value. If the maximum value is negative, zero shall be used for the maximum value. Within the listed range of operating temperature and pressure, any combination of shell and tube axial mean metal temperatures is permitted, provided the resulting axial differential thermal expansion is within the listed range.

(23) 4.18.15 NOMENCLATURE

(a) Nomenclature for tubesheet extension (see 4.18.5)

- D_E = maximum of the shell and channel gasket inside diameters, but not less than the maximum of the shell and channel flange inside diameters
- G = diameter of gasket load reaction
 - = G_c for U-tube tubesheet Configuration b
 - = G_s for U-tube tubesheet Configuration e
 - = G_c for fixed tubesheet Configuration b
 - = G_c for stationary tubesheet Configuration b of a floating tubesheet exchanger
 - = G_s for stationary tubesheet Configuration e of a floating tubesheet exchanger
 - = G_c for floating tubesheet Configuration B of a floating tubesheet exchanger
 - = G_c or G_s for tubesheet Configuration d when applicable (eg. hydrotest)
- h_g = gasket moment arm, equal to the radial distance from the center line of the bolts to the line of the gasket reaction (see 4.16)
- h_r = minimum required thickness of the tubesheet extension
- P_s = shell side design pressure. For shell side vacuum, use a negative value for P_s
- P_t = tube side design pressure. For tube side vacuum, use a negative value for P_t
- S_a = allowable stress from Annex 3-A for the material of the tubesheet extension at ambient temperature
- S_{fe} = allowable stress from Annex 3-A for tubesheet extension material at tubesheet extension design temperature
- W = flange design bolt load
 - = W_g for gasket seating conditions
 - = W_o for operating conditions

(b) Nomenclature for determining tubesheet characteristics (see 4.18.6)

 A_L = total area of untubed lanes, $A_L = U_{L1}L_{L1} + U_{L2}L_{L2} + ... + U_{Ln}L_{Ln}$ (limited to $4D_op$)

- A_p = total area enclosed by C_p
- CC = channel coefficient denominator for conical channel
- $C_{m\delta}$ = channel coefficient relating radial deflection to moment
- $C_{m\Theta}$ = channel coefficient relating rotation to moment
- C_p = perimeter of the tube layout measured stepwise in increments of one tube pitch from the center-to-center of the outer most tubes (see Figure 4.18.14)
- $C_{q\delta}$ = channel coefficient relating radial deflection to radial shear
- $C_{q\Theta}$ = channel coefficient relating rotation to radial shear
- c_t = tubesheet corrosion allowance on the tube side, c_t = 0 for the uncorroded condition
- d = diameter of tube hole
- D_{cs} = inside diameter of cone at the small end (see Figure 4.18.15)
- D_o = equivalent diameter of outer tube limit circle
- d_t = nominal outside diameter of tubes
- d^* = effective tube hole diameter

- E = modulus of elasticity for tubesheet material at tubesheet design temperature
- E_{tT} = modulus of elasticity for tube material at tubesheet design temperature, T
- E^* = effective modulus of elasticity of tubesheet in perforated region, T
- *h* = tubesheet thickness
- h_g = tube side pass partition groove depth
- h'_{g} = effective tube side pass partition groove depth
- L_{L1}, L_{L2}, \dots = length(s) of untubed lane(s)
 - Lc = surface length of cone (see Figure 4.18.15)
 - $L_{\min,c}$ = minimum length of concentric conical channel of uniform thickness, t_c (see Figure 4.18.15)
 - l_{tx} = expanded length of tube in tubesheet, $0 \le l_{tx} \le h$. An expanded tube-to-tubesheet joint is produced by applying pressure inside the tube such that contact is established between the tube and tubesheet. In selecting an appropriate value of expanded length, the designer shall consider the degree of initial expansion, differences in thermal expansion, or other factors that could result in loosening of the tubes within the tubesheet.
 - p = tube pitch
 - p^* = effective tube pitch
 - r_o = radius to outermost tube hole center
 - S = allowable stress from Annex 3-A for tubesheet material at tubesheet design temperature,
 - S_{tT} = allowable stress from Annex 3-A for tube material at tubesheet design temperature. For a welded tube or pipe, use the allowable stress for the equivalent seamless product. If the allowable stress for the equivalent seamless product is not available, then divide the allowable stress of the welded product by 0.85.
 - T = tubesheet design temperature
 - t_t = nominal tube wall thickness

 U_{L1}, L_{L2}, \dots = center-to-center distance(s) between adjacent tube rows of untubed lane(s), but not to exceed 4p

- θ_{cc} = concentric channel cone half-apex angle, degr (see Figure 4.18.15)
 - = 0 deg for cylindrical and hemispherical channels
 - μ = basic ligament efficiency for shear
- μ^* = effective ligament efficiency for bending
- v^* = effective Poisson's ratio in perforated region of tubesheet
- ρ = tube expansion depth ratio

(c) Nomenclature for the design of U-tube tubesheets (see 4.18.7)

- A = outside diameter of tubesheet, except as limited by 4.18.4(b)
- C = bolt circle diameter (see 4.16)
- D_c = inside channel diameter
- D_s = inside shell diameter
- E = modulus of elasticity for tubesheet material at design temperature
- E_c = modulus of elasticity for channel material at design temperature
- E_s = modulus of elasticity for shell material at design temperature
- G_1 = midpoint of contact between flange and tubesheet
- G_c = diameter of channel gasket load reaction (see 4.16)
- G_s = diameter of shell gasket load reaction (see 4.16)
- *h* = tubesheet thickness
- P_s = shell-side design pressure. For shell-side vacuum, use a negative value for P_s .
- P_t = tube side design pressure. For tube side vacuum, use a negative value for P_t .
- $P_{td, \max}$ = maximum tube side design pressure
- $P_{td,min}$ = minimum tube side design pressure (negative if vacuum is specified, otherwise zero)
- $P_{sd, max}$ = maximum shell side design pressure
- $P_{sd,\min}$ = minimum shell side design pressure (negative if vacuum is specified, otherwise zero)
 - S = allowable stress from Annex 3-A for tubesheet material at tubesheet design temperature
 - S_c = allowable stress from Annex 3-A for channel material at design temperature. For a welded tube or pipe, use the allowable stress for the equivalent seamless product. If the allowable stress for the equivalent seamless product is not available, then divide the allowable stress of the welded product by 0.85.
 - S_s = allowable stress from Annex 3-A for shell material at design temperature. For a welded tube or pipe, use the allowable stress for the equivalent seamless product. If the allowable stress for the equivalent seamless product is not available, then divide the allowable stress of the welded product by 0.85.
 - S_v = yield strength from Annex 3-D for tubesheet material at tubesheet design temperature

- $S_{y,c}$ = yield strength from Annex 3-D for channel material at design temperature
- $S_{y,s}$ = yield strength from Annex 3-D for shell material at design temperature
- $S_{PS,c}$ = allowable primary plus secondary stress evaluated using 4.1.6.3 for channel material at design temperature
- $S_{PS,s}$ = allowable primary plus secondary stress evaluated using 4.1.6.3 for shell material at design temperature
 - t_c = channel thickness
 - t_s = shell thickness
 - W_c = channel flange design bolt load for the gasket seating condition (see 4.16)
 - W_s = shell flange design bolt load for the gasket seating condition (see 4.16)

 $W_{\text{max}} = \text{MAX}[(W_c), (W_s)]$

 W_{dc} = channel flange design bolt load (see W_o , 4.16)

 W_{ds} = shell flange design bolt load (see W_o , 4.16)

 $W_{d,\max} = MAX[(W_{dc}), (W_{ds})]$

- W^* = tubesheet design bold load determined in accordance with Table 4.18.6
- v_c = Poisson's ratio of channel material
- v_s = Poisson's ratio of shell material
- (d) Nomenclature for the design of fixed or floating tubesheets (see 4.18.8 and 4.18.9)
 - A = outside diameter of tubesheet, except as limited by 4.18.4(b)
 - a_c = radial channel dimension
 - a_o = equivalent radius of outer tube limit circle
 - a_s = radial shell dimension
 - C = bolt circle diameter (see 4.16)
 - D_c = inside channel diameter
- $D_{ecc,L}$ = eccentric cone inside diameter at the large end (see Figure 4.18.17)
- $D_{ecc,S}$ = eccentric cone inside diameter at the small end (see Figure 4.18.17)
 - D_I = inside diameter of the expansion joint at its convolution height
 - D_s = inside shell diameter
 - $D_{s,L}$ = large cylinder inside diameter (see Figure 4.18.17)
 - d_t = nominal outside diameter of tubes
 - E = modulus of elasticity for tubesheet material at T
 - E_c = modulus of elasticity for channel material at T_c
- E_{ecc} = modulus of elasticity for eccentric cone material at T_s
- $E_{ecc,w}$ = joint efficiency (longitudinal stress) for eccentric cone
 - E_s = modulus of elasticity for shell material at T_s
 - $E_{s,1}$ = modulus of elasticity for shell material adjacent to the tubesheet at T_s
 - $E_{s,L}$ = modulus of elasticity for large cylinder material at T_s
- $E_{s,L,w}$ = joint efficiency (longitudinal stress) for large cylinder
- $E_{s,w}$ = joint efficiency (longitudinal stress) for shell
 - E_t = modulus of elasticity for tube material at T_t
- $fact_c$ = factor used in the elastic-plastic analysis to account for any yielding of the channel
- $fact_s = factor used in the elastic-plastic analysis to account for any yielding of the shell$
 - G_1 = midpoint of contact between flange and tubesheet
 - G_c = diameter of channel gasket load reaction (see 4.16)
 - G_s = diameter of shell gasket load reaction (see 4.16)
 - h = tubesheet thickness
 - J = ratio of expansion joint to shell axial rigidity (J = 1.0 if no expansion joint)
 - K_i = axial rigidity of expansion joint, total force/elongation
 - \dot{k} = constant accounting for the method of support for the unsupported tube span under consideration
 - = 0.6 for unsupported spans between two tubesheets
 - = 0.8 for unsupported spans between a tubesheet and a tube support
 - = 1.0 for unsupported spans between two tube supports
 - l = unsupported tube span under consideration
- l_1 , $l_1' =$ lengths of shell thickness $t_{s,1}$ adjacent to the tubesheets
 - ℓ_t = largest equivalent unsupported buckling length of the tube considering the unsupported tube spans, ℓ , and their corresponding method of support, k
 - L = tube length between inner tubesheet faces, $L = L_t 2h$
- L_{ecc} = eccentric cone shortest length from small end to large end (see Figure 4.18.17)

 L_s = axial length of small cylinder (see Figure 4.18.17) $L_{s,L}$ = axial length of large cylinder (see Figure 4.18.17) L_t = tube length between outer tubesheet faces N_t = number of tubes P_e = effective pressure acting on tubesheet P_s = shell side design or operating pressure, as applicable. For shell side vacuum, use a negative value for P_s $P_{sd,max}$ = maximum shell side design pressure $P_{sd,min}$ = minimum shell side design pressure (negative if vacuum is specified, otherwise zero) $P_{sox, max}$ = max. (0, maximum shell-side operating pressure for operating condition x) $P_{sox,min}$ = min. (0, minimum shell-side operating pressure for operating condition x) P_t = tube side design or operating pressure, as applicable. For tube side vacuum, use a negative value for P_t . $P_{td, \max}$ = maximum tube side design pressure $P_{td,\min}$ = minimum tube side design pressure (negative if vacuum is specified, otherwise zero) $P_{tox, max}$ = max. (0, maximum tube-side operating pressure for operating condition x) $P_{tox,min}$ = min. (0, minimum tube-side operating pressure for operating condition x) S = allowable stress from Annex 3-A for tubesheet material at T S_c = allowable stress from Annex 3-A for channel material at T_c . For a welded tube or pipe, use the allowable stress for the equivalent seamless product. If the allowable stress for the equivalent seamless product is not available, then divide the allowable stress of the welded product by 0.85. S_{ecc} = allowable stress from Annex 3-A for eccentric cone material at T_s $S_{ecc,b}$ = maximum allowable longitudinal compressive stress in accordance with 4.4.12.3 for eccentric cone material at T_s S_{PS} = allowable primary plus secondary stress evaluated using 4.1.6.3 for tubesheet material at temperature T $S_{PS,c}$ = allowable primary plus secondary stress evaluated using 4.1.6.3 for channel material at temperature T_c $S_{PS,ecc}$ = allowable primary plus secondary stress evaluated using 4.1.6.3 for eccentric cone material at T_s $S_{PS,s}$ = allowable primary plus secondary stress evaluated using 4.1.6.3 for shell material at temperature T_s $S_{PS,s,1}$ = allowable primary plus secondary stress evaluated using 4.1.6.3 for shell material adjacent to the tubesheet at temperature T_s $S_{PS,s,L}$ = allowable primary plus secondary stress evaluated using 4.1.6.3 for large cylinder material at T_s S_s = allowable stress from Annex 3-A for shell material at T_s . For a welded tube or pipe, use the allowable stress for the equivalent seamless product. If the allowable stress for the equivalent seamless product is not available, then divide the allowable stress of the welded product by 0.85. $S_{s,1}$ = allowable stress from Annex 3-A for shell material adjacent to the tubesheets at T_s $S_{s,b}$ = maximum allowable longitudinal stress in accordance with 4.4.12.2 for the shell $S_{s,b,1}$ = maximum allowable longitudinal stress in accordance with 4.4.12.2 for the shell adjacent to the tubesheets $S_{s,L}$ = allowable stress from Annex 3-A for large cylinder material at T_s $S_{s,L,b}$ = maximum allowable longitudinal compressive stress in accordance with 4.4.12.2 for large cylinder material at T_s S_t = allowable stress from Annex 3-A for tube material at T_t . For a welded pipe or tube, use the allowable stress from Annex 3-A for the equivalent seamless product. When the allowable stress for the equivalent seamless product is not available, divide the allowable stress of the welded product by 0.85. S_v = yield strength from Annex 3-D for tubesheet material at T $S_{y,c}$ = yield strength from Annex 3-D for channel material at T_c $S_{v,s}$ = yield strength from Annex 3-D for shell material at T_s $S_{y,s,1}$ = yield strength from Annex 3-D for shell material adjacent to the tubesheets at T_s $S_{y,t}$ = yield strength from Annex 3-D for tube material at T_t T = tubesheet design temperature for the design condition or operating metal temperature for operating condition x, as applicable T' = tubesheet metal temperature at the rim (see Figure 4.18.18) T_a = ambient temperature, 20°C (70°F) T_c = channel design temperature for the design condition or operating metal temperature for operating condi-

- tion *x*, as applicable t_c = channel thickness
- T'_{c} = channel metal temperature at the tubesheet
- T'_{cx} = channel metal temperature at the tubesheet for operating condition x
- t_{ecc} = eccentric cone wall thickness (see Figure 4.18.17)

- T_s = shell design temperature for the design condition or operating metal temperature for operating condition x, as applicable
- t_s = shell thickness
- T'_s = shell metal temperature at the tubesheet
- $t_{s,1}$ = shell thickness adjacent to the tubesheets
- $t_{s,L}$ = large cylinder wall thickness (see Figure 4.18.17)
- $T_{s,m}$ = mean shell metal temperature along shell length
- $T_{s,mx}$ = shell axial mean metal temperature for operating condition x, as applicable
 - T'_{sx} = shell metal temperature at the tubesheet for operating condition x
 - T_t = tube design temperature for the design condition or operating metal temperature for operating condition x, as applicable
 - t_t = nominal tube wall thickness
- $T_{t,m}$ = mean tube metal temperature along tube length
- $T_{t,mx}$ = tube axial mean metal temperature for operating condition x, as applicable
 - T'_{x} = tubesheet metal temperature at the rim for operating condition x
 - W^* = tubesheet design bolt load determined in accordance with Table 4.18.6
 - W_c = channel flange design bolt load for the gasket seating condition (see 4.16)
- W_{dc} = channel flange design bolt load (see W_o , 4.16)

 $W_{dmax} = MAX[(W_{dc}), (W_{ds})]$

 W_{ds} = shell flange design bolt load (see W_o , 4.16)

- $W_{\max} = MAX[(W_c), (W_s)]$
 - W_s = shell flange design bolt load for the gasket seating condition (see 4.16)
 - W_t = tube-to-tubesheet joint load
 - x = 1,2,3,...n, integer denoting applicable operating condition under consideration, (e.g., normal operating, start-up, shutdown, cleaning, upset)
 - X_{L}' = equivalent line load acting on the large end cylinder due to heat exchanger constraint
 - X_{s}' = equivalent line load acting on the small end cylinder due to heat exchanger constraint
 - α' = mean coefficient of thermal expansion of tubesheet material at T'
 - α'_{c} = mean coefficient of thermal expansion of channel material at T'_{c}
- $\alpha_{ecc,m}$ = mean coefficient of thermal expansion of eccentric cone material at $T_{s,m}$
 - α_s = mean coefficient of thermal expansion of shell material at T_s
 - $\alpha_{s,m}$ = mean coefficient of thermal expansion of shell material at $T_{s,m}$
- $\alpha_{s,m,1}$ = mean coefficient of thermal expansion of shell material adjacent to the tubesheets at $T_{s,m}$
- $\alpha_{s,m,L}$ = mean coefficient of thermal expansion of large cylinder material at $T_{s,m}$
 - $\alpha_{t,m}$ = mean coefficient of thermal expansion of tube material at $T_{t,m}$
 - γ = axial differential thermal expansion between tubes and shell
 - Δ_I = axial displacement over the length of the thin-walled bellows element (see 4.18.11)
 - Δ_s = shell axial displacement over the length between the inner tubesheet faces, L [see 4.18.12.1(c)]
 - θ_{ecc} = eccentric cone half-apex angle, deg (see Figure 4.18.17)
 - v = Poisson's ratio of tubesheet material
 - v_c = Poisson's ratio of channel material
 - v_{ecc} = Poisson's ratio of eccentric cone material
 - v_s = Poisson's ratio of shell material
 - $v_{s,L}$ = Poisson's ratio of large cylinder material
 - v_t = Poisson's ratio of tube material

4.18.16 TABLES

^h /p	A_0	<i>A</i> ₁	A 2	A 3	A_4	B_0	B ₁	B ₂	B ₃	<i>B</i> ₄
0.10	0.0353	1.2502	-0.0491	0.3604	-0.6100	-0.0958	0.6209	-0.8683	2.1099	-1.6831
0.15						0.8897	-9.0855	36.1435	-59.5425	35.8223
0.25	0.0135	0.9910	1.0080	-1.0498	0.0184	0.7439	-4.4989	12.5779	-14.2092	5.7822
0.50	0.0054	0.5279	3.0461	-4.3657	1.9435	0.9100	-4.8901	12.4325	-12.7039	4.4298
1.00						0.9923	-4.8759	12.3572	-13.7214	5.7629
2.00	-0.0029	0.2126	3.9906	-6.1730	3.4307	0.9966	-4.1978	9.0478	-7.9955	2.2398

GENERAL NOTES:

(a) $E^*/E = A_0 + A_1\mu^* + A_2(\mu^*)^2 + A_3(\mu^*)^3 + A_4(\mu^*)^4$ (b) $v^* = B_0 + B_1\mu^* + B_2(\mu^*)^2 + B_3(\mu^*)^3 + B_4(\mu^*)^4$ (c) These coefficients are only valid for $0.1 \le \mu^* \le 0.6$. Data for the range $0.1 \le \mu^* \le 1.0$ is provided in Annex 5-E.

(d) If h/p < 0.1, use h/p = 0.1. (e) If h/p > 2.0, use h/p = 2.0.

h_{p}	A ₀	<i>A</i> ₁	A 2	<i>A</i> ₃	A 4	B ₀	<i>B</i> ₁	B ₂	B ₃	<i>B</i> ₄
0.10	0.0676	1.5756	-1.2119	1.7715	-1.2628	-0.0791	0.6008	-0.3468	0.4858	-0.360
0.15						0.3345	-2.8420	10.9709	-15.8994	8.351
0.25	0.0250	1.9251	-3.5230	6.9830	-5.0017	0.4296	-2.6350	8.6864	-11.5227	5.8544
0.50	0.0394	1.3024	-1.1041	2.8714	-2.3994	0.3636	-0.8057	2.0463	-2.2902	1.1862
1.00						0.3527	-0.2842	0.4354	-0.0901	-0.1590
2.00	0.0372	1.0314	-0.6402	2.6201	-2.1929	0.3341	0.1260	-0.6920	0.6877	-0.0600

GENERAL NOTES:

GENERAL NOTES: (a) $E^*/E = A_0 + A_1\mu^* + A_2(\mu^*)^2 + A_3(\mu^*)^3 + A_4(\mu^*)^4$ (b) $\nu^* = B_0 + B_1\mu^* + B_2(\mu^*)^2 + B_3(\mu^*)^3 + B_4(\mu^*)^4$ (c) These coefficients are only valid for $0.1 \le \mu^* \le 0.6$. Data for the range $0.1 \le \mu^* \le 1.0$ is provided in Annex 5-E. (d) If h/p < 0.1, use h/p = 0.1. (e) If h/p > 2.0, use h/p = 2.0.

Table 4.18.3Evaluation of Z_a , Z_d , Z_v , Z_w , Z_m , and F_m
Evaluation of Kelvin Functions <i>ber</i> , <i>bei</i> , <i>ber</i> , and <i>bei</i> Relative to x [Note (1)]
$ber\left(x\right) = \frac{n = m - 1}{n = 0} \left(-1\right)^{n} \frac{\left(x/2\right)^{4n}}{\left(2n\right)!^{2}} = 1 - \frac{\left(x/2\right)^{4}}{\left(2\right)!^{2}} + \frac{\left(x/2\right)^{8}}{\left(4\right)!^{2}} - \frac{\left(x/2\right)^{12}}{\left(6\right)!^{2}} + \dots$
$bei\left(x\right) = \frac{n}{n} \sum_{n=1}^{\infty} (-1)^n - \frac{1(x/2)^{4n-2}}{(2n-1)!^2} = \frac{(x/2)^2}{(1)!^2} - \frac{(x/2)^6}{(3)!^2} + \frac{(x/2)^{10}}{(5)!^2} - \dots$
$ber'\left(x\right) = \frac{n}{n} \sum_{n=1}^{\infty} {m \choose 1} \frac{2n(x/2)^{4n-1}}{(2n)!^2} = -\frac{2(x/2)^3}{(2)!^2} + \frac{4(x/2)^7}{(4)!^2} - \frac{6(x/2)^{11}}{(6)!^2} + \dots$
$bei'\left(x\right) = \sum_{n=1}^{n} \sum_{n=1}^{m} (-1)^{n-1} \frac{(2n-1)(x/2)^{4n-3}}{(2n-1)!^2} = \frac{(x/2)^1}{(1)!^2} - \frac{3(x/2)^5}{(3)!^2} + \frac{5(x/2)^9}{(5)!^2} - \dots$
Ψ_i Functions for Determination of Z_a , Z_d , Z_v , Z_w , Z_m , and F_m Relative to x
$\Psi_1(x) = bei(x) + \left(\frac{1-v^*}{x}\right)ber'(x)$
$\Psi_2(x) = ber(x) - \left(\frac{1-v^*}{x}\right)bei'(x)$

Evaluation o	Table 4.18.3 of Z_a , Z_d , Z_v , Z_w , Z_m , and F_m (Cont'd)
E	Evaluation of Z_a, Z_d, Z_v, Z_w, Z_m at X_a
	$Z_d = \frac{ber[X_a]\Psi_2[X_a] + bei[X_a]\Psi_1[X_a]}{X_a^3 Z_a}$
	$Z_{v} = \frac{ber'(X_{a})\Psi_{2}(X_{a}) + ber'(X_{a})\Psi_{1}(X_{a})}{X_{a}^{2}Z_{a}}$
	$Z_{W} = \frac{ber'[X_{a}]ber[X_{a}] + bei'[X_{a}]bei(X_{a})}{X_{a}^{2}Z_{a}}$
	$Z_m = \frac{\left[ber'[X_a]\right]^2 + \left[bei'[X_a]\right]^2}{X_a Z_a}$
where	
$Z_a = bei'(X_a)\psi_2(X_a) - ber'(X_a)\psi_1(X_a)$	
Colculate the functions Q (y) and Q (y) valating to y	Evaluation of F_m From $0 \rightarrow X_a$
Calculate the functions $Q_m(x)$ and $Q_v(x)$ relative to x .	$Q_m(x) = \frac{bei'(X_a)\Psi_2(x) - ber'(X_a)\Psi_1(x)}{Z_a}$
	$Q_{\nu}(x) = \frac{\Psi_{1}(x_{a})\Psi_{2}(x) - \Psi_{2}(x_{a})\Psi_{1}(x)}{x_{a}z_{a}}$
For each loading case (note that Q_3 is a dependent or	the load case being evaluated), calculate $F_m(x)$ relative to x.
	$F_m(x) = \frac{Q_v(x) + Q_3 \cdot Q_m(x)}{2}$
F_m is the maximum of the absolute value of $F_m(x)$ as	x varies from $0 \to X_a$ such that $0 \le x \le X_a$.
	$F_m = \max\left[\left F_m(\mathbf{x}) \right \right]$

NOTE: (1) Use $m = 4 + X_a/2$ terms (rounded to the nearest integer) to obtain an adequate approximation of the Kelvin Functions and their derivatives.

4.18.16

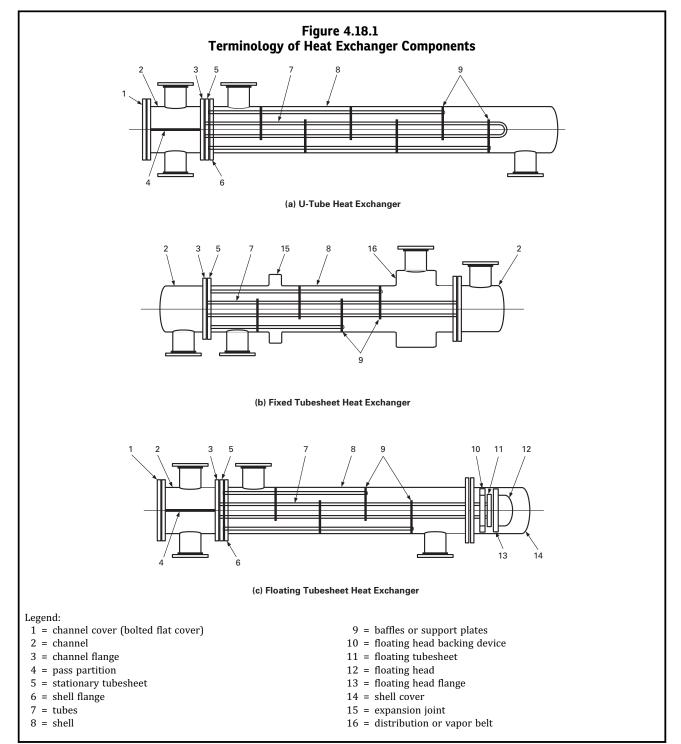
Table 4.18.4Evaluation of $F_{t,min}$ and $F_{t,max}$	
Equations for the Determination of $F_{t,\min}$ and $F_{t,\max}$	
Calculate the Kelvin functions, the Ψ_i functions and Z_a from Table 4.18.3. Calculate functions $Z_d(x)$ and $Z_w(x)$ relative to x .	
$Z_d(x) = \frac{\Psi_2(x_a) \cdot ber(x) + \Psi_1(x_a) \cdot bei(x)}{X_a^3 \cdot Z_a}$	
$Z_{W}(x) = \frac{ber'(X_{a}) \cdot ber(x) + bei'(X_{a}) \cdot bei(x)}{X_{a}^{2} \cdot Z_{a}}$	
For each loading case, calculate $F_t(x)$ relative to x. When $P_e \neq 0$	
$F_t(x) = \left[Z_d(x) + Q_3 \cdot Z_w(x) \right] \cdot \frac{X_a^4}{2}$	
When $P_e = 0$	
$F_t\left(x\right) = Z_{w}\left(x\right) \cdot \frac{X_a^4}{2}$	
Calculate the minimum and maximum values, $F_{t,\min}$ and $F_{t,\max}$, of $F_t(x)$ as x varies from $0 \rightarrow X_a$ such that $0 \le x \le X_a$. $F_{t,\min}$ and $F_{t,\max}$ may be or negative.	positiv
$F_{t,\min} = \min[F_t(x)]$	
$F_{t,\max} = \max\left[F_t(x)\right]$	

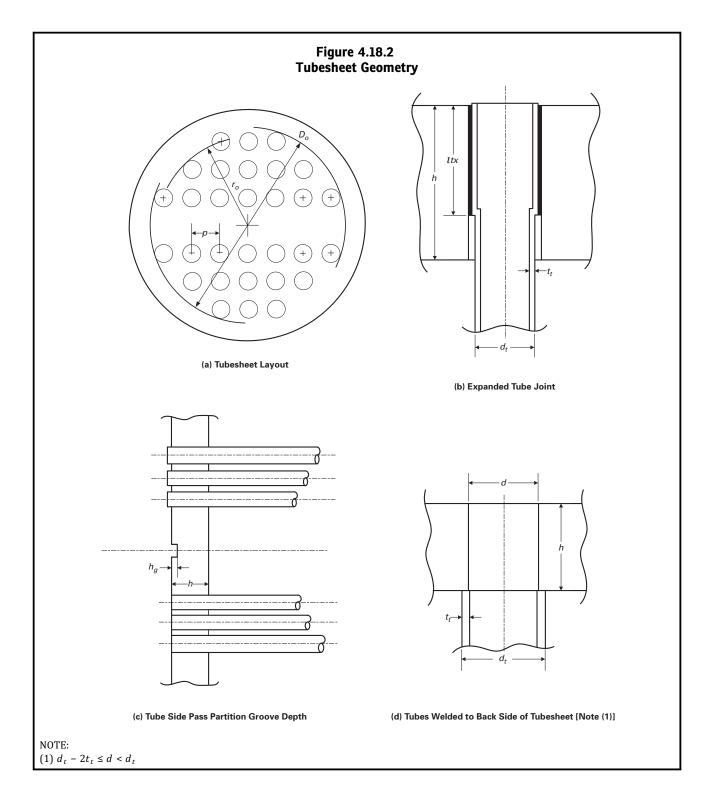
Table 4.18.5
Flexible Shell Element Expansion Joint Load Cases and Stress Limits

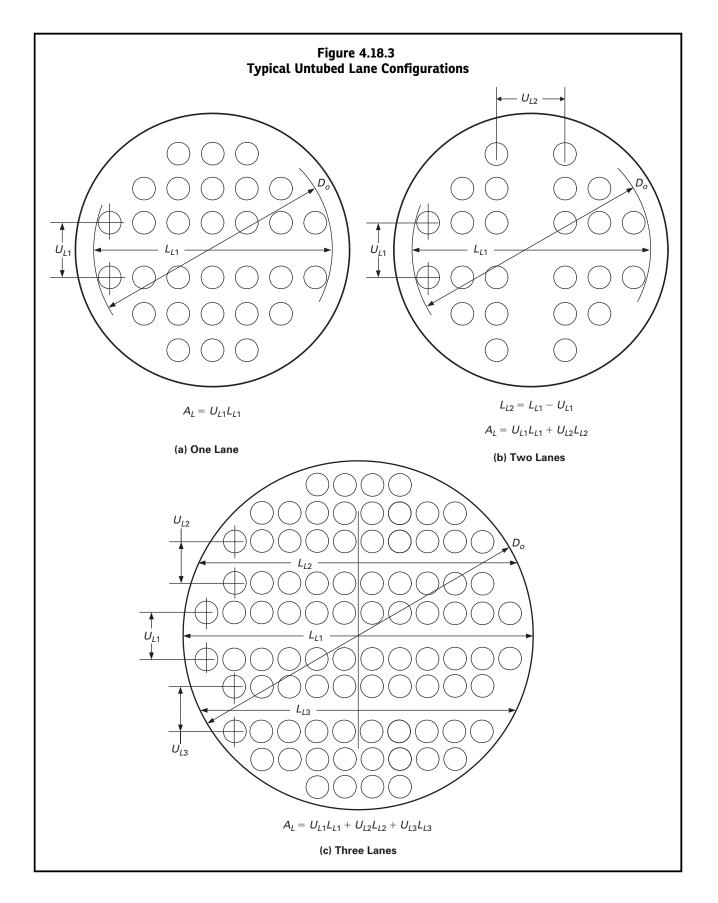
					Maximum Stress			
				Differential .	Membrane Corners and Torus	Membrane Plus Bending		
	Loading Case	Shell Side Pressure, P _s	Tube Side Pressure, P _t	Thermal Expansion		Corners and Torus	Annular Plates	Straight Flanges
Design	1	P _{sd,min}	$P_{td,\max}$	No	1.5 <i>S</i>	S_{PS}	1.5 <i>S</i>	1.5 <i>S</i>
	2	$P_{sd,max}$	$P_{td,\min}$	No	1.5 <i>S</i>	S_{PS}	1.5 <i>S</i>	1.5 <i>S</i>
	3	$P_{sd,max}$	$P_{td,max}$	No	1.5 <i>S</i>	S_{PS}	1.5 <i>S</i>	1.5 <i>S</i>
	4	$P_{sd,\min}$	$P_{td,\min}$	No	1.5 <i>S</i>	S_{PS}	1.5 <i>S</i>	1.5 <i>S</i>
Operating	1	None	P_{tox}	Yes	S_{PS}	S_{PS}	S_{PS}	S_{PS}
	2	P_{sox}	None	Yes	S_{PS}	S_{PS}	S_{PS}	S_{PS}
	3	P_{sox}	P_{tox}	Yes	S_{PS}	S_{PS}	S_{PS}	S_{PS}
	4	None	None	Yes	S_{PS}	S_{PS}	S_{PS}	S_{PS}

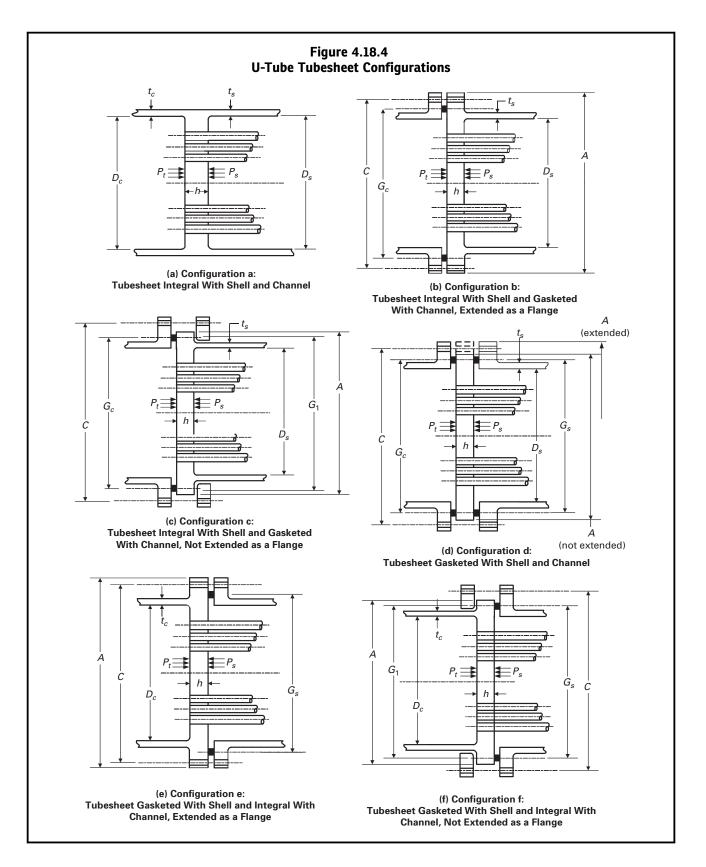
Table 4.18.6 Tubesheet Effective Bolt Load, W*						
		Design Lo		Operating Loading Case		
Configuration	1	2	3	4	1-4	
а	0	0	0	0	0	
b	W_{dc}	0	W_{dc}	0	W _c	
С	W_{dc}	0	W_{dc}	0	W _c	
d	W_{dc}	W_{ds}	$W_{d \max}$	0	W _{max}	
e	0	W_{ds}	W_{ds}	0	Ws	
f	0	W_{ds}	W_{ds}	0	Ws	
А	0	0	0	0	0	
В	W_{dc}	0	W_{dc}	0	W _c	
С	W_{dc}	0	W_{dc}	0	W _c	
D	0	0	0	0	0	

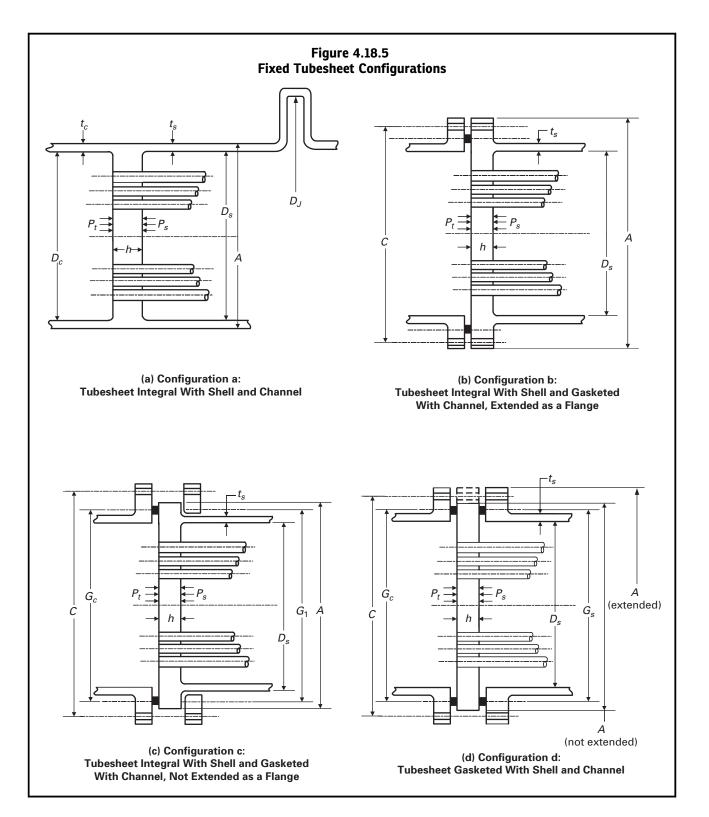
Load Combinations Req	Table 4.18.7 uired to Evaluate the Heat Exchange	r for the Design Condition
Design Loading Case	Shell Side Design Pressure, P _s	Tube Side Design Pressure, P
1	$P_{sd,\min}$	$P_{td, \max}$
2	$P_{sd, \max}$	$P_{td,\min}$
3	$P_{sd, \max}$	$P_{td, \max}$
4	$P_{sd,\min}$	$P_{td,\min}$

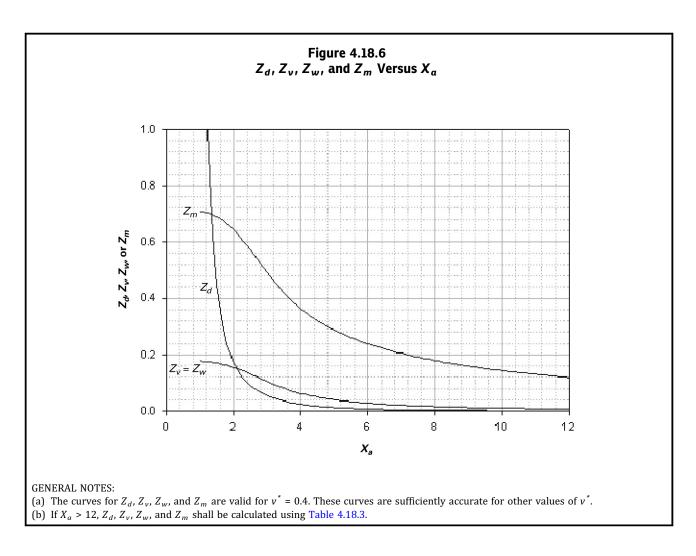

GENERAL NOTE: When $P_{sd,\min}$ and $P_{td,\min}$ are both zero, design loading case 4 does not need to be considered.

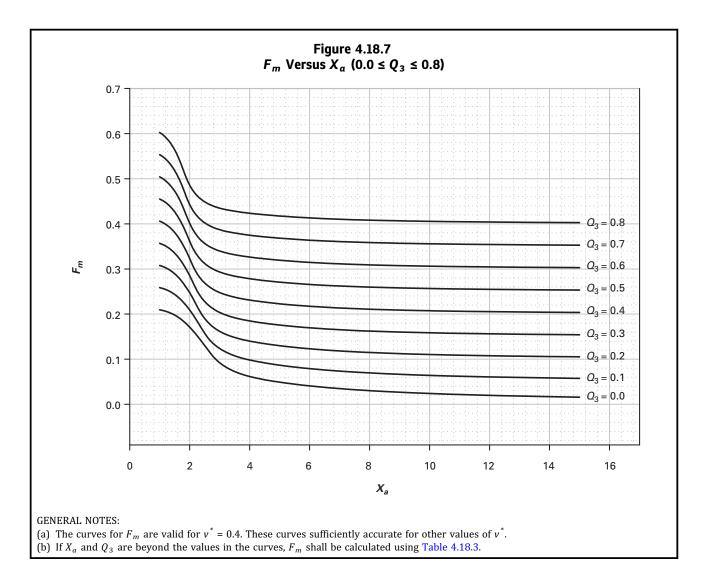

Г

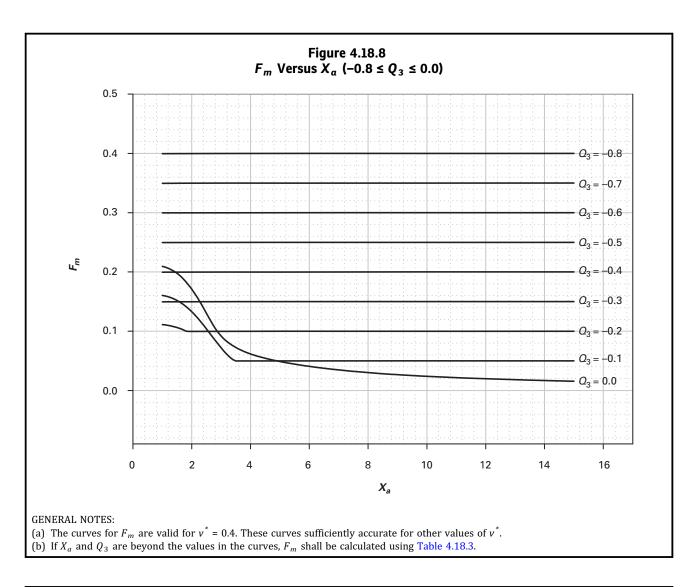

Load Combinations Required to Evaluate the Heat Exchanger for Each Operating Condition x								
	Operating	g Pressure	Axial Mean Metal Temperature					
Operating Loading Case	Shell Side, P _s	Tube Side, <i>P</i> _t	Tubes, <i>T_{t,m}</i>	Shell, T _{s,m}				
1	P _{sox, min}	P _{tox, max}	$T_{t,mx}$	$T_{s,mx}$				
2	Psox, max	P _{tox} , min	$T_{t,mx}$	$T_{s,mx}$				
3	Psox, max	Ptox, max	$T_{t,mx}$	$T_{s,mx}$				
4	$P_{sox, \min}$	$P_{tox, \min}$	$T_{t,mx}$	$T_{s,mx}$				

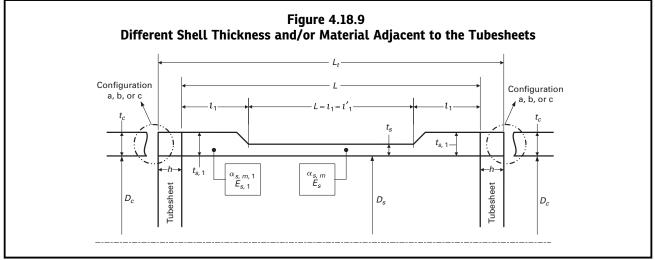

Table 4.18.9 Load Combinations Required to Evaluate the Heat Exchanger for Each Operating Condition <i>x</i>									
	Operating	Pressure	Axial Mean Met	al Temperature	I	Metal Temperatur	e		
Operating Loading Case	Shell Side, P _s	Tube Side, <i>P</i> _t	Tubes, <i>T_{t,m}</i>	Shell, T _{s,m}	Tubesheet at the RIM, <i>T'</i>	Channel at Tubesheet, <i>T'c</i>	Shell at Tubesheet, <i>T'</i>		
1	P _{sox, min}	P _{tox, max}	$T_{t,mx}$	$T_{s,mx}$	T'_{x}	T'_{cx}	T'_{sx}		
2	Psox, max	Ptox, min	$T_{t,mx}$	$T_{s,mx}$	T'_x	T'_{cx}	T'_{sx}		
3	Psox, max	Ptox, max	$T_{t,mx}$	$T_{s,mx}$	T'_x	T'_{cx}	T'_{sx}		
4	$P_{sox, \min}$	$P_{tox, \min}$	$T_{t,mx}$	$T_{s,mx}$	T'_{x}	T'_{cx}	T'_{sx}		


4.18.17 FIGURES

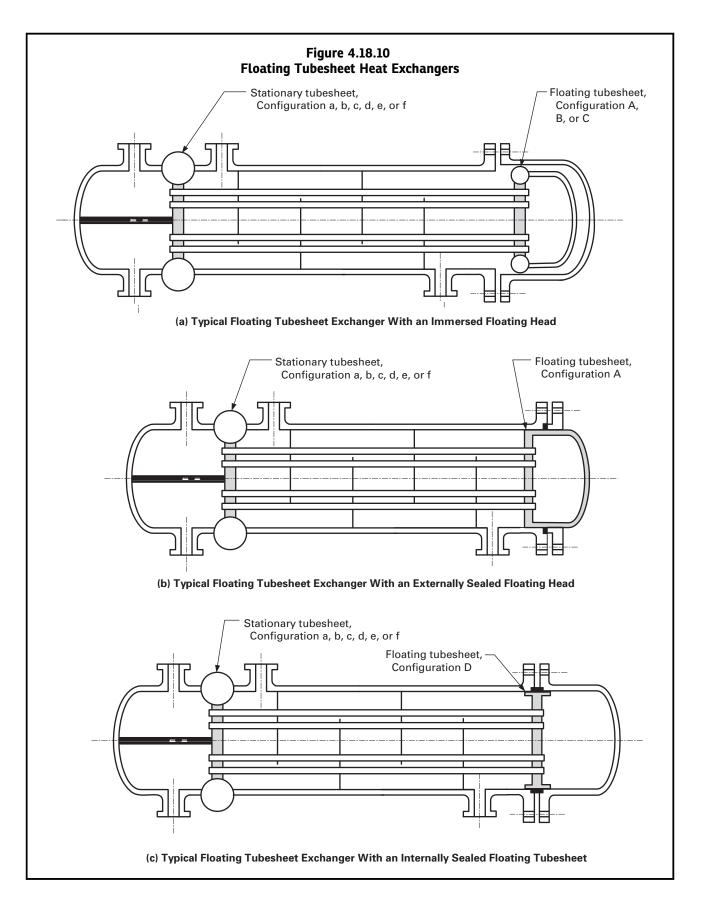


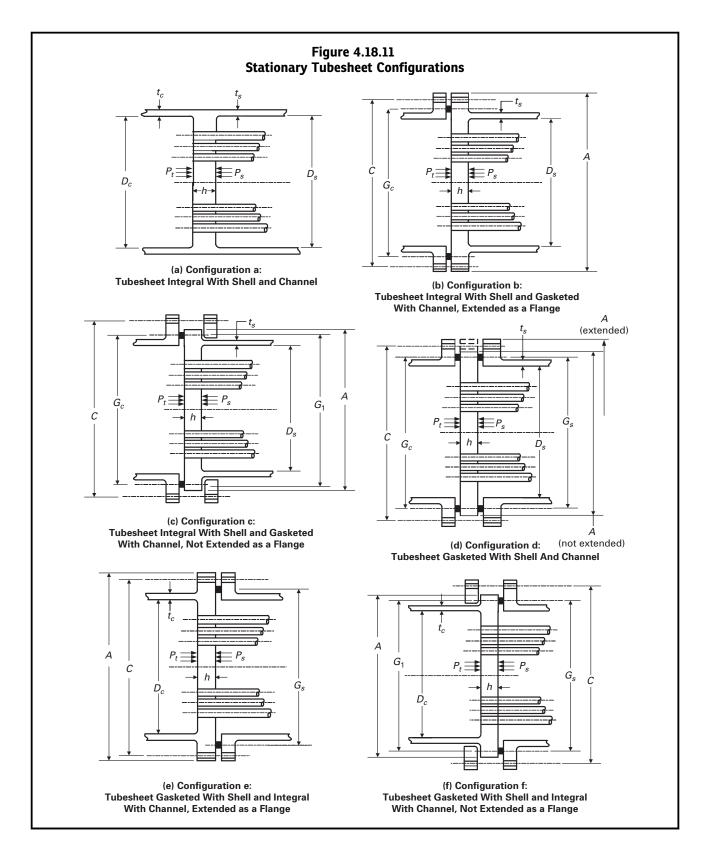


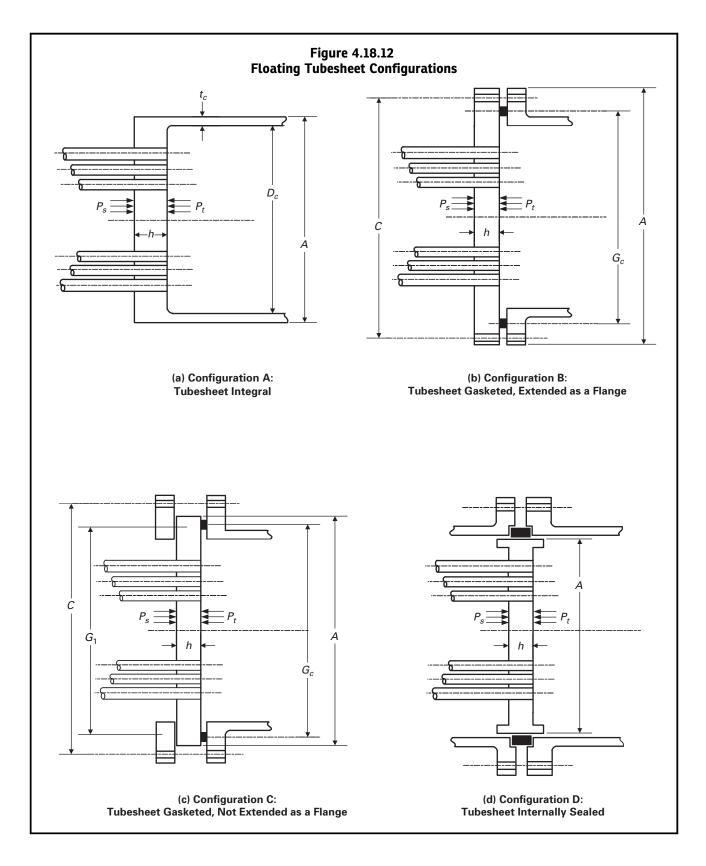


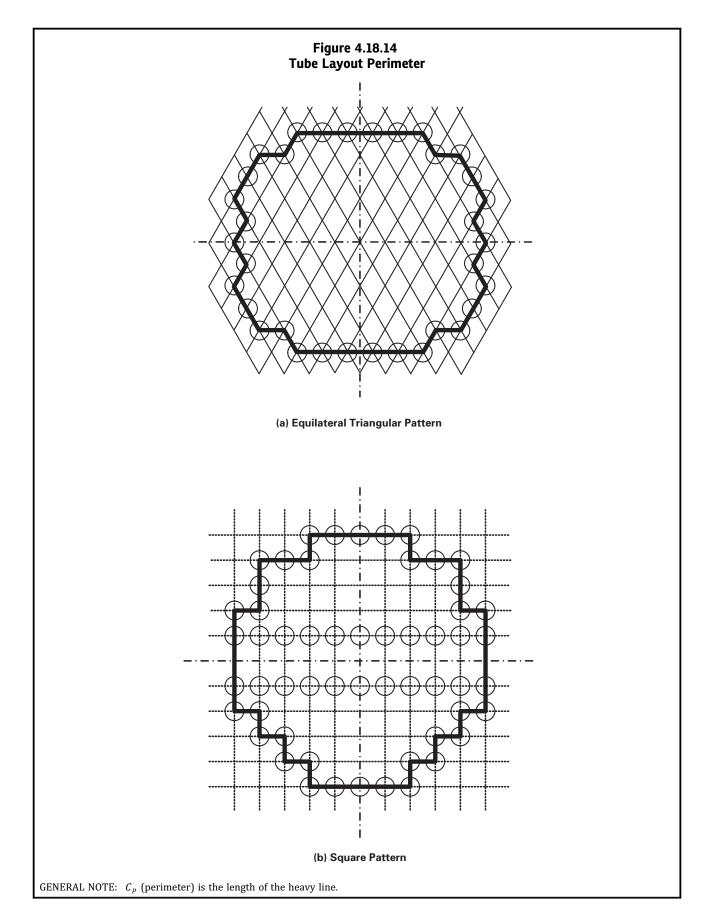


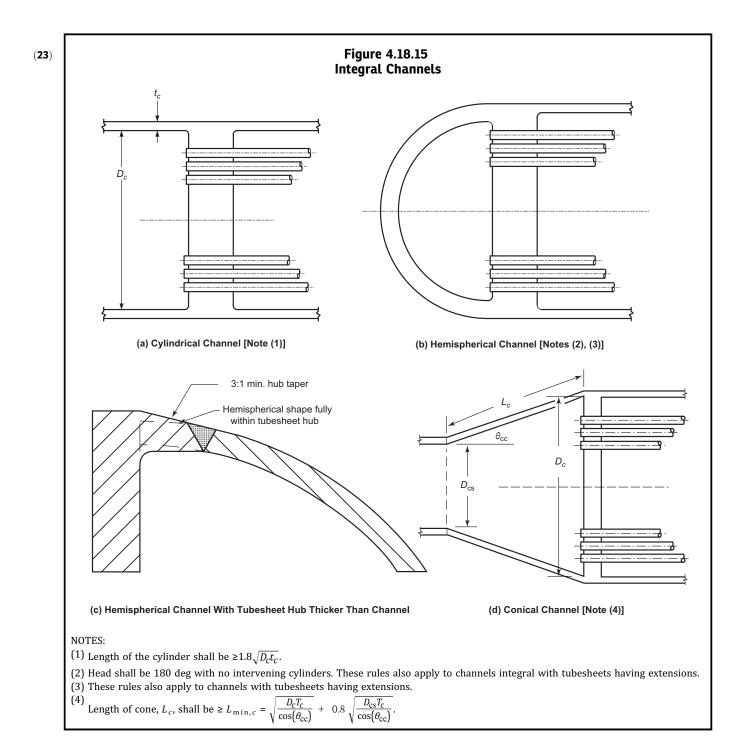
4.18.17

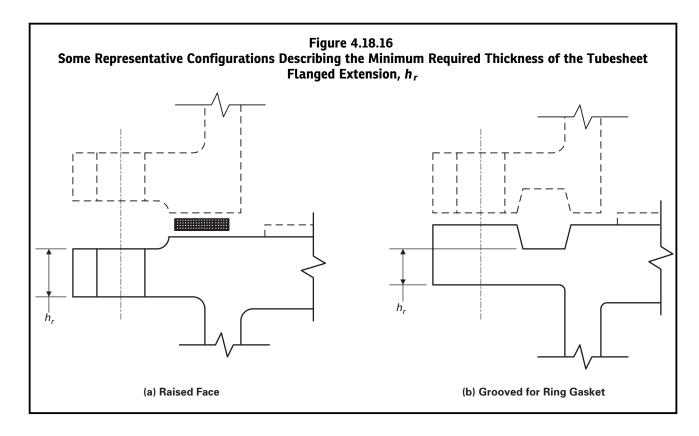


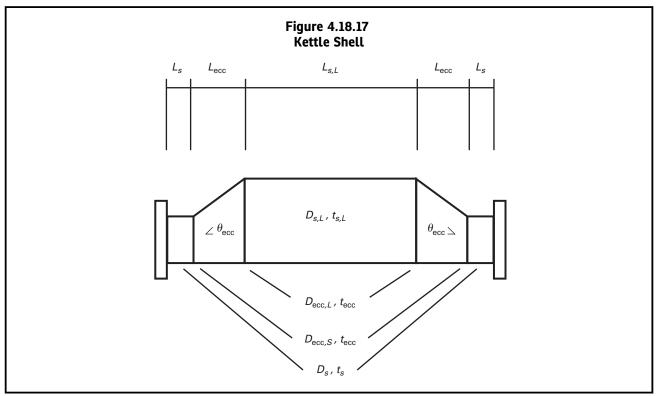


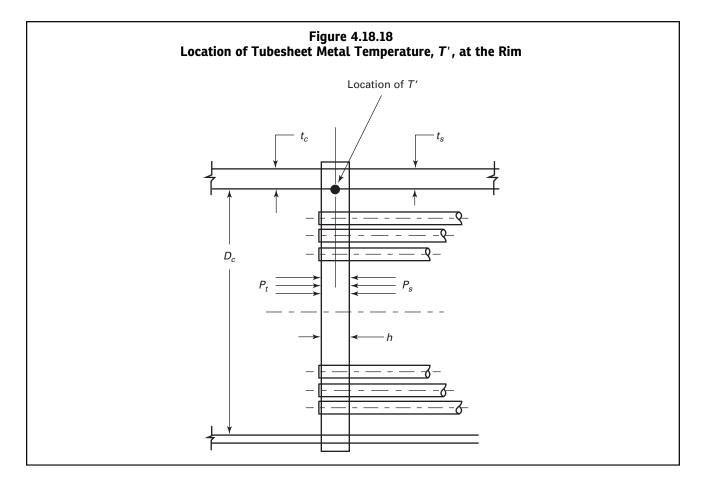





505







4.19 DESIGN RULES FOR BELLOWS EXPANSION JOINTS

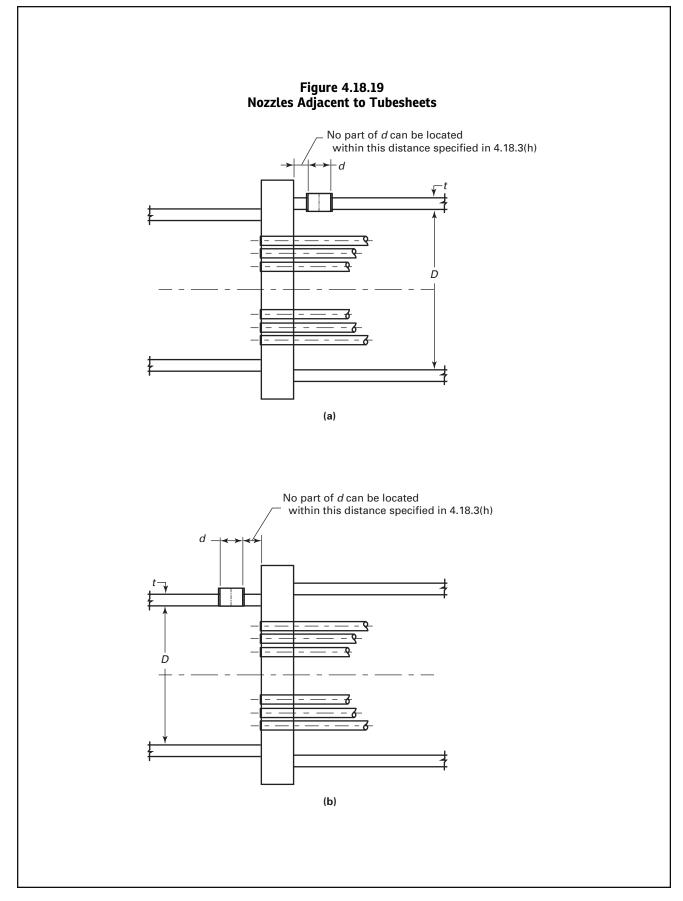
4.19.1 SCOPE

(*a*) The rules in 4.19 cover the minimum requirements for the design of bellows expansion joints used as an integral part of heat exchangers or other pressure vessels. These rules apply to single or multiple layer bellows expansion joints, unreinforced, reinforced or toroidal, as shown in Figure 4.19.1, subject to internal or external pressure and cyclic displacement. The bellows shall consist of single or multiple identically formed convolutions. They may be as formed (not heat treated), or annealed (heat treated). The suitability of an expansion joint for the specified design pressure, temperature, and axial displacement shall be determined by the methods described herein.

(b) The rules in 4.19 cover the common types of bellows expansion joints but are not intended to limit the configurations or details to those illustrated or otherwise described herein. Designs that differ from those covered in 4.19 [e.g., asymmetric geometries or loadings, or temperatures exceeding those in 4.19.2(e)] shall be in accordance with 4.1.1.2.

4.19.2 CONDITIONS OF APPLICABILITY

The design rules of this paragraph are applicable only when the following conditions of applicability are satisfied: (a) The bellows length shall be such that $Nq \leq 3D_h$.


(b) The bellows nominal thickness shall be such that $nt \leq 5 \text{ mm}$ (0.2 in.).

(c) The number of plies shall be such that $n \leq 5$.

(*d*) The displacement shall be essentially axial. However angular and/or lateral deflection inherent in the fit-up of the expansion joint to the pressure vessel is permissible, provided the amount is specified and is included in the expansion joint design [see 4.19.3.1(d)].

(e) These rules are valid for design temperatures up to the temperatures shown in Table 4.19.1.

(f) The fatigue equations given in Table 4.19.6, Table 4.19.8, and Table 4.19.11 are valid for austenitic chromiumnickel steels, UNS N066XX and UNS N04400. For other materials, the fatigue evaluation shall meet the requirements of 4.19.3.2(c).

(g) The length of the cylindrical shell on each side of the bellows shall not be less than $1.8\sqrt{D_s t_s}$. The length shall be taken from the beginning of the end convolution (point A in Figure 4.19.2) except that for internally attached toroidal bellows, the length shall be taken from the extremity of the shell (point B in Figure 4.19.2).

4.19.3 DESIGN CONSIDERATIONS

4.19.3.1 General.

(a) Expansion joints shall be designed to provide flexibility for thermal expansion and also to function as a pressurecontaining element.

(b) The vessel Manufacturer shall specify the design conditions and requirements for the detailed design and manufacture of the expansion joint. Use of Specification Sheet Form 4.19.1 or 4.19.2 is recommended.

(c) In all vessels with integral expansion joints, the hydrostatic end force caused by pressure and/or the joint spring force shall be resisted by adequate restraint elements (e.g., exchanger tubes or shell, external restraints, anchors, etc.). The primary stress in these restraining elements shall satisfy 4.1.6.1.

(*d*) The expansion joints shall be provided with bars or other suitable members for maintaining the proper overall length dimension during shipment and vessel fabrication. During a heat exchanger pressure test, these bars or members shall not carry load or limit expansion joint movement. Expansion bellows shall not be extended, compressed, rotated, or laterally offset to accommodate connecting parts, which are not properly aligned, unless the design considers such movements (see 4.19.8). Care should be taken to ensure that any torsional loads applied to expansion joints are kept to a minimum to prevent high shear stresses that may be detrimental to their use. If torsional loads are present or expected, they shall be considered in the design (see 4.19.3.3).

(e) The minimum thickness limitations of 4.1.2 do not apply to bellows designed to this paragraph.

(f) Bellows longitudinal weld seams shall have a joint efficiency of 1.0.

(g) Bellows circumferential attachment welds, shell or shell weld ends, and collars shall be in accordance with Figure 4.19.11, as applicable.

(*h*) The elastic moduli, yield strength, and allowable stresses shall be taken at the design temperatures. However, when performing the fatigue evaluation in accordance with 4.19.5.7 (unreinforced bellows), 4.19.6.7 (reinforced bellows) and 4.19.7.7 (toroidal bellows), it is permitted to use the operating metal temperature instead of the design temperature.

4.19.3.2 Fatigue.

(*a*) Cumulative Damage - If there are two or more types of stress cycles, which produce significant stresses, their cumulative effect shall be evaluated as given below.

(1) Procedure

(-a) Designate the specified number of times each type of stress cycle of types 1, 2, 3, etc., of stress range S_{t1} , S_{t2} , S_{t3} , etc., will be repeated during the life of the expansion joint as n_1 , n_2 , n_3 , etc., respectively.

(-b) For each value S_{t1} , S_{t2} , S_{t3} , etc., use the applicable design fatigue curve to determine the maximum number of repetitions which would be allowable if this type of cycle were the only one acting. Call these values N_1 , N_2 , N_3 , etc. (-c) For each type of stress cycle, calculate the usage factors U_1 , U_2 , U_3 etc., from $U_1 = n_1/N_1$, $U_2 = n_2/N_2$, $U_3 =$

 n_3/N_3 , or for the *i*th type of stress cycle:

$$U_i = \frac{n_i}{N_i} \tag{4.19.1}$$

(-*d*) Calculate the cumulative usage factor *U* by summing the individual factors, or $U = U_1 + U_2 + U_3 + ... + U_m$.

(-e) The cumulative usage factor U for the total number of stress cycles, m, shall not exceed 1.0, or

$$\sum_{i=1}^{m} U_i = \sum_{i=1}^{m} \frac{n_i}{N_i} \le 1.0$$
(4.19.2)

(2) *Cycle Counting*. Stresses to be used for cycle counting shall be based on the total equivalent axial displacement of each convolution, Δq_e or Δq_c , at the top and bottom of each cycle, as determined in 4.19.8.5, not the range, Δq , determined in 4.19.8.6. Only the displacements shall be taken into account; pressure shall be neglected. The total equivalent axial displacement range, Δq , to be used for the calculation of the total stress range due to cyclic displacement, S_t , in the fatigue evaluation in 4.19.5.7, 4.19.6.7, or 4.19.7.7 shall be deduced from the stress range, S_q , obtained.

(-a) Concurrent Conditions. When determining n_1 , n_2 , n_3 , etc., and S_{q1} , S_{q2} , S_{q3} , etc., consideration shall be given to the superposition of cycles of various origins that produces a total stress range greater than the stress ranges of the individual cycles. For example, if one type of stress cycle produces 1,000 cycles of a stress variation from -1,000 psi to +60,000 psi and another type of stress cycle produces 10,000 cycles of a stress variation from -1,000 psi, the two types of cycles to be considered are defined by the following parameters:

- (-1) Type 1 cycle: $n_1 = 1,000$; $S_{q1} = |60,000 (-1,000)| + |-50,000 (-1,000)| = 110,000$ psi
- (-2) Type 2 cycle: $n_2 = 10,000 1,000 = 9,000$; $S_{q2} = |0| + |-50,000 (-1,000)| = 49,000$ psi

(-b) Independent Conditions. When no superposition of cycles can occur, cycle counting shall be simply based on the stress ranges of the individual cycles. For example, if one type of stress cycle produces 1,000 cycles of a stress variation from -1,000 psi to +60,000 psi and another type of stress cycle produces 10,000 cycles of a stress variation from -1,000 psi to -50,000 psi, the two types of cycles to be considered are defined by the following parameters:

(-1) Type 1 cycle: $n_1 = 1,000$; $S_{q1} = |60,000 - (-1,000)| = 61,000$ psi

(-2) Type 2 cycle: $n_2 = 10,000$; $S_{q2} = |-50,000 - (-1,000)| = 49,000$ psi

(-c) Alternatively, when the cyclic displacement history is known, cycle counting may be performed by the Rainflow Method described in Annex 5-B or an equivalent method.

(-*d*) If only the overall number of cycles of each range is known, or in case of doubt, cycle counting shall be performed considering concurrent conditions.

(*b*) Fatigue Correlation Testing - Fatigue curves in 4.19.5.7, 4.19.6.7, or 4.19.7.7 may be used to design a bellows only if they have been correlated with actual bellows test results obtained by proof or strain gage testing (see Annex 5-F) by the bellows Manufacturer to demonstrate predictability of cyclic life on a consistent series of bellows of the same basic design (convolution shape, reinforcement, number of plies, etc.) and forming process. Annealed and as-formed bellows are considered as separate designs.

(1) The substantiation of the fatigue curves shall be based on data obtained from five separate tests on bellows of the same basic design. When substantiating bellows designs with more than two convolutions in series, the test data shall have been obtained from bellows with a minimum of three convolutions. The effect of pressure shall be considered in the fatigue tests. For each test data pair (S_t, N) , two results shall be computed and compared to the applicable fatigue curve: one result with the number of cycles divided by a design factor of 2.6 $(S_t, N/2.6)$ and the other result with the equivalent stress divided by a design factor of 1.25 $(S_t/1.25, N)$. For a result to be accepted, it must be above the applicable fatigue curve. If all the results meet the acceptance criterion, the substantiation shall be made. If all the results of the retest, including design factors, meet the acceptance criterion, the substantiation shall be considered valid. Otherwise, a specific fatigue curve shall be established as described in (c) and used for the fatigue design of the bellows. The original test and retest results shall be taken into account to establish the specific fatigue curve.

(2) When S_t along with the other appropriate factors are used in the cycle life equations in 4.19.5.7, 4.19.6.7, or 4.19.7.7, the specified number of fatigue cycles, N_{spe} , shall be less than the calculated number of cycles to failure based on the data obtained by testing. The allowable number of fatigue cycles, N_{alw} , may not be increased above that obtained from the equations in these paragraphs, regardless of the test results.

(3) The test results shall be available for review by the Inspector.

(4) The substantiation of the fatigue curve used by the bellows Manufacturer for a bellows design having shown a history of safe use can be waived, provided that the manufacturing process remains unchanged.

(c) Fatigue Curves for Other Materials - For materials other than those specified in the applicable rules, 4.19.5.7, 4.19.6.7, or 4.19.7.7, specific fatigue curves shall be built. The Manufacturer shall determine the fatigue curve for the material intended for the bellows. This fatigue curve shall not be used for temperatures above the temperature shown in Table 4.19.1 for the tested material. Annealed and as-formed bellows shall be considered as being built with different materials. Different forming methods may have either individual curves established for each method or a single curve established by incorporating test results obtained from at least two bellows formed by each different anticipated forming method. The procedure applied to determine the fatigue curve shall be as described in (1) through (4). The test results with the subsequent calculations used to determine the fatigue curve shall be available for review by the Inspector.

(1) A minimum of 25 fatigue tests shall be carried out. Each bellows in the test group shall have a minimum of three convolutions and varying geometries, including inside diameter, convolution profile, and thickness. A minimum of three different heats of the intended material shall be used.

(2) Each bellows in the test group shall be submitted to three to five different amplitudes of axial movement with a constant internal pressure applied. To ensure that the equivalent fatigue stress, S_t , is due primarily to cyclic displacement and not to pressure, the pressure-induced component stress shall not be higher than 30% of the equivalent fatigue stress.

(3) The test results shall be obtained by proof or strain gage testing (see Annex 5-F) at room temperature.

(4) The fatigue curves shall be determined as follows:

(-*a*) The best fit curve for the relation between the number of measured cycles to failure and the equivalent fatigue stress, S_t , calculated according to 4.19.5.7, 4.19.6.7, or 4.19.7.7, as applicable, shall be determined and expressed as

$$N = \left(\frac{K_0}{S_t - K_0'}\right)^2 \tag{4.19.3}$$

(-b) The curve shall then be adjusted such that all the test results are on or above the curve. The curve is now expressed as

$$N = \left(\frac{K_1}{S_t - K_1'}\right)^2$$
(4.19.4)

(-c) The final fatigue curve shall be the lower bound curve of the curve obtained by applying a factor of 2.6 on numbers of cycles, expressed as

$$N = \left(\frac{K_2}{S_t - K_2'}\right)^2$$
(4.19.5)

and of the curve obtained by applying a factor of 1.25 on stresses, expressed as

$$N = \left(\frac{K_3}{S_t - K_3'}\right)^2$$
(4.19.6)

where

 $K_{2} = K_{1}/\sqrt{2.6}$ $K'_{2} = K'_{1}$ $K_{3} = K_{1}/1.25$ $K'_{3} = K'_{1}/1.25$

4.19.3.3 Torsion. The shear stress due to torsion shall satisfy the criterion in (c) based either on the torsional load or the twist angle.

(a) The shear stress due to torsional load, M_z , is as follows:

$$\tau_Z = \frac{2 \left| M_Z \right|}{\pi n t D_h^2} \tag{4.19.7}$$

(b) The shear stress due to twist angle, θ_z , expressed in radians is as follows:

$$\tau_Z = \frac{\left|\theta_Z\right| G_b D_b}{2NL_{dt}} \tag{4.19.8}$$

where

$$G_b = \frac{E_b}{2(1+v_b)}$$
(4.19.9)

For U-shaped bellows, $L_{dt} = A / nt_p$ with A and t_p defined in Table 4.19.2.

(c) The shear stress shall satisfy the following equation:

$$\tau_Z \le 0.25S$$
 (4.19.10)

4.19.4 MATERIALS

Pressure-restraining component materials including the restraining elements covered by 4.19.3.1(c) shall comply with the requirements of Part 3.

4.19.5 DESIGN OF U-SHAPED UNREINFORCED BELLOWS

4.19.5.1 Scope. These rules cover the design of bellows having unreinforced U-shaped convolutions. The bellows can be attached to the shell either externally or internally. Each half convolution consists of a sidewall and two quarter tori of nearly the same radius (at the crest and root of the convolution), in the neutral position, so that the convolution profile presents a smooth geometrical shape as shown in Figure 4.19.1, sketch (a).

4.19.5.2 Conditions of Applicability. The following conditions of applicability apply in addition to those listed in 4.19.2.

(*a*) A variation of 10% between the crest convolution radius r_{ic} and the root convolution radius r_{ir} is permitted (see Figure 4.19.3).

(b) The torus radius shall be such that: $r_i \ge 3t$, where: $r_i = (r_{ic} + r_{ir})/2$. A smaller torus radius may be used, provided that the rules of 4.19.3.2(b) are followed and the increased bending stress due to curvature is accounted for in the fatigue correlation testing.

(*c*) The off-set angle of the sidewalls, α , in the neutral position shall be such that: $-15 \text{ deg} \le \alpha \le +15 \text{ deg}$ (see Figure 4.19.3).

(*d*) The convolution height shall be such that: $w \le D_b/3$.

(e) The type of attachment to the shell (external or internal) shall be the same on both sides.

(f) For internally attached bellows, the length of the shell on each side of the bellows having thickness t_s shall be at least equal to $L_{sm} = 1.8\sqrt{D_S t_S}$.

4.19.5.3 Internal Pressure. The required stress calculations and acceptance criteria for U-shaped unreinforced bellows are given in Table 4.19.2.

4.19.5.4 Column Instability Due to Internal Pressure.

(a) The allowable internal design pressure to avoid column instability is given by the following equation.

$$P_{SC} = \frac{0.34\pi K_b}{Nq}$$
(4.19.11)

(*b*) The internal pressure shall satisfy the following equation.

$$P \le P_{SC} \tag{4.19.12}$$

4.19.5.5 In-Plane Instability Due to Internal Pressure.

(a) The allowable internal design pressure based on in-plane instability is given by the following equation.

$$P_{Si} = \frac{AS_y^* (\pi - 2)}{D_m q \left[1 + 2\delta^2 + \left(1 - 2\delta^2 + 4\delta^4\right)^{0.5}\right]^{0.5}}$$
(4.19.13)

where

$$\delta = \frac{S_4}{3S_{2,I}} \tag{4.19.14}$$

(b) S_y^* is the effective yield strength at design temperature (unless otherwise specified) of bellows material in the asformed or annealed condition. If S_y^* is not available in material standards, the values shown in the following equations shall be used where S_y is the yield strength of bellows material at design temperature, given by Annex 3-D. Higher values of S_y^* may be used if justified by representative tests.

$$S_y^* = 2.3S_y$$
 for as-formed bellows (4.19.15)

$$S_y^* = 0.75S_y$$
 for annealed bellows (4.19.16)

(c) The internal pressure shall satisfy the following equation.

$$P \le P_{Si} \tag{4.19.17}$$

4.19.5.6 External Pressure Strength.

(a) External pressure capacity - The rules of 4.19.5.3 shall be applied taking P as the absolute value of the external pressure. When the expansion bellows is subjected to vacuum, the design shall be performed assuming that only the internal ply resists the pressure. The pressure stress equations of 4.19.5.3 shall be applied with n = 1.

ASME BPVC.VIII.2-2023

(b) Instability due to external pressure - The design shall be performed according to the rules of 4.4 by replacing the bellows with an equivalent cylinder, using an equivalent outside diameter, D_{eq} , and an equivalent thickness, t_{eq} , given by the following equations where I_{xx} is the moment of inertia (see Figure 4.19.4).

$$D_{\rm eq} = D_b + w + 2t_{\rm eq} \tag{4.19.18}$$

$$t_{\rm eq} = \left(\frac{12\left(1 - v_b^2\right)I_{\rm XX}}{q}\right)^{1/3}$$
(4.19.19)

(c) If $L_t = 0$, I_{xx} is given by the following equation.

$$I_{XX} = nt_p \left[\frac{\left(2w - q\right)^3}{48} + 0.4q \left(w - 0.2q\right)^2 \right]$$
(4.19.20)

4.19.5.7 Fatigue Evaluation.

(*a*) The meridional membrane and bending stresses due to the total equivalent axial displacement range Δq of each convolution is given by the following equations.

$$S_5 = \frac{E_b t_p^2 \Delta q}{2w^3 C_f}$$
(4.19.21)

$$S_6 = \frac{5E_b t_p \Delta q}{3w^2 C_d}$$
(4.19.22)

 C_f and C_d are evaluated using Tables 4.19.4 and 4.19.5, respectively.

(b) The total stress range due to cyclic displacement is given by the following equation.

$$S_t = 0.7(S_3 + S_4) + (S_5 + S_6)$$
(4.19.23)

(c) Calculation of allowable number of cycles

(1) The specified number of cycles N_{spe} shall be specified in consideration of the anticipated number of cycles expected to occur during the operating life of the bellows. The allowable number of cycles shall satisfy the following equation.

$$N_{\rm alw} \ge N_{\rm spe} \tag{4.19.24}$$

(2) The allowable number of cycles, N_{alw} , shall be calculated using the equations in Table 4.19.6. These equations are valid for:

(-a) austenitic chromium-nickel stainless steels, UNS N066XX and UNS N04400, for metal temperatures not exceeding 425°C (800°F)

(-b) U-shaped unreinforced bellows, as-formed or annealed

(-c) basic designs and manufacturing processes that have successfully undergone fatigue correlation testing per 4.19.3.2(b)

(3) For other materials, the allowable number of cycles, N_{alw} , shall be calculated using the equations in Table 4.19.6, replacing the constants with those of curves determined according to 4.19.3.2(c).

(4) If the bellows is subjected to different cycles of pressure or displacement, such as those produced by start-up or shutdown, their cumulative damage shall be considered as in 4.19.3.2(a).

4.19.5.8 Axial Stiffness. The theoretical axial stiffness of a bellows comprised of *N* convolutions may be evaluated by the following equation. This equation is valid only in the elastic range. Outside of the elastic range lower values can be used, based upon Manufacturer's experience or representative test results.

$$K_{b} = \frac{\pi E_{b} D_{m}}{2 \left(1 - v_{b}^{2}\right) C_{f}} \left(\frac{n}{N}\right) \left(\frac{t_{p}}{w}\right)^{3}$$
(4.19.25)

4.19.6 DESIGN OF U-SHAPED REINFORCED BELLOWS

4.19.6.1 Scope. These rules cover the design of bellows having U-shaped convolutions with rings to reinforce the bellows against internal pressure. The bellows shall be attached to the shell externally. Each half convolution consists of a sidewall and two quarter tori of nearly the same radius (at the crest and root of the convolution), in the neutral position, so that the convolution profile presents a smooth geometrical shape as shown in Figure 4.19.1, sketch (b).

4.19.6.2 Conditions of Applicability. The conditions in 4.19.5.2 apply, with the exception of conditions 4.19.5.2(e) and 4.19.5.2(f).

4.19.6.3 Internal Pressure. The required stress calculations and acceptance criteria for U-shaped reinforced bellows are given in Table 4.19.7.

4.19.6.4 Column Instability Due to Internal Pressure.

(a) The allowable internal design pressure to avoid column instability is given by the following equation.

$$P_{SC} = \frac{0.3\pi K_b}{Nq} \tag{4.19.26}$$

(b) The internal pressure shall satisfy the following equation.

$$P \le P_{SC} \tag{4.19.27}$$

4.19.6.5 In-Plane Instability Due to Internal Pressure. Reinforced bellows are not prone to in-plane instability.

4.19.6.6 External Pressure Strength.

(a) External pressure capacity - The rules of 4.19.5.3 relative to unreinforced bellows shall be applied taking P as the absolute value of the external pressure. When the expansion bellows is subjected to vacuum, the design shall be performed assuming that only the internal ply resists the pressure. The pressure stress equations of 4.19.5.3 shall be applied with n = 1.

(*b*) Instability due to external pressure - The circumferential instability of a reinforced bellows shall be calculated in the same manner as for unreinforced bellows [see 4.19.5.6(b)]

4.19.6.7 Fatigue Evaluation.

(*a*) The meridional membrane and bending stresses due to the total equivalent axial displacement range Δq of each convolution are given by the following equations.

$$S_{5} = \frac{1}{2} \frac{E_{b} t_{p}^{2}}{\left(w - 4C_{r} \tau_{m}\right)^{3} C_{f}} \Delta q$$
(4.19.28)

$$S_{6} = \frac{5}{3} \frac{E_{b} t_{p}}{\left(w - 4C_{r} r_{m}\right)^{2} C_{d}} \Delta q$$
(4.19.29)

 C_f and C_d are evaluated using Tables 4.19.4 and 4.19.5, respectively.

(b) The total stress range due to cyclic displacement is given by eq. (4.19.23).

(c) The fatigue evaluation of a reinforced bellows shall be calculated in the same manner as for unreinforced bellows [see 4.19.5.7(c)], except that the allowable number of cycles shall be calculated using the equations in Table 4.19.8.

4.19.6.8 Axial Stiffness. The theoretical axial stiffness of a bellows comprised of *N* convolutions is given by the following equation.

$$K_b = \frac{\pi}{2\left(1 - v_b^2\right)} \frac{n}{N} E_b D_m \left(\frac{t_p}{w - 4C_r r_m}\right)^3 \frac{1}{C_f}$$
(4.19.30)

This equation is valid only in the elastic range. Outside of the elastic range lower values can be used, based upon Manufacturer's experience or representative test results.

4.19.7 DESIGN OF TOROIDAL BELLOWS

4.19.7.1 Scope. These rules cover the design of bellows having toroidal convolutions. The bellows can be attached to the shell either externally or internally. Each convolution consists of a torus of radius *r* as shown in Figure 4.19.1, sketch (c).

4.19.7.2 Conditions of Applicability. The following conditions of applicability apply in addition to those listed in 4.19.2:

(a) The type of attachment to the shell (external or internal) shall be the same on both sides.

(b) Distance L_q shall be less than 0.75r in the maximum extended position.

(c) For internally attached bellows, the length of the shell on each side of the bellows having thickness t_s shall be at least equal to $L_{sm} = 1.8 \sqrt{D_s t_s}$.

4.19.7.3 Internal Pressure. The required stress calculations and acceptance criteria for toroidal bellows are given in Table 4.19.9.

4.19.7.4 Column Instability Due to Internal Pressure.

(a) The allowable internal design pressure to avoid column instability is given by the following equation.

$$P_{SC} = \frac{0.15\pi K_b}{Nr}$$
(4.19.31)

(b) The internal pressure shall satisfy the following equation.

$$P \le P_{SC} \tag{4.19.32}$$

4.19.7.5 In-Plane Instability Due to Internal Pressure. Toroidal bellows are not prone to in-plane instability.

4.19.7.6 External Pressure Strength.

(*a*) Toroidal bellows designed per the rules of this Division are suitable for external design pressures up to 103 kPa (15 psi) or full vacuum. For external design pressures greater than 103 kPa (15 psi), see 4.1.1.2.

(b) Instability due to external pressure is not covered by the present rules.

4.19.7.7 Fatigue Evaluation.

(*a*) The meridional membrane and bending stresses due to the total equivalent axial displacement range Δq of each convolution are given by the following equations.

$$S_5 = \frac{E_b t_p^2 B_1 \Delta q}{34.3 r^3} \tag{4.19.33}$$

$$S_6 = \frac{E_b t_p B_2 \Delta q}{5.72r^2} \tag{4.19.34}$$

 B_1 and B_2 are evaluated using Table 4.19.10.

(b) The total stress range due to cyclic displacement is given by the following equation.

$$S_t = 3S_3 + S_5 + S_6 \tag{4.19.35}$$

(c) The fatigue evaluation of a toroidal bellows shall be calculated in the same manner as for unreinforced bellows [see 4.19.5.7(c)], except that the allowable number of cycles shall be calculated using the equations in Table 4.19.11.

4.19.7.8 Axial Stiffness. The theoretical axial stiffness of a bellows comprised of *N* convolutions is given by the following equation.

$$K_{b} = \frac{E_{b} D_{m} B_{3}}{12 \left(1 - v_{b}^{2}\right)} \left(\frac{n}{N} \right) \left(\frac{t_{p}}{r}\right)^{3}$$
(4.19.36)

 B_3 is evaluated using Table 4.19.10. This equation is valid only in the elastic range. Outside of the elastic range lower values can be used, based upon Manufacturer's experience or representative test results.

4.19.8 BELLOWS SUBJECTED TO AXIAL, LATERAL, OR ANGULAR DISPLACEMENTS

4.19.8.1 General. The purpose of this paragraph is to determine the equivalent axial displacement of an expansion bellows subjected at its ends to:

(a) an axial displacement from the neutral position: x in extension (x > 0) or in compression (x < 0)

(b) a lateral deflection from the neutral position: y, (y > 0)

(c) an angular rotation from the neutral position: θ , ($\theta > 0$)

4.19.8.2 Axial Displacement.

(a) When the ends of the bellows are subjected to an axial displacement x (see Figure 4.19.5), the equivalent axial displacement per convolution is given by the following equation. In this equation, x shall be taken as positive for extension (x > 0) and negative for compression (x < 0). Values of x in extension and compression may be different.

$$\Delta q_x = \frac{x}{N} \tag{4.19.37}$$

(b) The corresponding axial force F_x applied to the ends of the bellows is given by the following equation.

$$F_X = K_b x \tag{4.19.38}$$

4.19.8.3 Lateral Deflection.

(a) When the ends of the bellows are subjected to a lateral deflection y (see Figure 4.19.6), the equivalent axial displacement per convolution is given by the following equation where y shall be taken positive.

$$\Delta q_y = \frac{3 \ D_m y}{N(Nq + x)}$$
(4.19.39)

(b) The corresponding lateral force F_{y} applied to the ends of the bellows is given by the following equation.

$$F_{y} = \frac{3K_{b}D_{my}^{2}}{2(Nq + x)^{2}}$$
(4.19.40)

(c) The corresponding moment M_y applied to the ends of the bellows is given by the following equation.

$$M_{y} = \frac{3K_{b}D_{my}^{2}}{4(Nq+x)}$$
(4.19.41)

4.19.8.4 Angular Rotation.

(*a*) When the ends of the bellows are subjected to an angular rotation θ (see Figure 4.19.7), the equivalent axial displacement per convolution is given by the following equation where θ , expressed in radians, shall be taken positive.

$$\Delta_{q\theta} = \frac{D_m \theta}{2 N} \tag{4.19.42}$$

(b) The corresponding moment M_{θ} applied to the ends of the bellows is given by the following equation.

$$M_{\theta} = \frac{K_b D_m^2 \theta}{8} \tag{4.19.43}$$

4.19.8.5 Total Equivalent Axial Displacement Per Convolution. Axial displacement leads to uniform deformation of the convolutions. Lateral deflection and angular rotation lead to nonuniform deformation of the convolutions with one side extended and the other side compressed as shown in Figures 4.19.6 and 4.19.7. The total equivalent axial displacements per convolution, on the extended side and the compressed side, are given by the following equations:

$$\Delta q_e = \Delta q_x + \Delta q_y + \Delta q_\theta \qquad (extended side) \qquad (4.19.44)$$

$$\Delta q_c = \Delta q_x - \Delta q_y - \Delta q_\theta \qquad (compressed side) \qquad (4.19.45)$$

NOTE: In case of axial displacement only, $\Delta q_e = \Delta q_c = \Delta q_x$.

4.19.8.6 Total Equivalent Axial Displacement Range Per Convolution.

(a) Bellows installed without cold spring - If the bellows is subjected to displacements from the neutral position ($x_0 = 0, y_0 = 0, \theta_0 = 0$) to the operating position (x_1, y_1, θ_1) (see Figure 4.19.8), the total equivalent axial displacements per convolution, on the extended side and the compressed side, for the initial and operating positions and the total equivalent axial displacement range are given by the following equations:

Initial Position:

$$\Delta q_{e,0} = 0.0 \qquad \text{(extended side)} \tag{4.19.46}$$

$$\Delta q_{c,0} = 0.0 \qquad (compressed side) \qquad (4.19.47)$$

Operating Position:

$$\Delta q_{e,1} = \Delta q_{x,1} + \Delta q_{y,1} + \Delta q_{\theta,1} \qquad (\text{extended side}) \tag{4.19.48}$$

$$\Delta q_{c,1} = \Delta q_{x,1} - \Delta q_{y,1} - \Delta q_{\theta,1} \qquad \text{(compressed side)} \tag{4.19.49}$$

Total Equivalent Axial Displacement Range:

$$\Delta q = \max\left[\left|\Delta q_{e,1}\right|, \left|\Delta q_{c,1}\right|\right]$$
(4.19.50)

NOTE: In case of axial displacement only, $\Delta q = |\Delta q_{x,1}|$.

(b) Bellows installed with cold spring - If the bellows is subjected to displacements from an initial position (x_0, y_0, θ_0) , which is not the neutral position to the operating position (x_1, y_1, θ_1) (see Figure 4.19.9), the total equivalent axial displacements per convolution, on the extended side and the compressed side, for the initial and operating positions and the total equivalent axial displacement range are given by the following equations:

Initial Position:

$$\Delta q_{e,0} = \Delta q_{x,0} + \Delta q_{y,0} + \Delta q_{\theta,0} \qquad (\text{extended side}) \tag{4.19.51}$$

$$\Delta q_{c,0} = \Delta q_{x,0} - \Delta q_{y,0} - \Delta q_{\theta,0} \qquad \text{(compressed side)} \tag{4.19.52}$$

Operating Position:

$$\Delta q_{e,1} = \Delta q_{x,1} + \Delta q_{y,1} + \Delta q_{\theta,1} \qquad \text{(extended side)} \tag{4.19.53}$$

$$\Delta q_{c,1} = \Delta q_{x,1} - \Delta q_{y,1} - \Delta q_{\theta,1} \qquad \text{(compressed side)} \tag{4.19.54}$$

Total Equivalent Axial Displacement Range:

$$\Delta q = \max\left[\left|\Delta q_{e,1} - \Delta q_{c,0}\right|, \left|\Delta q_{c,1} - \Delta q_{e,0}\right|\right]$$
(4.19.55)

Alternatively, if the neutral position for lateral deflection and angular rotation is not passed between the initial position and the operating position, the total equivalent axial displacement range may be written as

$$\Delta q = \max\left[\left| \Delta q_{e,1} - \Delta q_{e,0} \right|, \left| \Delta q_{c,1} - \Delta q_{c,0} \right| \right]$$
(4.19.56)

NOTE: In case of axial displacement only, $\Delta q = |\Delta q_{x,1} - \Delta q_{x,0}|$.

(c) Bellows operating between two operating positions - If the bellows is subjected to displacements from operating position number 1 (x_1, y_1, θ_1) to the operating position number 2 (x_2, y_2, θ_2) (see Figure 4.19.10), the total equivalent axial displacements per convolution, on the extended side and the compressed side, for operating positions number 1 and 2 and the total equivalent axial displacement range are given by the following equations. An initial cold spring (initial position 0) has no effect on the results.

Position Number 1:

$$\Delta q_{e,1} = \Delta q_{x,1} + \Delta q_{y,1} + \Delta q_{\theta,1} \qquad \text{(extended side)} \tag{4.19.57}$$

$$\Delta q_{c,1} = \Delta q_{x,1} - \Delta q_{y,1} - \Delta q_{\theta,1} \qquad \text{(compressed side)} \tag{4.19.58}$$

Position Number 2:

$$\Delta q_{e,2} = \Delta q_{x,2} + \Delta q_{y,2} + \Delta q_{\theta,2} \qquad \text{(extended side)} \tag{4.19.59}$$

$$\Delta q_{c,2} = \Delta q_{x,2} - \Delta q_{y,2} - \Delta q_{\theta,2} \qquad (\text{compressed side}) \tag{4.19.60}$$

Total Equivalent Axial Displacement Range:

$$\Delta q = \max\left[\left|\Delta q_{e,2} - \Delta q_{c,1}\right|, \left|\Delta q_{c,2} - \Delta q_{e,1}\right|\right]$$
(4.19.61)

Alternatively, if the neutral position for lateral deflection and angular rotation is not passed between operating positions 1 and 2, the total equivalent axial displacement range may be written as

$$\Delta q = \max\left[\left| \Delta q_{e,2} - \Delta q_{e,1} \right|, \left| \Delta q_{c,2} - \Delta q_{c,1} \right| \right]$$
(4.19.62)

NOTE: In case of axial displacement only, $\Delta q = |\Delta q_{x,2} - \Delta q_{x,1}|$.

4.19.9 PRESSURE TEST DESIGN REQUIREMENTS

The designer shall consider the possibility of instability of the bellows due to internal pressure if the test pressure exceeds the value determined using the following applicable equation. In such a case, the designer shall redesign the bellows to satisfy the test condition.

For unreinforced bellows

$$P_{t,s} = 1.5 \min(P_{sc}, P_{si}) \tag{4.19.63}$$

For reinforced and toroidal bellows

$$P_{t,s} = 1.5 P_{sc} \tag{4.19.64}$$

4.19.10 MARKING AND REPORTS

(a) The expansion joint Manufacturer, whether the vessel Manufacturer or a parts Manufacturer, shall have a valid ASME Code U2 Certificate of Authorization and shall complete the appropriate Data Report in accordance with Part 2.

(b) The Manufacturer responsible for the expansion joint design shall include the following additional data and statements on the appropriate Data Report:

(1) Axial movement (±), associated design life in cycles, and associated loading condition, if applicable;

(2) Spring rate; and

(3) That the expansion joint has been constructed to the rules of this paragraph.

(c) A parts Manufacturer shall identify the vessel for which the expansion joint is intended on the Partial Data Report. (d) Markings shall not be stamped on the flexible elements of the expansion joint.

4.19.11 NOMENCLATURE

- A =cross-sectional metal area of one convolution
- A_f = cross-sectional metal area of one reinforcing fastener
- A_r = cross-sectional metal area of one bellows reinforcing member for U-shaped bellows and cross-sectional metal area of one reinforcing collar for toroidal bellows based on length L_r
- A_{rt} = cross-sectional metal area of one reinforcing collar for toroidal bellows based on overall length
- A_{tc} = cross-sectional metal area of one tangent collar
- A_{ts} = cross-sectional metal area of shell based on length L_s
- B_1, B_2, B_3 = stress and stiffness coefficients used for toroidal bellows
 - C_1, C_2 = coefficients used to determine the coefficients C_p, C_f, C_d
 - C_3 = coefficient used to determine the coefficients B_1, B_2, B_3
- C_p , C_f , C_d = stress coefficients for U-shaped convolutions
 - C_r = convolution height factor for reinforced bellows
 - C_{wc} = longitudinal weld joint efficiency of tangent collar
 - C_{wr} = longitudinal weld joint efficiency of reinforcing member
 - C_{ws} = longitudinal weld joint efficiency of shell
 - D_b = inside diameter of bellows convolution and end tangents
 - D_c = mean diameter of tangent collar
 - D_{eq} = equivalent outside diameter
 - D_m = mean diameter of bellows convolution
 - D_r = mean diameter of reinforcing collar for toroidal bellows
 - D_s = inside diameter of cylindrical shell or weld end on which the bellows is attached

- E_0 = modulus of elasticity of bellows material at room temperature
- E_b = modulus of elasticity of bellows material at design temperature
- E_c = modulus of elasticity of collar material at design temperature
- E_f = modulus of elasticity of reinforcing fastener material at design temperature
- E_r = modulus of elasticity of reinforcing ring member material at design temperature
- E_s = modulus of elasticity of shell or weld end material at design temperature
- G_b = modulus of rigidity of bellows material at design temperature
- I_{xx} = moment of inertia of one convolution cross section relative to the axis passing by the center of gravity and parallel to the axis of the bellows
- k = factor considering the stiffening effect of the attachment weld and the end convolution on the pressure capacity of the end tangent

$$K_0, K_1$$

 K_2 , K_3 = coefficients determined by best curve fit of bellows fatigue test data

$$K'_{0}, K'_{1},$$

 K'_{2} , K'_{3} = coefficients determined by best curve fit of bellows fatigue test data

- K_b = bellows axial stiffness
- K_f = forming method factor
 - = 1.0 for expanding mandrel or roll forming
 - = 0.6 for hydraulic, elastomeric, or pneumatic tube forming
- K_a = fatigue strength reduction factor
- L_c = bellows collar length
- L_d = length from attachment weld to the center of the first convolution for reinforced bellows and for externally attached toroidal bellows
- L_{dt} = developed length of one convolution
- L_f = effective length of one reinforcing fastener. Distance between mating face of the bolt head and midthickness of the nut or distance between mid-thickness of the two nuts, as applicable
- L_g = maximum distance across the inside opening of a toroidal convolution considering all movements
- L_r = effective reinforcing collar length

$$=\frac{1}{3}\sqrt{D_r t_r}$$

 L_{rt} = overall length of reinforcing collar

 L_s = effective shell length

$$= \frac{1}{3}\sqrt{\left(D_{S} + t_{S}\right)t_{S}}$$

 L_{sm} = minimum required shell length having thickness t_s

 L_t = end tangent length

 M_z = torsional load

- N = number of convolutions
- n = number of plies
- N_{alw} = allowable number of fatigue cycles

 $N_{\rm spe}$ = specified number of fatigue cycles

P = design pressure

NOTE: If the specified design pressure of the bellows is significantly greater than the required design pressure of the vessel, use of the larger specified design pressure may adversely affect the allowable number cycles that the bellows can experience.

- P_{sc} = allowable internal design pressure to avoid column instability
- P_{si} = allowable internal design pressure to avoid in-plane instability
- q = convolution pitch as shown in Figure 4.19.1.
- r = mean radius of toroidal bellows convolution
- R = ratio of the internal pressure force resisted by the bellows to the internal pressure force resisted by the reinforcement
- r_i = average internal torus radius of U-shaped bellows convolution (see 4.19.5.2)
- r_{ic} = crest convolution internal radius
- r_{ir} = root convolution internal radius
- r_m = mean radius of U-shaped bellows convolution
- S = allowable stress from Annex 3-A of bellows material at design temperature
- S_{V}^{*} = effective yield strength of the bellows material at the design temperature

- S_1 = circumferential membrane stress in bellows tangent, due to pressure P
- S_2 = circumferential membrane stress in bellows, due to pressure *P*
- S_3 = meridional membrane stress in bellows, due to pressure P
- S_4 = meridional bending stress in bellows, due to pressure *P*
- S_5 = meridional membrane stress in bellows, due to total equivalent axial displacement range Δq
- S_6 = meridional bending stress in bellows, due to total equivalent axial displacement range Δq
- S_c = allowable stress from Annex 3-A of collar material at design temperature
- S_f = allowable stress from Annex 3-A of reinforcing fastener material at design temperature
- S_q = total stress range due to cyclic displacement
- S_r = allowable stress from Annex 3-A of reinforcing ring member material at design temperature
- S_s = allowable stress from Annex 3-A of shell material at design temperature
- S_t = total stress range due to cyclic displacement corrected by internal pressure
- S_y = yield strength of the bellows material at the design temperature
- S'_1 = circumferential membrane stress in collar, due to pressure *P*
- S_1'' = circumferential membrane stress in shell, due to pressure *P*, for internally attached bellows
- S'_2 = circumferential membrane stress in reinforcing member, due to pressure *P*
- S_2'' = membrane stress in fastener, due to pressure *P*
- t = nominal thickness of one ply
- t_c = collar thickness
- t_{eq} = equivalent wall thickness
- t_p = thickness of one ply, corrected for thinning during forming
- t_r = reinforcing collar thickness
- t_s = nominal thickness of shell or weld end
- U = usage factor
- v_b = Poisson's ratio of bellows material
- w =convolution height
- Y_{sm} = yield strength multiplier depending upon material
- Δq = total equivalent axial displacement range per convolution
- ε_f = bellows forming strain
- α = offset angle of the U-shape bellows side-wall
- θ_z = twist angle between the two extreme points of the end convolutions
- τ_z = shear stress due to torsional load or twist angle

4.19.12 TABLES

T Design Temperatu	able 4.19.1 res for Appli	ication of the
Table in Which	Maximum T	emperature
Material Is Listed	°C	°F
3-A.3	425	800
3-A.4	150	300
3-A.6	425	800
3-A.7	315	600

4.19.12

Table 4.19.2 Stress Calculations and Acceptability Criteria for U-Shaped Unreinforced Bellows Subject to Internal Pressure

Stress Calculation

Circumferential membrane stress in end tangent for externally attached bellows

$$S_1 = \frac{P(D_b + nt)^2 L_t E_b k}{2 \left[nt(D_b + nt) L_t E_b + t_c D_c L_c E_c k \right]}$$

Circumferential membrane stress in collar for externally attached bellows

$$S_{1}^{\prime} = \frac{PD_{c}^{2}L_{t}E_{c}k}{2\left[nt(D_{b}+nt)L_{t}E_{b}+t_{c}D_{c}L_{c}E_{c}k\right]}$$

Circumferential membrane stress in shell for internally attached bellows

$$S_1^{\prime\prime\prime} = \frac{1}{2} \frac{(D_S + t_S)^2 (L_S + 0.5q) E_S}{nt(D_b + nt) L_t E_b + t_S (D_S + t_S) L_s E_s} P$$

Circumferential membrane stress in bellows convolutions:

for end convolutions of externally attached bellows when k is less than 1.0

$$S_{2,E} = \frac{1}{2} \frac{\left[qD_m + L_t(D_b + nt)\right]E_b}{\left(A + ntL_t\right)E_b} + t_cL_cE_c}F$$

for intermediate convolutions

$$S_{2,I} = \frac{PqD_m}{2A}$$

Meridional membrane stress

$$S_3 = \frac{Pw}{2nt_p}$$

Meridional bending stress

$$S_4 = \frac{PC_p}{2n} \left(\frac{w}{t_p}\right)^2$$

where

$$A = \left(2\pi r_m + 2\sqrt{\left(\frac{q}{2} - 2r_m\right)^2 + (w - 2r_m)^2}\right) nt_p$$

$$r_m = r_i + \frac{nt}{2}$$

$$D_c = D_b + 2nt + t_c$$

$$D_m = D_b + w + nt$$

$$k = \min\left[\left(\frac{L_t}{1.5\sqrt{D_b t}}\right), 1.0\right]$$

$$t_p = t\sqrt{\frac{D_b}{D_m}}$$
Acceptance Criteria
$$S_1 \le S \quad \text{for externally attached bellows}$$

$$S_1'' \le C_{WS}S_s \quad \text{for internally attached bellows}$$

$$S_{2,E}' \le \text{for externally attached bellows}$$

 $S_{2,I} \le S$ $S_3 + S_4 \le K_m S$

Table 4.19.2 Stress Calculations and Acceptability Criteria for U-Shaped Unreinforced Bellows Subject to Internal Pressure (Cont'd)

GENERAL NOTES:

(a) $K_m = 1.5Y_{sm}$ for as-formed bellows and $K_m = 1.5$ for annealed bellows. (b) $Y_{sm} = 1 + 9.94(K_f\varepsilon_f) - 7.59(K_f\varepsilon_f)^2 - 2.4(K_f\varepsilon_f)^3 + 2.21(K_f\varepsilon_f)^4$ for austenitic stainless steel. $Y_{sm} = 1 + 6.8(K_f\varepsilon_f) - 9.11(K_f\varepsilon_f)^2 + 9.73(K_f\varepsilon_f)^3 - 6.43(K_f\varepsilon_f)^4$ for nickel alloys. $Y_{sm} = 1.0$ for other materials. If Y_{sm} is less than 1.0, then $Y_{sm} = 1.0$. If Y_{sm} is greater than 2.0, then $Y_{sm} = 2.0$. (c) $\left[\frac{nt_p}{2r_m}\right]^2$ for bellows formed from cylinders with an inside diameter of D_b if forming is performed $\left(\frac{2w}{D_b}\right)$ + $\ln(1 +$ $\varepsilon_f =$ $\ln |1| +$ 100% to the outside of the initial cylinder. $\left(\frac{nt_p}{2r_m}\right)$ $\frac{w}{D_b}$ $\ln(1 +$ for bellows formed from cylinders with an inside diameter of D_m if forming is performed ln $\varepsilon_f =$ 50% to the inside and 50% to the outside of the initial cylinder. (d) C_p is evaluated using Table 4.19.3.

		Method to	Determine Coe	enicient C _p		
			<i>C</i> ₁ :	≤ 0.3		
С2	α0	α1	α2	α3	α4	α5
0.2	1.001	-0.448	-1.244	1.932	-0.398	-0.291
0.4	0.999	-0.735	0.106	-0.585	1.787	-1.022
0.6	0.961	-1.146	3.023	-7.488	8.824	-3.634
0.8	0.955	-2.708	7.279	14.212	-104.242	133.333
1.0	0.95	-2.524	10.402	-93.848	423.636	-613.333
1.2	0.95	-2.296	1.63	16.03	-113.939	240
1.4	0.95	-2.477	7.823	-49.394	141.212	-106.667
1.6	0.95	-2.027	-5.264	48.303	-139.394	160
2.0	0.95	-2.073	-3.622	29.136	-49.394	13.333
2.5	0.95	-2.073	-3.622	29.136	-49.394	13.333
3.0	0.95	-2.073	-3.622	29.136	-49.394	13.333
3.5	0.95	-2.073	-3.622	29.136	-49.394	13.333
4.0	0.95	-2.073	-3.622	29.136	-49.394	13.333
			<i>C</i> ₁ :	> 0.3		
C 2	α0	α1	α2	α3	α4	α ₅
0.2	1.001	-0.448	-1.244	1.932	-0.398	-0.291
0.4	0.999	-0.735	0.106	-0.585	1.787	-1.022
0.6	0.961	-1.146	3.023	-7.488	8.824	-3.634
0.8	0.622	1.685	-9.347	18.447	-15.991	5.119
1.0	0.201	2.317	-5.956	7.594	-4.945	1.299
1.2	0.598	-0.99	3.741	-6.453	5.107	-1.527
1.4	0.473	-0.029	-0.015	-0.03	0.016	0.016
1.6	0.477	-0.146	-0.018	0.037	0.097	-0.067
2.0	0.935	-3.613	9.456	-13.228	9.355	-2.613
2.5	1.575	-8.646	24.368	-35.239	25.313	-7.157
3.0	1.464	-7.098	17.875	-23.778	15.953	-4.245
3.5	1.495	-6.904	16.024	-19.6	12.069	-2.944
4.0	2.037	-11.037	28.276	-37.655	25.213	-6.716

Table 4.19.3 Method to Determine Coefficient C_p (Cont'd)

GENERAL NOTES: (a) $C_1 = \frac{2r_m}{w}$ for $0 \le C_1 \le 1$ (b) $C_2 = \frac{1.82r_m}{\sqrt{D_m t_p}}$ for $0.2 \le C_2 \le 4.0$ (c) $C_p = \alpha_0 + \alpha_1 C_1 + \alpha_2 C_1^2 + \alpha_3 C_1^3 + \alpha_4 C_1^4 + \alpha_5 C_1^5$ (d) A plot of C_p versus C_1 and C_2 is shown in Figure 4.19.12.

	α0	α1	α2	α3	α4	α ₅
0.2	1.006	2.375	-3.977	8.297	-8.394	3.194
0.4	1.007	1.82	-1.818	2.981	-2.43	0.87
0.6	1.003	1.993	-5.055	12.896	-14.429	5.897
0.8	1.003	1.338	-1.717	1.908	0.02	-0.55
1.0	0.997	0.621	-0.907	2.429	-2.901	1.361
1.2	1	0.112	-1.41	3.483	-3.044	1.013
1.4	1	-0.285	-1.309	3.662	-3.467	1.191
1.6	1.001	-0.494	-1.879	4.959	-4.569	1.543
2.0	1.002	-1.061	-0.715	3.103	-3.016	0.99
2.5	1	-1.31	-0.829	4.116	-4.36	1.55
3.0	0.999	-1.521	-0.039	2.121	-2.215	0.77
3.5	0.998	-1.896	1.839	-2.047	1.852	-0.664
4.0	1	-2.007	1.62	-0.538	-0.261	0.249


	Table 4.19.5 Method to Determine Coefficient C _d						
C 2	α0	α1	α2	α3	α4	α ₅	
0.2	1	1.151	1.685	-4.414	4.564	-1.645	
0.4	0.999	1.31	0.909	-2.407	2.273	-0.706	
0.6	1.003	2.189	-3.192	5.928	-5.576	2.07	
0.8	1.005	1.263	5.184	-13.929	13.828	-4.83	
1.0	1.001	0.953	3.924	-8.773	10.44	-4.749	
1.2	1.002	0.602	2.11	-3.625	5.166	-2.312	
1.4	0.998	0.309	1.135	-1.04	1.296	-0.087	
1.6	0.999	0.12	0.351	-0.178	0.942	-0.115	
2.0	1	-0.133	-0.46	1.596	-1.521	0.877	
2.5	1	-0.323	-1.118	3.73	-4.453	2.055	
3.0	1	-0.545	-0.42	1.457	-1.561	0.71	

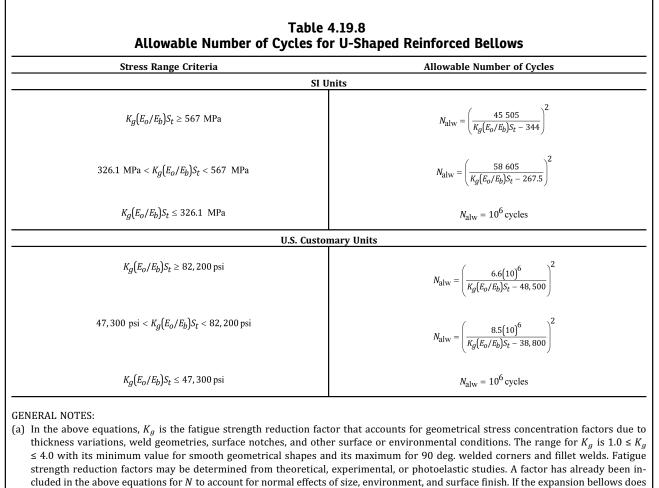
		Method to Dete	Table 4.19.5 ermine Coeffici	ent C _a (Cont'd))	
<u> </u>	α ₀	α1	α2	α3	α4	α ₅
3.5	1	-0.704	-0.179	0.946	-1.038	0.474
4.0	1.001	-0.955	0.577	-0.462	0.181	0.08
GENERAL NOTES: (a) $C_1 = \frac{2r_m}{w}$ for (b) $C_2 = \frac{1.82r_m}{\sqrt{D_m t_p}}$ for (c) $C_d = \alpha_0 + \alpha_1 C_1$ (d) A plot of C_d vec	for $0.2 \le C_2 \le 4.0$ + $\alpha_2 C_1^2 + \alpha_3 C_1^3 + \alpha_3$	$_4C_1^4+lpha_5C_1^5$ hown in Figure 4.19	.14.			

Table 4 Allowable Number of Cycles for I	
Stress Range Criteria	Allowable Number of Cycles
SI Un	its
$K_g(E_o/E_b)S_t \ge 448$ MPa	$N_{\rm alw} = \left(\frac{35\ 850}{K_g(E_o/E_b)S_t - 264}\right)^2$
257.2 MPa < $K_g(E_o/E_b)S_t$ < 448 MPa	$N_{\rm alw} = \left(\frac{46\ 200}{K_g(E_o/E_b)S_t - 211}\right)^2$
$K_g(E_o/E_b)S_t \le 257.2$ MPa	$N_{\rm alw} = 10^6 {\rm cycles}$
U.S. Custom	ary Units
$K_g(E_o/E_b)S_t \ge 65,000 ext{ psi}$	$N_{\rm alw} = \left(\frac{5.2(10)^6}{K_g(E_o/E_b)S_t - 38,300}\right)^2$
37, 300 psi < $K_g(E_o/E_b)S_t$ < 65, 000 psi	$N_{\rm alw} = \left(\frac{6.7(10)^6}{K_g(E_o/E_b)S_t - 30,600}\right)^2$
$K_g(E_o/E_b)S_t \le 37,300$ psi	$N_{\rm alw} = 10^6 {\rm cycles}$

GENERAL NOTES:

- (a) In the above equations, K_g is the fatigue strength reduction factor that accounts for geometrical stress concentration factors due to thickness variations, weld geometries, surface notches, and other surface or environmental conditions. The range for K_g is $1.0 \le K_g \le 4.0$ with its minimum value for smooth geometrical shapes and its maximum for 90 deg welded corners and fillet welds. Fatigue strength reduction factors may be determined from theoretical, experimental, or photoelastic studies. A factor has already been included in the above equations for N to account for normal effects of size, environment, and surface finish. If the expansion bellows does not have circumferential welds and satisfies all of the design and examination requirements of this paragraph, a $K_g = 1.0$ may be used.
- (b) The allowable number of cycles given in this table includes a reasonable design margin (2.6 on cycles and 1.25 on stress) and represents the maximum number of cycles for the operating condition considered. Therefore an additional design margin should not be applied. An overly conservative estimate of cycles can necessitate a greater number of convolutions and result in a bellows more prone to instability.

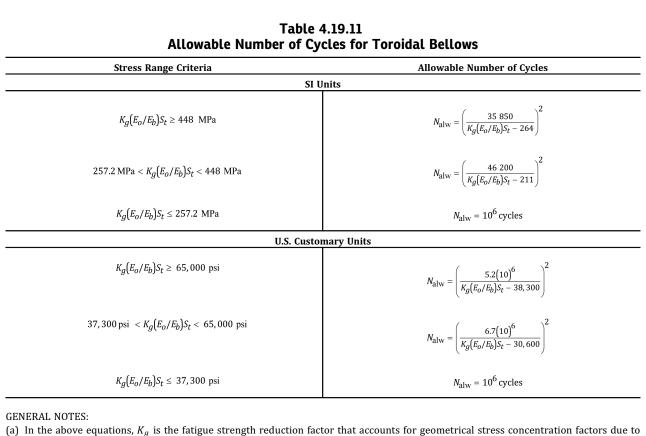
GENERAL NOTES:


(a) k, A, D_c , D_m , t_p , K_m , and r_m are evaluated using the equations in Table 4.19.2.

(b) C_p is evaluated using Table 4.19.3.

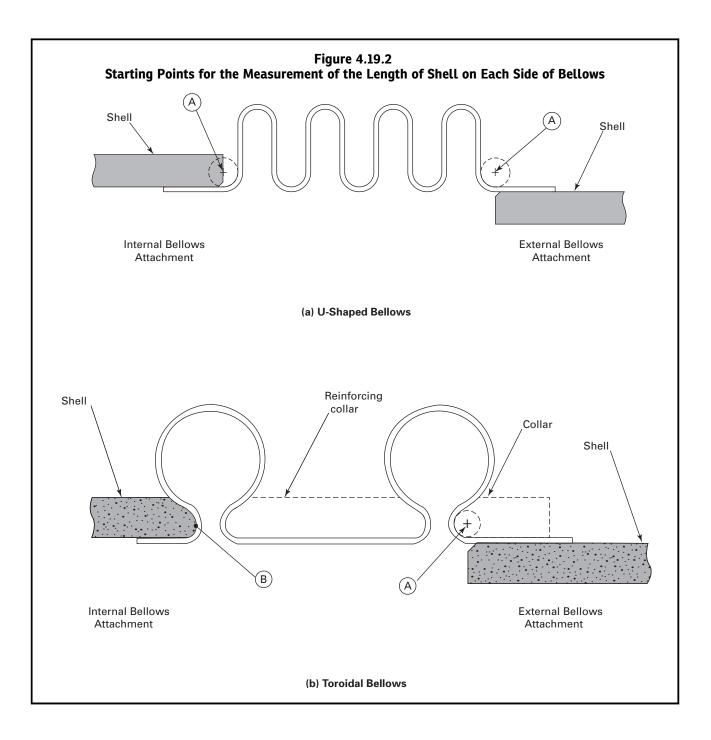
(c) $\vec{R} = R_1$ for integral reinforcing ring members and R_2 for reinforcing ring members joined by fasteners.

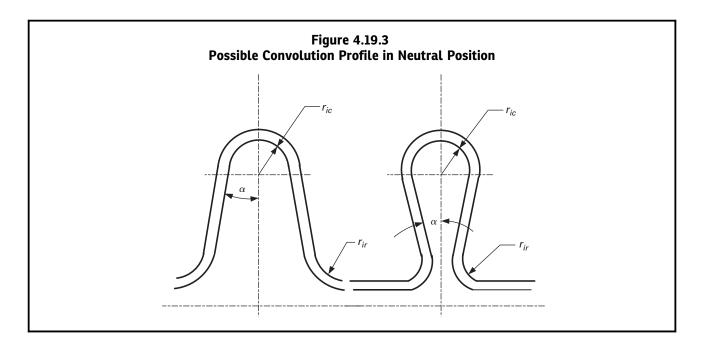
(d) In the case of reinforcing members which are made in sections, and joined by fasteners in tension, the equation for S_2 assumes that the structure used to retain the fastener does not bend so as to permit the reinforcing member to expand diametrically. In addition, the end reinforcing members must be restrained against the longitudinal annular pressure load of the bellows.

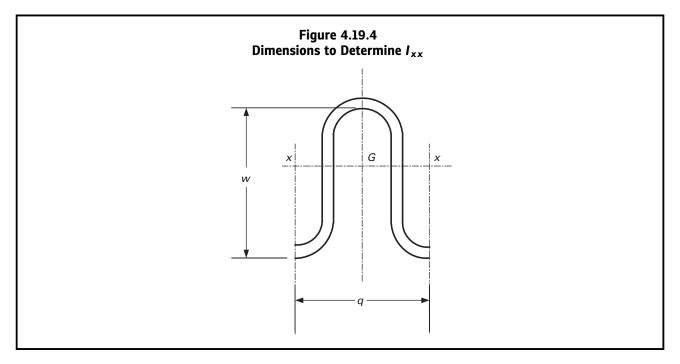

(e) In the case of equalizing rings, the equation for S'_2 provides only the simple membrane stress and does not include the bending stress caused by the eccentric fastener location. Elastic analysis and/or actual tests can determine these stresses.

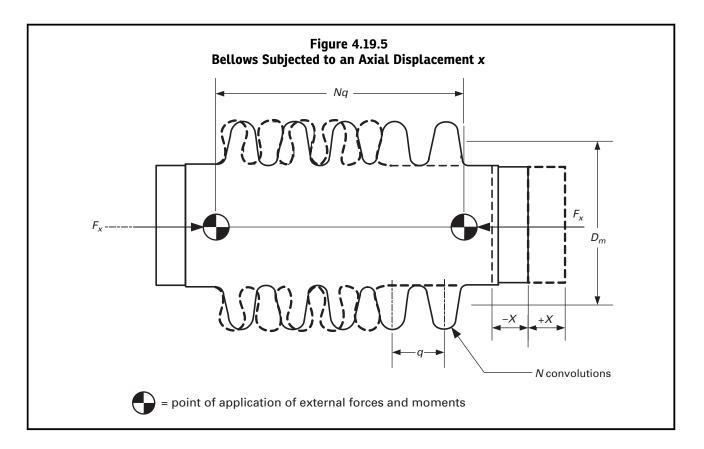
not have circumferential welds and satisfies all of the design and examination requirements of this paragraph, $K_g = 1.0$ may be used. (b) The allowable number of cycles given in this table includes a reasonable design margin (2.6 on cycles and 1.25 on stress) and represents the maximum number of cycles for the operating condition considered. Therefore an additional design margin should not be applied. An overly conservative estimate of cycles can necessitate a greater number of convolutions and result in a bellows more prone to instability.

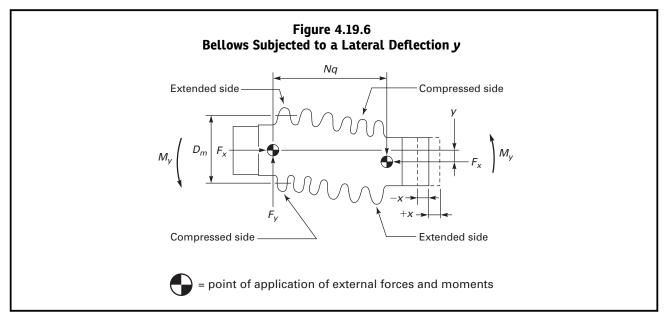
Table 4.19.9 Stress Calculations and Acceptability Criteria for Toroidal Bellows Subject to I	ntornal Prossuro
Stress Calculations and Acceptability Cilicina for Toroidal Bellows Subject to I	
Stress Calculation	
Circumferential membrane stress in end tangent	
$S_1 = \frac{1}{2} \frac{(D_b + nt)^2 L_d E_b}{D_c E_c A_{tc}} P$ for externally attached bellows	
Circumferential membrane stress in tangent collar	
$S'_1 = \frac{1}{2} \frac{D_c L_d}{A_{tc}} P$ for externally attached bellows	
Circumferential membrane stress in shell	
$S_1^{\prime\prime\prime} = \frac{(D_s + t_s)(L_s + 0.5L_g + nt)}{2A_{ts}}P$ for internally attached bellows	
Circumferential membrane stress in bellows convolutions	
$S_2 = \frac{Pr}{2nt_p}$	
Circumferential membrane stress in reinforcing collar	
$S_2' = \frac{D_r(L_{rt} + L_g + 2nt)}{2A_{rt}}P \text{ if } L_{rt} \leq \frac{2}{3}\sqrt{D_rt_r}$	
$S'_{2} = \frac{D_{r}(L_{r} + 0.5L_{g} + nt)}{2A_{r}}P \text{ if } L_{rt} > \frac{2}{3}\sqrt{D_{r}t_{r}}$	
Meridional membrane stress in bellows convolutions	
$S_3 = \frac{Pr}{nt_p} \left(\frac{D_m - r}{D_m - 2r} \right)$	
where	
$D_c = D_b + 2nt + t_c$	
$t_p = t_\sqrt{\frac{D_b}{D_m}}$	
Acceptance Criteria	
$S_1 \leq S$ for externally attached bellows	
$S'_1 \leq C_{WC}S_C$ for externally attached bellows	
$S_1^{\prime\prime\prime} \leq C_{WS}S_S$ for internally attached bellows $S_2 \leq S$	
$S_2 \le S_{Wr}S_r$	
$S_3 \leq S$	

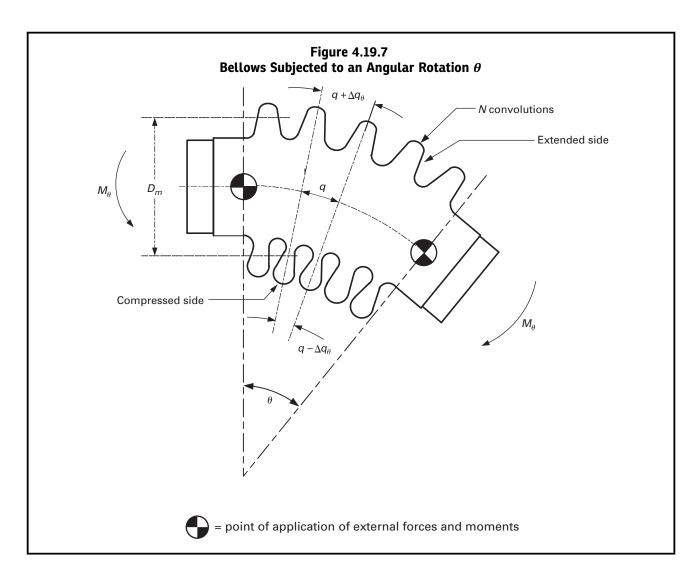

C ₃	<i>B</i> ₁	B ₂	B ₃
0	1.0	1.0	1.0
1	1.1	1.0	1.1
2	1.4	1.0	1.3
3	2.0	1.0	1.5
4	2.8	1.0	1.9
5	3.6	1.0	2.3
6	4.6	1.1	2.8
7	5.7	1.2	3.3
8	6.8	1.4	3.8
9	8.0	1.5	4.4
10	9.2	1.6	4.9
11	10.6	1.7	5.4
12	12.0	1.8	5.9
13	13.2	2.0	6.4
14	14.7	2.1	6.9
15	16.0	2.2	7.4
16	17.4	2.3	7.9
17	18.9	2.4	8.5
18	20.3	2.6	9.0
19	21.9	2.7	9.5
20	23.3	2.8	10.0
	$B_1 = \frac{1.00404 + 0.028725C_3}{1 + 0.14069C_3 - 0.0052319C_3^2}$	$\frac{+0.18961C_3^2 - 0.00058626C_3^3}{+0.00029867C_3^3 - 6.2088(10)^{-6}C_3^4}$	
	$B_2 = 1.0$	for $C_3 \leq 5$	
	$B_2 = \frac{0.049198 - 0.77774C_3 - 0.11}{1 - 2.81257C_3 + 0.63815}$	$\frac{3013c_3^2 + 0.080371c_3^3}{c_3^2 + 0.0006405c_3^3} \text{ for } C_3 > 5$	
	$B_3 = \frac{0.99916 - 0.091665C_3 + 0.0406}{1 - 0.1527C_3 + 0.013446C_3^2}$	$\frac{35c_3^2 - 0.0038483c_3^3 + 0.00013392c_3^4}{-0.00062724c_3^3 + 1.4374(10)^{-5}c_3^4}$	
	3		

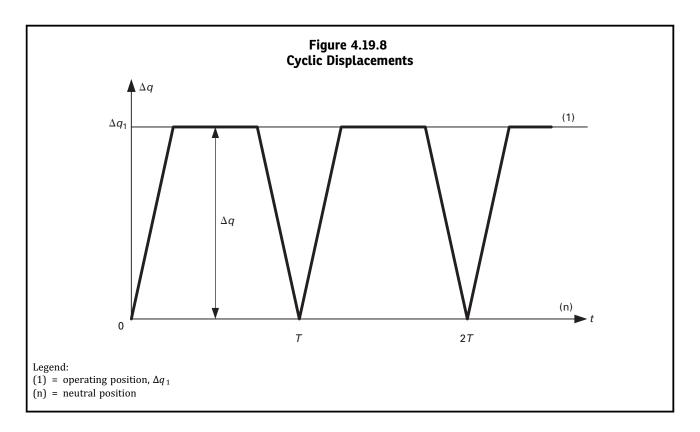


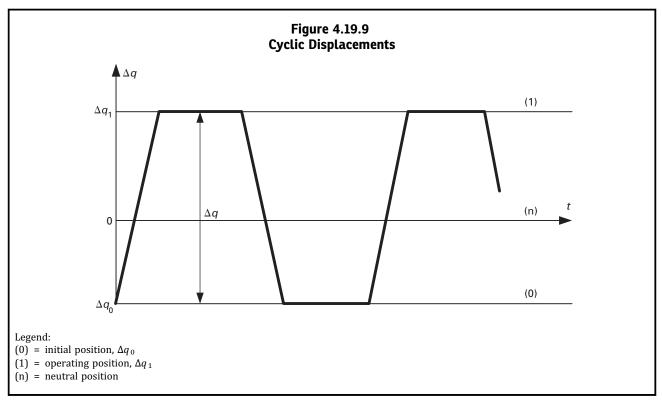

- (a) In the above equations, K_g is the fatigue strength reduction factor that accounts for geometrical stress concentration factors due to thickness variations, weld geometries, surface notches, and other surface or environmental conditions. The range for K_g is $1.0 \le K_g \le 4.0$ with its minimum value for smooth geometrical shapes and its maximum for 90 deg welded corners and fillet welds. Fatigue strength reduction factors may be determined from theoretical, experimental, or photoelastic studies. A factor has already been included in the above equations for *N* to account for normal effects of size, environment, and surface finish. If the expansion bellows does not have circumferential welds and satisfies all of the design and examination requirements of this paragraph, $K_g = 1.0$ may be used.
- (b) The allowable number of cycles given in this table includes a reasonable design margin (2.6 on cycles and 1.25 on stress) and represents the maximum number of cycles for the operating condition considered. Therefore an additional design margin should not be applied. An overly conservative estimate of cycles can necessitate a greater number of convolutions and result in a bellows more prone to instability.

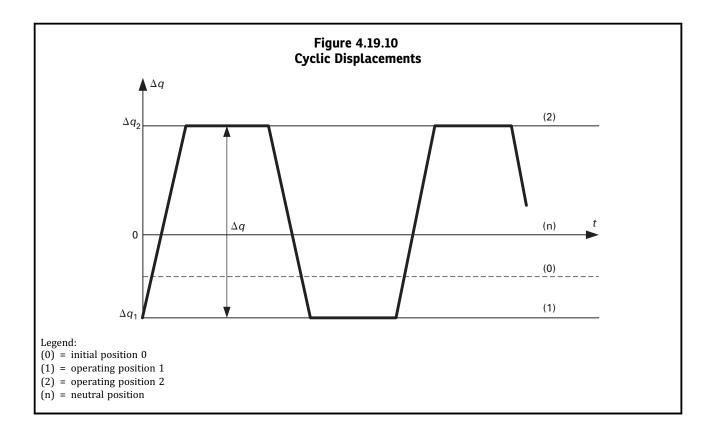

4.19.13 FIGURES

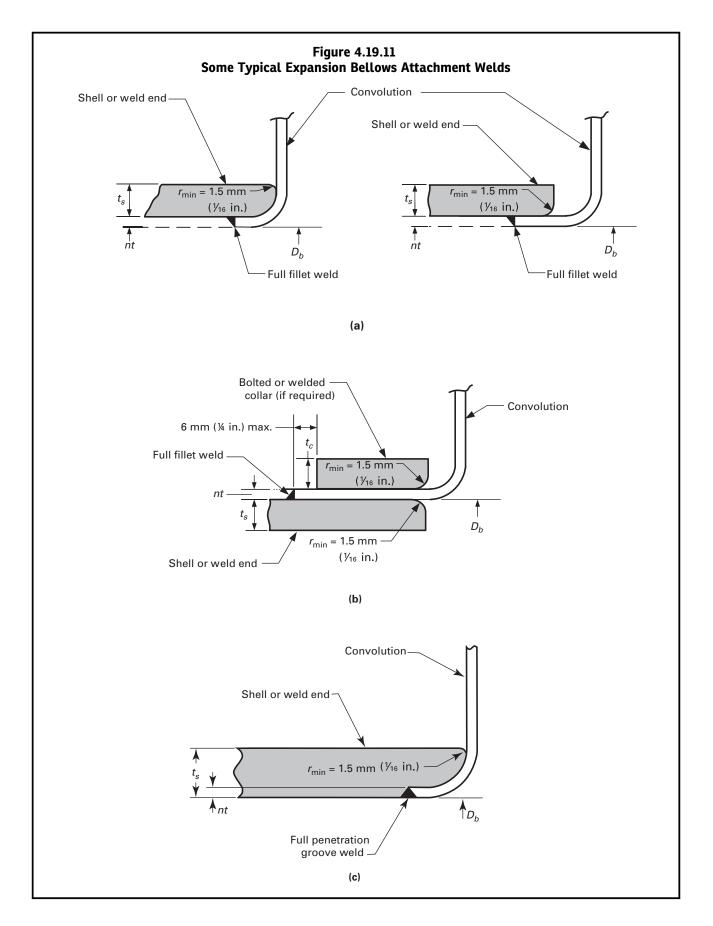


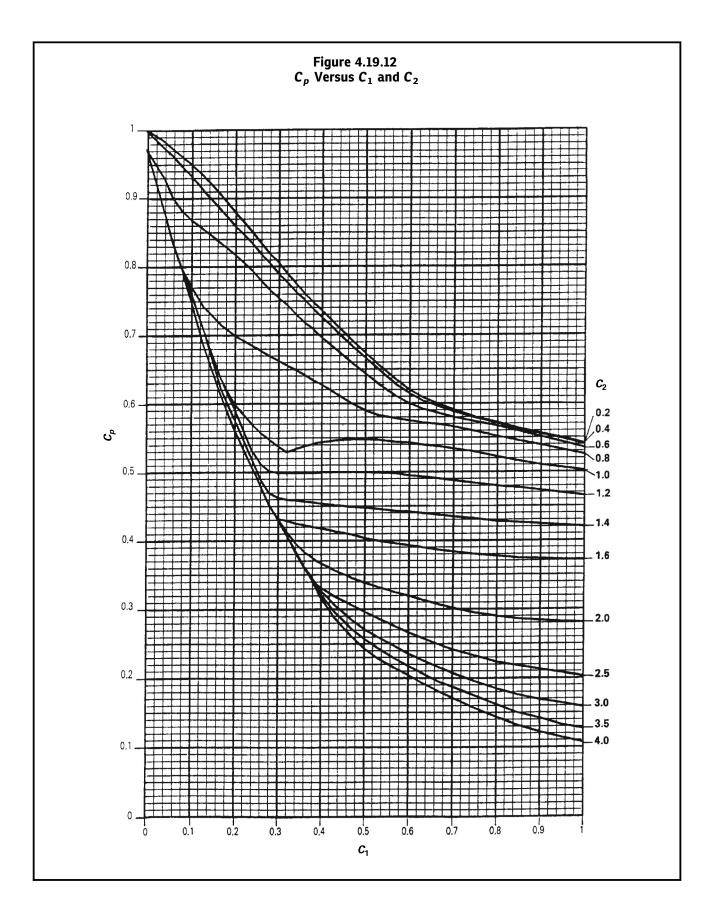


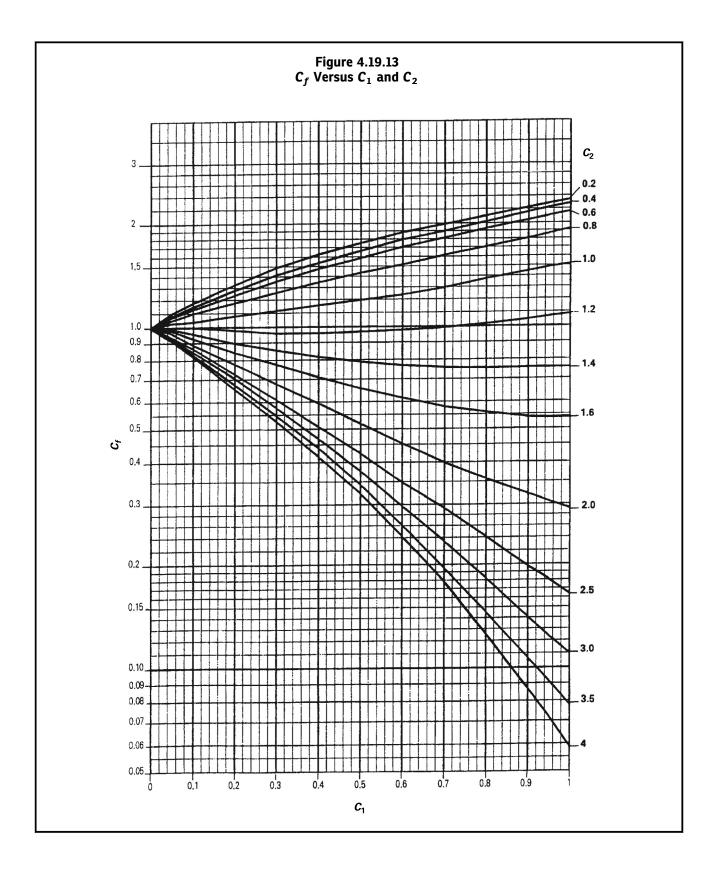


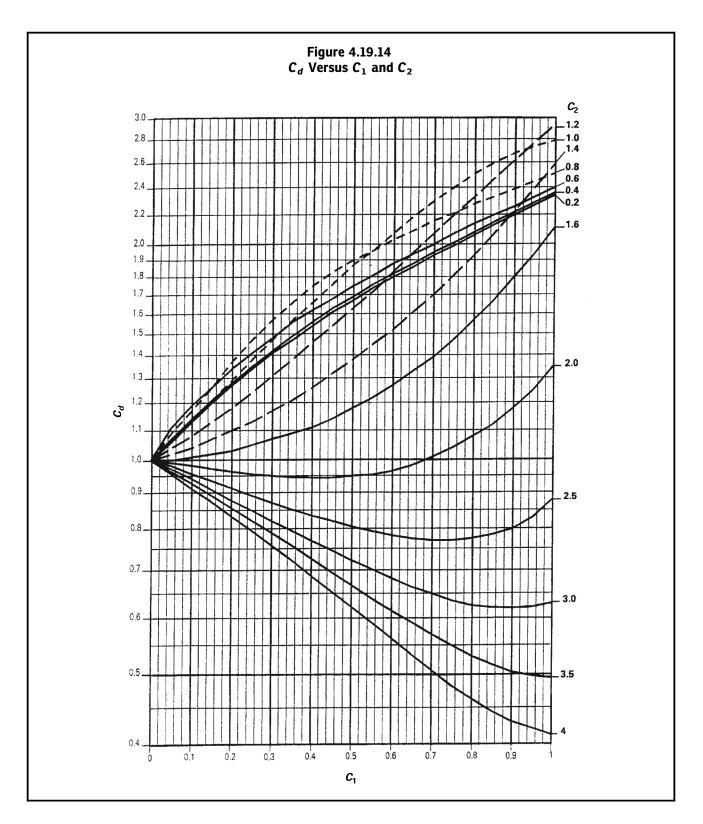












4.19.14 SPECIFICATION SHEETS

	ection VIII, Division 2 Bellows Expansion Joints, Me	tric Units
Date://	Applicable ASME Code Edition:	
	Vessel Class:	
1. Item Number:	Vessel Manufacturer:	
2. Drawing/Tag/Serial/Job Number:	Vessel Owner:	
3. Quantity:	Installation Location:	
4. Size: ODID mm	Expansion Joint Overall Length: n	nm
5. Internal Pressure: Design MPa		
6. External Pressure: Design MPa		
7. Vessel Manufacturer Hydrotest Pressure	Internal MPa External	MPa
8. Temperature Design °C	Operating °C Upset °	С
9. Vessel Rating MAWP MPa	MDMT °C Installed Position:	Horz. Vert
12. Design Torsion: Moment N-mm or 13. Shell Material:	Twist Angle: deg Bellows Material:	
14. Shell Thickness: mm Shell Corrosion A	Allowance: Internal: mm External: mr	n
15. Shell Radiography: Spot / Full		
16. End Preparation: Square Cut Outside Bevel In	nside Bevel Double Bevel (Describe in Line 24 if spec	ial)
17. Heat Exchanger Tube Length Between Inner Tubesheet	t Faces: mm	
18. Maximum Bellows Spring Rate:	No Yes – N/mm	
19. Internal Liner:	No Yes – Material	
20. Drain Holes in Liner:	No Yes – Quantity/Size:	_
21. Liner Flush with Shell ID:	No Yes – Telescoping Liners? No Yes	
 21. Liner Flush with Shell ID: 22. External Cover: 	No Yes – Telescoping Liners? No Yes No Yes – Material:	_
		-

NOTE:

(1) For multiple movements, design movements (line 10) can be replaced by operating movements, which should then be described under "Additional Requirements" (line 24). For each one of them, axial compression or axial extension, lateral deflection and angular rotation at each extremity of cycle, together with the specified number of cycles, should be indicated. When known, the order of occurrence of the movements should also be indicated.

(07/21)

Date:/	/		Applicable ASM	E Code Editio	on:	
			Vessel Class:			
1. Item Number:			Vessel Manufac	turer:		
2. Drawing/Tag/Serial/Job Nur	mber:		Vessel Owner:			
3. Quantity:			Installation Loca	ition:		
4. Size: OD	ID in.		Expansion Joint	Overall Leng	th:	in.
5. Internal Pressure: Design _	psig					
6. External Pressure: Design _	psig					
7. Vessel Manufacturer Hydrot	test Pressure		Internal	psig	External	psig
8. Temperature	Design	°F	Operating	°F	Upset	°F
9. Vessel Rating	MAWP	psig	MDMT	°F	Installed Positi	ion: Horz. Vert.
		-lb	or	Twist An	gle:	deg
 Specified Number of Cycles Design Torsion: Moment Shell Material: Shell Thickness: 	in		Bellows Materia	l:		
12. Design Torsion: Moment	in. in. Shell C		Bellows Materia	l:		
12. Design Torsion: Moment 13. Shell Material: 14. Shell Thickness:	in. in. Shell C / Full	Corrosion Allo	Bellows Materia	l: in. Ex		_ in.
12. Design Torsion: Moment 13. Shell Material: 14. Shell Thickness: 15. Shell Radiography: Spot 16. End Preparation: Square	in. in. Shell C / Full Cut Outside I	Corrosion Allo Bevel Inside	Bellows Materia owance: Internal: e Bevel Double Be	l: in. Ex		_ in.
12. Design Torsion: Moment 13. Shell Material: 14. Shell Thickness: 15. Shell Radiography: Spot	in. in. Shell C / Full Cut Outside I gth Between Inne	Corrosion Allo Bevel Inside	Bellows Materia owance: Internal: e Bevel Double Be Faces: in.	l: in. E>		_ in.
 Design Torsion: Moment	in. in. Shell C / Full Cut Outside I gth Between Inne	Corrosion Allo Bevel Inside	Bellows Materia owance: Internal: e Bevel Double Be Faces: in. No Yes –	l: in. Ex		_ in.
 Design Torsion: Moment	in. in. Shell C / Full Cut Outside I gth Between Inne	Corrosion Allo Bevel Inside	Bellows Materia owance: Internal: e Bevel Double Ber Faces: in. No Yes – No Yes – Ma	l: in. E> vel (Descr terial		_ in.
 Design Torsion: Moment	in. in. Shell C / Full Cut Outside I gth Between Inne	Corrosion Allo Bevel Inside	Bellows Materia owance: Internal: e Bevel Double Ber Faces: in. No Yes No Yes - Ma No Yes - Qu	l: in. E) vel (Descr terial antity/Size:		_ in.
 Design Torsion: Moment	in. in. Shell C / Full Cut Outside I gth Between Inne	Corrosion Allo Bevel Inside	Bellows Materia owance: Internal: e Bevel Double Ber Faces: in. No Yes No Yes - Ma No Yes - Qu No Yes - Tel	I: in. Exvel (Descr terial antity/Size: escoping Line		_ in.

NOTE:

 For multiple movements, design movements (line 10) can be replaced by operating movements, which should then be described under "Additional Requirements" (line 24). For each one of them, axial compression or axial extension, lateral deflection and angular rotation at each extremity of cycle, together with the specified number of cycles, should be indicated. When known, the order of occurrence of the movements should also be indicated.

(07/21)

4.20 DESIGN RULES FOR FLEXIBLE SHELL ELEMENT EXPANSION JOINTS

4.20.1 SCOPE

(*a*) The rules in 4.20 cover the minimum requirements for the design of flexible shell element expansion joints used as an integral part of heat exchangers or other pressure vessels. These rules apply to single-layer flexible shell element expansion joints shown in Figure 4.20.1 and are limited to applications involving axial displacement only. The suitability of an expansion joint for the specified design pressure, temperature, and axial displacement shall be determined by the methods described herein.

(*b*) The rules in 4.20 cover the common types of flexible shell element expansion joints but are not intended to limit the configurations or details to those illustrated or otherwise described herein. Designs that differ from those covered in 4.20 (e.g., multilayer, asymmetric geometries or loadings having a thick liner or other attachments) shall be in accordance with 4.1.1.2.

(23) 4.20.2 CONDITIONS OF APPLICABILITY

(*a*) For carbon and low-alloy steels, the minimum thickness, exclusive of corrosion allowance, shall be 3 mm (0.125 in.) for all pressure-retaining components.

(b) For high-alloy and nonferrous steels, the minimum thickness shall conform to the requirements of 4.1.2.

(c) The knuckle radius, r_a or r_b , of any formed element shall not be less than three times the element thickness, t, as shown in Figure 4.20.1.

(*d*) Extended straight flanges between the inner torus and the shell and between both outer tori are permissible. An outer shell element between the outer tori is permissible. For extended straight flanges between the inner torus and the shell, between the outer tori and an outer shell element, and between both outer tori that do not have an intermediate outer shell element, the requirements of 4.3.3 are not mandatory within L_{1imit} from the tangent line. See Figure 4.20.1. Any cylindrical portion beyond these limits shall comply with 4.3.3. Any outer cylinder between corner joints and shells adjoining corner joints shall comply with 4.3.3.

If the design of the flexible shell element is performed by numerical analysis, for mechanical-only loads [see 4.20.5(b)], straight flanges longer than L_{limit} need not comply with 4.3.3, provided the general primary membrane stress, P_m , in the straight flange is limited to *S*.

(e) Nozzles or other attachments located in the outer straight flange or outer shell element shall satisfy the axial spacing requirements of Figure 4.20.2.

4.20.3 DESIGN CONSIDERATIONS

(a) Expansion joints shall be designed to provide flexibility for thermal expansion and also to function as pressurecontaining elements.

(b) The vessel Manufacturer shall specify the design conditions and requirements for the detailed design and manufacture of the expansion joint.

(c) Thinning of any flexible element as a result of forming operations shall be considered in the design and specification of material thickness.

(*d*) In all vessels with integral expansion joints, the hydrostatic end force caused by the pressure or the joint spring force, or both, shall be resisted by adequate restraining elements (e.g., exchanger tubes, tubesheets or shell, external restraints, anchors, etc.). The primary stress in these restraining elements shall satisfy 4.1.6.1.

(e) If expansion joint flexible elements are to be extended, compressed, rotated, or laterally offset to accommodate connecting parts that are not properly aligned, such movements shall be considered in the design.

(f) Elastic moduli, yield strengths, and allowable stresses shall be taken at the design temperatures. However, for cases involving thermal loading, it is permitted to use the operating metal temperature instead of the design temperature.

4.20.4 MATERIALS

Materials for pressure-retaining components shall comply with the requirements of Part 3.

4.20.5 **DESIGN**

The expansion joint design shall conform to the requirements of this Part and the additional requirements listed below.

(*a*) Except as permitted by 4.18.12.1(b), the design of the expansion joint flexible elements shall satisfy the following stress limits. These stress limits shall be met in both the corroded and uncorroded conditions.

(b) Mechanical Loads Only. Mechanical loads include pressure and pressure-induced axial deflection. The maximum stress in the expansion joint is limited to 1.5S.

(c) Thermally Induced Displacements Only. The maximum stress in the expansion joint is limited to S_{PS} .

(d) Mechanical Loads Plus Thermally Induced Displacements. The maximum stress in the expansion joint is limited to S_{PS} .

(e) The calculation of the individual stress components and their combination shall be performed by a method of stress analysis that can be shown to be appropriate for expansion joints.

(f) The spring rate of the expansion joint assembly shall be determined either by calculation or by testing.

4.20.6 MARKING AND REPORTS

(a) The expansion joint Manufacturer, whether the vessel Manufacturer or a parts Manufacturer, shall have a valid ASME Code U2 Certificate of Authorization and shall complete the appropriate Data Report in accordance with Part 2.

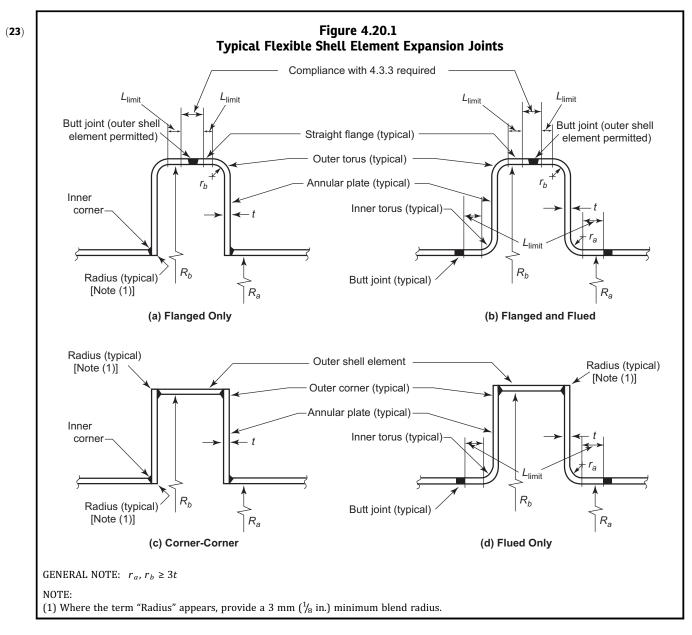
(*b*) The Manufacturer responsible for the expansion joint design shall include the following additional data and statements on the appropriate Data Report:

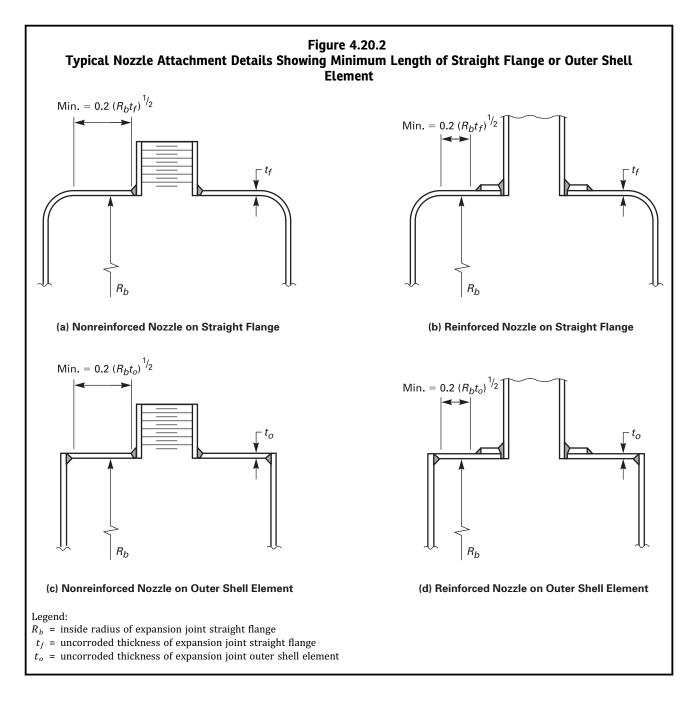
(1) axial movement (±) and associated loading condition, if applicable

(2) new and corroded spring rates

- (3) the expansion joint has been constructed to the rules of this paragraph
- (c) A parts Manufacturer shall identify the vessel for which the expansion joint is intended on the Partial Data Report.

(d) Markings shall not be stamped on the flexible elements of the expansion joint.


4.20.7 NOMENCLATURE


(23)

 L_{limit} = maximum length where the requirements of 4.3.3 are not mandatory = $0.5\sqrt{Rt_f}$

- R = uncorroded inside radius of expansion joint straight flange at the point of consideration
 - = R_a at the inner torus
 - = R_b at the outer torus
- r_a = outside radius of inner torus
- r_b = inside radius of outer torus
- S = allowable stress from Annex 3-A for expansion joint material at temperature, T
- S_{PS} = allowable primary plus secondary stress evaluated using 4.1.6.3 for expansion joint material at temperature, T
- S_y = allowable yield strength from Annex 3-D for expansion joint material at temperature, T
- T = expansion joint design temperature
- t = thickness of expansion joint flexible element
- t_f = uncorroded thickness of expansion joint straight flange
- t_o = uncorroded thickness of expansion joint outer shell element

4.20.8 FIGURES

4.21 TUBE-TO-TUBESHEET JOINT STRENGTH

4.21.1 SCOPE

4.21.1.1 General.

(*a*) Tubes used in the construction of heat exchangers or similar apparatus may be considered to act as stays that support or contribute to the strength of tubesheets in which they are engaged. Tube-to-tubesheet joints shall be capable of transferring the applied tube loads. The design of tube-to-tubesheet joints depends on the type of joint, degree of examination, and shear load tests, if performed.

(b) Tube-to-tubesheet joints, except for as exempted in (c) and (d) below, shall have their strength determined by one of the following sections. Either 4.21.2 or 4.21.3 may be used at the discretion of the designer and as applicable. For designs that are within the scope of both sections, compliance with both is not mandatory.

(c) Back-face welded joints, such as shown in Figure 4.18.2, sketch (d), are not covered.

(d) Determination of tube-to-tubesheet joint strength is not mandatory for U-Tube tubesheets (see 4.18.7).

(e) Some combinations of tube and tubesheet materials, when welded, result in welded joints having lower ductility than required in the material specifications. Appropriate tube-to-tubesheet joint geometry, welding method, and/or heat treatment shall be used with these materials to minimize this effect.

(f) In the selection of joint type, consideration shall be given to the mean metal temperature of the joint at operating temperatures and differential thermal expansion of the tube and tubesheet which may affect the joint integrity. The following provisions apply for establishing maximum operating temperature for tube-to-tubesheet joints.

(1) Tube-to-tubesheet joints where the maximum allowable axial load is controlled by the weld shall be limited to the maximum temperature for which there are allowable stresses for the tube or tubesheet material in Annex 3-A. Tube-to-tubesheet joints in this category are any of the following:

(-a) those with or without expansion complying with the following:

(-1) Tube-to-tubesheet joints having full-strength welds as defined in accordance with 4.21.1.2(a) shall be designed in accordance with 4.21.2.2 and do not require shear load testing

(-2) Tube-to-tubesheet joints having partial-strength welds as defined in accordance to 4.21.1.2(b) and shall be designed in accordance with 4.21.2.3 and do not require shear load testing.

(-*b*) those welded and expanded joints, such as Joint Types f, g, and h from Table 4.21.1, where the maximum allowable axial load is determined in accordance with 4.21.3.2 and is controlled by the weld

(-c) those welded-only joints, such as Joint Types a, b, b-1, and e from Table 4.21.1, where the maximum allowable load is determined in accordance with 4.21.3.2

(2) Tube-to-tubesheet joints where the maximum allowable axial load is determined in accordance with 4.21.3.2 considering friction only, such as Joint Types i, j, and k from Table 4.21.1, or is controlled by friction in welded and expanded joints, such a Joint Types f, g, and h from Table 4.21.1, shall be limited to temperatures as determine by the following:

(-*a*) The operating temperature of the tube-to-tubesheet joint shall be within the tube and tubesheet timeindependent properties as provided in Annex 3-A.

(-b) The maximum operating temperature is based on the interface pressure that exists between the tube and tubesheet. The maximum operating temperature is limited such that the interface pressure due to expanding the tube at joint fabrication plus the interface pressure due to differential thermal expansion, $(P_o + P_T)$, does not exceed 58% of the smaller of the tube or tubesheet yield strength in Annex 3-D at the operating temperature for $P_T \ge 0$. For $P_T < 0$, where due to differential thermal expansion the tube expands less than the tubesheet, the maximum operating temperature is limited such that the factor f_T remains of sufficient magnitude for the design loads. The interface pressure due to expanding the tube at fabrication or the interface pressure due to differential thermal expansion may be determined analytically or experimentally.

(-c) As an alternate to (-b) above, when the tube expands less than or equal to the tubesheet, joint acceptability shall be determined by shear load test described in 4.21.3.3. Two sets of specimens shall be tested. The first set shall be tested at the proposed operating temperature. The second set shall be tested at room temperature after heat soaking at the proposed operating temperature for 24 hr. The proposed operating temperature is acceptable if the provisions of 4.21.3.5 are satisfied.

(g) The Manufacturer shall prepare written procedures for joints that are expanded (whether welded and expanded or expanded only) for joint strength (see Annex 4-E). The Manufacturer shall establish the variables that affect joint repeatability in these procedures. The procedures shall provide detailed descriptions or sketches of enhancements, such as grooves, serrations, threads, and coarse machining profiles. The Manufacturer shall make these written procedures available to the Authorized Inspector.

4.21.1.2 Definitions.

(*a*) Full-Strength Weld — A full-strength tube-to-tubesheet weld is one in which the design strength is equal to or greater than the axial tube strength, Ft. When the weld in a tube-to-tubesheet joint meets the requirements of 4.21.2.2, it is a full-strength weld and the joint does not require qualification by shear load testing. Such a weld also provides tube joint leak tightness.

(*b*) Partial-Strength Weld — A partial-strength weld is one in which the design strength is based on the mechanical and thermal axial tube loads (in either direction) that are determined from the actual design conditions. The maximum allowable axial load of this weld may be determined in accordance 4.21.2.3 or 4.21.3. When the weld in a tube-to-tubesheet joint meets the requirements of 4.21.2.3, the joint does not require qualification by shear load testing. Such a weld also provides tube joint leak tightness.

(c) Seal Weld — A tube-to-tubesheet seal weld is one used to supplement an expanded tube joint to ensure leak tightness. Its size has not been determined based on axial tube loading.

(*d*) Welded-Only Joint — A tube-to-tubesheet joint that is made by welding the end of the tube to the tubesheet.

(e) Welded-and-Expanded Joint — A tube-to-tubesheet joint that is made by both welding and expanding.

(f) Expanded Joint — A tube-to-tubesheet joint that is made by expanding the tube into the tube hole in a manner that produces a determinable allowable axial joint load.

(g) Tube hole enhancement — A groove or other modification of the tube hole surface that increases the allowable axial joint load.

4.21.2 JOINT STRENGTH BY CALCULATION

4.21.2.1 Scope. These rules provide a basis for establishing weld sizes and allowable joint loads by calculation for full-strength and partial-strength tube-to-tubesheet welds. These rules apply to welded-only joints and welded-and-expanded joints in which the strength of the expansion is not considered. These rules cover the welds shown in Figure 4.21.1.

4.21.2.2 Full-Strength Welds. Full-strength welds shown in Figure 4.21.1 shall conform to the following requirements:

(a) The size of a full-strength weld shall be determined in accordance with 4.21.2.4.

(b) The maximum allowable axial load in either direction on a tube-to-tubesheet joint with a full-strength weld shall be $L_{\text{max}} = kF_t$.

4.21.2.3 Partial-Strength Welds. Partial-strength welds shown in Figure 4.21.1 shall conform to the following requirements:

(a) The size of a partial-strength weld shall be determined in accordance with 4.21.2.4.

(b) The maximum allowable axial load in either direction on a tube-to-tubesheet joint with a partial-strength weld shall be $L_{max} = k(F_f + F_g)$, but not greater than kF_t .

4.21.2.4 Weld Size Design Equations.

(a) The size of tube-to-tubesheet strength welds shown in Figure 4.21.1 shall conform to the following requirements:

(1) For fillet welds shown in Figure 4.21.1, sketch (a), the following applies:

(-a) Calculate the minimum required length of the fillet weld leg.

$$a_r = \sqrt{\left(0.75d_o\right)^2 + 2.73t\left(d_o - t\right)f_w f_d} - 0.75d_o \tag{4.21.1}$$

- (-*b*) For full-strength welds, $a_f \ge \max[a_r, 1.4t]$.
- (-c) For partial-strength welds, $a_f \ge a_r$.

(2) For groove welds shown in Figure 4.21.1, sketch (b), the following applies:

(-a) Calculate the minimum required length of the groove weld leg.

$$a_r = \sqrt{\left(0.75d_o\right)^2 + 1.76t\left(d_o - t\right)f_w f_d} - 0.75d_o \tag{4.21.2}$$

- (-*b*) For full-strength welds, $a_g \ge \max[a_r, t]$.
- (-*c*) For partial-strength welds, $a_g \ge a_r$.

(3) For combined groove and fillet welds shown in Figure 4.21.1, sketch (c) where $a_f = a_g$ the following applies: (-a) Calculate the minimum required length of the combined weld legs.

$$a_r = 2\left(\sqrt{\left(0.75d_o\right)^2 + 1.07t\left(d_o - t\right)f_wf_d} - 0.75d_o\right)$$
(4.21.3)

- (-b) For full-strength welds, $a_c \ge \max[a_r, 1.2t]$.
- (-c) For partial-strength welds, $a_c \ge a_r$.
- (-d) Calculate a_f and a_g using the following equations:

$$a_f = \frac{a_c}{2} \tag{4.21.4}$$

$$a_g = \frac{a_c}{2} \tag{4.21.5}$$

(4) For combined groove and fillet welds shown in Figure 4.21.1, sketch (d) where a_f is not equal to a_g , a_r the following applies:

(-a) Choose a_g and calculate the minimum required length of the fillet weld leg.

$$a_r = \sqrt{\left(0.75d_o\right)^2 + 2.73t\left(d_o - t\right)f_w f_d f_f} - 0.75d_o \tag{4.21.6}$$

(-b) For full-strength welds $a_c \ge \max[(a_r + a_g), 1.4t - 0.4a_g]$.

(-c) For partial-strength welds $a_c \ge (a_r + a_g)$.

(-d) Calculate a_f using the following equation:

$$a_f = a_c - a_g \tag{4.21.7}$$

(5) For inset fillet welds shown in Figure 4.21.1, sketch (e), the following applies:

(-a) Calculate the minimum required length of the fillet weld leg.

$$a_r = 0.75d_o - \sqrt{\left(0.75d_o\right)^2 - 2.73t\left(d_o - t\right)f_w f_d}$$
(4.21.8)

(-b) Full-strength welds are not possible with this configuration.

(-c) For partial-strength welds, $t \ge a_f \ge a_r$. If $a_r > t$, joint load cannot be calculated in accordance with this section. See 4.21.3.

(6) For combined groove and inset fillet welds shown in Figure 4.21.1, sketch (f), a_r the following applies:

(-a) Choose a_f and calculate the minimum required length of the groove weld.

$$a_r = \sqrt{\left(0.75d_o\right)^2 + 1.76t \left(d_o - t\right) f_w f_d f_g} - 0.75d_0 \tag{4.21.9}$$

(-b) For full-strength welds, $a_c \ge \max[(a_r + a_f), (t + 0.3a_f)]$.

(-c) For partial-strength welds, $a_c \ge (a_f + a_f)$.

(b) In weld strength factors used in (a) above shall be calculated using the following equations:

$$f_d = 1.0$$
 for full-strength welds (4.21.10)

$$f_d = \frac{F_d}{F_t}$$
 for partial-strength welds (4.21.11)

$$f_f = 1 - \frac{F_g}{f_d F_t}$$
(4.21.12)

$$f_g = 1 - \frac{F_f}{(f_d F_t)}$$
(4.21.13)

$$f_W = \frac{S}{S_W} \tag{4.21.14}$$

where

$$F_f = 0.55\pi a_f (d_o + 0.67a_f) S_W \text{ for face fillet welds shown in Figure 4.21.1(a), (c), (d)}$$
(4.21.15)

where

$$F_f = 0.55\pi a_f \left(d_o - 0.67 a_f \right) S_W \text{ for inset fillet welds as shown in Figure 4.21.1(e) \& (f)$$
(4.21.16)

where

$$F_g = 0.85\pi a_g \Big(d_o + 0.67a_g \Big) S_w \tag{4.21.17}$$

$$F_t = \pi t \left(d_0 - t \right) S \tag{4.21.18}$$

4.21.3 JOINT STRENGTH FACTORS

4.21.3.1 Scope. These rules provide a basis for establishing allowable joint loads through the use of strength factors. Some acceptable geometries and combinations of welded and mechanical joints are described in Table 4.21.1. Some acceptable types of welded joints are illustrated in Figure 4.21.2.

(*a*) Geometries, including variations in tube pitch, fastening methods, and combinations of fastening methods, not described or shown, may be used, provided qualification tests have been conducted and applied in compliance with the procedures in 4.21.3.3 and 4.21.3.4.

(b) Materials for welded tube-to-tubesheet joints that do not meet the requirements of Part 6, but in all other respects meet the requirements of this Division, may be used if qualification tests of the tube-to-tubesheet joint have been conducted and applied in compliance with the procedures in 4.21.3.3 and 4.21.3.4.

4.21.3.2 Maximum Axial Loads. The maximum allowable axial load in either direction on tube-to-tubesheet joints shall be determined in accordance with the following:

$$L_{\max} = kA_t Sf_r$$
 Joint Types a, b, e (4.21.19)

$$L_{\max} = \min(kA_tSf_{re}, kA_tS) \qquad \text{Joint Types f, g, h}$$
(4.21.20)

$$L_{\max} = \min(kA_t Sf_e f_r f_y f_T, kA_t S) \qquad \text{Joint Types i, j, k}$$
(4.21.21)

where

$$A_t = \pi (d_0 - t)t$$
 (4.21.22)

$$f_T = \frac{P_0 + P_T}{P_0}$$
(4.21.23)

The following equations may be used to calculate P_o and P_T :

$$P_{e} = S_{y,t} \frac{t + r_{o} \left(\frac{S_{y}}{S_{y,t}}\right)}{t + r_{o}} \left(1.945 - 1.384 \frac{d_{i}}{d_{o}}\right)$$
(4.21.24)

$$P_o = P_e \left[1 - \left(\frac{d_i}{d_o}\right)^2 \right] - \frac{2}{\sqrt{3}} S_{y,t} \left(\ln \frac{d_o}{d_i} \right)$$
(4.21.25)

 $R_m = r_0 - \frac{t}{2} \tag{4.21.26}$

ASME BPVC.VIII.2-2023

$$P_{T} = \frac{\frac{R_{m}}{d_{o}} E_{t} \left[\alpha_{t} d_{o} \left(T - T_{a} \right) - \alpha d_{o} \left(T - T_{a} \right) \right]}{\left(\frac{d_{o}^{2}}{t} - R_{m} \right) + R_{m} \left(2.9 \frac{E_{t}}{E} - 0.3 \right)}$$
(4.21.27)

4.21.3.3 Shear Load Test.

4.21.3.3.1 Flaws in the specimen may affect results. If any test specimen develops flaws, the retest provisions of 4.21.3.3.11 shall govern.

4.21.3.3.2 If any test specimen fails because of mechanical reasons, such as failure of testing equipment or improper specimen preparation, it may be discarded and another specimen taken from the same heat.

4.21.3.3. The shear load test subjects a full-size specimen of the tube joint under examination to a measured load sufficient to cause failure. In general, the testing equipment and methods are given in the Methods of Tension Testing of Metallic Materials (ASTM E 8). Additional fixtures for shear load testing of tube-to- tubesheet joints are shown in Figure 4.21.3.

4.21.3.3.4 The test block simulating the tubesheet may be circular, square, or rectangular in shape, essentially in general conformity with the tube pitch geometry. The test assembly shall consist of an array of tubes such that the tube to be tested is in the geometric center of the array and completely surrounded by at least one row of adjacent tubes. The test block shall extend a distance of at least one tubesheet ligament beyond the edge of the peripheral tubes in the assembly.

4.21.3.3.5 All tubes in the test block array shall be from the same heat and shall be installed using identical procedures.

(a) The finished thickness of the test block may be less but not greater than the tubesheet it represents. For expanded joints, made with or without welding, the expanded area of the tubes in the test block may be less but not greater than that for the production joint to be qualified.

(*b*) The length of the tube used for testing the tube joint need only be sufficient to suit the test apparatus. The length of the tubes adjacent to the tube joint to be tested shall be not less than the thickness of the test block to be qualified.

4.21.3.3.6 The procedure used to prepare the tube-to-tubesheet joints in the test specimens shall be the same as used for production.

4.21.3.3.7 The tube-to-tubesheet joint specimens shall be loaded until mechanical failure of the joint or tube occurs. The essential requirement is that the load be transmitted axially.

4.21.3.3.8 Any speed of testing may be used, provided load readings can be determined accurately.

4.21.3.3.9 The reading from the testing device shall be such that the applied load required to produce mechanical failure of the tube-to-tubesheet joint can be determined.

4.21.3.3.10 For determining $f_{r,test}$ for joint types listed in Table 4.21.1, a minimum of three specimens shall constitute a test. The value of $f_{r,test}$ shall be calculated in accordance with 4.21.3.4.1 using the lowest value of L_{test} . In no case shall the value of $f_{r,test}$ using a three specimen test exceed the value of $f_{r,test}$ given in Table 4.21.1. If the value of $f_{r,test}$ so determined is less than the value for $f_{r,test}$ given in Table 4.21.1, retesting shall be performed in accordance with 4.21.3.3.11, or a new three specimen test shall be performed using a new joint configuration or fabrication procedure. All previous test data shall be rejected. To use a value of $f_{r,test}$ greater than the value given in Table 4.21.1, a nine specimen test shall be performed in accordance with 4.21.3.3.11.

4.21.3.3.11 For joint types not listed in Table 4.21.1, to increase the value of $f_{r,test}$ for joint types listed in Table 4.21.1, or to retest joint types listed in Table 4.21.1, the tests to determine $f_{r,test}$ shall conform to the following:

(a) A minimum of nine specimens from a single tube shall be tested. Additional tests of specimens from the same tube are permitted, provided all test data are used in the determination of $f_{r,test}$. If a change in the joint design or its manufacturing procedure is necessary to meet the desired characteristics, complete testing of the modified joint shall be performed.

(b) In determining the value of $f_{r,test}$, the mean value of L_{test} shall be determined and the standard deviation, sigma, about the mean shall be calculated. The value of $f_{r,test}$ shall be calculated using the value of L_{test} corresponding to -2 sigma, using the applicable equation in 4.21.3.4. In no case shall $f_{r,test}$ exceed 1.0.

4.21.3.3.12 Once shear load tests have been successfully completed for a tube-to-tubesheet joint design, the Manufacturer that produced the test specimen may use the calculated $f_{r,test}$ for any production tube-to-tubesheet joint design that the Manufacturer produces having the same geometry, material nominal composition, specified ultimate tensile strength, and fabrication procedure used for the shear load test specimen. The fabrication procedure shall contain or reference the test qualification information required by 4-E.5.2 and/or Section IX, QW-193.1, as applicable.

4.21.3.4 Acceptance Standards for Joint Efficiency Factor Determined by Test.

4.21.3.4.1 The value of $f_{r,test}$ determined by testing shall be calculated as follows.

$$f_{r,\text{test}} = \frac{L_{\text{test}}}{A_t S_T}$$
 Joint Types a, b, b-1, e (4.21.28)

$$f_{r,\text{test}} = \frac{L_{\text{test}}}{A_t S_T f_e f_V} \qquad \text{Joint Types f, g, h, i, j, k}$$
(4.21.29)

4.21.3.4.2 The value of $f_{r,test}$ shall be used for $f_{r,test}$ in the equation for L_{max} .

4.21.3.5 Acceptance Standards for Proposed Operating Temperatures Determined by Test. The proposed operating conditions shall be acceptable if both of the following conditions are satisfied:

$$L_{1,\text{test}} \ge A_t f_{\theta} f_{\nu} S_T \left(S_u / S_{ua} \right) \tag{4.21.30}$$

$$L_{2,\text{test}} \ge A_t f_{\varrho} f_{\nu} S_T \tag{4.21.31}$$

4.21.4 NOMENCLATURE

- a_c = length of the combined weld(s) measured parallel to the longitudinal axis of the tube at its outside diameter. For fillet only welds, $a_c = a_f$. For groove only welds, $a_c = a_g$. These dimensions are illustrated in Figures 4.21.1 and 4.21.2.
- a_f = fillet weld leg. For unequal leg fillets, a_f shall be the size of the smaller of the two legs.
- a_q = depth of groove weld. Depth can be achieved by chamfer or non-chamfer groove.
- a_r = minimum required length of the weld(s) under consideration
- A_t = tube cross-sectional area
- d_i = nominal tube inside diameter
- d_o = nominal tube outside diameter
- E = modulus of elasticity for tubesheet material at T
- E_t = modulus of elasticity for tube material at T
- F_d = design strength, but not greater than F_t
- f_d = ratio of the design strength to the tube strength
- f_e = factor for the length of the expanded portion of the tube. f_e = min[(l/d_o), 1.0] for tube joints made with expanded tubes in tube holes without enhancement and f_e = 1.0 for tube joints made with expanded tubes in tube holes with enhancement. An expanded joint is a joint between the tube and tubesheet produced by applying an expanding force inside the portion of the tube to be engaged in the tubesheet. The expanding force shall be set to values necessary to effect sufficient residual interface pressure between the tube and hole for joint strength.
- F_f = fillet weld strength, but not greater than F_t
- f_f = ratio of the fillet weld strength to the design strength
- F_g = groove weld strength, but not greater than F_t
- f_g = ratio of the groove weld strength to the design strength
- f_r = factor to define the efficiency of joint, set equal to the value of $f_{r,test}$ or $f_{r,notest}$. $f_{r,test}$ is equal to the value calculated from results of test in accordance with 4.21.3.4 or as tabulated in Table 4.21.1, whichever is less, except as permitted in 4.21.3.3.11. $f_{r,notest}$ is equal to maximum allowable value without qualification test in accordance with Table 4.21.1
- $f_{r,notest}$ = factor to define the efficiency of joint established without a test
- $f_{r,\text{test}}$ = factor to define the efficiency of joint established in a test

ASME BPVC.VIII.2-2023

- f_{re} = factor for the overall efficiency of welded and expanded joints. This is the maximum of the efficiency of the weld alone, $f_r(b)$, and the net efficiency of the welded and expanded joint.
 - $= \max[f_e f_r f_y f_T, f_r(b)]$
- F_t = axial tube strength
- f_T = factor to account for the increase or decrease of tube joint strength due to radial differential thermal expansion at the tube-to-tubesheet joint. Acceptable values of f_T may range from 0 to greater than 1. When the f_T value is negative, it shall be set to 0.
- f_w = weld strength factor
- f_y = factor for differences in the mechanical properties of tubesheet and tube materials. f_y = min[$(S_y/S_y t)$, 1.0] for expanded joints. When f_y is less than 0.60, qualification tests in accordance with 4.21.3.3 and 4.21.3.4 are required.
- k = tube load factor
 - = 1.0 for loads due to pressure-induced axial forces
 - = 1.0 for loads due to thermally induced or pressure plus thermally induced axial forces on welded-only joints where the thickness through the weld throat is less than the nominal tube wall thickness t
 - = 2.0 for loads due to thermally induced or pressure plus thermally induced axial forces on all other tubeto-tubesheet joints
- l = expanded tube length
- $L_{1,test}$ = lowest axial load at which failure occurs at operating temperature
- $L_{2,test}$ = lowest axial load at which failure of heat soaked specimen tested at room temperature occurs
- L_{max} = maximum allowable axial load in either direction on the tube-to-tubesheet joint
- L_{test} = axial load at which failure of the test specimens occur
 - P_e = tube expanding pressure
 - P_o = interface pressure between the tube and tubesheet that remains after expanding the tube at fabrication. This pressure may be established analytically or experimentally, but shall consider the effect of change in material strength at operating temperature.
 - P_T = interface pressure between the tube and tubesheet due to differential thermal growth. This pressure may be established analytically or experimentally.
 - R_m = mean tube radius
 - r_o = tube outside radius
 - S = allowable stress from Annex 3-A for the tube at the design temperature. For a welded tube, S is the equivalent allowable stress for a seamless tube.
 - S_T = tensile strength for tube material from the material test report
 - S_t = allowable stress from Annex 3-A of the material to which the tube is welded (see 3.3.7.4)
 - S_u = tensile strength for tube material at operating temperature from Annex 3-D
 - S_{ua} = tensile strength for tube material at room temperature from Annex 3-D
 - S_w = allowable stress in weld, S_w = [S, S_t]
 - S_y = tubesheet specified minimum yield strength at the design temperature from Annex 3-D
 - $S_{y,t}$ = tube specified minimum yield strength at the design temperature from Annex 3-D
 - T = tubesheet design temperature
 - t = nominal tube wall thickness
 - T_a = ambient temperature
 - α = mean coefficient of thermal expansion of tubesheet material at *T*
 - α_t = mean coefficient of thermal expansion of tube material at *T*

4.21.5 **TABLES**

Efficiencies for Welded and/or Expanded Tube-to-Tubesheet Joints Joint Type Description [Note (1)] Notes fr_test [Note (2)] fr									
a	Welded only, total weld size $(0.7a_f + a_g) \ge t$	(4)	1.00	<u> </u>					
b	Welded only, total weld size $(0.7a_f + a_g) < t$	(4)	0.70						
e	Welded, total weld size $(0.7a_f + a_g) \ge t$, and expanded	(3)	1.00	0.80					
f	Welded, total weld size $(0.7a_f + a_g) < t$, and expanded Enhanced with two or more grooves	(3), (5), (6), (7), (8)	0.95	0.75					
g	Welded, total weld size $(0.7a_f + a_g) < t$, and expanded Enhanced with single groove	(3), (5), (6), (7), (8)	0.85	0.65					
h	Welded, total weld size $(0.7a_f + a_g) < t$, and expanded Not enhanced	(3), (5), (6)	0.70	0.50					
i	Expanded Enhanced with two or more grooves	(5), (6), (7), (8)	0.90	0.70					
j	Expanded Enhanced with single groove	(5), (6), (7), (8)	0.80	0.65					
k	Expanded Not enhanced	(5), (6)	0.60	0.50					

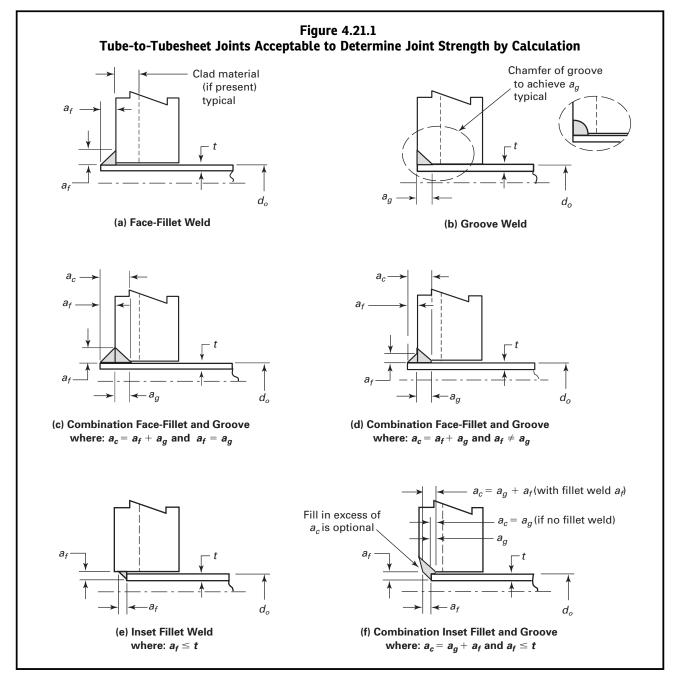
NOTES:

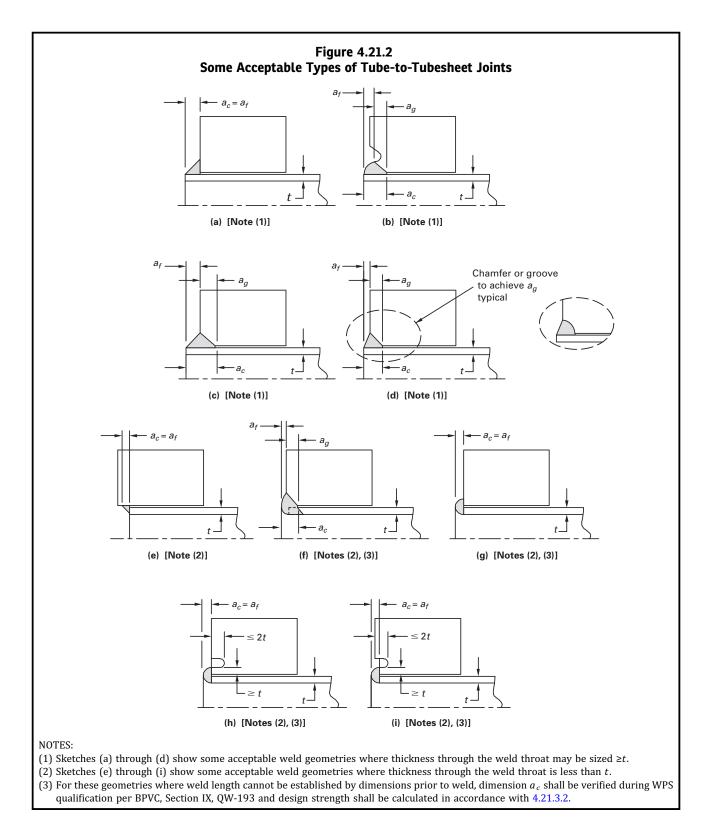
(1) For joint types involving more than one fastening method, the sequence used in the joint description does not necessarily indicate the order in which the operations are performed.

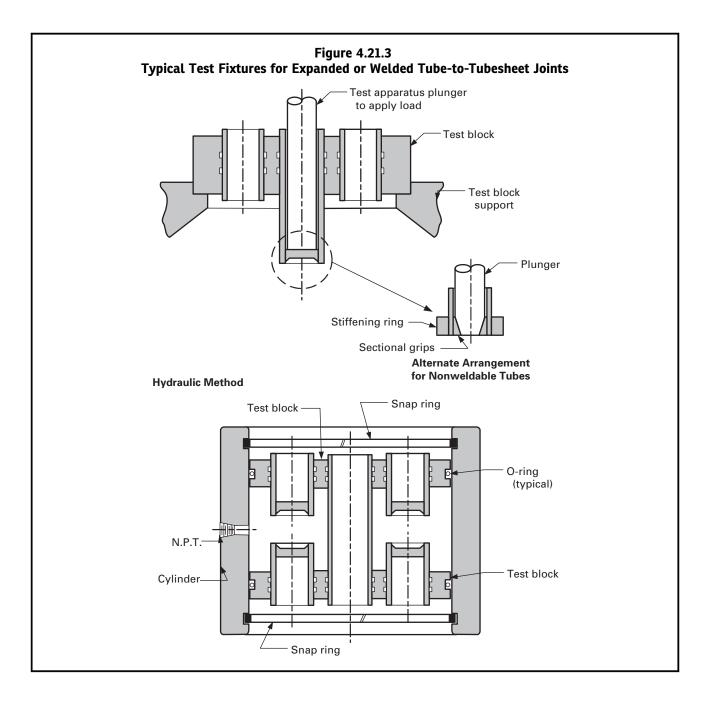
(2) The use of the $f_{r, \text{ test}}$ factor requires qualification in accordance with 4.21.3.3 and 4.21.3.4.

(3) The value of $f_{r, no test}$ applies only to material combinations as provided for under Section IX. For material combinations not provided for under Section IX, f_r shall be determined by test in accordance with 4.21.3.3 and 4.21.3.4.

(4) $f_{r, no test}$ is not permitted for welded only joint types in accordance with Section 4.21.3. Refer to 4.21.2.


(5) If $d_o/(d_o - 2t) < 1.05$ or $d_o/(d_o - 2t) > 1.410$, f_r shall be determined by test in accordance with 4.21.3.3 and 4.21.3.4.


(6) If the nominal pitch (center-to-center distance of adjacent tube holes) is less than $d_o + 2t$, f_r shall be determined by test in accordance with 4.21.3.3 and 4.21.3.4.


(7) The Manufacturer may use other means to enhance the strength of expanded joints, provided however, that the joints are tested in accordance with 4.21.3.3 and 4.21.3.4.

(8) For explosive and hydraulic expansion, grooves shall be a minimum of $1.1[(d_o - t)t]^{0.5}$ wide. For explosively or hydraulically expanded joints with single grooves meeting this requirement, f_r for Joint Type f may be used in lieu of that for Joint Type g, and f_r for Joint Type i may be used in lieu of that for Joint Type j, as applicable.

4.21.6 FIGURES

(Currently Not Used)

ANNEX 4-B GUIDE FOR THE DESIGN AND OPERATION OF QUICK-ACTUATING (QUICK-OPENING) CLOSURES

(Informative)

4-B.1 INTRODUCTION

4-B.1.1 This Annex provides guidance in the form of recommendations for the installation, operation, and maintenance of quick-actuating closures. This guidance is primarily for the use of the Owner and the user. The safety of the quick-actuating closure is the responsibility of the user. This includes the requirement for the user to provide training for all operating personnel, follow safety procedures, periodically inspect the closure, provide scheduled maintenance, and have all necessary repairs made in a timely fashion.

4-B.1.2 This Annex also contains guidance for use by the Designer. The rules specific to the design and construction of quick-actuating closures are found in 4.8 of this division.

4-B.1.3 The Manufacturer should supply the Owner a copy(ies) of the Installation, Operational, and Maintenance Manual for the quick-actuating closure which should, as a minimum, address the requirements described in this Annex. The Owner should supply a copy of the Installation, Operational, and Maintenance Manual to the user.

4-B.2 RESPONSIBILITIES

4-B.2.1 It is the responsibility of the user to ensure that the sensing and safety devices and the equipment specified by the Manufacturer are properly installed before initial operation, and maintained during subsequent operation. Provision of written operation and maintenance procedures and training of personnel are also the responsibility of the Owner or user.

4-B.2.2 The user must not remove any devices furnished or specified by the Manufacturer of the vessel, and any repairs or replacements must be the same as, or equal to, the original equipment furnished or specified by the Manufacturer.

4-B.2.3 The rules of this Annex do not require these devices to be supplied by the Manufacturer of the vessel or of the quick-actuating closure.

4-B.3 DESIGN

4-B.3.1 Code rules cannot be written to address each specific design; therefore, engineering judgment exercised by a qualified designer with the necessary experience is required to achieve a safe design. Because of the multiple requirements imposed on the design, it should be prepared by a designer with suitable experience and training in the design of quick-actuating closures.

4-B.3.2 The design must be safe, reliable, and allow for quick and safe opening and closing. Therefore, sensing and safety devices and equipment are integral and vitally important parts of the closure, and are to be furnished or specified by the Manufacturer of the vessel or quick-actuating closure. These devices must never be removed by the user.

4-B.3.3 It should be noted that there is a higher likelihood of personnel being close to the vessel and the closure when accidents during opening occur, especially those due to violations of operating procedures. An example is attempting to pry open the closure when they believe the vessel has been depressurized and it may not be.

4-B.3.4 The passive safety features described below can help to protect against such actions, but most can still be subverted. Protection against subversion of safety features is covered under Inspection, Training, and Administrative Controls.

4-B.3.5 Structural Elements in the vessel and the closure require design margins. However, it is also important to provide the suggested features listed below, for erroneous opening.

(a) Passive Actuation - A passively actuated safety feature or device does not require the operator to take any action to provide safety. An example is a pressure relief valve in a vessel or a pressure-actuated locking device in a quick-actuating closure.

(*b*) Redundancy - A redundant safety feature or device is one of two or more features or devices that perform the same safety function. Two pressure-actuated locking devices in parallel are an example application to quick-actuating closures. Another example is two or more independent holding elements, the failure of one of which does not reduce the capability to withstand pressure loadings below an acceptable level.

(c) Fail-Safe Behavior - If a device or element fails, it should fail in a safe mode. An example applicable to quickactuating closures is a normally-closed electrical interlock that stays locked if power fails.

(*d*) Multiple Lines of Defense - This can consist of any combination of two or more items from the list above. They should consist, at the very least, of warnings or alarms.

4-B.3.6 Pressure controls and sensors that operate well at 350 kPa to 700 kPa (50 psi to 100 psi) or at much greater pressure do not operate well at very low pressure. For example, they may not sense a small, static head of hot fluid. Certain accidents can occur because of the release of hot fluid under static head alone, or under very low pressure. To protect against such accidents, separate controls and sensors may be used to maintain operating pressure on the one hand, and others may be required to prevent inappropriate opening at low pressures.

4-B.3.7 It may be necessary or desirable to utilize electrical or electronic devices and interlocks. If these are used, careful detailed installation, operating, and maintenance instructions (see following) shall be required.

4-B.3.8 The effects of repetitive loading shall be considered. There are two phenomena that are of major concern. The first is the wear produced by repetitive actuation of the mechanism. This can generally be mitigated by routine maintenance. The second is fatigue damage produced in the vessel or in the closure by repetitive actuation of the mechanism or by repetitive pressurization and depressurization.

4-B.3.9 The code does not provide explicit guidance for the evaluation or mitigation of wear. As well as proper maintenance, the selection of suitable materials for mating wear surfaces and control of contact stresses is necessary during the design process to properly control wear.

4-B.4 INSTALLATION

4-B.4.1 The manufacturer shall provide clear instructions for the installation of the quick-actuating closure itself and any adjustments that are necessary in the field. An example is adjustment of wedges or clamps.

4-B.4.2 Instructions, preferably including schematics and drawings, shall be provided for the installation, adjustment, and checkout of interlocks and warning devices.

4-B.4.3 Maintenance.

4-B.4.4 Vessels with quick-actuating closures are commonly installed in industrial environments subject to dirt, moisture, abrasive materials, etc. These environmental factors are detrimental to safe and reliable operation of mechanical, electrical and electronic sensors and safety devices. Therefore, the user should establish a suitable cleaning and maintenance interval, and a means to verify that the equipment has been properly cleaned and maintained.

4-B.4.5 Accidents have occurred because gaskets have stuck, and have released suddenly when pried open. Many soft gaskets (60-70 Shore A Scale) have a combined shelf life and operating life of as little as six months. Aging can change the properties of the gasket material and change the gasket dimensions, impeding its proper function.

4-B.5 INSPECTION

4-B.5.1 It is recommended that the user inspect the completed installation including the pressure gauges before it is permitted to operate. Records of this inspection should be retained.

4-B.5.2 It is recommended that the user establish and document a periodic in-service inspection program, and that this program be followed and the results documented.

4-B.6 TRAINING

4-B.6.1 Many accidents involving quick-actuating closures have occurred because the operators have been unfamiliar with the equipment or its safety features. The greater safety inherent in current designs has sometimes been produced by the use of sophisticated mechanical, electrical or electronic control devices. In order to make these features produce the maximum safety, personnel should be properly trained in their operation and maintenance.

4-B.6.2 Note that accidents may occur because hot fluid remains present in the vessel at atmospheric pressure of 15 kPa to 20 kPa (2 psig to 3 psig). If the vessel is forced open while under this pressure, then injuries may occur. Such specific accident sources should be guarded against by training and by administrative procedures. It is important that sound written operating procedures, understandable by the operating personnel and multi-lingual if necessary, exist for the quick-actuating closure, and that the operators be trained in the proper use of all interlocks, sensing devices, and manual closure mechanisms.

4-B.6.3 Provision of written operation and maintenance procedures and training of personnel are the responsibility of the user.

4-B.6.4 As part of the training program, testing should be performed to ensure that the trainee understands the material he or she is trained in. Records should be retained by the user.

4-B.7 ADMINISTRATIVE CONTROLS

The user should provide administrative controls covering training, cleanliness, operation, periodic inspection, and maintenance of equipment with quick-actuating closures. Records should be retained by the user.

ANNEX 4-D GUIDANCE TO ACCOMMODATE LOADINGS PRODUCED BY DEFLAGRATION

(Normative)

4-D.1 SCOPE

When an internal vapor-air or dust-air deflagration is defined by the user or his designated agent as a load condition to be considered in the design, this Annex provides guidance for the designer to enhance the ability of a pressure vessel to withstand the forces produced by such conditions.

4-D.2 GENERAL

Deflagration is the propagation of a combustion zone at a velocity that is less than the speed of sound in the unreacted medium, whereas detonation is the propagation of a combustion zone at a velocity that is greater than the speed of sound in the unreacted medium. A detonation can produce significant dynamic effects in addition to pressure increases of great magnitude and very short duration, and is outside the scope of this Annex. This Annex only addresses the lower and slower loadings produced by deflagrations that propagate in a gas-phase.

The magnitude of the pressure rise produced inside the vessel by a deflagration is predictable with reasonable certainty. Unvented deflagration pressures can be predicted with more certainty then vented deflagration pressures. Methods are provided in the references listed in 4-D.5 to bound this pressure rise. Other methods may also be used to determine pressure rise.

4-D.3 DESIGN LIMITATIONS

The limits of validity for deflagration pressure calculations are described in References [1] and [2].

4-D.4 DESIGN CRITERIA

4-D.4.1 SAFETY MARGIN

As described in NFPA-69, (see Reference [1]), a vessel may be designed to withstand the loads produced by a deflagration

(a) without significant permanent deformation; or

(b) without rupture (see Reference [3]).

A decision between these two design criteria should be made by the user or his designated agent based upon the likelihood of the occurrence and the consequences of significant deformation. It is noted that either (a) or (b) above will result in stresses for a deflagration that are larger than the basic Code allowable stress listed in Section II, Part D. Because of this, appropriate design details and nondestructive examination requirements shall be agreed upon between the user and designer.

These two criteria are very similar in principle to the Level C and Level D criteria, respectively, contained in Section III, Subsection NB for use with Class 1 vessels, (see References [4] and [5]). The limited guidance in NFPA 69 requires the application of technical judgments made by knowledgeable designers experienced in the selection and design of appropriate details. The Level C and Level D criteria in Section III provide the detailed methodology for design and analysis. The successful use of either NFPA 69 or Section III criteria for deflagration events requires the selection of materials for construction the will not fail because of brittle fracture during the deflagration pressure excursions.

4-D.4.2 LIKELIHOOD OF OCCURRENCE

For vapor-air and dust-air combustion, various methods of reducing the likelihood of occurrence are described in Reference [2]. It is good engineering practice to minimize the likelihood of occurrence of these events, regardless of the capability of the vessel to withstand them.

4-D.4.3 CONSEQUENCES OF OCCURRENCE

In deciding between designing to prevent significant permanent deformation [see 4-D.4.1(a)]or designing to prevent rupture [see 4-D.4.1(b)], the consequences of significant distortion of the pressure boundary should be considered. Either the aforementioned NFPA or Section III design criteria may be used: Each has been used successfully.

4-D.4.4 STRAIN CONCENTRATION

When developing a design to withstand either of the criteria sited above, the designer should avoid creating weak sections in the vessel at which strain can be concentrated. Examples of design details to avoid are partial penetration pressure boundary welds, cone to cylinder junctions without transition knuckles, large openings in heads or cylindrical shells which require special design consideration etc.

4-D.5 REFERENCES

- [1] National Fire Protection Association (NFPA) 69, Standard on Explosion Prevention Systems, Chapter 5, Deflagration Pressure Containment, issue effective with the applicable Addenda of the ASME Boiler and Pressure Vessel Code.
- [2] National Fire Protection Association (NFPA) 68, Guide for the Venting of Deflagrations, issue effective with the applicable Addenda of the ASME Boiler and Pressure Vessel Code.
- [3] B.F. Langer, PVRC Interpretive Report of Pressure Vessel Research, Section 1- Design Considerations, 1.4 Bursting Strength, Welding Research Council Bulletin 95, April 1964.
- [4] ASME Boiler and Pressure Vessel Code, Section III, Division 1, NB-3224, Level C Service Limits.
- [5] ASME Boiler and Pressure Vessel Code, Section III, Division 1, NB-3225 and Appendix F, Level D Service Limits.

ANNEX 4-E TUBE EXPANDING PROCEDURES AND QUALIFICATION

(Informative)

4-E.1 GENERAL

This Annex establishes requirements for procedure specifications for expanded tube-to-tubesheet joints

(a) designed using the test joint efficiencies, f_r (test), listed in Table 4.21.1;

(b) designed using the no-test joint efficiencies, f_r (no test), listed in Table 4.21.1; and

(*c*) used in tubesheets designed in accordance with the rules of 4.18 when the effective tube hole diameter depends upon the expanded depth of the tube ($\rho > 0$).

Leak tightness of expanded joints is not a consideration in 4.18 and is therefore not considered in this Annex.

4-E.2 SCOPE

The rules in this Annex apply to preparation and qualification of tube expanding procedures for the types of expanding processes permitted in this Annex.

4-E.3 TERMS AND DEFINITIONS

Some of the more common terms relating to tube expanding are as follows:

explosive expanding: uniform pressure expanding in which the force of an explosion is applied to the length of tube to be expanded.

groove: an annular machined depression in a tube hole.

hybrid expanding: hydroexpanding or explosive expanding to a percent wall reduction that ensures maintenance of tubehole contact, followed by roller expanding to the final percent wall reduction.

hydroexpanding: uniform pressure expanding in which hydraulic pressure is applied to the length of tube to be expanded.

near contact kinetic expanding: see explosive expanding.

parallel tube roller: tube rolling tool in which the taper angle of the mandrel and the taper angle of the hardened pins are approximately equal and opposite, thereby causing the pins to bear uniformly on the tube surface.

percent wall reduction: reduction in tube wall thickness due to expanding, expressed as a percent of the measured thickness of the tube.

progressive rolling: step rolling in which the first step begins at or near the front face of the tubesheet and successive steps progress toward the rear face.

prosser: see segmental expander.

prossering: expanding tubes with a segmental expander.

regressive rolling: step rolling in which the first step begins at or near the rear face of the tubesheet and successive steps progress toward the front face.

roller expanding: expanding by inserting a tube rolling tool into a tube aligned with a tube hole.

segmental expander: thick-walled, flanged cylinder with a tapered interior wall, cut axially into segments and held together by bands. A mandrel with a reverse taper in contact with the taper of the interior of the cylinder is thrust forward, forcing the segments outward to contact and expand the tube. The flange bears against the tube end or tubesheet face to maintain the position of the expander relative to the tube.

self-feeding rolling tool: tube rolling tool with the slots in the cage at an angle with the tool centerline such that rotating the mandrel in a clockwise direction causes the tool to feed into the tube and reversing the direction causes it to back out.

serrations: parallel, narrow grooves machined in a tube hole or on the exterior of a tube end.

step rolling: tube rolling in which successive, overlapping applications of the tube roller are applied in order to roll tubes into tubesheets thicker than approximately 2 in. (50 mm).

torque control: an electronic, hydraulic control or cam-operated reversing mechanism that causes a rolling tool driver to reverse direction when a preset level of torque is reached.

transition zone: region of an expanded joint in which the expanded part of the tube transitions to the unexpanded part.

tube end enhancement: treatment to that part of the tube O.D. to be expanded into a tubesheet hole to increase the strength of the expanded tube-to-tubesheet joint.

tube expanding: process of expanding a tube to a fully plastic state into contact with the surrounding metal of a tube hole that creates residual interface pressure between the tube and tube hole when the expanding tool is withdrawn.

tube hole enhancement: treatment to the tube hole to increase the strength of an expanded tube-to-tubesheet joint. Enhancements may be by means of grooves or serrations.

tube rolling tool: tool consisting of a slotted cylindrical cage that holds hardened pins into which a hardened tapered mandrel is thrust and rotated, to expand the tube.

two-stage expanding: explosive, hydraulic, or roller expanding in which in the first stage all the tubes are expanded into firm contact with the holes, followed by a second stage of expanding to the final specified percent wall reduction.

uniform pressure expanding: tube expanding by applying force equally on the surfaces of the length of tube to be expanded.

4-E.4 TUBE EXPANDING PROCEDURE SPECIFICATION (TEPS)

A TEPS is a written document that provides the tube expander operator with instructions for making production tubeto-tubesheet joint expansions in accordance with Code requirements (see Form TEXP-1). The Manufacturer is responsible for ensuring that production tube expanding is performed in accordance with a qualified TEPS that meets the requirements of 4-E.7.

NOTE: The instructions for completing Form TEXP-1 are provided in Table TEXP-1. The instructions are identified by parenthesized numbers corresponding to circled numbers in the form.

The TEPS shall address, as a minimum, the specific variables, both essential and nonessential, as provided in 4-E.7.1 for each process to be used in production expanding.

4-E.5 TUBE EXPANDING PROCEDURE QUALIFICATION

The purpose for qualifying a TEPS is to demonstrate that the expanded joint proposed for construction will be suitable for its intended application. The tube expanding procedure qualification establishes the suitability of the expanded joint, not the skill of the tube expander operator.

4-E.5.1 NO TEST QUALIFICATION

Tube expanding procedures not required to be qualified by 4-E.5.2 may be used for expanded tube joints meeting 4-E.1(b) or 4-E.1(c) without a qualification test, provided the Manufacturer maintains records indicating that the tube joints expanded using the tube expanding procedures were successfully tested in accordance with Part 8.

4-E.5.2 TEST QUALIFICATION

Tube expanding procedures to be used for expanded tube joints meeting 4-E.1(a) shall be qualified by the Manufacturer in accordance with the requirements of 4.21.1.1 and 4.21.3.3, and the qualification shall be documented in accordance with 4-E.5.3.

4-E.5.3 TUBE EXPANDING PROCEDURE QUALIFICATION RECORD (TEPQR) FOR TEST JOINT EFFICIENCIES

The TEPQR documents what occurred during expanding the test specimen and the results of the testing in accordance with the requirements of 4.21.1.1 and 4.21.3.3. In addition, the TEPQR shall document the essential variables and other specific information identified in 4-E.7 for each process used.

4-E.6 TUBE EXPANDING PERFORMANCE QUALIFICATION (TEPQ)

The purpose of performing a TEPQ is to demonstrate that the operator of the equipment is qualified to make an expanded joint of the type specified in the TEPS.

4-E.6.1 NO TEST QUALIFICATION

A tube expander operator not required to be qualified by 4-E.6.2 is qualified to expand tube joints meeting 4-E.1(b) or 4-E.1(c), provided the Manufacturer maintains records indicating that tube joints expanded by the operator were successfully tested in accordance with Part 8.

4-E.6.2 TEST QUALIFICATION

A tube expander operator is qualified to expand tube joints using tube expanding procedures that have been qualified in accordance with 4-E.5.2, provided the operator, under the direction of the Manufacturer, has prepared at least one specimen that meets the requirements of 4.21.1.1 and 4.21.3.3 for the applicable procedure.

4-E.7 TUBE EXPANDING VARIABLES

Variables are subdivided into essential variables that apply to all expanding processes, and essential and nonessential variables that apply to each expanding process. Essential variables are those in which a change, as described in specific variables, is considered to affect the mechanical properties of the expanded joint, and shall require requalification of the TEPS. Nonessential variables are those that may be changed at the Manufacturer's discretion and are included in the TEPS for instruction purposes.

4-E.7.1 ESSENTIAL VARIABLES FOR ALL EXPANDING PROCESSES

The following essential variables shall be specified for all expanding processes. The Manufacturer may define additional essential variables.

(a) method of measuring and controlling tube hole diameter

(b) limit of percentage of tube holes that deviate from the specified diameter tolerance and maximum tolerance of hole-diameter deviation

(c) limiting ratio of tube diameter to tube wall thickness

(d) minimum ratio of tubesheet thickness to tube diameter

(e) minimum ratio of drilling pitch to tube diameter

(f) details of tube and/or tube hole treatments for joint strength enhancement, including surface finish of tube holes, tube-hole and tube end serrations, and tube hole annular grooves

(g) tube-to-hole diametral clearance prior to expanding (fit)

(h) range of modulus of elasticity of tube material

(i) range of modulus of elasticity of tubesheet material

(j) range of specified minimum tube yield stresses listed in Annex 3-D

(k) maximum permissible increase of tube yield stress above the minimum yield stress specified in Annex 3-D

- (l) specified minimum tubesheet yield stress listed in Annex 3-D
- (*m*) minimum ratio of tubesheet to tube yield stress;² a ratio below 0.6 requires shear load testing
- (*n*) minimum and maximum percent wall reduction³

(*o*) for welded tube joints where tubes are to be expanded after welding, the method of fixing tube position before welding, the setback from the front face of the tubesheet to onset of expanding, the treatment of weld and tube-end shrinkage before inserting the expanding mandrel, and any post-expansion heat treatment

(*p*) for tubes to be expanded before welding, the procedure to be used to remove all traces of lubricants and moisture from the surfaces to be welded

(q) distance from front face of tubesheet to commencement of expanding

- (r) distance from rear face of tubesheet to end of expanding
- (s) unrolled length between front and rear expansion
- (*t*) lubrication and cooling of the expanding mandrel
- (u) measured actual amount of expansion

(v) range of tube wall thickness

4-E.7.2 ESSENTIAL VARIABLES FOR ROLLER EXPANDING

The following are essential variables for roller expanding:

(a) tool driver type (electrical, air, hydraulic), power or torque rating

(*b*) number and length of overlapping steps

(c) direction of rolling (progressive or regressive)

(d) speed of rotation

(e) tool type (parallel or nonparallel)

(f) cage and pin length

(g) number of pins in the cage

(h) cage slot angle or tool manufacturer's tool number

(i) frequency of verifying percent wall reduction

(*j*) for tubes to be expanded after welding, amount of setback before expanding mandrel insertion due to weld and tube-end shrinkage

4-E.7.3 ESSENTIAL VARIABLES FOR HYDRAULIC EXPANDING

The following are essential variables for hydraulic expanding:

(a) hydraulic mandrel details or mandrel manufacturer's mandrel number(s)

(b) hydraulic expanding pressure

(c) precision of pressure control

(*d*) number of applications of hydraulic pressure

(e) permissible + and - deviation from specified hydraulic expanding pressure

4-E.7.4 ESSENTIAL VARIABLES FOR EXPLOSIVE EXPANDING

The following are essential variables for explosive expanding:

(a) number of applications of explosive force

(b) number of tubes to be simultaneously expanded

(c) tube supports in surrounding holes

(d) post-expanding tube-end cleaning

(e) size of the explosive load

(f) buffer material

(g) outside diameter of the buffer material

(*h*) inside diameter of the buffer material

(*i*) theoretical expanded O.D. of the tube based on original cross-sectional area and expanded I.D. of the tube as compared to the tubesheet hole diameter

4-E.7.5 ESSENTIAL VARIABLES FOR HYBRID EXPANDING

The essential variables for hybrid expanding are the variables listed in 4-E.7.4 for the initial explosive expanding or 4-E.7.3 for the initial hydraulic expanding and the following:

² Manufacturers are cautioned to calculate the minimum ratio based upon mill test values of the tube and tubesheet.

³ The Manufacturer may correlate rolling torque, hydraulic expanding pressure, or explosive charge with shear load tests. For explosive expanding, the Manufacturer may correlate interference of fit.

- (a) the range of percent wall reduction to be achieved by the initial expanding
- (b) the range of total percent wall reduction to be achieved by the initial expanding and final rolling

4-E.7.6 NONESSENTIAL VARIABLES

The Manufacturer shall specify nonessential variables for each process.

Company Name:						By:			
Tube Expanding Procedure Specification No.				Date			Support TEPQR		
Revision No.			C	Date					
Expanding Process(es)					Driver Ty				
(Rolling, Hydroexpanding, Explosive Exp	anding, H	Hybrid Ex	panding)		(Elect	ric, Air,	Hydrauli	ic, Hydroe	xpanded, Explosi
JOINTS									
Measurement and Control of Tube Hole				Tube	e Pitch				
Tube Hole Diameter and Tolerance					imum Tube rance Befo				
Ratio Tube Diameter/Tube Wall Thicknes	5		Minimum Ratio Drilling Pitch/Tube Diameter						
Maximum % Wall Reduction				Min	mum % W	all Red	uction		
Maximum Permissible Deviation from					imum Perr				
Specified Hole Diameter				Hole	s that Devi	ate			
Details of Tube End Hole Enhancement and/or Tube End Enhancement		Minimum Ratio Tubesheet Thickness/Tube Diameter							
Method of Fixing Tubes in Position					th of Expa		-		
Setback from Front Tubesheet Face Before Start of Expanding				Sett	ack from R after Expa	lear Tu	besheet		
Method of Removing Weld Droop				Met	nod of Tube		nd Hole		
Other Joint Details:				0.00					
EXPANDING EQUIPMENT									
Manufacturer(s), Model No.(s), Range of	Tube Dia	meters a	nd Thicknes	sses,	Maximum	Torque	Output o	or Pressur	е.
Expanding Tool Model and Description									
Expanded Length per Application of				No.	of Applicat	ions/			
Expanding Mandrel					anded Leng				
Torque or Pressure Calibration System and Frequency					osive Char pplications	-	No.(s)		
PROPERTIES									
Range of Tube Elastic Modulus			Range Modul		ate Elastic				
Range of Tube Yield Stress (Mill Test Report Values)	Min.		modul			Max.			
Range of Tubesheet Yield Stress (Mill Te Report Values)						Max.			
Minimum Tubesheet Yield Stress/Tube Yield Stress	1 101111.					1110.			
Note: Values below 0.6 require shear loa testing	id								
TUBES									
			Thickness			Mav	imum Ra	tio Tube	
Diameter Range			Range				neter/Thio		
Material Specifications						1			
•									
TUBESHEETS				1.					
Thickness Range					imum Rati kness to T				
Material Specifications									
REMARKS									

1	Company Name: (1)				By: ②						
	Tube Expanding Procedure							porting			
2	Specification No.	3				Date			TEP	QR No.(s) 5	
3	Revision No.	6				Date	Date 🧿				
4	Expanding Process(es)	8					Driver Ty	vpe(s)	9		
	NTS								0		
301	Measurement and Control	of									
5	Tube Hole			10		Τι	ube Pitch			(1)	
	Tube Hole Diameter and					M	laximum Tu	be to H	ole		
6	Tolerance			12			learance Be			g 13	
7	Ratio Tube Diameter/Tube Wall Thickness			(14)			Minimum Ratio Drilling Pitch/Tube Diameter			(15)	
8	Maximum % Wall Reduction	n		(16)			Minimum % Wall Reduction				
-	Maximum Permissible Dev	-		-			laximum Pe				
9	from Specified Hole Diame	eter					oles that De	viate		(19)	
	Details of Tube End Hole E		ement		Minimum Ratio						
10	and/or Tube End Enhancer			20 22			Thickness/Tube Diameter			2) 23	
11	Method of Fixing Tubes in Setback from Front Tubesh						Length of Expansion Setback from Rear Tubesheet				
12	Before Start of Expanding			24			Face After Expanding			25	
	Method of Removing Weld	ł				M	lethod of Tu	be End	and H		
13	Droop			26		CI	leaning			27	
14	Other Joint Details: ²⁸										
EXI	PANDING EQUIPMENT Manufacturer(s), Model No	(e) B		f Tube Diam	otors and T	hicknee	eee Maxim	um To		utput or Pressure	
		5.(5), 110	inge o			IIICKIICS			que O		
15	29										
16	Expanding Tool Model and Expanded Length per App			30		N	o of Applic	ations/			
17	Expanding Mandrel	lication	01	31			No. of Applications/ Expanded Length		32		
	Torque or Pressure Calibra	tion Sy	/stem				Explosive Charge and No.(s)				
18	and Frequency			33		of	f Application	าร		34)	
PRO	OPERTIES										
19	Range of Tube Elastic Modulus 35				Range of Plate Elastic Modulus			36			
19	Range of Tube Yield Stress					Elastic					
20	(mill test report values)	٠	Min.	37				Max.	38		
	Range of Tubesheet Yield								6		
21	Stress (mill test report valu		Min.	39				Max.	(40)		
22	Minimum Tubesheet Yield Yield Stress	Stress/	Tube	(41)							
	NOTE: Values below 0.6 re	quire									
	shear load testing.	quite									
тн	BES										
					Thicknes	s		N	laximu	m Ratio Tube	
	Diameter Range	42			Range	(4	13)			er/Thickness (44)	
23	Material Specifications	45									
24	BESHEETS						num Ratio o			2	
24	BESHEETS	~				Thickn	ness to Tube	e Diame	eter	47)	
24 TUI	Thickness Range	(46)				THIOR					
23 24 TUI 25 26		(46) (48)				THIOR			•		
24 TUI 25	Thickness Range		60,	51		THOR					

Table TEXP-1 Instructions for Filling Out TEPS Form **Ref. to Circled** Nos. in Form **TEXP-1 Explanation of Information to Be Provided** (1)Show Manufacturer's name and address. (2) Show TEPS author's names. (3) Show Manufacturer's TEPS number. Show applicable date of TEPS. (4) (5) Insert number of supporting Tube Expanding Procedure Qualification Record (TEPQR). (6) Show revision number if any. (7) Insert date of revision if any. (8) Describe expanding process as torque-controlled expanding, hydraulic expanding, or explosive expanding. If hybrid expanding is to be performed, describe sequence, e.g., "hybrid expanding (hydraulic expanding to 3% wall reduction followed by torque-controlled roller expanding to 6% to 8% total wall reduction)." (9) Describe as hydraulic, explosive, air-driven torque controlled, electric torque controlled, or hydraulic torque controlled drive. If hybrid expanded, describe as hydraulic or explosive expanded + torque controlled air, torque controlled electric, or torque controlled hydraulic torque controlled drive. (10)Describe measuring equipment, e.g., "go-no/go gage," "internal 3 point micrometer," or similar measuring device. All equipment used for measurements shall be calibrated. (11)Minimum centerline distance between tube holes. (12)Show hole size and plus/minus tolerance. (13)Show diametrical clearance, e.g., 0.014 in. (for minimum of 96%) and 0.022 in. (for maximum of 4%). (14)Minimum and maximum ratio of tube O.D. to tube wall (O.D./t) for this TEPS. (15) Fill in nominal ratio of drilling pitch to tube diameter. (16)Fill in maximum percent wall reduction to which the TEPS applies. (17)Fill in minimum percent wall reduction to which the TEPS applies. Enter maximum permissible deviation of hole from specified drilling size and tolerance, e.g., 0.01 in. (18)(19) Enter maximum percent of holes that may deviate by the amount shown in (18). (20) Describe enhancements for joint strength, e.g., "two $\frac{1}{16}$ in. wide $\times \frac{1}{64}$ in. grooves set 1 in. from inlet face with $\frac{1}{2}$ in. land between." (21)Fill in the maximum and minimum ratios of tubesheet thickness to tube diameter. Describe how the tube will be fixed in position before expanding, e.g., "nose roll" or "hydraulically preset." (22) (23)Fill in the length of tube end to be expanded into the hole, e.g., "tubesheet thickness - $\frac{3}{16}$ in." If hybrid expansion is to be performed, show length of expansion for each step. Fill in the distance from the front face of the tubesheet to the point where expanding will begin. (24)(25) Fill in the distance from the rear face of the tubesheet to the point where expanding will end. If tube is welded to front face of tubesheet, describe how any weld metal that impedes access of the expanding tool(s) will be (26)removed. (27)Describe how tube ends will be cleaned before expanding, e.g., "solvent wash and clean with felt plugs." (28)Describe any other pertinent details, e.g., "tubes to be welded to front face of tubesheet before expanding." Show expanding tool manufacturer, e.g., name hydraulic expanding system or model no., "range of tube diameters 1/2 in. to 2 in., (29) range of thicknesses 0.028 in. to 0.109 in., maximum hydraulic pressure 60,000 psi." (30) Fill in roller expanding tool or hydraulic mandrel number. If explosive expanding, fill in drawing number that describes the charges. If hybrid expanding, show this information for Steps 1 and 2. (31) Describe expanded length per application, e.g., "2 in. (roller length)." (32)Show number of applications of expanding tool, e.g., "two applications required for roll depth." If hydraulic or explosive expanding, show length of expansion per application of hydraulic expanding pressure or explosive charge, e.g., "tubesheet thickness - ⁵/₈ in." (33) Describe the system used to calibrate and control the rolling torque and frequency of verification. Alternatively, describe the use of production control holes and expansions. (34) Describe the explosive charge and whether it will be single- or two-stage explosive expansion. (35)List the minimum and maximum elastic modulus of the tubes for this TEPS. (36) List the minimum and maximum elastic modulus of the tubesheet(s) for this TEPS.

(37) List minimum permissible tube yield stress.

Table TEXP-1 Instructions for Filling Out TEPS Form (Cont'd)

f. to Circled os. in Form TEXP-1	Explanation of Information to Be Provided
(38)	List maximum permissible tube yield stress.
(39)	List minimum permissible tubesheet yield stress.
(40)	List maximum permissible tubesheet yield stress.
(41)	Show the minimum ratio of tubesheet to tube yield stresses.
(42)	List the range of tube diameters to which this TEPS applies.
(43)	List the range of tube thicknesses to which this TEPS applies.
(44)	Show the maximum ratio of tube diameter to thickness to which this TEPS applies.
(45)	Show the tube specification number, e.g., "SA-688 TP304N."
(46)	Show the range of tubesheet thicknesses to which this TEPS applies, e.g., 1 in. to 5 in.
(47)	Show the minimum ratio of tubesheet thickness to tube diameter to which this TEPS applies.
(48)	Show the tubesheet material specification numbers, e.g., "SA-350 LF2."
(49)	Describe pertinent job-specific information.
(50)	Describe such things as bundle setup and sequence of expansion operation. Refer to drawing numbers and manufacturer's standards as appropriate.
(51)	Refer to any attachment or supplement to the TEPS form.

Company name	
Procedure Qualification Record number	
TEPS no	
Expanding process(es)	Driver types
(Rolling, hydroexpanding, explosive expanding, hybrid expanding)	(Electric, air-driven, hydraulic, other)
Expanded tube length	Tube pitch
Joints (Annex 4-E, 4-E.7)	
Sketch of Tubesheet Material(s)	Test Array
Material spec.	Ture council
Diameter and thickness of test specimen	
No. and location of joints to be tested	
No. and description of annular grooves	
Hole surface finish	
Yield stress (from mill test report)	
Other	
Testing Apparatus	
(Manufacturer, type, calibration date)	
Rate of loading to avoid impact [Maximum 1/2 in. (13 mm) per minute]	
Tube Material(s)	
Material spec	Type or grade
Diameter and thickness (min./avg.)	
Yield stress (from mill test report)	
•	

FORM	TEXP-2	(Back)
		(Dack)

	Position in			Cross-Sectional			Manner of
Tube No.	Array	Diameter	Thickness	Area	Test Temp.	L ₁ (test)	Failure
	B						
Tube No.	Position in Array	Diameter	Thickness	Cross-Sectional Area	Ambient Temp.	L ₂ (test)	Manner of Failure
1450 1101	, and y	Diameter	THICKIESS	71100	iomp.	L2 (1031)	i unuro
					-	nex 4-C, 4-C.5)	
Operator's	name				Clock no	•	
			Manufactur	er			
				Ву			
Data			- '	Бу			
Date							
Date Remarks:							

PART 5 DESIGN BY ANALYSIS REQUIREMENTS

5.1 GENERAL REQUIREMENTS

5.1.1 SCOPE

5.1.1.1 The design requirements for application of the design-by-analysis methodology of this Division are described in Part 5. Detailed design procedures utilizing the results from a stress analysis are provided to evaluate components for plastic collapse, local failure, buckling, and cyclic loading. Supplemental requirements are provided for the analysis of bolts, perforated plates and layered vessels. Procedures are also provided for design using the results from an experimental stress analysis, and for fracture mechanics evaluations.

5.1.1.2 The design-by-analysis requirements are organized based on protection against the failure modes listed below. The component shall be evaluated for each applicable failure mode. If multiple assessment procedures are provided for a failure mode, only one of these procedures must be satisfied to qualify the design of a component.

(a) Protection Against Plastic Collapse – these requirements apply to all components where the thickness and configuration of the component is established using design-by-analysis rules.

(*b*) Protection Against Local Failure – these requirements apply to all components where the thickness and configuration of the component is established using design-by-analysis rules. It is not necessary to evaluate the protection against local failure, 5.3, if the component design is in accordance with Part 4 (e.g., component wall thickness and weld detail per 4.2).

(c) Protection Against Collapse From Buckling – these requirements apply to all components where the thickness and configuration of the component is established using design-by-analysis rules and the applied loads result in a compressive stress field.

(*d*) Protection Against Failure From Cyclic Loading – these requirements apply to all components where the thickness and configuration of the component is established using design-by-analysis rules and the applied loads are cyclic. In addition, these requirements can also be used to qualify a component for cyclic loading where the thickness and size of the component are established using the design-by-rule requirements of Part 4.

5.1.1.3 The design-by-analysis procedures in Part 5 may only be used if the allowable stress from Annex 3-A evaluated at the design temperature is governed by time-independent properties unless otherwise noted in a specific design procedure. If the allowable stress from Annex 3-A evaluated at the design temperature is governed by time-dependent properties and the fatigue screening criteria of 5.5.2.2 are satisfied, the elastic stress analysis procedures in 5.2.2, 5.3.2, 5.6, 5.7.1, 5.7.2, and 5.8 may be used.

5.1.1.3.1 Class 1. The design-by-analysis procedures in Part 5 shall not be used unless allowed by 4.1.1.2.1.

5.1.2 NUMERICAL ANALYSIS

5.1.2.1 The design-by-analysis rules in Part 5 are based on the use of results obtained from a detailed stress analysis of a component. Depending on the loading condition, a thermal analysis to determine the temperature distribution and resulting thermal stresses may also be required.

5.1.2.2 Procedures are provided for performing stress analyses to determine protection against plastic collapse, local failure, buckling, and cyclic loading. These procedures provide the necessary details to obtain a consistent result with regards to development of loading conditions, selection of material properties, post-processing of results, and comparison to acceptance criteria to determine the suitability of a component.

5.1.2.3 Recommendations on a stress analysis method, modeling of a component, and validation of analysis results are not provided. While these aspects of the design process are important and shall be considered in the analysis, a detailed treatment of the subject is not provided because of the variability in approaches and design processes. However, an accurate stress analysis including validation of all results shall be provided as part of the design.

5.1.2.4 The following material properties for use in the stress analysis shall be determined using the data and material models in Part 3.

(*a*) Physical properties – Young's Modulus, thermal expansion coefficient, thermal conductivity, thermal diffusivity, density, Poisson's ratio

(b) Strength Parameters – Allowable stress, minimum specified yield strength, minimum specified tensile strength

(c) Monotonic stress-strain Curve – elastic perfectly plastic and elastic-plastic true stress-strain curve with strain hardening

(d) Cyclic stress-strain Curve - Stabilized true stress-strain amplitude curve

5.1.3 LOADING CONDITIONS

5.1.3.1 All applicable applied loads on the component shall be considered when performing a design-by-analysis. Supplemental loads shall be considered in addition to the applied pressure in the form of applicable load cases. If the load case varies with time, a loading histogram shall be developed to show the time variation of each specific load. The load case definition shall be included in the User's Design Specification. An overview of the supplemental loads and loading conditions that shall be considered in a design are shown in Table 5.1.

5.1.3.2 Load case combinations shall be considered in the analysis. Typical load descriptions are provided in Table 5.2. Load case combinations for elastic analysis, limit-load analysis, and elastic–plastic analysis are shown in Tables 5.3, 5.4, and 5.5, respectively. In evaluating load cases involving the pressure term, *P*, the effects of the pressure being equal to zero shall be considered. The applicable load case combinations shall be considered in addition to any other combinations defined in the User's Design Specification. The factors for wind loading, *W*, in Table 5.3, Design Load Combinations, and in Tables 5.4 and 5.5, Required Factored Load Combinations, are based on ASCE/SEI 7 wind maps and probability of occurrence. If a different recognized standard for wind loading is used, the User's Design Specification shall cite the Standard to be applied and provide suitable load factors if different from ASCE/SEI 7. If a different recognized standard for suitable load factors if different from ASCE/SEI 7.

5.1.3.3 If any of the loads vary with time, a loading histogram shall be developed to show the time variation of each specific load. The loading histogram shall include all significant operating temperatures, pressures, supplemental loads, and the corresponding cycles or time periods for all significant events that are applied to the component. The following shall be considered in developing the loading histogram.

(*a*) The number of cycles associated with each event during the operation life, these events shall include start-ups, normal operation, upset conditions, and shutdowns.

(*b*) When creating the histogram, the history to be used in the assessment shall be based on the anticipated sequence of operation. When it is not possible or practical to develop a histogram based on the actual sequence of operation, a histogram may be used that bounds the actual operation. Otherwise, the cyclic evaluation shall account for all possible combinations of loadings.

(c) Applicable loadings such as pressure, temperature, supplemental loads such as weight, support displacements, and nozzle reaction loadings.

(*d*) The relationship between the applied loadings during the time history.

5.2 PROTECTION AGAINST PLASTIC COLLAPSE

5.2.1 OVERVIEW

5.2.1.1 Three alternative analysis methods are provided for evaluating protection against plastic collapse. A brief description of these analysis methodologies is provided below.

(*a*) Elastic Stress Analysis Method – Stresses are computed using an elastic analysis, classified into categories, and limited to allowable values that have been conservatively established such that a plastic collapse will not occur.

(*b*) Limit-Load Method – A calculation is performed to determine a lower bound to the limit load of a component. The allowable load on the component is established by applying design factors to the limit load such that the onset of gross plastic deformations (plastic collapse) will not occur.

(c) Elastic–Plastic Stress Analysis Method – A collapse load is derived from an elastic–plastic analysis considering both the applied loading and deformation characteristics of the component. The allowable load on the component is established by applying design factors to the plastic collapse load.

5.2.1.2 For components with a complex geometry and/or complex loading, the categorization of stresses requires significant knowledge and judgment. This is especially true for three-dimensional stress fields. Application of the limit-load or elastic-plastic analysis methods in 5.2.3 and 5.2.4, respectively, is recommended for cases where the categorization process may produce ambiguous results.

5.2.1.3 The use of elastic stress analysis combined with stress classification procedures to demonstrate structural integrity for heavy-wall ($R/t \le 4$) pressure-containing components, especially around structural discontinuities, may produce non-conservative results and is not recommended. The reason for the non-conservatism is that the nonlinear stress distributions associated with heavy wall sections are not accurately represented by the implicit linear stress distribution utilized in the stress categorization and classification procedure. The misrepresentation of the stress distribution is enhanced if yielding occurs. For example, in cases where calculated peak stresses are above yield over a through thickness dimension which is more than five percent of the wall thickness, linear elastic analysis may give a non-conservative result. In these cases, the elastic-plastic stress analysis procedures in 5.2.3 or 5.2.4 shall be used.

5.2.1.4 The structural evaluation procedures based on elastic stress analysis in 5.2.2 provide an approximation of the protection against plastic collapse. A more accurate estimate of the protection against plastic collapse of a component can be obtained using elastic-plastic stress analysis to develop limit and plastic collapse loads. The limits on the general membrane equivalent stress, local membrane equivalent stress and primary membrane plus primary bending equivalent stress in 5.2.2 have been placed at a level which conservatively assures the prevention of collapse as determined by the principles of limit analysis. These limits need not be satisfied if the requirements of 5.2.3 or 5.2.4 are satisfied.

5.2.2 ELASTIC STRESS ANALYSIS METHOD

5.2.2.1 Overview. To evaluate protection against plastic collapse, the results from an elastic stress analysis of the component subject to defined loading conditions are categorized and compared to an associated limiting value. The basis of the categorization procedure is described below.

(*a*) A quantity known as the equivalent stress is computed at locations in the component and compared to an allowable value of equivalent stress to determine if the component is suitable for the intended design conditions. The equivalent stress at a point in a component is a measure of stress, calculated from stress components utilizing a yield criterion, which is used for comparison with the mechanical strength properties of the material obtained in tests under uniaxial load.

(b) The maximum distortion energy yield criterion shall be used to establish the equivalent stress. In this case, the equivalent stress is equal to the von Mises equivalent stress given by eq. (5.1)

$$s_e = \sigma_e = \frac{1}{\sqrt{2}} \left[\left(\sigma_1 - \sigma_2 \right)^2 + \left(\sigma_2 - \sigma_3 \right)^2 + \left(\sigma_3 - \sigma_1 \right)^2 \right]^{0.5}$$
(5.1)

5.2.2.2 Stress Categorization. The three basic equivalent stress categories and associated limits that are to be satisfied for plastic collapse are defined below. The terms general primary membrane stress, local primary membrane stress, primary bending stress, secondary stress, and peak stress used for elastic analysis are defined in the following paragraphs. The design loads to be evaluated and the allowable stress limits are provided in Table 5.3.

(a) General Primary Membrane Equivalent Stress (P_m)

(1) The general primary membrane equivalent stress (see Figure 5.1) is the equivalent stress, derived from the average value across the thickness of a section, of the general primary stresses produced by the design internal pressure and other specified mechanical loads but excluding all secondary and peak stresses.

(2) Examples of this stress category for typical pressure vessel components are shown in Table 5.6.

(b) Local Primary Membrane Equivalent Stress (P_L)

(1) The local primary membrane equivalent stress (see Figure 5.1) is the equivalent stress, derived from the average value across the thickness of a section, of the local primary stresses produced by the design pressure and specified mechanical loads but excluding all secondary and peak stresses. A region of stress in a component is considered as local if the distance over which the equivalent stress exceeds 1.1*S* does not extend in the meridional direction more than \sqrt{Rt} .

(2) Regions of local primary membrane stress that exceed 1.1*S* shall be separated in the meridional direction by a distance greater than or equal to $1.25\sqrt{(R_1 + R_2)(t_1 + t_2)}$. Discrete regions of local primary membrane stress, such as those resulting from concentrated loads on support brackets, where the membrane stress exceeds 1.1*S*, shall be spaced so that there is not an overlapping area in which the membrane stress exceeds 1.1*S*.

(3) Examples of this stress category for typical pressure vessel components are shown in Table 5.6.

(c) Primary Membrane (General or Local) Plus Primary Bending Equivalent Stress $(P_L + P_b)$

(1) The Primary Membrane (General or Local) Plus Primary Bending Equivalent Stress (see Figure 5.1) is the equivalent stress, derived from the highest value across the thickness of a section, of the linearized general or local primary membrane stresses plus primary bending stresses produced by design pressure and other specified mechanical loads but excluding all secondary and peak stresses.

(2) Examples of this stress category for typical pressure vessel components are shown in Table 5.6.

5.2.2.3 Linearization of Stress Results for Stress Classification. Results from an elastic stress analysis can be used to compute the equivalent linearized membrane and bending stresses for comparison to the limits in 5.2.2.4 using the methods described in Annex 5-A.

5.2.2.4 Assessment Procedure. To determine the acceptability of a component, the computed equivalent stresses given in 5.2.2.2 for a component subject to loads shall not exceed the specified allowable values. A schematic illustrating the categorization of equivalent stresses and their corresponding allowable values is shown in Figure 5.1. The following procedure is used to compute and categorize the equivalent stress at a point in a component (see 5.2.2.3), and to determine the acceptability of the resulting stress state.

Step 1. Determine the types of loads acting on the component. In general, separate load cases are analyzed to evaluate "load-controlled" loads such as pressure and externally applied reactions due to weight effects and "strain-controlled" loads resulting from thermal gradients and imposed displacements. The loads to be considered in the design shall include, but not be limited to, those given in Table 5.1. The load combinations that shall be considered for each loading condition shall include, but not be limited to those given in Table 5.3.

Step 2. At the point on the vessel that is being investigated, calculate the stress tensor (six unique components of stress) for each type of load. Assign each of the computed stress tensors to one or to a group of the categories defined below. Assistance in assigning each stress tensor to an appropriate category for a component can be obtained by using Figure 5.1 and Table 5.6. Note that the equivalent stresses Q and F do not need to be determined to evaluate protection against plastic collapse. However, these components are needed for fatigue and ratcheting evaluations that are based on elastic stress analysis (see 5.5.3 and 5.5.6, respectively).

(a) General primary membrane equivalent stress – P_m

(b) Local primary membrane equivalent stress – P_L

(c) Primary bending equivalent stress – P_b

(d) Secondary equivalent stress – Q

(e) Additional equivalent stress produced by a stress concentration or a thermal stress over and above the nominal (P + Q) stress level – F

Step 3. Sum the stress tensors (stresses are added on a component basis) assigned to each equivalent stress category. The final result is a stress tensor representing the effects of all the loads assigned to each equivalent stress category. Note that in applying STEPs in this paragraph, a detailed stress analysis performed using a numerical method such as finite element analysis typically provides a combination of $P_L + P_b$ and $P_L + P_b + Q + F$ directly.

(a) If a load case is analyzed that includes only "load-controlled" loads (e.g., pressure and weight effects), the computed equivalent stresses shall be used to directly represent the P_m , $P_L + P_b$, or $P_L + P_b + Q$. For example, for a vessel subject to internal pressure with an elliptical head; P_m equivalent stresses occur away from the head to shell junction, and P_L and $P_L + P_b + Q$ equivalent stresses occur at the junction.

(b) If a load case is analyzed that includes only "strain-controlled" loads (e.g., thermal gradients), the computed equivalent stresses represent Q alone; the combination $P_L + P_b + Q$ shall be derived from load cases developed from both "load-controlled" and "strain-controlled" loads.

(c) If the stress in category F is produced by a stress concentration or thermal stress, the quantity F is the additional stress produced by the stress concentration in excess of the nominal membrane plus bending stress. For example, if a plate has a nominal primary membrane equivalent stress of S_e , and has a fatigue strength reduction characterized by a factor K_f , then: $P_m = S_e$, $P_b = 0$, Q = 0, and $F = P_m(K_f - 1)$. The total equivalent stress is $P_m + F$.

Step 4. Determine the principal stresses of the sum of the stress tensors assigned to the equivalent stress categories, and compute the equivalent stress using eq. (5.1).

Step 5. To evaluate protection against plastic collapse, compare the computed equivalent stress to their corresponding allowable values (see 5.2.2.2).

The allowable limit on local primary membrane and local primary membrane plus bending, S_{PL} , is computed as the larger of the quantities shown below.

(a) 1.5 times the tabulated allowable stress for the material from Annex 3-A

(b) S_y for the material from Annex 3-A, except that the value from (a) shall be used when the ratio of the minimum specified yield strength to ultimate tensile strength exceeds 0.70, or the value of *S* is governed by time-dependent properties as indicated in Annex 3-A

$$P_m \le S \tag{5.2}$$

$$P_L \le S_{PL} \tag{5.3}$$

$$(P_L + P_b) \le S_{PL} \tag{5.4}$$

5.2.2.5 Test Condition for Components Designed Using Elastic Stress Analysis Method. The test condition for components designed using the elastic stress analysis method, for a selected test pressure, P_T , greater than or equal to the minimum test pressure, shall be evaluated using Design Load Combination (18) from Table 5.3 and the limits listed in 4.1.6.2. It is not required to evaluate any stress categories not listed in 4.1.6.2 (e.g., primary local, secondary, or peak) in the test condition. In the case where the limits in 4.1.6.2 are not achieved, the selected test pressure shall be reduced, but no lower than the minimum test pressure. The requirements of 5.4 shall be satisfied for the test condition at the selected test pressure, P_T .

5.2.3 LIMIT-LOAD ANALYSIS METHOD

5.2.3.1 Overview.

(*a*) Limit-load analysis addresses the failure modes of ductile rupture and the onset of gross plastic deformation (plastic collapse) of a structure. As defined in the following paragraphs, it provides one option to protect a vessel or component from plastic collapse. It is to be applied to single or multiple static loading, applied in any specified order. Limit-load analysis provides an alternative to elastic analysis and stress linearization and the satisfaction of primary stress limits in 5.2.2.2.

(*b*) Displacements and strains indicated by a limit analysis solution have no physical meaning. If the User's Design Specification requires a limit on such variables, the procedures in 5.2.4 shall be used to satisfy these requirements.

(c) Protection against plastic collapse using limit-load analysis is based on the theory of limit analysis that defines a lower bound to the limit load of a structure as the solution of a numerical model with the following properties:

(1) The material model is elastic-perfectly plastic with a specified yield strength.

(2) The strain-displacement relations are those of small displacement theory.

(3) Equilibrium is satisfied in the undeformed configuration.

5.2.3.2 Limitations. The following limitations apply equally to limit-load analysis and to primary stress limits of 5.2.2.

(*a*) The effect of strain-controlled loads resulting from prescribed non-zero displacements and temperature fields is not considered.

(*b*) Components that experience reduction in stiffness with deformation, e.g., a pipe elbow under in-plane bending, shall be evaluated using 5.2.4.

5.2.3.3 Numerical Analysis. The limit load is the load that causes overall structural instability. In practice, an estimate of the limit load is obtained using a numerical analysis technique (e.g., finite element method) by incorporating an elastic-perfectly-plastic material model and small displacement theory to obtain a solution. The estimated limit load is the maximum load before overall structural instability occurs. Structural instability is indicated by the inability to achieve an equilibrium solution for a small increase in load (i.e., the solution will not converge).

5.2.3.4 Acceptance Criteria. The acceptability of a component using a limit-load analysis is determined by satisfying the following two criteria.

(*a*) Global Criteria – The estimated global plastic collapse load is established by performing a limit-load analysis of the component subject to the specified loading conditions. The estimated plastic collapse load is taken as the maximum load before overall structural instability occurs. The concept of Load and Resistance Factor Design (LRFD) is used as an alternative to the rigorous computation of a plastic collapse load to design a component. In this procedure, factored loads that include a design factor to account for uncertainty, and the resistance of the component to these factored loads is determined using a limit-load analysis (see Table 5.4).

(*b*) Service Criteria – Service criteria as provided by the Owner/User that limit the potential for unsatisfactory performance shall be satisfied at every location in the component when subject to the design loads. The service criteria shall satisfy the requirements of 5.2.4.3(b) using the procedures in 5.2.4.

5.2.3.5 Assessment Procedure. The following assessment procedure is used to determine the acceptability of a component using a limit-load analysis.

Step 1. Develop a numerical model of the component including all relevant geometry characteristics. The model used for the analysis shall be selected to accurately represent the component geometry, boundary conditions, and applied loads. The model need not be accurate for small details, such as small holes, fillets, corner radii, and other stress raisers, but should otherwise correspond to commonly accepted practice.

Step 2. Define all relevant loads and applicable load cases. The loads to be considered in the analysis shall include, but not be limited to, those given in Table 5.1.

Step 3. An elastic perfectly plastic material model with small displacement theory shall be used in the analysis. The von Mises yield function and associated flow rule should be utilized. The yield strength defining the plastic limit shall equal 1.5*S*.

Step 4. Determine the load case combinations to be used in the analysis using the information from Step 2 in conjunction with Table 5.4. Each of the indicated load cases shall be evaluated. The effects of one or more loads not acting shall be investigated. Additional load cases for special conditions not included in Table 5.4 shall be considered, as applicable.

Step 5. Perform a limit-load analysis for each of the load case combinations defined in Step 4. If convergence is achieved, the component is stable under the applied loads for this load case. Otherwise, the component configuration (i.e., thickness) shall be modified or applied loads reduced and the analysis repeated. Note that if the applied loading results in a compressive stress field within the component, buckling may occur, and the effects of imperfections, especially for shell structures, should be considered in the analysis (see 5.4).

5.2.3.6 Test Condition for Components Designed Using Limit-Load Analysis Method. The test condition for components designed using the limit-load analysis method, for a selected test pressure, P_T , greater than or equal to the minimum test pressure, shall be evaluated by following the Test Condition, Required Factored Load Combination given in Table 5.4, where β_T shall be obtained from Table 4.1.3 for the appropriate test medium (hydrostatic or pneumatic) and the applicable class. In the case where the analysis does not converge (see 5.2.3.5, Step 5), the selected test pressure shall be reduced, but no lower than the minimum test pressure. The requirements of 5.4 shall be satisfied for the test condition at the selected test pressure, P_T .

5.2.4 ELASTIC-PLASTIC STRESS ANALYSIS METHOD

5.2.4.1 Overview.

(*a*) Protection against plastic collapse is evaluated by determining the plastic collapse load of the component using an elastic–plastic stress analysis. The allowable load on the component is established by applying a design factor to the calculated plastic collapse load.

(b) Elastic-plastic stress analysis provides a more accurate assessment of the protection against plastic collapse of a component relative to the criteria in 5.2.2 and 5.2.3 because the actual structural behavior is more closely approximated. The redistribution of stress that occurs as a result of inelastic deformation (plasticity) and deformation characteristics of the component are considered directly in the analysis.

5.2.4.2 Numerical Analysis. The plastic collapse load is the load that causes overall structural instability. In practice, an estimate of the plastic collapse load can be obtained using a numerical analysis technique (e.g., finite element method) by incorporating an elastic-plastic material model to obtain a solution. The effects of non-linear geometry shall be considered in this analysis. The estimated plastic collapse load is the maximum load before overall structural instability occurs. Structural instability is indicated by the inability to achieve an equilibrium solution for a small increase in load (i.e., the solution will not converge).

5.2.4.3 Acceptance Criteria. The acceptability of a component using an elastic–plastic analysis is determined by satisfying the following two criteria.

(*a*) Global Criteria – The estimated global plastic collapse load is established by performing an elastic–plastic analysis of the component subject to the specified loading conditions. The estimated plastic collapse load is taken as the maximum load before overall structural instability occurs. The concept of Load and Resistance Factor Design (LRFD) is used as an alternate to the rigorous computation of a plastic collapse load to design a component. In this procedure, factored loads that include a design factor to account for uncertainty, and the resistance of the component to these factored loads are determined using an elastic–plastic analysis (see Table 5.5).

(b) Service Criteria – Service criteria that limit the potential for unsatisfactory performance shall be satisfied at every location in the component when subject to the design loads (see Table 5.5). Examples of service criteria are limits on the rotation of a mating flange pair to avoid possible flange leakage concerns and limits on tower deflection that may cause operational concerns. In addition, the effect of deformation of the component on service performance shall be evaluated at the design load combinations. This is especially important for components that experience an increase in resistance (geometrically stiffen) with deformation under applied loads such as elliptical or torispherical heads subject to internal pressure loading. The plastic collapse criteria may be satisfied but the component may have excessive deformation at the derived design conditions. In this case, the design loads may have to be reduced based on a deformation criterion. Examples of some of the considerations in this evaluation are the effect of deformation on:

(1) piping connections or,

- (2) misalignment of trays, platforms and other internal or external appurtenances, and
- (3) interference with adjacent structures and equipment.

If applicable, the service criteria shall be specified in the User's Design Specification.

5.2.4.4 Assessment Procedure. The following assessment procedure is used to determine the acceptability of a component using an elastic-plastic stress analysis.

ASME BPVC.VIII.2-2023

Step 1. Develop a numerical model of the component including all relevant geometry characteristics. The model used for the analysis shall be selected to accurately represent the component geometry, boundary conditions, and applied loads. In addition, refinement of the model around areas of stress and strain concentrations shall be provided. The analysis of one or more numerical models may be required to ensure that an accurate description of the stress and strains in the component is achieved.

Step 2. Define all relevant loads and applicable load cases. The loads to be considered in the design shall include, but not be limited to, those given in Table 5.1.

Step 3. An elastic plastic material model shall be used in the analysis. The von Mises yield function and associated flow rule should be utilized if plasticity is anticipated. A material model that includes hardening or softening, or an elastic-perfectly plastic model may be utilized. A true stress–strain curve model that includes temperature dependent hardening behavior is provided in Annex 3-D. When using this material model, the hardening behavior shall be included up to the true ultimate stress and perfect plasticity behavior (i.e., the slope of the stress–strain curves is zero) beyond this limit. The effects of non-linear geometry shall be considered in the analysis.

Step 4. Determine the load case combinations to be used in the analysis using the information from Step 2 in conjunction with Table 5.5. Each of the indicated load cases shall be evaluated. The effects of one or more loads not acting shall be investigated. Additional load cases for special conditions not included in Table 5.5 shall be considered, as applicable.

Step 5. Perform an elastic–plastic analysis for each of the load cases defined in Step 4. If convergence is achieved, the component is stable under the applied loads for this load case. Otherwise, the component configuration (i.e., thickness) shall be modified or applied loads reduced and the analysis repeated. Note that if the applied loading results in a compressive stress field within the component, buckling may occur, and an evaluation in accordance with 5.4 may be required.

5.2.4.5 Test Condition for Components Designed Using Elastic–Plastic Stress Analysis Method. The test condition for components designed using the elastic–plastic stress analysis method, for a selected test pressure, P_T , greater than or equal to the minimum test pressure, shall be evaluated by following the Test Condition, Required Factored Load Combination given in Table 5.5, where β_T shall be obtained from Table 4.1.3 for the appropriate test medium (hydrostatic or pneumatic) and the applicable class. In the case where the analysis does not converge (see 5.2.4.4, Step 5), the selected test pressure shall be reduced, but no lower than the minimum test pressure. The requirements of 5.4 shall be satisfied for the test condition.

5.3 PROTECTION AGAINST LOCAL FAILURE

5.3.1 OVERVIEW

5.3.1.1 In addition to demonstrating protection against plastic collapse as defined in 5.2, the applicable local failure criteria below shall be satisfied for a component. These requirements apply to all components where the thickness and configuration of the component are established by using design-by-analysis rules. It is not necessary to evaluate protection against local failure (5.3), if the component design is in accordance with Part 4 (e.g., component wall thickness and weld detail per 4.2).

5.3.1.2 Two analysis methodologies are provided for evaluating protection against local failure under applied design loads. When protection against plastic collapse is satisfied by the method in 5.2.3, either method listed below is acceptable.

(*a*) The analysis procedures in 5.3.2 provide an approximation of the protection against local failure based on the results of an elastic analysis.

(*b*) A more accurate estimate of the protection against local failure of a component can be obtained using the elastic-plastic stress analysis procedures in 5.3.3.

5.3.2 ELASTIC ANALYSIS — TRIAXIAL STRESS LIMIT

The algebraic sum of the three linearized primary principal stresses from Design Load Combination (1) of Table 5.3 shall be used for checking this criterion.

$$(\sigma_1 + \sigma_2 + \sigma_3) \le 4S \tag{5.5}$$

5.3.3 ELASTIC-PLASTIC ANALYSIS — LOCAL STRAIN LIMIT

5.3.3.1 The following procedure shall be used to evaluate protection against local failure for a sequence of applied loads.

Step 1. Perform an elastic–plastic stress analysis based on the load case combinations for the local criteria given in Table 5.5. The effects of non-linear geometry shall be considered in the analysis.

Step 2. For each point in the component, determine the principal stresses, σ_1 , σ_2 , σ_2 , the equivalent stress, σ_e , using eq. (5.1) and the equivalent plastic strain, ε_{peq} .

Step 3. Determine the limiting triaxial strain, ε_L , using eq. (5.6) where ε_{Lu} , m_2 , and α_{sl} are determined from Table 5.7.

$$\varepsilon_L = \varepsilon_{Lu} \cdot \exp\left[-\left(\frac{\alpha_{sl}}{1+m_2}\right) \left\{ \left\{\frac{(\sigma_1 + \sigma_2 + \sigma_3)}{3\sigma_e}\right\} - \frac{1}{3}\right\} \right]$$
(5.6)

Step 4. Determine the forming strain ε_{cf} based on the material and fabrication method in accordance with Part 6. If heat treatment is performed in accordance with Part 6, the forming strain may be assumed to be zero.

Step 5. Determine if the strain limit is satisfied. The component is acceptable for the specified load case if eq. (5.7) is satisfied for each point.

$$\varepsilon_{peq} + \varepsilon_{cf} \le \varepsilon_L \tag{5.7}$$

5.3.3.2 If a specific loading sequence is to be evaluated in accordance with the User's Design Specification, a strain limit damage calculation procedure may be required. This procedure may also be used in lieu of the procedure in 5.3.3.1. In this procedure, the loading path is divided into k load increments and the principal stresses, $\sigma_{1,k}$, $\sigma_{2,k}$, σ_{3k} , equivalent stress, $\Delta_{e,k}$, and change in the equivalent plastic strain from the previous load increment, $\Delta \varepsilon_{peq,k}$, are calculated for each load increment. The strain limit for the Δk th load increment, $\varepsilon_{L,k}$, is calculated using eq. (5.8) where ε_{Lu} , m_2 , and α_{sl} are determined from Table 5.7. The strain limit damage for each load increment is calculated using eq. (5.9) and the strain limit damage from forming, $D_{\varepsilon \text{ form}}$, is calculated using eq. (5.10). If heat treatment is performed in accordance with Part 6, the strain limit damage from forming is assumed to be zero. The accumulated strain limit damage is calculated using eq. (5.11). The location in the component is acceptable for the specified loading sequence if this equation is satisfied.

$$\varepsilon_{L,k} = \varepsilon_{Lu} \cdot \exp\left[-\left(\frac{\alpha_{sl}}{1+m_2}\right) \left\{ \left\{\frac{\sigma_{1,k} + \sigma_{2,k} + \sigma_{3,k}}{3\sigma_{e,k}}\right\} - \frac{1}{3}\right\} \right]$$
(5.8)

$$D_{\varepsilon,k} = \frac{\Delta \varepsilon_{peq,k}}{\varepsilon_{L,k}}$$
(5.9)

$$D_{\varepsilon \text{form}} = \frac{\varepsilon_{cf}}{\varepsilon_{Lu} \cdot \exp\left[-\frac{1}{3}\left(\frac{\alpha_{sl}}{1+m_2}\right)\right]}$$
(5.10)

$$D_{\varepsilon} = D_{\varepsilon \text{form}} + \sum_{k=1}^{M} D_{\varepsilon,k} \le 1.0$$
(5.11)

5.4 PROTECTION AGAINST COLLAPSE FROM BUCKLING

5.4.1 GENERAL

As shown in 5.2, design factors applied to the plastic collapse load establish an allowable load and protect against plastic collapse. A design factor shall also be applied to avoid collapse from buckling of components with a compressive stress field. This section presents two analysis methods that demonstrate protection against collapse from buckling.

(a) Method A. This is a five-step elastic analysis procedure. Each load case is evaluated to ensure that the elastic analysis meets required validity criteria. Then a unique allowable membrane stress is calculated for each load case using an eigenvalue buckling analysis in combination with the applicable capacity reduction factor, β_{cr} , in 5.4.2.2. If any one of the validity requirements as outlined in the procedure are not met, then Method B shall be used. Fabrication tolerances shall satisfy the requirement in 4.4.4.

(b) Method B. This is an elastic-plastic buckling analysis considering geometric imperfections as outlined in 5.4.3.1.

 $(\mathbf{23})$

5.4.2 BUCKLING ANALYSIS — METHOD A

5.4.2.1 Five Step Elastic Analysis Procedure.. This method is intended for use on independent individual components (e.g., heads, cylinders, and cones) assessed in isolation. However, the procedure can be used when assessing two or more components as an assembly. If at any point in the procedure the requirements are not met, then the procedure in Method B shall be used.

Step 1. For each load combination in Table 5.14 [k = (1), (2), ..., (n)], perform an eigenvalue buckling analysis using $\beta_{b \text{ component},k} = 1.0$. Separate eigenvalues shall be extracted for each component in the assembly, $\lambda_{\text{component},k}$.

Step 2. For each load combination in Table 5.14, perform a separate elastic stress analysis with the applicable load(s) multiplied by the corresponding eigenvalue ($\beta_{b \text{ component},k} = \lambda_{\text{component},k}$). If assessing multiple components simultaneously in one assembly, each component's loads shall be multiplied by its dominating eigenvalue, $\beta_{b \text{ component},k} = \lambda_{\text{component},k}$.

Step 3. At the critical buckling location (as determined from the eigenmode shape), extract the equivalent membrane stress at the mid surface for each component.

(*a*) If the critical buckling location is in a cylinder or cone, then multiply the equivalent membrane stress from Step 3 by the applicable capacity reduction factor, β_{cr} , in 5.4.2.2(a) or 5.4.2.2(b).

(*b*) If the critical buckling location is in a sphere or formed head, then multiply the equivalent membrane stress by the capacity reduction factor, β_{cr} , in 5.4.2.2(c).

(c) If the critical buckling location is not covered by (a) or (b), then Method B shall be used.

Step 4. The product of the equivalent membrane stress with capacity reduction factor, as calculated in Step 3, is $\sigma_{\text{component,crit},k}$. Compare each of the component's $\sigma_{\text{component,crit},k}$ to $0.55S_y$.

(a) If $\sigma_{\text{component,crit},k} \leq 0.55S_y$, then divide $\sigma_{\text{component,crit},k}$ by the design margin of 2.0. Designate this value $S_{c,k}$, where k corresponds to the specific load combination k = (1), (2), ..., (n); this is the allowable membrane buckling equivalent stress for the k^{th} load combination in Step 5.

(b) If $\sigma_{\text{component,crit},k} > 0.55S_v$, then $S_{c,k} = 0.55S_v/2$ or Method B may be used.

Step 5. For each load combination in Table 5.14 with $\beta_b = 1$ at the critical buckling location, compare the computed buckling equivalent membrane stress, $P_{m,k}$, to the corresponding allowable value.

$$P_{m,k} \le S_{c,k} \tag{5.12}$$

Step 6. Any components that do not satisfy eq. 5.12, shall be modified until the component(s) satisfy the equation and the design criteria are met. Alternatively, Method B may be used to satisfy the design criteria.

5.4.2.2 Capacity Reduction Factors. The capacity reduction factors, β_{cr} , shown below shall be used in the Method A buckling analysis unless alternative factors can be developed from published information.

(a) reduction factor for the axial stress component in a cylinder or cone

$$\beta_{\rm cr} = 0.207 \quad \text{for } \frac{D_0}{t} \ge 1247$$
 (5.13)

$$\beta_{\rm cr} = \frac{338}{389 + \frac{D_0}{t}} \quad \text{for } \frac{D_0}{t} < 1247 \tag{5.14}$$

(b) reduction factor for the hoop stress component in a cylinder or cone

$$\beta_{\rm cr} = 0.80$$
 (5.15)

(c) reduction factor for the hoop and meridional stress components in a sphere, or formed head

$$\beta_{\rm cr} = 0.124$$
 (5.16)

5.4.3 BUCKLING ANALYSIS — METHOD B

If any requirement of Method A cannot be met, the following procedure shall be used. There is no limit on applicability. *Step 1*. For each load combination in Table 5.14, perform an eigenvalue buckling analysis using $\beta_b = 1$.

Step 2. Geometric imperfections for the analysis in Step 3 shall be included explicitly by factoring the eigenmode shape from Step 1. The magnitude of the imperfections may be determined using one of the following options:

(a) the equations in 4.4.4.

(b) manufacturing tolerances specified in the UDS.

(c) measured values if available.

(*d*) limits on geometric imperfection can be determined such that they satisfy acceptance criteria detailed in Step 3. This calculated imperfection shall be included in the UDS.

Step 3. For each load combination in Table 5.14, perform an elastic-plastic analysis using β_b =1.67, including the imperfections from Step 2.

(*a*) An elastic-plastic material model shall be used in the analysis. The von Mises yield function and associated flow rule shall be used. A material model that includes hardening shall be used. A true stress–strain curve model that includes temperature-dependent hardening behavior is provided in Annex 3-D. When using this material model, the hardening behavior shall be included up to the true ultimate stress and perfect plasticity behavior (i.e., the slope of the stress–strain curves is zero) beyond this limit. The effects of nonlinear geometry shall be considered in the analysis.

(b) If convergence is achieved, the component is stable under the applied loads for this load case. Otherwise, the component configuration (i.e., thickness) shall be modified or applied loads reduced and the analysis repeated.

5.5 PROTECTION AGAINST FAILURE FROM CYCLIC LOADING

5.5.1 OVERVIEW

5.5.1.1 A fatigue evaluation shall be performed if the component is subject to cyclic operation. The evaluation for fatigue is made on the basis of the number of applied cycles of a stress or strain range at a point in the component. The allowable number of cycles should be adequate for the specified number of cycles as given in the User's Design Specification.

5.5.1.2 Screening criteria are provided in 5.5.2 that can be used to determine if fatigue analysis is required as part of a design. If the component does not satisfy the screening criteria, a fatigue evaluation shall be performed using the techniques in 5.5.3, 5.5.4, or 5.5.5.

5.5.1.3 Fatigue curves are typically presented in two forms: fatigue curves that are based on smooth bar test specimens and fatigue curves that are based on test specimens that include weld details of quality consistent with the fabrication and inspection requirements of this Division.

(*a*) Smooth bar fatigue curves may be used for components with or without welds. The welded joint curves shall only be used for welded joints.

(b) The smooth bar fatigue curves are applicable up to the maximum number of cycles given on the curves. The welded joint fatigue curves do not exhibit an endurance limit and are acceptable for all cycles.

(c) If welded joint fatigue curves are used in the evaluation, and if thermal transients result in a through-thickness stress difference at any time that is greater than the steady-state difference, the number of design cycles shall be determined as the smaller of the number of cycles for the base metal established using either 5.5.3 or 5.5.4, and for the weld established in accordance with 5.5.5.

5.5.1.4 Stresses and strains produced by any load or thermal condition that does not vary during the cycle need not be considered in a fatigue analysis if the fatigue curves utilized in the evaluation are adjusted for mean stresses and strains. The design fatigue curves referenced in 5.5.3 and 5.5.4 are based on smooth bar test specimens and are adjusted for the maximum possible effect of mean stress and strain; therefore, an adjustment for mean stress effects is not required. The fatigue curves referenced in 5.5.5 are based on welded test specimens and include explicit adjustments for thickness and mean stress effects.

5.5.1.5 Under certain combinations of steady-state and cyclic loadings there is a possibility of ratcheting. A rigorous evaluation of ratcheting normally requires an elastic-plastic analysis of the component; however, under a limited number of loading conditions, an approximate analysis can be utilized based on the results of an elastic stress analysis, see 5.5.6.

5.5.1.6 Protection against ratcheting shall be considered for all operating loads listed in the User's Design Specification and shall be performed even if the fatigue screening criteria are satisfied (see 5.5.2). Protection against ratcheting is satisfied if one of the following three conditions is met:

(a) The loading results in only primary stresses without any cyclic secondary stresses.

(b) Elastic Stress Analysis Criteria – Protection against ratcheting is demonstrated by satisfying the rules of 5.5.6.

(c) Elastic–Plastic Stress Analysis Criteria – Protection against ratcheting is demonstrated by satisfying the rules of 5.5.7.

5.5.1.7 If a fatigue analysis is required, the effects of joint alignment (see 6.1.6.1) and weld peaking (see 6.1.6.3) in shells and heads shall be considered in the determination of the applicable stresses.

5.5.2 SCREENING CRITERIA FOR FATIGUE ANALYSIS

5.5.2.1 Overview.

(a) The provisions of this paragraph can be used to determine if a fatigue analysis is required as part of the vessel design. The screening options to determine the need for fatigue analysis are described below. If any one of the screening options is satisfied, then a fatigue analysis is not required as part of the vessel design.

(1) Provisions of 5.5.2.2, Experience with comparable equipment operating under similar conditions.

(2) Provisions of 5.5.2.3, Method A based on the materials of construction (limited applicability), construction details, loading histogram, and smooth bar fatigue curve data.

(3) Provisions of 5.5.2.4, Method B based on the materials of construction (unlimited applicability), construction details, loading histogram, and smooth bar fatigue curve data.

(b) The fatigue exemption in accordance with this paragraph is performed on a component or part basis. One component (integral) may be exempt, while another component (non-integral) is not exempt. If any one component is not exempt, then a fatigue evaluation shall be performed for that component.

(c) If the specified number of cycles is greater than $(10)^6$, then the screening criteria are not applicable and a fatigue analysis is required.

5.5.2.2 Fatigue Analysis Screening Based on Experience With Comparable Equipment. If successful experience over a sufficient time frame is obtained with comparable equipment subject to a similar loading histogram and addressed in the User's Design Specification [see 2.2.3.1(f)], then a fatigue analysis is not required as part of the vessel design. When evaluating experience with comparable equipment operating under similar conditions as related to the design and service contemplated, the possible harmful effects of the following design features shall be evaluated.

(*a*) The use of non-integral construction, such as the use of pad type reinforcements or of fillet welded attachments, as opposed to integral construction

(b) The use of pipe threaded connections, particularly for diameters in excess of 70 mm (2.75 in.)

(c) The use of stud bolted attachments

(d) The use of partial penetration welds

(e) Major thickness changes between adjacent members

(f) Attachments and nozzles in the knuckle region of formed heads

5.5.2.3 Fatigue Analysis Screening, Method A. The following procedure can only be used for materials with a specified minimum tensile strength that is less than or equal to 552 MPa (80,000 psi).

Step 1. Determine a load history based on the information in the User's Design Specification. The load history should include all cyclic operating loads and events that are applied to the component.

Step 2. Based on the load history in Step 1, determine the expected (design) number of full-range pressure cycles including startup and shutdown, and designate this value as $N_{\Delta FP}$.

Step 3. Based on the load history in Step 1, determine the expected number of operating pressure cycles in which the range of pressure variation exceeds 20% of the design pressure for integral construction or 15% of the design pressure for non-integral construction, and designate this value as $N_{\Delta PO}$. Pressure cycles in which the pressure variation does not exceed these percentages of the design pressure and pressure cycles caused by fluctuations in atmospheric conditions do not need to be considered in this evaluation.

Step 4. Based on the load history in Step 1, determine the effective number of changes in metal temperature difference between any two adjacent points, ΔT_E , as defined below, and designate this value as $N_{\Delta TE}$. The effective number of such changes is determined by multiplying the number of changes in metal temperature difference of a certain magnitude by the factor given in Table 5.14, and by adding the resulting numbers. In calculating the temperature difference between adjacent points, conductive heat transfer shall be considered only through welded or integral cross sections with no allowance for conductive heat transfer across unwelded contact surfaces (i.e., vessel shell and reinforcing pad).

(*a*) For surface temperature differences, points are considered to be adjacent if they are within the distance *L* computed as follows: for shells and dished heads in the meridional or circumferential directions,

$$L = 2.5\sqrt{Rt} \tag{5.17}$$

and for flat plates,

$$L = 3.5a$$
 (5.18)

(*b*) For through-the-thickness temperature differences, adjacent points are defined as any two points on a line normal to any surface on the component.

(23)

Step 5. Based on the load history in Step 1, determine the number of temperature cycles for components involving welds between materials having different coefficients of thermal expansion that causes the value of $(\alpha_1 - \alpha_2)\Delta T$ to exceed 0.00034, and designate this value as $N_{\Delta T\alpha}$.

Step 6. If the expected number of operating cycles from Steps 2, 3, 4 and 5 satisfy the criterion in Table 5.9, then a fatigue analysis is not required as part of the vessel design. If this criterion is not satisfied, then a fatigue analysis is required as part of the vessel design. Examples of non-integral attachments are: screwed-on caps, screwed-in plugs, shear ring closures, fillet welded attachments, and breech lock closures.

5.5.2.4 Fatigue Analysis Screening, Method B. The following procedure can be used for all materials.

Step 1. Determine a load history based on the information in the User's Design Specification. The load histogram should include all significant cyclic operating loads and events to which the component will be subjected. Note, in eqs. (5.19) through (5.24), the number of cycles from the applicable design fatigue curve (see Annex 3-F) evaluated at a stress amplitude of S_e is defined as $N(S_e)$.

Step 2. Determine the fatigue screening criteria factors, C_1 and C_2 , based on the type of construction in accordance with Table 5.10 and 4.2.5.6(j). Determine K_{fb} based on whether the construction is integral or nonintegral and determine H_c based on the construction [see Table 5.10 and 4.2.5.6(j)].

Step 3. Based on the load histogram in Step 1, determine the design number of full-range pressure cycles including startup and shutdown, $N_{\Delta FP}$. Calculate the damage associated with the full range pressure cycle, D_{FP} .

$$D_{FP} = \frac{N_{\Delta FP}}{N\left[\frac{K_{fb}H_C(3S)}{2}\right]}$$
(5.19)

Step 4. Based on the load histogram in Step 1, determine the maximum range of pressure fluctuation during normal operation, excluding startups and shutdowns, ΔP_N , and the corresponding number of significant cycles, $N_{\Delta P}$. Significant pressure fluctuation cycles are defined as cycles where the pressure range exceeds $2PS_{as}/[K_{fb}H_c(3S)]$. Calculate the damage associated with ΔP_N , D_{PN} .

$$D_{PN} = \frac{N_{\Delta P}}{N \left[\frac{\Delta P_N K_{fb} H_C(3S)}{2P}\right]}$$
(5.20)

Step 5. Based on the load histogram in Step 1, determine the maximum range of temperature difference during startup and shutdown operation, ΔT_N , where ΔT_N is either ΔT_A or ΔT_T and the corresponding number of cycles, $N_{\Delta TN}$. Calculate the damage associated with ΔT_N , D_{TN} .

$$D_{TN} = \frac{N_{\Delta \text{TN}}}{N \left[\frac{K_{fb}H_C \left(2E_{ym}\alpha \Delta T_N\right)}{2}\right]}$$
(5.21)

Step 6. Based on the load histogram in Step 1, determine the maximum range of temperature difference, ΔT_R , where ΔT_R is either ΔT_A or ΔT_T during normal operation, excluding startups and shutdowns, and the corresponding number of significant cycles, $\Delta N_{\Delta TR}$. Significant temperature difference fluctuation cycles for this Step are defined as cycles where the temperature range exceeds $S_{as}/K_{fb}H_c E_{ym}\alpha$. Calculate the damage associated with ΔT_R , D_{TR} .

$$D_{TR} = \frac{N_{\Delta TR}}{N\left[\frac{K_{fb}H_C\left(2E_{ym}\alpha\Delta TR\right)}{2}\right]}$$
(5.22)

Step 7. Based on the load histogram in Step 1, determine the maximum range of temperature difference for components involving welds between materials having different coefficients of thermal expansion during normal operation, ΔT_M , and the corresponding number of significant cycles, $N_{\Delta TM}$. Significant temperature difference fluctuation cycles for this Step are defined as cycles where the temperature range exceeds $S_{as}/[K_{fb}H_c(E_{y1}\alpha_1 - E_{y2}\alpha_2)]$. The fatigue curve that results in the lowest significant temperature difference and the lowest number of cycles for the two materials shall be used. Calculate the damage associated with T_M , D_{TM} .

$$D_{TM} = \frac{N_{\Delta TM}}{N \left[\frac{K_{fb} H_C \left(2E_{Y1} \cdot \alpha_1 \Delta T_M - 2E_{y2} \alpha_2 \Delta T_M \right)}{2} \right]}$$
(5.23)

Step 8. Based on the load histogram in Step 1, determine the equivalent stress range computed from the specified full range of mechanical loads, excluding pressure but including piping reactions, ΔS_{ML} , and the corresponding number of significant cycles, $N_{\Delta S}$. Significant mechanical load range cycles for this Step are defined as cycles where the equivalent stress range exceeds $2S_{as}/K_{fb}H_c$. Calculate the damage associated with ΔS_{ML} , D_{ML} .

$$D_{ML} = \frac{N_{\Delta S}}{N\left(\frac{K_{fb}H_C\Delta S_{ML}}{2}\right)}$$
(5.24)

Step 9. If the sum of the damage, D_f , is less than or equal to 1.0, then a detailed fatigue analysis of the component is not required.

$$D_f = D_{FP} + D_{PN} + D_{TN} + D_{TR} + D_{TM} + D_{ML} \le 1.0$$
(5.25)

5.5.3 FATIGUE ASSESSMENT — ELASTIC STRESS ANALYSIS AND EQUIVALENT STRESSES

5.5.3.1 Overview.

(a) An effective total equivalent stress amplitude is used to evaluate the fatigue damage for results obtained from a linear elastic stress analysis. The controlling stress for the fatigue evaluation is the effective total equivalent stress amplitude, defined as one-half of the effective total equivalent stress range $(P_L + P_b + Q + F)$ calculated for each cycle in the loading histogram.

(*b*) The primary plus secondary plus peak equivalent stress (see Figure 5.1) is the equivalent stress, derived from the highest value across the thickness of a section, of the combination of all primary, secondary, and peak stresses produced by specified operating pressures and other mechanical loads and by general and local thermal effects and including the effects of gross and local structural discontinuities. Examples of load case combinations for this stress category for typical pressure vessel components are shown in Table 5.3.

5.5.3.2 Assessment Procedure. The following procedure can be used to evaluate protection against failure due to cyclic loading based on the effective total equivalent stress amplitude.

Step 1. Determine a load history based on the information in the User's Design Specification and the methods in Annex 5-B. The load history should include all significant operating loads and events that are applied to the component. If the exact sequence of loads is not known, alternatives should be examined to establish the most severe fatigue damage, see Step 6.

Step 2. For a location in the component subject to a fatigue evaluation, determine the individual stress–strain cycles using the cycle counting methods in Annex 5-B. Define the total number of cyclic stress ranges in the histogram as *M*.

Step 3. Determine the equivalent stress range for the kth cycle counted in Step 2.

(a) If the effective alternating equivalent stress is computed using eq. (5.32), then determine the stress tensor at the start and end points (time points m t and n t, respectively) for the kth cycle counted in Step 2, Determine the local thermal stress at time points m t and n t, $^{m}\sigma^{LT}_{ij,k}$ and $^{n}\sigma^{LT}_{ij,k}$, respectively, as described in Annex 5-C. The component stress ranges between time points m t and n t and the effective equivalent stress ranges for use in eq. (5.32) are calculated using eqs. (5.26) through (5.29).

$$\Delta\sigma_{ij,k} = \begin{pmatrix} m \sigma_{ij,k} - m \sigma_{ij,k}^{LT} \end{pmatrix} - \begin{pmatrix} n \sigma_{ij,k} - n \sigma_{ij,k}^{LT} \end{pmatrix}$$
(5.26)

$$\left(\Delta S_{p,k} - \Delta S_{LT,k}\right) = \frac{1}{\sqrt{2}} \left[\left(\Delta \sigma_{11,k} - \Delta \sigma_{22,k}\right)^2 + \left(\Delta \sigma_{11,k} - \Delta \sigma_{33,k}\right)^2 + \left(\Delta \sigma_{22,k} - \Delta \sigma_{33,k}\right)^2 + 6 \left(\Delta \sigma_{12,k}^2 + \Delta \sigma_{13,k}^2 + \Delta \sigma_{23,k}^2\right) \right]^{0.5}$$
(5.27)

$$\Delta \sigma_{ij,k}^{LT} = {}^m \sigma_{ij,k}^{LT} - {}^n \sigma_{ij,k}^{LT} \tag{5.28}$$

$$\Delta S_{LT,k} = \frac{1}{\sqrt{2}} \left[\left(\Delta \sigma_{11,k}^{LT} - \Delta \sigma_{22,k}^{LT} \right)^2 + \left(\Delta \sigma_{11,k}^{LT} - \Delta \sigma_{33,k}^{LT} \right)^2 + \left(\Delta \sigma_{22,k}^{LT} - \Delta \sigma_{33,k}^{LT} \right)^2 \right]^{0.5}$$
(5.29)

(b) If the effective alternating equivalent stress is computed using eq. (5.38), then determine the stress tensor at the start and end points (time points m t and n t, respectively) for the kth cycle counted in Step 2, The component stress ranges between time points m t and n t, and the effective equivalent stress range for use in eq. (5.38) are given by eqs. (5.30) and (5.31), respectively.

$$\Delta \sigma_{ij,k} = {}^{m} \sigma_{ij,k} - {}^{n} \sigma_{ij,k} \tag{5.30}$$

$$\Delta S_{p,k} = \frac{1}{\sqrt{2}} \left[\left(\Delta \sigma_{11,k} - \Delta \sigma_{22,k} \right)^2 + \left(\Delta \sigma_{11,k} - \Delta \sigma_{33,k} \right)^2 + \left(\Delta \sigma_{22,k} - \Delta \sigma_{33,k} \right)^2 + 6 \left(\Delta \sigma_{12,k}^2 + \Delta \sigma_{13,k}^2 + \Delta \sigma_{23,k}^2 \right)^2 \right]^{0.5}$$
(5.31)

Step 4. Determine the effective alternating equivalent stress amplitude for the kth cycle using the results from Step 3.

$$S_{\text{alt},k} = \frac{K_f \cdot K_{e,k} \cdot \left(\Delta S_{p,k} - \Delta S_{LT,k}\right) + K_{v,k} \cdot \Delta S_{LT,k}}{2}$$
(5.32)

(*a*) If the local notch or effect of the weld is accounted for in the numerical model, then $K_f = 1.0$ in eqs. (5.32) and (5.38). If the local notch or effect of the weld is not accounted for in the numerical model, then a fatigue strength reduction factor, K_f , shall be included. Recommended values for fatigue strength reduction factors for welds are provided in Tables 5.11 and 5.12.

(*b*) The fatigue penalty factor, $K_{e,k}$, in eqs. (5.32) and (5.38) is evaluated using the following equations where the parameters and are determined from Table 5.13 and S_{PS} and $\Delta S_{n,k}$ are defined in 5.5.6.1. For $K_{e,k}$ values greater than 1.0, the simplified elastic-plastic criteria of 5.5.6.2 shall be satisfied.

$$K_{e,k} = 1.0 \text{ for } \Delta S_{n,k} \le S_{PS} \tag{5.33}$$

$$K_{e,k} = 1.0 + \frac{(1-n)}{n(m-1)} \left(\frac{\Delta S_{n,k}}{S_{PS}} - 1 \right) \text{ for } S_{PS} < \Delta S_{n,k} < mS_{PS}$$
(5.34)

$$K_{e,k} = \frac{1}{n} \text{ for } \Delta S_{n,k} \ge m S_{PS}$$
(5.35)

(c) The Poisson correction factor, $K_{v,k}$ in eq. (5.32) is computed using eq. (5.36).

$$K_{\nu,k} = \left(\frac{1 - v_e}{1 - v_p}\right) \tag{5.36}$$

where

$$v_p = \max\left[0.5 - 0.2\left(\frac{S_{y,k}}{S_{a,k}}\right), v_e\right]$$
 (5.37)

(*d*) The Poisson correction factor, $K_{v,k}$, in eq. (5.36) need not be used if the fatigue penalty factor, $K_{e,k}$, is used for the entire stress range (including $\Delta S_{LT,k}$). In this case, eq. (5.32) becomes

$$S_{\text{alt},k} = \frac{K_f \cdot K_{e,k} \cdot \Delta S_{P,k}}{2}$$
(5.38)

Step 5. Determine the permissible number of cycles, N_k , for the alternating equivalent stress computed in Step 4. Fatigue curves based on the materials of construction are provided in Annex 3-F, 3-F.1.

Step 6. Determine the fatigue damage for the kth cycle, where the actual number of repetitions of the kth cycle is n_k .

$$D_{f,k} = \frac{n_k}{N_k} \tag{5.39}$$

Step 7. Repeat Steps 3 through 6 for all stress ranges, *M*, identified in the cycle counting process in Step 2. *Step 8*. Compute the accumulated fatigue damage using the following equation. The location in the component is acceptable for continued operation if this equation is satisfied.

$$D_f = \sum_{k=1}^{M} D_{f,k} \le 1.0$$
(5.40)

Step 9. Repeat Steps 2 through 8 for each point in the component subject to a fatigue evaluation.

5.5.3.3 In Step 4 of 5.5.3.2, $K_{e,k}$ may be calculated using one of the following methods.

(*a*) Method 1 – The equivalent total strain range from elastic-plastic analysis and the equivalent total strain range from elastic analysis for the point of interest as given below.

5.5.3.3 - 5.5.4.2

$$K_{e,k} = \frac{\Delta \varepsilon_{\text{eff},k}}{\Delta \varepsilon_{el,k}}$$
(5.41)

where

$$\Delta \varepsilon_{\text{eff},k} = \frac{\Delta S_{P,k}}{E_{ya,k}} + \Delta \varepsilon_{peq,k}$$
(5.42)

$$\Delta \varepsilon_{el,k} = \frac{\Delta S_{P,k}}{E_{ya,k}}$$
(5.43)

$$\Delta \varepsilon_{peq,k} = \frac{\sqrt{2}}{3} \left[\left(\Delta p_{11,k} - \Delta p_{22,k} \right)^2 + \left(\Delta p_{22,k} - \Delta p_{33,k} \right)^2 + \left(\Delta p_{33,k} - \Delta p_{11,k} \right)^2 + 1.5 \left(\Delta p_{12,k}^2 + \Delta p_{23,k}^2 + \Delta p_{31,k}^2 \right) \right]^{0.5}$$
(5.44)

The stress range $\Delta S_{P,k}$ is given by eq. (5.31) and is the elastic-plastic value in eq. (5.42) and the elastic value in eq. (5.43). The component stress and plastic strain ranges (differences between the components at the start and end points of the cycle) for the *k*th cycle are designated as $\Delta \sigma_{ij,k}$ and $\Delta p_{ij,k}$, respectively. eq. (5.44) is a special form of the effective plastic strain equation based on engineering shear strains (typical FEA output and twice the tensorial shear strain values).

(*b*) Method 2 – The alternate plasticity adjustment factors and alternating equivalent stress may be computed using Annex 5-C.

5.5.3.4 In lieu of a detailed stress analysis, stress indices may be used to determine peak stresses around a nozzle opening in accordance with Annex 5-D.

5.5.4 FATIGUE ASSESSMENT — ELASTIC-PLASTIC STRESS ANALYSIS AND EQUIVALENT STRAINS

5.5.4.1 Overview.

(*a*) The Effective Strain Range is used to evaluate the fatigue damage for results obtained from an elastic–plastic stress analysis. The Effective Strain Range is calculated for each cycle in the loading histogram using either cycle-by-cycle analysis or the Twice Yield Method. For the cycle-by-cycle analysis, a cyclic plasticity algorithm with kinematic hardening shall be used.

(*b*) Twice Yield Method is an elastic–plastic stress analysis performed in a single loading step, based on a specified stabilized cyclic stress range-strain range curve and a specified load range representing a cycle. Stress and strain ranges are the direct output from this analysis. This method is performed in the same manner as a monotonic analysis and does not require cycle-by-cycle analysis of unloading and reloading. The Twice Yield Method can be used with an analysis program without cyclic plasticity capability.

(c) For the calculation of the stress range and strain range of a cycle at a point in the component, a stabilized cyclic stress-strain curve and other material properties shall be used based on the average temperature of the cycle being evaluated for each material of construction. The cyclic curve may be that obtained by test for the material, or that which is known to have more conservative cyclic behavior to the material that is specified. Cyclic stress-strain curves are also provided in Annex 3-D, 3-D.4 for certain materials and temperatures. Other cyclic stress-strain curves may be used that are known to be either more accurate for the application or lead to more conservative results.

5.5.4.2 Assessment Procedure. The following procedure can be used to evaluate protection against failure due to cyclic loading using elastic-plastic stress analysis.

Step 1. Determine a load history based on the information in the User's Design Specification and the methods in Annex 5-B. The load history should include all significant operating loads and events that are applied to the component.

Step 2. For a location in the component subject to a fatigue evaluation, determine the individual stress–strain cycles using the cycle counting methods in Annex 5-B. Define the total number of cyclic stress ranges in the histogram as *M*.

Step 3. Determine the loadings at the start and end points of the *k*th cycle counted in Step 2. Using these data, determine the loading ranges (differences between the loadings at the start and end points of the cycle).

Step 4. Perform elastic-plastic stress analysis for the *k*th cycle. For cycle-by-cycle analysis, constant-amplitude loading is cycled using cyclic stress amplitude-strain amplitude curve (see 5.5.4.1). For the Twice Yield Method, the loading at the start point of the cycle is zero and the loading at the end point is the loading range determined in Step 3. The cyclic stress range-strain range curve is used (see 5.5.4.1). For thermal loading, the loading range in Twice-Yield Method may be applied by specifying the temperature field at the start point for the cycle as an initial condition, and applying the temperature field at the end point gete.

Step 5. Calculate the Effective Strain Range for the *k*th cycle.

$$\Delta \varepsilon_{\text{eff},k} = \frac{\Delta S_{p,k}}{E_{ya,k}} + \Delta \varepsilon_{peq,k}$$
(5.45)

where the stress range $\Delta S_{p,k}$ is given by eq. (5.31) and $\Delta \mathcal{E}_{peq,k}$ is given by eq. (5.44).

The component stress and plastic strain ranges (differences between the components at the start and end points of the cycle) for the *k*th cycle are designated as $\Delta \sigma_{ij,k}$ and $\Delta p_{ij,k}$, respectively. However, since a range of loading is applied in a single load step with the Twice Yield Method, the calculated maximum equivalent plastic strain range, $\Delta \varepsilon_{peq,k}$ and the von Mises equivalent stress range $\Delta S_{p,k}$ defined above are typical output variables that can be obtained directly from a stress analysis.

Step 6. Determine the effective alternating equivalent stress for the kth cycle.

$$S_{\text{alt},k} = \frac{E_{ya,k} \cdot \Delta \varepsilon_{\text{eff},k}}{2}$$
(5.46)

Step 7. Determine the permissible number of cycles, N_k , for the alternating equivalent stress computed in Step 6. Fatigue curves based on the materials of construction are provided in Annex 3-F, 3-F.1,

Step 8. Determine the fatigue damage for the kth cycle, where the actual number of repetitions of the kth cycle is n_k .

$$D_{f,k} = \frac{n_k}{N_k} \tag{5.47}$$

Step 9. Repeat Steps 3 through 8 for all stress ranges, *M*, identified in the cycle counting process in Step 2. Step 10. Compute the accumulated fatigue damage using the following equation. The location in the component is acceptable for continued operation if this equation is satisfied.

$$\sum_{k=1}^{M} D_{f,k} \le 1.0$$
 (5.48)

Step 11. Repeat Steps 2 through 10 for each point in the component subject to a fatigue evaluation.

5.5.5 FATIGUE ASSESSMENT OF WELDS — ELASTIC ANALYSIS AND STRUCTURAL STRESS

5.5.5.1 Overview.

(*a*) An equivalent structural stress range parameter is used to evaluate the fatigue damage for results obtained from a linear elastic stress analysis. The controlling stress for the fatigue evaluation is the structural stress that is a function of the membrane and bending stresses normal to the hypothetical crack plane. This method is recommended for evaluation of welded joints that have not been machined to a smooth profile. Weld joints with controlled smooth profiles may be evaluated using 5.5.3 or 5.5.4.

(b) Fatigue cracks at pressure vessel welds are typically located at the toe of a weld. For as-welded and weld joints subject to post weld heat treatment, the expected orientation of a fatigue crack is along the weld toe in the through-thickness direction, and the structural stress normal to the expected crack is the stress measure used to correlate fatigue life data. For fillet welded components, fatigue cracking may occur at the toe of the fillet weld or the weld throat, and both locations shall be considered in the assessment. It is difficult to accurately predict fatigue life at the weld throat due to variability in throat dimension, which is a function of the depth of the weld penetration. It is recommended to perform sensitivity analysis where the weld throat dimension is varied.

5.5.5.2 Assessment Procedure. The following procedure can be used to evaluate protection against failure due to cyclic loading using the equivalent structural stress range.

Step 1. Determine a load history based on the information in the User's Design Specification and the histogram development methods in Annex 5-B. The load history should include all significant operating loads and events that are applied to the component.

Step 2. For a location at a weld joint subject to a fatigue evaluation, determine the individual stress–strain cycles using the cycle counting methods in Annex 5-B. Define the total number of cyclic stress ranges in the histogram as *M*.

Step 3. Determine the elastically calculated membrane and bending stress normal to the assumed hypothetical crack plane at the start and end points (time points ${}^{m}t$ and ${}^{n}t$, respectively) for the *k*th cycle counted in Step 2. Using this data, calculate the membrane and bending stress ranges between time points ${}^{m}t$ and ${}^{n}t$, and the maximum, minimum and mean stress.

$$\Delta \sigma_{m,k}^{e} = \begin{pmatrix} m \sigma_{m,k}^{e} + {}^{m} P_{k} \end{pmatrix} - \begin{pmatrix} n \sigma_{m,k}^{e} + {}^{n} P_{k} \end{pmatrix}$$
(5.49)

$$\sigma_{\max,k} = \max\left[\left(m \sigma_{m,k}^{e} + m P_{k} + m \sigma_{b,k}^{e} \right), \left(n \sigma_{m,k}^{e} + n P_{k} + n \sigma_{b,k}^{e} \right) \right]$$
(5.51)

$$\sigma_{\min,k} = \min\left[\left({}^{m}\sigma_{m,k}^{e} + {}^{m}P_{k} + {}^{m}\sigma_{b,k}^{e}\right), \left({}^{n}\sigma_{m,k}^{e} + {}^{n}P_{k} + {}^{n}\sigma_{b,k}^{e}\right)\right]$$
(5.52)

$$\sigma_{\text{mean},k} = \frac{\sigma_{\text{max},k} + \sigma_{\text{min},k}}{2}$$
(5.53)

Step 4. Determine the elastically calculated structural stress range for the *k*th cycle, $\Delta \sigma^{e}_{b}$ using eq. (5.54).

$$\Delta \sigma_k^e = \Delta \sigma_{m,k}^e + \Delta \sigma_{b,k}^e \tag{5.54}$$

Step 5. Determine the elastically calculated structural strain, $\Delta \varepsilon_k^e$, from the elastically calculated structural stress, $\Delta \sigma_k^e$, using eq. (5.55)

$$\Delta \varepsilon_k^e = \frac{\Delta \sigma_k^e}{E_{ya,k}} \tag{5.55}$$

The corresponding local nonlinear structural stress and strain ranges, $\Delta \sigma_k$ and $\Delta \varepsilon_k$, respectively, are determined by simultaneously solving Neuber's Rule, eq. (5.56), and a model for the material hysteresis loop stress–strain curve given by eq. (5.57), see Annex 3-D, 3-D.4.

$$\Delta\sigma_k \cdot \Delta\varepsilon_k = \Delta\sigma_k^e \cdot \Delta\varepsilon_k^e \tag{5.56}$$

$$\Delta \varepsilon_k = \frac{\Delta \sigma_k}{E_{ya,k}} + 2 \left(\frac{\Delta \sigma_k}{2K_{css}} \right)^{\frac{1}{n_{css}}}$$
(5.57)

The structural stress range computed solving eqs. (5.56) and (5.57) is subsequently modified for low-cycle fatigue using eq. (5.58).

$$\Delta \sigma_k = \left(\frac{E_{ya,k}}{1-v^2}\right) \Delta \varepsilon_k \tag{5.58}$$

NOTE: The modification for low-cycle fatigue should always be performed because the exact distinction between high-cycle fatigue and lowcycle fatigue cannot be determined without evaluating the effects of plasticity which is a function of the applied stress range and cyclic stressstrain curve. For high cycle fatigue applications, this procedure will provide correct results, i.e., the elastically calculated structural stress will not be modified.

Step 6. Compute the equivalent structural stress range parameter for the *k*th cycle using the following equations. In eq. (5.59), for SI Units, the thickness, *t*, stress range, $\Delta \sigma_k$, and the equivalent structural stress range parameter, $\Delta S_{ess,k}$, are in mm, MPa, and MPa/(mm)^{(2 - m_{ss})/2 m_{ss} , respectively, and for U.S. Customary Units, the thickness, *t*, stress range, $\Delta \sigma_k$, and the equivalent structural stress range parameter, $\Delta S_{ess,k}$, are in ksi, ksi, and in ksi/(inches)^{(2 - m_{ss})/2 m_{ss}}, respectively.}

$$\Delta S_{ess,k} = \frac{\Delta \sigma_k}{t_{ess}^{\left(\frac{2}{-}\frac{m_{ss}}{2m_{ss}}\right)} \cdot I^{\frac{1}{m_{ss}}} \cdot f_{M,k}}$$
(5.59)

where

$$m_{SS} = 3.6$$
 (5.60)

$$t_{ess} = 16 \text{ mm} (0.625 \text{ in.}) \text{ for } t \le 16 \text{ mm} (0.625 \text{ in.})$$
 (5.61)

$$t_{ess} = t$$
 for 16 mm (0.625 in.) < $t < 150$ mm (6 in.) (5.62)

$$t_{\rm ess} = 150 \text{ mm} (6 \text{ in.}) \text{ for } t \ge 150 \text{ mm} (6 \text{ in.})$$
 (5.63)

$$I^{\frac{1}{m_{SS}}} = \frac{1.23 - 0.364R_{b,k} - 0.17R_{b,k}^2}{1.007 - 0.306R_{b,k} - 0.178R_{b,k}^2}$$
(5.64)

$$R_{b,k} = \frac{\left|\Delta\sigma_{b,k}^{e}\right|}{\left|\Delta\sigma_{m,k}^{e}\right| + \left|\Delta\sigma_{b,k}^{e}\right|}$$
(5.65)

$$f_{M,k} = \left(1 - R_k\right)^{\frac{1}{m_{SS}}} \text{ for } \sigma_{\text{mean},k \ge 0.5S_{y,k'}} \text{ and } R_k > 0, \text{ and } \left|\Delta\sigma_{m,k}^e + \Delta\sigma_{b,k}^e\right| \le 2S_{y,k}$$
(5.66)

$$f_{M,k} = 1.0 \text{ for } \sigma_{\text{mean},k < 0.5S_{y,k'}} \text{ or } R_k \le 0, \text{ or } \left| \Delta \sigma_{m,k}^e + \Delta \sigma_{b,k}^e \right| > 2S_{y,k}$$

$$(5.67)$$

$$R_k = \frac{\sigma_{\min,k}}{\sigma_{\max,k}} \tag{5.68}$$

Step 7. Determine the permissible number of cycles, N_k , based on the equivalent structural stress range parameter for the *k*th cycle computed in Step 6. Fatigue curves for welded joints are provided in Annex 3-F, 3-F.2.

Step 8. Determine the fatigue damage for the kth cycle, where the actual number of repetitions of the kth cycle is n_k .

$$D_{f,k} = \frac{n_k}{N_k} \tag{5.69}$$

Step 9. Repeat Steps 6 through 8 for all stress ranges, *M*, identified in the cycle counting process in Step 3. *Step 10*. Compute the accumulated fatigue damage using the following equation. The location along the weld joint is

suitable for continued operation if this equation is satisfied.

$$D_f = \sum_{i=1}^{M} D_{f,k} \le 1.0$$
(5.70)

Step 11. Repeat Steps 5 through 10 for each point along the weld joint that is subject to a fatigue evaluation.

5.5.5.3 Assessment Procedure Modifications. The assessment procedure in 5.5.5.2 may be modified as shown below.

(a) Multiaxial Fatigue – If the structural shear stress range is not negligible, i.e., $\Delta \tau_k > \Delta \sigma_k/3$, a modification should be made when computing the equivalent structural stress range. Two conditions need to be considered:

(1) If $\Delta \sigma_k$ and $\Delta \tau_k$ are out of phase, the equivalent structural stress range $\Delta S_{ess,k}$ in eq. (5.59) should be replaced by:

$$\Delta S_{ess,k} = \frac{1}{F(\delta)} \left[\left(\frac{\Delta \sigma_k}{\frac{2 - m_{ss}}{2m_{ss}}} \right)_{\cdot I} \frac{1}{m_{ss}} \cdot f_{M,k} \right)^2 + 3 \left(\frac{\Delta \tau_k}{\frac{2 - m_{ss}}{2m_{ss}}} \right)_{\cdot I_{\tau}} \frac{1}{m_{ss}} \right]^2 \right]^{0.5}$$
(5.71)

where

$$I_{\tau}^{\frac{1}{m_{ss}}} = \frac{1.23 - 0.364R_{b\tau,k} - 0.17R_{b\tau,k}^2}{1.007 - 0.306R_{b\tau,k} - 0.178R_{b\tau,k}^2}$$
(5.72)

$$R_{b\tau,k} = \frac{\left|\Delta \tau_{b,k}^{e}\right|}{\left|\Delta \tau_{m,k}^{e}\right| + \left|\Delta \tau_{b,k}^{e}\right|}$$
(5.73)

$$\Delta \tau_k = \Delta \tau^e_{m,k} + \Delta \tau^e_{b,k} \tag{5.74}$$

$$\Delta \tau^{e}_{m,k} = {}^{m} \tau^{e}_{m,k} - {}^{n} \tau^{e}_{m,k} \tag{5.75}$$

$$\Delta \tau^{e}_{b\,k} = {}^{m} \tau^{e}_{b,k} - {}^{n} \tau^{e}_{b,k} \tag{5.76}$$

In eq. (5.71), $F(\delta)$ is a function of the out-of-phase angle between $\Delta \sigma_k$ and $\Delta \tau_k$ if both loading modes can be described by sinusoidal functions, or:

$$F\left(\delta\right) = \frac{1}{\sqrt{2}} \left[1 + \left(1 - \frac{12 \cdot \Delta \sigma_k^2 \cdot \Delta \tau_k^2 \cdot \sin^2(\delta)}{\left(\Delta \sigma_k^2 + 3\Delta \tau_k^2\right)^2}\right)^{0.5}\right]^{0.5}$$
(5.77)

A conservative approach is to ignore the out-of-phase angle and recognize the existence of a minimum possible value for $F(\delta)$ in eq. (5.77) given by:

$$F(\delta) = \frac{1}{\sqrt{2}} \tag{5.78}$$

(2) If $\Delta \sigma_k$ and $\Delta \tau_k$ are in-phase the equivalent structural stress range $\Delta S_{ess,k}$ is given by eq. (5.71) with $F(\delta) = 1.0$. (b) Weld Quality – If a defect exists at the toe of a weld that can be characterized as a crack-like flaw, i.e., undercut, and this defect exceeds the value permitted by Part 7, then a reduction in fatigue life shall calculated by substituting the value of $I^{1/m_{ss}}$ in eq. (5.64) with the value given by eq. (5.79). In this equation, *a* is the depth of the crack-like flaw at the weld toe. Equation (5.79) is valid only when $a/t \leq 0.1$.

$$\frac{1}{l^{m_{SS}}} = \frac{1.229 - 0.365R_{b,k} + 0.789\left(\frac{a}{t}\right) - 0.17R_{b,k}^2 + 13.771\left(\frac{a}{t}\right)^2 + 1.243R_{b,k}\left(\frac{a}{t}\right)}{1 - 0.302R_{b,k} + 7.115\left(\frac{a}{t}\right) - 0.178R_{b,k}^2 + 12.903\left(\frac{a}{t}\right)^2 - 4.091R_{b,k}\left(\frac{a}{t}\right)}$$
(5.79)

5.5.6 RATCHETING ASSESSMENT — ELASTIC STRESS ANALYSIS

5.5.6.1 Elastic Ratcheting Analysis Method.

(a) To evaluate protection against ratcheting the following limit shall be satisfied.

$$\Delta S_{n,k} \le S_{PS} \tag{5.80}$$

(b) The primary plus secondary equivalent stress range, $\Delta S_{n,k}$, is the equivalent stress range, derived from the highest value across the thickness of a section, of the combination of linearized general or local primary membrane stresses plus primary bending stresses plus secondary stresses ($P_L + P_b + Q$), produced by specified operating pressure and other specified mechanical loads and by general thermal effects. The effects of gross structural discontinuities but not of local structural discontinuities (stress concentrations) shall be included. Examples of this stress category for typical pressure vessel components are shown in Table 5.6. Load case combinations to be considered for this stress category for typical pressure vessel components are shown in Table 5.3.

(c) The maximum range of this equivalent stress is limited to S_{PS} . The quantity S_{PS} represents a limit on the primary plus secondary equivalent stress range and is defined in (d). In the determination of the maximum primary plus secondary equivalent stress range, it may be necessary to consider the effects of multiple cycles where the total stress range may be greater than the stress range of any of the individual cycles. In this case, the value of S_{PS} may vary with the specified cycle, or combination of cycles, being considered since the temperature extremes may be different in each case. Therefore, care shall be exercised to assure that the applicable value of S_{PS} for each cycle, or combination of cycles, is used (see 5.5.3).

(*d*) The allowable limit on the primary plus secondary stress range, S_{PS} , is computed as the larger of the quantities shown below.

(1) Three times the average of the *S* values for the material from Annex 3-A at the highest and lowest temperatures during the operational cycle.

(2) Two times the average of the S_y values for the material from Annex 3-D at the highest and lowest temperatures during the operational cycle, except that the value from (1) shall be used when the ratio of the minimum specified yield strength to ultimate tensile strength exceeds 0.70 or the value of S is governed by time-dependent properties as indicated in Annex 3-A.

5.5.6.2 Simplified Elastic–Plastic Analysis. The equivalent stress limit on the range of primary plus secondary equivalent stress in 5.5.6.1 may be exceeded, provided all of the following are true:

(a) The range of primary plus secondary membrane plus bending equivalent stress, excluding thermal stress, is less than S_{PS} .

(*b*) The value of the alternating stress range in 5.5.3.2, Step 4 is multiplied by the factor $K_{e,k}$ [see eqs. (5.33) through (5.35), or 5.5.3.3].

(c) The material of the component has a ratio of the specified minimum yield strength to specified minimum tensile strength of less than or equal to 0.80.

(d) The component meets the secondary equivalent stress range requirements of 5.5.6.3.

5.5.6.3 Thermal Stress Ratcheting Assessment. The allowable limit on the secondary equivalent thermal stress range to prevent ratcheting, when applied in conjunction with a steady-state general or local primary membrane equivalent stress, is determined below. This procedure can only be used with an assumed linear or parabolic distribution of a secondary stress range (e.g., thermal stress).

Step 1. Determine the ratio of the primary membrane stress to the specified minimum yield strength from Annex 3-D, at the average temperature of the cycle.

$$X = \left(\frac{P_m}{S_y}\right) \tag{5.81}$$

Step 2. Compute the secondary membrane equivalent stress range, ΔQ_m , using elastic analysis methods.

Step 3. Compute the secondary membrane plus bending equivalent thermal stress range, ΔQ_{mb} , using elastic analysis methods.

Step 4. Determine the allowable limit on the secondary membrane plus bending equivalent thermal stress range, S_{Omb} .

(a) For a secondary equivalent thermal stress range with a linear variation through the wall thickness

$$S_{Qmb} = S_y \left(\frac{1}{X}\right) \text{ for } 0 < X < 0.5$$
 (5.82)

$$S_{Omb} = 4.0S_v (1 - X) \text{ for } 0.5 \le X \le 1.0$$
 (5.83)

(b) For a secondary equivalent stress range from thermal loading with a parabolic constantly increasing or decreasing variation through the wall thickness

$$S_{Qmb} = S_y \left(\frac{1}{0.1224 + 0.9944X^2} \right)$$
 for $0.0 < X < 0.615$ (5.84)

$$S_{Qmb} = 5.2S_y(1-X)$$
 for $0.615 \le X \le 1.0$ (5.85)

Step 5. Determine the allowable limit on the secondary membrane equivalent thermal stress range, S_{Om} .

$$S_{Om} = 2.0S_v (1 - X)$$
 for $0 < X < 1.0$ (5.86)

Step 6. To demonstrate protection against ratcheting, the following two criteria shall be satisfied:

$$\Delta Q_m \le S_{Qm} \tag{5.87}$$

$$\Delta Q_{mb} \le S_{Omb} \tag{5.88}$$

5.5.6.4 Progressive Distortion of Non-Integral Connections. Screwed-on caps, screwed-in plugs, shear ring closures, and breech lock closures are examples of non-integral connections that are subject to failure by bell-mouthing or other types of progressive deformation. If any combination of applied loads produces yielding, such joints are subject to ratcheting because the mating members may become loose at the end of each complete operating cycle and may start the next cycle in a new relationship with each other, with or without manual manipulation. Additional distortion may occur in each cycle so that interlocking parts, such as threads, can eventually lose engagement. Therefore primary plus secondary equivalent stresses that produce slippage between the parts of a non-integral connection in which disengagement could occur as a result of progressive distortion, shall be limited to the minimum specified yield strength at temperature, S_{ν} , or evaluated using the procedure in 5.5.7.2.

5.5.7 RATCHETING ASSESSMENT — ELASTIC-PLASTIC STRESS ANALYSIS

5.5.7.1 Overview. To evaluate protection against ratcheting using elastic–plastic analysis, an assessment is performed by application, removal and re application of the applied loadings. If protection against ratcheting is satisfied, it may be assumed that progression of the stress–strain hysteresis loop along the strain axis cannot be sustained with cycles and that the hysteresis loop will stabilize. A separate check for plastic shakedown to alternating plasticity is not required. The following assessment procedure can be used to evaluate protection against ratcheting using elastic–plastic analysis.

5.5.7.2 Assessment Procedure.

Step 1. Develop a numerical model of the component including all relevant geometry characteristics. The model used for analysis shall be selected to accurately represent the component geometry, boundary conditions, and applied loads. *Step 2*. Define all relevant loads and applicable load cases (see Table 5.1).

Step 3. An elastic perfectly plastic material model shall be used in the analysis. The von Mises yield function and associated flow rule should be utilized. The yield strength defining the plastic limit shall be the minimum specified yield

strength at temperature from Annex 3-D. The effects of non-linear geometry shall be considered in the analysis.

Step 4. Perform an elastic–plastic analysis for the applicable loading from Step 2 for a number of repetitions of a loading event (see Annex 5-B), or, if more than one event is applied, of two events that are selected so as to produce the highest likelihood of ratcheting.

Step 5. The ratcheting criteria below shall be evaluated after application of a minimum of three complete repetitions of the cycle. Additional cycles may need to be applied to demonstrate convergence. If any one of the following conditions is met, the ratcheting criteria are satisfied. If the criteria shown below are not satisfied, the component configuration (i.e., thickness) shall be modified or applied loads reduced and the analysis repeated.

(*a*) There is no plastic action (i.e., zero plastic strains incurred) in the component.

(b) There is an elastic core in the primary-load-bearing boundary of the component.

(c) There is not a permanent change in the overall dimensions of the component. This can be demonstrated by developing a plot of relevant component dimensions versus time between the last and the next to the last cycles.

5.6 SUPPLEMENTAL REQUIREMENTS FOR STRESS CLASSIFICATION IN NOZZLE NECKS

The following classification of stresses shall be used for stress in a nozzle neck. The classification of stress in the shell shall be in accordance with 5.2.2.2.

(*a*) Within the limits of reinforcement given by 4.5, whether or not nozzle reinforcement is provided, the following classification shall be applied.

(1) A P_m classification is applicable to equivalent stresses resulting from pressure-induced general membrane stresses as well as stresses, other than discontinuity stresses, due to external loads and moments including those attributable to restrained free end displacements of the attached pipe.

(2) A P_L classification shall be applied to local primary membrane equivalent stresses derived from discontinuity effects plus primary bending equivalent stresses due to combined pressure and external loads and moments including those attributable to restrained free end displacements of the attached pipe.

(3) A $P_L + P_b + Q$ classification (see 5.5.2) shall apply to primary plus secondary equivalent stresses resulting from a combination of pressure, temperature, and external loads and moments, including those due to restrained free end displacements of the attached pipe.

(b) Outside of the limits of reinforcement given in 4.5, the following classification shall be applied.

(1) A P_m classification is applicable to equivalent stresses resulting from pressure-induced general membrane stresses as well as the average stress across the nozzle thickness due to externally applied nozzle axial, shear, and torsional loads other than those attributable to restrained free end displacement of the attached pipe.

(2) A $P_L + P_b$ classification is applicable to the equivalent stresses resulting from adding those stresses classified as P_m to those due to externally applied bending moments except those attributable to restrained free end displacement of the pipe.

(3) A $P_L + P_b + Q$ classification (see 5.5.2) is applicable to equivalent stresses resulting from all pressure, temperature, and external loads and moments, including those attributable to restrained free end displacements of the attached pipe.

(c) Beyond the limits of reinforcement, the S_{PS} limit on the range of primary plus secondary equivalent stress may be exceeded as provided in 5.5.6.2, except that in the evaluation of the range of primary plus secondary equivalent stress, $P_L + P_b + Q$, stresses resulting from the restrained free end displacements of the attached pipe may also be excluded. The range of membrane plus bending equivalent stress attributable solely to the restrained free end displacements of the attached piping shall be less than S_{PS} .

5.7 SUPPLEMENTAL REQUIREMENTS FOR BOLTS

5.7.1 DESIGN REQUIREMENTS

(*a*) The number and cross-sectional area of bolts required to resist the design pressure shall be determined in accordance with the procedures of 4.16. The allowable bolt stress shall be obtained from Part 3.

(b) When sealing is effected by a seal weld instead of a gasket, the gasket factor, *m*, and the minimum gasket seating stress, *y*, may be taken as zero.

(c) When gaskets are used for pre-service testing only, the design is satisfactory if the above requirements are satisfied for m and y factors equal to zero, and the requirements of 5.7.1 and 5.7.2 are satisfied when the appropriate m and y factors are used for the test gasket.

5.7.2 SERVICE STRESS REQUIREMENTS

Actual service stress in bolts, such as those produced by the combination of preload, pressure, and differential expansion, may be higher than the allowable stress values given in Annex 3-A.

(*a*) The maximum value of service stress, averaged across the bolt cross section and neglecting stress concentrations, shall not exceed two times the allowable stress values in Annex 3-A, 3-A.2.2.

(*b*) The maximum value of service stress, except as restricted by 5.7.3.1(b) at the periphery of the bolt cross section resulting from direct tension plus bending and neglecting stress concentrations, shall not exceed three times the allowable stress values in Annex 3-A, 3-A.2. When the bolts are tightened by methods other than heaters, stretchers, or other means which minimize residual torsion, the stress measure used in the evaluation shall be the equivalent stress as defined in eq. (5.1).

5.7.3 FATIGUE ASSESSMENT OF BOLTS

5.7.3.1 The suitability of bolts for cyclic operation shall be determined in accordance with the following procedures unless the vessel on which they are installed meets all the conditions of 5.5.2 (a fatigue analysis is not required).

(*a*) Bolts made of materials which have minimum specified tensile strengths of less than 689 MPa (100,000 psi) shall be evaluated for cyclic operation using the method in 5.5.3, using the applicable design fatigue curves (see Annex 3-F), and, unless it can be shown by analysis or test that a lower value is appropriate, the fatigue strength reduction factor used in the evaluation shall not be less than 4.0.

(*b*) High strength alloy steel bolts and studs shall be evaluated for cyclic operation using the methodology in 5.5.3 with the applicable design fatigue curve of Annex 3-F, provided all of the following are true:

(1) The material is one of the following: SA-193 Grade B7 or B16, SA-320 Grade L43, SA-540 Grades B23 and B24, heat treated in accordance with Section 5 of SA-540.

(2) The maximum value of the service stress at the periphery of the bolt cross section (resulting from direct tension plus bending and neglecting stress concentrations) shall not exceed 2.7*S*, if the higher of the two fatigue design curves for high strength bolting given in Annex 3-F is used (the 2*S* limit for direct tension is unchanged).

(3) The threads shall be of a V-Type, having a minimum thread root radius no smaller than 0.076 mm (0.003 in.).

(4) The fillet radii at the end of the shank shall be such that the ratio of fillet radius to shank diameter is not less than 0.060.

(5) The fatigue strength reduction factor used in the evaluation shall not be less than 4.0.

5.7.3.2 The bolts shall be acceptable for the specified cyclic operation application of loads and thermal stresses, provided the fatigue damage fraction, D_{f_i} is less than or equal to 1.0 (see 5.5.3).

5.8 SUPPLEMENTAL REQUIREMENTS FOR PERFORATED PLATES

Perforated plates may be analyzed using any of the procedures in this Part if the holes are explicitly included in the numerical model used for the stress analysis. An elastic stress analysis option utilizing the concept of an effective solid plate is described Annex 5-E.

5.9 SUPPLEMENTAL REQUIREMENTS FOR LAYERED VESSELS

The equations developed for solid wall cylindrical shells, spherical shells, or heads as expressed in this Part may be applied to layered cylindrical shells, spherical shells or heads, provided that in-plane shear force on each layer is adequately supported by the weld joint. In addition, consideration shall be given to the construction details in the zones of load application. In order to assure solid wall equivalence for layered cylindrical shells, spherical shells, or heads as described above, all cylindrical shells, spherical shells, or heads subjected to radial forces and/or longitudinal bending 5.9 - 5.12

moments due to discontinuities or externally applied loads shall have all layers adequately bonded together to resist any longitudinal shearing forces resulting from the radial forces and/or longitudinal bending moments acting on the sections. For example, the use of the girth weld to bond layers together is shown in Figures 5.2, 5.3, and 5.4. The required width of the attachment weld at the midpoint of the weld depth is given by eq. (5.89).

$$w = 1.88 \left(\frac{M_0}{t \cdot S}\right) \tag{5.89}$$

In eq. (5.89), the parameter M_o is the longitudinal bending moment per unit length of circumference existing at the weld junction of a layered cylindrical shells, spherical shells, or head. This parameter is determined from a stress analysis considering the pressure loading and all externally applied loads such as M_1 , Q_1 , and F_1 .

5.10 EXPERIMENTAL STRESS ANALYSIS

Requirements for determining stresses in parts using experimental stress analysis are provided in Annex 5-F.

5.11 FRACTURE MECHANICS EVALUATIONS

Fracture mechanics evaluations performed to determine the MDMT in accordance with 3.11.2.8 shall be in accordance with API/ASME FFS-1. Residual stresses resulting from welding shall be considered along with primary and secondary stresses in all fracture mechanics calculations.

5.12 DEFINITIONS

Bending Stress: The variable component of normal stress, the variation may or may not be linear across the section thickness.

Bifurcation Buckling: The point of instability where there is a branch in the primary load versus displacement path for a structure.

Event: The User's Design Specification may include one or more events that produce fatigue damage. Each event consists of loading components specified at a number of time points over a time period and is repeated a specified number of times. For example, an event may be the startup, shutdown, upset condition, or any other cyclic action. The sequence of multiple events may be specified or random.

Cycle: A cycle is a relationship between stress and strain that is established by the specified loading at a location in a vessel or component. More than one stress–strain cycle may be produced at a location, either within an event or in transition between two events, and the accumulated fatigue damage of the stress–strain cycles determines the adequacy for the specified operation at that location. This determination shall be made with respect to the stabilized stress–strain cycle.

Cyclic Loading: A service in which fatigue becomes significant due to the cyclic nature of the mechanical and/or thermal loads. A screening criteria is provided in 5.5.2 that can be used to determine if a fatigue analysis should be included as part of the vessel design.

Fatigue: The conditions leading to fracture under repeated or fluctuating stresses having a maximum value less than the tensile strength of the material.

Fatigue Endurance Limit: The maximum stress below which a material can undergo 10¹¹ alternating stress cycles without failure.

Fatigue Strength Reduction Factor: A stress intensification factor which accounts for the effect of a local structural discontinuity (stress concentration) on the fatigue strength. It is the ratio of the fatigue strength of a component without a discontinuity or weld joint to the fatigue strength of that same component with a discontinuity or weld joint. Values for some specific cases are empirically determined (e.g., socket welds). In the absence of experimental data, the stress intensification factor can be developed from a theoretical stress concentration factor derived from the theory of elasticity or based on the guidance provided in Tables 5.11 and 5.12.

Fracture Mechanics: An engineering discipline concerned with the behavior of cracks in materials. Fracture mechanics models provide mathematical relationships for critical combinations of stress, crack size and fracture toughness that

5.12

models provide mathematical relationships for critical combinations of stress, crack size and fracture toughness that lead to crack propagation. Linear Elastic Fracture Mechanics (LEFM) approaches apply to cases where crack propagation occurs during predominately elastic loading with negligible plasticity. Elastic–Plastic Fracture Mechanics (EPFM) methods are suitable for materials that undergo significant plastic deformation during crack propagation.

Gross Structural Discontinuity: A source of stress or strain intensification that affects a relatively large portion of a structure and has a significant effect on the overall stress or strain pattern or on the structure as a whole. Examples of gross structural discontinuities are head-to-shell and flange-to-shell junctions, nozzles, and junctions between shells of different diameters or thicknesses.

Local Primary Membrane Stress: Cases arise in which a membrane stress produced by pressure, or other mechanical loading associated with a primary and/or a discontinuity effect would, if not limited, produce excessive distortion in the transfer of load to other portions of the structure. Conservatism requires that such a stress be classified as a local primary membrane stress even though it has some characteristics of a secondary stress.

Local Structural Discontinuity: A source of stress or strain intensification which affects a relatively small volume of material and does not have a significant effect on the overall stress or strain pattern, or on the structure as a whole. Examples are small fillet radii, small attachments, and partial penetration welds.

Membrane Stress: The component of normal stress that is uniformly distributed and equal to the average value of stress across the thickness of the section under consideration.

Normal Stress: The component of stress normal to the plane of reference. Usually the distribution of normal stress is not uniform through the thickness of a part.

Operational Cycle: An operational cycle is defined as the initiation and establishment of new conditions followed by a return to the conditions that prevailed at the beginning of the cycle. Three types of operational cycles are considered: the startup-shutdown cycle, defined as any cycle which has atmospheric temperature and/or pressure as one of its extremes and normal operating conditions as its other extreme; the initiation of, and recovery from, any emergency or upset condition or pressure test condition that shall be considered in the design; and the normal operating cycle, defined as any cycle between startup and shutdown which is required for the vessel to perform its intended purpose.

Peak Stress: The basic characteristic of a peak stress is that it does not cause any noticeable distortion and is objectionable only as a possible source of a fatigue crack or a brittle fracture. A stress that is not highly localized falls into this category if it is of a type that cannot cause noticeable distortion. Examples of peak stress are: the thermal stress in the austenitic steel cladding of a carbon steel vessel, the thermal stress in the wall of a vessel or pipe caused by a rapid change in temperature of the contained fluid, and the stress at a local structural discontinuity.

Primary Stress: A normal or shear stress developed by the imposed loading which is necessary to satisfy the laws of equilibrium of external and internal forces and moments. The basic characteristic of a primary stress is that it is not self-limiting. Primary stresses which considerably exceed the yield strength will result in failure or at least in gross distortion. A thermal stress is not classified as a primary stress. Primary membrane stress is divided into general and local categories. A general primary membrane stress is one that is distributed in the structure such that no redistribution of load occurs as a result of yielding. Examples of primary stress are general membrane stress in a circular cylindrical or a spherical shell due to internal pressure or to distributed live loads and the bending stress in the central portion of a flat head due to pressure. Cases arise in which a membrane stress produced by pressure or other mechanical loading and associated with a primary and/or a discontinuity effect would, if not limited, produce excessive distortion in the transfer of load to other portions of the structure. Conservatism requires that such a stress be classified as a local primary membrane stress even though it has some characteristics of a secondary stress. Finally a primary bending stress can be defined as a bending stress developed by the imposed loading which is necessary to satisfy the laws of equilibrium of external and internal forces and moments.

Ratcheting: A progressive incremental inelastic deformation or strain that can occur in a component subjected to variations of mechanical stress, thermal stress, or both (thermal stress ratcheting is partly or wholly caused by thermal stress). Ratcheting is produced by a sustained load acting over the full cross section of a component, in combination with a strain controlled cyclic load or temperature distribution that is alternately applied and removed. Ratcheting causes cyclic straining of the material, which can result in failure by fatigue and at the same time produces cyclic incremental growth of a structure, which could ultimately lead to collapse. *Secondary Stress*: A normal stress or a shear stress developed by the constraint of adjacent parts or by self-constraint of a structure. The basic characteristic of a secondary stress is that it is self-limiting. Local yielding and minor distortions can satisfy the conditions that cause the stress to occur and failure from one application of the stress is not to be expected. Examples of secondary stress are a general thermal stress and the bending stress at a gross structural discontinuity.

Shakedown: Caused by cyclic loads or cyclic temperature distributions which produce plastic deformations in some regions of the component when the loading or temperature distribution is applied, but upon removal of the loading or temperature distribution, only elastic primary and secondary stresses are developed in the component, except in small areas associated with local stress (strain) concentrations. These small areas shall exhibit a stable hysteresis loop, with no indication of progressive deformation. Further loading and unloading, or applications and removals of the temperature distribution shall produce only elastic primary and secondary stresses.

Shear Stress: The component of stress tangent to the plane of reference.

Stress Concentration Factor: The ratio of the maximum stress to the average section stress or bending stress.

Stress Cycle: A stress cycle is a condition in which the alternating stress difference goes from an initial value through an algebraic maximum value and an algebraic minimum value and then returns to the initial value. A single operational cycle may result in one or more stress cycles.

Thermal Stress: A self-balancing stress produced by a non-uniform distribution of temperature or by differing thermal coefficients of expansion. Thermal stress is developed in a solid body whenever a volume of material is prevented from assuming the size and shape that it normally should under a change in temperature. For the purpose of establishing allowable stresses, two types of thermal stress are recognized, depending on the volume or area in which distortion takes place. A general thermal stress that is associated with distortion of the structure in which it occurs. If a stress of this type, neglecting stress concentrations, exceeds twice the yield strength of the material, the elastic analysis may be invalid and successive thermal cycles may produce incremental distortion. Therefore this type is classified as a secondary stress. Examples of general thermal stress are: the stress produced by an axial temperature distribution in a cylindrical shell, the stress produced by the temperature difference between a nozzle and the shell to which It is attached, and the equivalent linear stress produced by the radial temperature distribution in a cylindrical shell. A Local thermal stress is associated with almost complete suppression of the differential expansion and thus produces no significant distortion. Such stresses shall be considered only from the fatigue standpoint and are therefore classified as local stresses. Examples of local thermal stresses are the stress in a small hot spot in a vessel wall, the difference between the non-linear portion of a through-wall temperature gradient in a cylindrical shell, and the thermal stress in a cladding material that has a coefficient of expansion different from that of the base metal.

(23) 5.13 NOMENCLATURE

- ${}^{m}P_{k}$ = component crack face pressure at time point ${}^{m}t$ for the *k*th cycle. The crack face pressure should be specified if the maximum value of the membrane plus bending stress used in the analysis occurs on a surface that is exposed to the fluid pressure. A conservative approach is to always specify the crack face pressure. The crack face pressure is based on the actual or operating pressure defined in the loading time history
- ${}^{m}\sigma^{e}_{b,k}$ = elastically calculated bending stress at the point under evaluation for the *k*th cycle at the m point
- ${}^{m}\sigma^{e}_{m,k}$ = elastically calculated membrane stress at the point under evaluation for the *k*th cycle at the m point
- ${}^{m}\sigma_{ij,k}$ = stress tensor at the point under evaluation for the *k*th cycle at the m point
- ${}^{m}\tau^{e}_{b,k}$ = elastically calculated bending component of shear stress distribution at the point under evaluation for the *k*th cycle at the m point
- ${}^{m}\tau^{e}_{m,k}$ = elastically calculated membrane component of shear stress distribution at the point under evaluation for the *k*th cycle at the m point
 - ${}^{n}P_{k}$ = component crack face pressure at time point ${}^{n}t$ for the *k*th cycle. The crack face pressure should be specified if the maximum value of the membrane plus bending stress used in the analysis occurs on a surface that is exposed to the fluid pressure. A conservative approach is to always specify the crack face pressure. The crack face pressure is based on the actual or operating pressure defined in the loading time history
- ${}^{n}\sigma^{e}_{b,k}$ = elastically calculated bending stress at the point under evaluation for the *k*th cycle at the n point ${}^{n}\sigma^{e}_{m,k}$ = elastically calculated membrane stress at the point under evaluation for the *k*th cycle at the n point
- ${}^{n}\sigma_{ii,k}$ = stress tensor at the point under evaluation for the *k*th cycle at the n point

- ${}^{n}\tau^{e}_{b,k}$ = elastically calculated bending component of shear stress distribution at the point under evaluation for the *k*th cycle at the n point
- ${}^{n}\tau^{e}_{m,k}$ = elastically calculated membrane component of shear stress distribution at the point under evaluation for the *k*th cycle at the n point
 - a = radius of hot spot or heated area within a plate or the depth of a flaw at a weld toe, as applicable
 - D_f = is cumulative fatigue damage
- $D_{f,k}$ = is fatigue damage for the *k*th cycle
- D_{ε} = cumulative strain limit damage
- $D_{\varepsilon,k}$ = strain limit damage for the *k*th loading condition

 $D_{\varepsilon \text{form}}$ = strain limit damage from forming

- D_{FP} = damage associated with full-range pressure cycles
- D_{ML} = damage associated with mechanical loads, excluding pressure
- D_{PN} = damage associated with pressure fluctuation during normal operation
- D_{TM} = damage associated with temperature difference for components having different coefficients of thermal expansion
- D_{TN} = damage associated with temperature difference during startup and shutdown
- D_{TR} = damage associated with temperature difference during normal operation
 - E_{y} = unmodified Young's modulus for plate material
- E_{y1} = Young's Modulus of material 1 evaluated at the mean temperature of the cycle
- E_{y2} = Young's Modulus of material 2 evaluated at the mean temperature of the cycle
- $E_{ya,k}$ = value of modulus of elasticity of the material at the point under consideration, evaluated at the mean temperature of the *k*th cycle

 E_{yf} = value of modulus of elasticity on the fatigue curve being utilized

- E_{ym} = Young's Modulus of the material evaluated at the mean temperature of the cycle
 - F = additional stress produced by the stress concentration over and above the nominal stress level resulting from operating loadings
- F_1 = externally applied axial force
- $f_{M,k}$ = mean stress correction factor for the *k*th cycle
- $F(\delta)$ = a fatigue modification factor based on the out-of-phase angle between $\Delta \sigma_k$ and Δ_{τ_k}
 - H_c = factor used in the method B screening (see Table 5.10)
 - I = correction factor used in the structural stress evaluation
 - I_{τ} = correction factor used in the structural shear stress evaluation
- K_{css} = material parameter for the cyclic stress-strain curve model
- $K_{e,k}$ = fatigue penalty factor for the *k*th cycle
- K_f = fatigue strength reduction factor used to compute the cyclic stress amplitude or range
- K_{fb} = fatigue strength reduction factor used in the method B screening (see Table 5.10)
- K_L = equivalent stress load factor
- K_m = ratio of peak stress in reduced ligament to the peak stress in normal ligament
- $K_{v,k}$ = plastic Poisson's ratio adjustment for local thermal and thermal bending stresses for the *k*th cycle
 - M = total number of stress ranges at a point derived from the cycle counting procedure
 - *m* = material constant used for the fatigue knock-down factor used in the simplified elastic-plastic analysis
- M_1 = externally applied bending moment
- m_{ij} = mechanical strain tensor, mechanical strain is defined as the total strain minus the free thermal strain
- M_o = longitudinal bending moment per unit length of circumference existing at the weld junction of layered spherical shells or heads due to discontinuity or external loads
- m_{ss} = exponent used in a fatigue analysis based on the structural stress
 - n = material constant used for the fatigue knock-down factor used in the simplified elastic-plastic analysis

 n_{css} = material parameter for the cyclic stress–strain curve model

- N_k = permissible number of cycles for the *k*th cycle
- n_k = actual number of repetitions of the *k*th cycle

 $N_{\Delta FP}$ = design number of full-range pressure cycles including startup and shutdown

 $N_{\Delta P}$ = number of significant cycles associated with ΔP_N

- $N_{\Delta PO}$ = expected number of operating pressure cycles in which the range of pressure variation exceeds 20% of the design pressure for integral construction or 15% of the design pressure for non-integral construction
- $N_{\Delta S}$ = number of significant cycles associated with ΔS_{ML}
- $N_{\Delta Ta}$ = number of temperature cycles for components involving welds between materials having different coefficients of expansion
- $N_{\Delta TE}$ = number of cycles associated with ΔT_E
- $N_{\Delta TM}$ = number of significant cycles associated with ΔT_M
- $N_{\Delta TN}$ = number of cycles associated with ΔT_N
- $N_{\Delta TR}$ = number of significant cycles associated with ΔT_R
- $N(S_e)$ = number of cycles from the applicable design fatigue curve (see Annex 3-F, 3-F.1.3) evaluated at a stress amplitude of S_e
 - *P* = specified design pressure
 - P_b = primary bending equivalent stress
 - P_L = local primary membrane equivalent stress
 - P_m = general primary membrane equivalent stress
- $P_{m,k}$ = buckling equivalent membrane stress for the *k*th load combination
 - P_T = selected hydrostatic or pneumatic test pressure [see 8.2.1(c)]
 - Q = secondary equivalent stress resulting from operating loadings
 - Q_1 = externally applied shear force
 - R = inside radius measured normal to the surface from the mid-wall of the shell to the axis of revolution, or the ratio of the minimum stress in the kth cycle to the maximum stress in the kth cycle, as applicable
 - R_1 = mid-surface radius of curvature of region 1 where the local primary membrane stress exceeds 1.1S
- R_2 = mid-surface radius of curvature of region 2 where the local primary membrane stress exceeds 1.1S
- $R_{b,k}$ = ratio of the bending stress to the membrane plus bending stress
- $R_{b\tau,k}$ = ratio of the bending component of the shear stress to the membrane plus bending component of the shear stress
 - R_k = stress ratio for the *k*th cycle
- RSF = computed remaining strength factor
 - S = allowable stress based on the material of construction and design temperature
 - S_a = alternating stress obtained from a fatigue curve for the specified number of operating cycles
- $S_{a,k}$ = value of alternating stress obtained from the applicable design fatigue curve for the specified number of cycles of the *k*th cycle
- $S_{\text{alt},k}$ = alternating equivalent stress for the *k*th cycle
- *S_{as}* = stress amplitude from the applicable design fatigue curve (see Annex 3-F, 3-F.1.3) evaluated at 1E6 cycles
 - S_e = computed equivalent stress
- $S_{c,k}$ = allowable membrane buckling equivalent stress for the kth load combination
- S_{v}^{L} = specified plastic limit for limit-load analysis
- S_{PL} = allowable limit on the local primary membrane and local primary membrane plus bending stress categories (see 5.2.2.4.)
- S_{PS} = allowable limit on the primary plus secondary stress range (see 5.5.6.)
- S_0 = allowable limit on the secondary stress range
- S_y = minimum specified yield strength at the design temperature
- $S_{y,k}$ = yield strength of the material evaluated at the mean temperature of the *k*th cycle
- *t* = minimum wall thickness in the region under consideration, or the thickness of the vessel, as applicable
- t_1 = minimum wall thickness associated with R_1
- t_2 = minimum wall thickness associated with R_2
- t_{ess} = structural stress effective thickness
- UTS = minimum specified ultimate tensile strength at room temperature
 - v = Poisson's ratio
 - w = required with of attachment
 - X = maximum general primary membrane stress divided by the yield strength
 - YS = minimum specified yield strength at room temperature

- α = thermal expansion coefficient of the material at the mean temperature of two adjacent points, the thermal expansion coefficient of material evaluated at the mean temperature of the cycle, or the cone angle, as applicable
- α_1 = thermal expansion coefficient of material 1 evaluated at the mean temperature of the cycle
- α_2 = thermal expansion coefficient of material 2 evaluated at the mean temperature of the cycle
- α_{sl} = material factor for the multiaxial strain limit
- β = elastic-plastic load factor for Class 1 or Class 2 construction (see Table 4.1.3)
- β_b = load factor for collapse from buckling
- $\beta_{b \text{ component},k}$ = load factor for collapse from buckling for each component for the kth load combination
 - $\beta_{\rm cr}$ = capacity reduction factor
 - β_T = test load factor for hydrostatic or pneumatic test and for Class 1 or Class 2 construction (see Table 4.1.3)
 - δ = out-of-phase angle between $\Delta \sigma_k$ and Δ_{τ_k} for the *k*th cycle
 - $\Delta e_{ij,k}$ = change in total strain range components minus the free thermal strain at the point under evaluation for the *k*th cycle
 - $\Delta p_{ij,k}$ = change in plastic strain range components at the point under evaluation for the *k*th loading condition or cycle
 - ΔP_N = maximum design range of pressure associated with $N_{\Delta P}$
 - ΔQ = range of secondary equivalent stress
 - $\Delta S_{ess,k}$ = equivalent structural stress range parameter for the kth cycle
 - $\Delta S_{LT,k}$ = local thermal equivalent stress for the *k*th cycle
 - ΔS_{ML} = linearized equivalent stress range computed from the specified full range of mechanical loads, excluding pressure but including piping reactions
 - $\Delta S_{n,k}$ = primary plus secondary equivalent stress range
 - $\Delta S_{P,k}$ = range of primary plus secondary plus peak equivalent stress for the *k*th cycle
 - ΔT = operating temperature range
 - ΔT_A = maximum range of temperature difference between any two adjacent points (see 5.5.2.3, Step 4) of the vessel for the defined cycle
 - ΔT_E = effective number of changes in metal temperature between any two adjacent points
 - ΔT_M = the difference between the maximum and minimum operating temperatures during normal operation for components fabricated from different construction materials
 - ΔT_N = temperature difference during startup and shutdown
 - ΔT_R = temperature difference during normal operation
 - ΔT_T = twice the difference between the maximum and minimum temperature for the defined cycle; this is a more conservative but simpler calculation than ΔT_A
 - $\Delta \varepsilon^{e}_{k}$ = elastically calculated structural strain range at the point under evaluation for the kth cycle
 - $\Delta \varepsilon_{eff,k}$ = Effective Strain Range for the *k*th cycle
 - $\Delta \varepsilon_{el,k}$ = equivalent strain range for the *k*th cycle, computed from elastic analysis
 - $\Delta \varepsilon_{ij,k}$ = component strain range for the *k*th cycle, computed using the total strain less the free thermal strain
 - $\Delta \varepsilon_k$ = local nonlinear structural strain range at the point under evaluation for the *k*th cycle

 $\Delta \varepsilon_{peq,k}$ = equivalent plastic strain range for the *k*th loading condition or cycle

- $\Delta \sigma^{e}_{b,k}$ = elastically calculated structural bending stress range at the point under evaluation for the kth cycle
- $\Delta \sigma_k^e$ = elastically calculated structural stress range at the point under evaluation for the *k*th cycle
- $\Delta \sigma^{e}_{m,k}$ = elastically calculated structural membrane stress range at the point under evaluation for the *k*th cycle
 - $\Delta \sigma_i$ = stress range associated with the principal stress in the *i*th direction
 - $\Delta \sigma_{ij}$ = stress tensor range
- $\Delta \sigma_{ij,k}$ = stress tensor range at the point under evaluation for the *k*th cycle
- $\Delta \sigma_k$ = local nonlinear structural stress range at the point under evaluation for the *k*th cycle
- $\Delta \tau^{e}_{b,k}$ = elastically calculated bending component of the structural shear stress range at the point under evaluation for the *k*th cycle
- $\Delta \tau^{e}_{m,k}$ = elastically calculated membrane component of the structural shear stress range at the point under evaluation for the *k*th cycle
 - $\Delta \tau_k$ = structural shear stress range at the point under evaluation for the *k*th cycle
 - ε_{cf} = cold forming strain
 - $\varepsilon_{L,k}$ = limiting triaxial strain

5.13

 ε_{Lu} = uniaxial strain limit

- $\lambda_{component,k}$ = eigenvalue of each component for the *k*th load combination
 - σ_1 = principal stress in the 1-direction
 - $\sigma_{1,k}$ = principal stress in the 1-direction for the *k*th loading condition
 - σ_2 = principal stress in the 2-direction
 - $\sigma_{2,k}$ = principal stress in the 2-direction for the *k*th loading condition
 - σ_3 = principal stress in the 3-direction
 - $\sigma_{3,k}$ = principal stress in the 3-direction for the *k*th loading condition
- $\sigma_{component,crit,k}$ = product of the equivalent membrane stress with capacity reduction factor for each component for the *k*th load combination
 - σ_e = von Mises stress
 - $\sigma_{e,k}$ = von Mises stress for the *k*th loading condition
 - σ_i = are the principal stress components
 - $\sigma_{ij,k}$ = stress tensor at the point under evaluation for the *k*th cycle at the m point
 - $\sigma^{LT'}_{ij,k}$ = stress tensor due to local thermal stress at the location and time point under evaluation for the *k*th cycle
 - $\sigma_{\max,k}$ = maximum stress in the *k*th cycle
 - $\sigma_{\text{mean},k}$ = mean stress in the *k*th cycle
 - $\sigma_{\min,k}$ = minimum stress in the *k*th cycle
 - Φ_B = design factor for buckling
 - Ω_P = load factor for pressure when combined with occasional load *L*, *S_s*, *W*, or *E* (see Table 5.2 for load parameter definitions)
 - = 1.0 unless otherwise specified in the User's Design Specification [see 2.2.3.1(e)]
 - $\Omega_P P$ = maximum anticipated operating pressure (internal or external) acting simultaneously with occasional load *L*, *S_s*, *W*, or *E*

5.14 TABLES

Table 5.1 Loads and Load Cases to Be Considered in a Design		
Loading Condition	Design Loads	
Pressure testing	 Dead load of component plus insulation, fireproofing, installed internals, platforms, and other equipment supported from the component in the installed position Piping loads including pressure thrust Applicable live loads excluding vibration and maintenance live loads Pressure and fluid loads (water) for testing and flushing equipment and piping unless a pneumatic test is specified Wind loads 	
Normal operation	 (1) Dead load of component plus insulation, refractory, fireproofing, installed internals catalyst, packing, platforms, and other equipment supported from the component in the installed position (2) Piping loads including pressure thrust (3) Applicable live loads (4) Pressure and fluid loading during normal operation (5) Thermal loads 	
Normal operation plus occasional [Note (1)]	 (1) Dead load of component plus insulation, refractory, fireproofing, installed internals catalyst, packing, platforms, and other equipment supported from the component in the installed (2) Piping loads including pressure thrust (3) Applicable live loads (4) Pressure and fluid loading during normal operation (5) Thermal loads (6) Wind, earthquake, or other occasional loads, whichever is greater (7) Loads due to wave action 	
Abnormal or start-up operation plus occasional [Note (1)]	 (1) Dead load of component plus insulation, refractory, fireproofing, installed internals catalyst, packing, platforms, and other equipment supported from the component in the installed position (2) Piping loads including pressure thrust (3) Applicable live loads (4) Pressure and fluid loading associated with the abnormal or start-up conditions (5) Thermal loads (6) Wind loads 	

(1) Occasional loads are usually governed by wind and earthquake; however, other load types such as snow and ice loads may govern, see ASCE-7.

	Eoud Combinat	ion Parameters
Design Load Parameter	Operating Load Parameter [Note (1)]	Description
Р	Po	Internal and external specified design or operating pressure
P _S	P _{So}	Design or operating static head from liquid or bulk materials (e.g., catalyst)
P _T		Selected hydrostatic or pneumatic test pressure [see 8.2.1(d) or 8.3.1 Used only in the pressure test load combinations.
D	D _o	 Deadweight of the vessel, contents, and appurtenances at the location of interest, including the following: weight of vessel including internals, supports (e.g., skirts, lug saddles, and legs), and appurtenances (e.g., platforms, ladders, etc. weight of vessel contents design, operating, and test conditions refractory linings, insulation static reactions from the weight of attached equipment, such a motors, machinery, other vessels, and piping transportation loads (the static forces obtained as equivalent to the dynamic loads experienced during normal operation of a transport vessel [see 1.2.1.3(b)]
L	Lo	 Appurtenance live loading Effects of fluid momentum, steady state, and transient Loads resulting from wave action
Ε		Earthquake loads (see 5.1.3.2)
W	_	Wind loads (see 5.1.3.2)
W _{pt}	Same as design parameter	The pressure test wind load case. The design wind speed for this ca shall be specified by the Owner-User. Used only in the pressure te load combinations.
S _s		Snow loads
Т	То	The self-restraining load case (i.e., thermal loads, applied displacements). This load case does not typically affect the collap load, but should be considered in cases where elastic follow-up causes stresses that do not relax sufficiently to redistribute the lo without excessive deformation.

NOTE:

(1) The operating load parameters do not necessarily represent single quantities, but rather each operating load parameter may represent multiple operating conditions as specified in the User's Design Specification [see 2.2.3.1(e) and 2.2.3.1(f)].

			Stress Assessm	ent and Allowable	Stress [Note (2)]	
		General Primary Membrane	Local Primary Membrane	Local Primary Membrane Plus Bending	Range of Primary Plus Secondary	Range of Primary Plus Secondary Plus Peak
	Load Combinations [Note (1)]	P_m	PL	$P_L + P_b$	$P_L + P_b + Q$	$P_L + P_b + Q + F$
Desig	n		-			
(1) (2) (3) (4) (5) (6) (7) (8) (9) Opera	$\begin{array}{l} P + P_s + D \\ P + P_s + D + L \\ P + P_s + D + L + T \\ P + P_s + D + S_s \\ 0.6D + (0.6W \text{ or } 0.7E) \ [\text{Note (3)}] \\ \Omega_p P + P_s + D + (0.6W \text{ or } 0.7E) \ [\text{Note (4)}] \\ \Omega_p P + P_s + D + 0.75(L + T) + 0.75S_s \ [\text{Note (4)}] \\ \Omega_p P + P_s + D + 0.75(0.6W \text{ or } 0.7E) + 0.75L + \\ 0.75S_s \ [\text{Note (4)}] \\ \end{array}$ Other design load combinations as defined in the User's Design Specification	S	S _{PL}	S _{PL}	Not ap	pplicable
(10) (11) (12) (13) (14) (15)	$P_{o} + P_{So} + D_{o}$ $P_{o} + P_{So} + D_{o} + L_{o}$ $P_{o} + P_{So} + D_{o} + L_{o} + T_{o}$ $P_{o} + P_{So} + D_{o} + S_{s}$ $P_{o} + P_{So} + D_{o} + (0.6W \text{ or } 0.7E)$ $P_{o} + P_{So} + D_{o} + 0.75(L_{o} + T_{o}) + 0.75S_{s}$ $P_{o} + P_{So} + D_{o} + 0.75(0.6W \text{ or } 0.7E) + 0.75L_{o} + 0.75S_{s}$ Other operating load combinations as defined in the User's Design Specification ure Test		Not applicable		S _{PS}	2 <i>S_a</i> (see 5.5.1.4)

GENERAL NOTE: Loads listed herein shall be considered to act in the combinations described above; whichever produces the most unfavorable effect in the component being considered. Effects of one or more loads not acting shall be considered.

NOTES:

Г

(1) The parameters used in the Load Combinations column are defined in Table 5.2.

(2) See Figure 5.1 for additional guidance on stress categories and limits on equivalent stress.

(3) This load combination addresses an overturning condition for foundation design. It does not apply to design of anchorage (if any) to the foundation. Refer to ASCE/SEI 7, 2.4.1, Exception 2 for an additional reduction to *W* that may be applicable.

(4) The product of $\Omega_P P$ is used in lieu of the design pressure, *P*, for evaluation of P_m , P_L , and $P_L + P_b$ stress assessments since it is unlikely the occasional loads would occur at the same time as the maximum design pressure, *P*.

٦

Criteria	Required Factored Load Combinations
	Design Conditions
lobal	(1) $1.5(P + P_s + D)$
	(2) $1.3(P + P_s + D + T) + 1.7L + 0.54S_s$
	(3) $1.3(P + P_s + D) + 1.7S_s + (1.1L \text{ or } 0.54W)$
	$(4) 1.3(P + P_s + D) + 1.1W + 1.1L + 0.54S_s$
	$(5) 1.3(P + P_s + D) + 1.1E + 1.1L + 0.21S_s)$
Local	See 5.3.1.2
Serviceability	Per User's Design Specification, if applicable; see Table 5.5
	Test Condition
lobal	$\frac{1}{\beta_T} \left(P_T + P_S + D + 0.6W_{pt} \right)$
Serviceability	Per User's Design Specification, if applicable

(a) The parameters used in the Design Load Combination column are defined in Table 5.2.

(b) See 5.2.3.4 for descriptions of global and serviceability criteria.

(c) *S* is the allowable membrane stress at the design temperature.

(d) S_T is the allowable membrane stress at the pressure test temperature.

(e) Loads listed herein shall be considered to act in the combinations described above; whichever produces the most unfavorable effect in the component being considered. Effects of one or more loads not acting shall be considered.

Criteria	Required Factored Load Combinations
	Design Conditions
lobal	(1) $\beta(P + P_s + D)$ (2) $0.88\beta(P + P_s + D + T) + 1.13\beta L + 0.36\beta S_s$ (3) $0.88\beta(P + P_s + D) + 1.13\beta S_s + 0.71\beta L$ or $0.36\beta W$ (4) $0.88\beta(P + P_s + D) + 0.71\beta W + 0.71\beta L + 0.36\beta S_s$ (5) $0.88\beta(P + P_s + D) + 0.71\beta E + 0.71\beta L + 0.14\beta S_s$
ocal	$1.7(P+P_S+D)$
erviceability	Per User's Design Specification, if applicable; see 5.2.4.3(b)
	Test Condition
lobal	$\frac{\beta}{1.5} \times \frac{1}{\beta_T} \left(P_T + P_S + D + 0.6W_{pt} \right)$
erviceability	Per User's Design Specification, if applicable

(d) S_T is the allowable membrane stress at the pressure test temperature.

(e) Loads listed herein shall be considered to act in the combinations described above; whichever produces the most unfavorable effect in the component being considered. Effects of one or more loads not acting shall be considered.

Vessel Component	Location	Origin of Stress	Type of Stress	Classification
Any shell including cylinders,	Shell plate remote from	Internal pressure	General membrane	P_m
cones, spheres, and formed heads	discontinuities		Gradient through plate thickness	Q
		Axial thermal gradient	Membrane	Q
			Bending	
	Near nozzle or other	Net-section axial force and/	Local membrane	P_L
	opening	or bending moment	Bending	Q
		applied to the nozzle, and/or internal pressure	Peak (fillet or corner)	F
	Any location	Temperature difference	Membrane	Q
		between shell and head	Bending	
	Shell distortions such as	Internal pressure	Membrane	P_m
	out-of-roundness and dents		Bending	Q
Cylindrical or conical shell	Any section across entire vessel	Net-section axial force, bending moment applied to the cylinder or cone, and/or internal pressure	Membrane stress averaged through the thickness, remote from discontinuities; stress component perpendicular to cross section	P _m
			Bending stress through the thickness; stress component perpendicular to cross section	P _b
	Junction with head or flange	Internal pressure	Membrane	P_L
			Bending	Q
Dished head or conical head	Crown	Internal pressure	Membrane	P_m
			Bending	P_b
	Knuckle or junction to shell	Internal pressure	Membrane	P_L [Note (1)]
			Bending	Q
Flat head	Center region	Internal pressure	Membrane	P_m
			Bending	P_{b}
	Junction to shell	Internal pressure	Membrane	P_L
			Bending	Q [Note (2)]
Perforated head or shell	Typical ligament in a uniform pattern	Pressure	Membrane (averaged through cross section)	P_m
			Bending (averaged through width of ligament., but gradient through plate)	P _b
			Peak	F
	Isolated or atypical ligament	Pressure	Membrane	Q
			Bending	F
			Peak	

	Examples of	Table 5.6 Stress Classification	(Cont'd)	
Vessel Component	Location	Origin of Stress	Type of Stress	Classification
Nozzle (see 5.6)	Within the limits of reinforcement given by 4.5	Pressure and external loads and moments, including those attributable to	Bending (other than gross	<i>P</i> _m
	4.5	restrained free end displacements of attached piping	structural discontinuity stresses) averaged through nozzle thickness	
	Outside the limits of reinforcement given by 4.5	Pressure and external axial, shear, and torsional loads, including those attributable to restrained free end displacements of attached piping	General membrane	P _m
		Pressure and external loads	Membrane	P_L
		and moments, excluding those attributable to restrained free end displacements of attached piping	Bending	P _b
		Pressure and all external	Membrane	P_L
		loads and moments	Bending	Q
			Peak	F
	Nozzle wall	Gross structural	Membrane	P_L
		discontinuities	Bending	Q
			Peak	F
		Differential expansion	Membrane	Q
			Bending	
			Peak	F
Cladding	Any	Differential expansion	Membrane	F
			Bending	
Iny	Any	Radial temperature distribution [Note (3)]	Equivalent linear stress [Note (4)]	Q
			Nonlinear portion of stress distribution	F
Any	Any	Any	Stress concentration (notch effect)	F

NOTES:

(1) Consideration shall be given to the possibility of wrinkling and excessive deformation in vessels with large diameter-to-thickness ratio.

(2) If the bending moment at the edge is required to maintain the bending stress in the center region within acceptable limits, the edge bending is classified as P_b; otherwise, it is classified as Q.
(3) Consider possibility of thermal stress ratchet.

(4) Equivalent linear stress is defined as the linear stress distribution that has the same net bending moment as the actual stress distribution.

Uniaxial Strain Limit, ε_{Lu} [Note (1)], [Note (2)], [Note (3)]					
Material	Maximum Temperature	<i>m</i> ₂	Elongation Specified	Reduction of Area Specified	α_{sl}
Ferritic steel [Note (4)]	480°C (900°F)	0.60(1.00 - <i>R</i>)	$2 \cdot \ln \left[1 + \frac{E}{100}\right]$	$\ln\left[\frac{100}{100 - RA}\right]$	2.2
Stainless steel and nickel base alloys	480°C (900°F)	0.75(1.00 - R)	$3 \cdot \ln \left[1 + \frac{E}{100} \right]$	$\ln\left[\frac{100}{100-RA}\right]$	0.6
Duplex stainless steel	480°C (900°F)	0.70(0.95 - R)	$2 \cdot \ln \left[1 + \frac{E}{100} \right]$	$\ln\left[\frac{100}{100-RA}\right]$	2.2
Precipitation-hardening nickel-based austenitic alloys	540°C (1,000°F)	1.09(0.93 - <i>R</i>)	$\ln\left[1 + \frac{E}{100}\right]$	$\ln\!\left[\frac{100}{100-RA}\right]$	2.2
Aluminum	120°C (250°F)	0.52(0.98 - R)	$1.3 \cdot \ln \left[1 + \frac{E}{100} \right]$	$\ln\!\!\left[\frac{100}{100-RA}\right]$	2.2
Copper	65°C (150°F)	0.50(1.00 - R)	$2 \cdot \ln \left[1 + \frac{E}{100} \right]$	$\ln\left[\frac{100}{100-RA} ight]$	2.2
Titanium and zirconium	260°C (500°F)	0.50(0.98 - R)	$1.3 \cdot \ln \left[1 + \frac{E}{100} \right]$	$\ln\left[\frac{100}{100-RA}\right]$	2.2

NOTES:

(1) If the elongation and reduction in area are not specified, then $\varepsilon_{Lu} = m_2$. If the elongation or reduction in area is specified, then ε_{Lu} is the maximum number computed from columns 3, 4, or 5, as applicable.

(2) R is the ratio of the minimum specified yield strength divided by the minimum specified ultimate tensile strength.

(3) *E* is the % elongation and *RA* is the % reduction in area determined from the applicable material specification.

(4) Ferritic steel includes carbon, low alloy, and alloy steels, and ferritic, martensitic, and iron-based age-hardening stainless steels.

Table 5.8 Temperature Factors for Fatigue-Screening Criteria			
Metal Tempera	ture Differential		
°C	°F	Temperature Factor for Fatigue-Screening Criteria	
28 or less	50 or less	0	
29 to 56	51 to 100	1	
57 to 83	101 to 150	2	
84 to 139	151 to 250	4	
140 to 194	251 to 350	8	
195 to 250	351 to 450	12	
Greater than 250	Greater than 450	20	

GENERAL NOTES:

(a) If the weld metal temperature differential is unknown or cannot be established, a value of 20 shall be used.

(b) As an example illustrating the use of this table, consider a component subject to metal temperature differentials for the following number of thermal cycles:

	Temperature Factor Based	
Temperature Differential	on Temperature Differential	Number of Thermal Cycles
28°C (50°F)	0	1,000
50°C (90°F)	1	250
222°C (400°F)	12	5

The effective number of thermal cycles due to changes in metal temperature is: $N_{\Delta TE} = 1,000(0) + 250(1) + 5(12) = 310$ cycles

5.14

Table 5.9 Fatigue-Screening Criteria for Method A		
Type of Construction	Component Description	Fatigue-Screening Criteria
Integral construction	Attachments and nozzles in the knuckle region of formed heads All other components	$\begin{split} N_{\Delta FP} + N_{\Delta PO} + N_{\Delta TE} + N_{\Delta T\alpha} &\leq 350 \\ N_{\Delta FP} + N_{\Delta PO} + N_{\Delta TE} + N_{\Delta T\alpha} &\leq 1,000 \end{split}$
Nonintegral construction	Attachments and nozzles in the knuckle region of formed heads All other components	$\begin{split} N_{\Delta FP} + N_{\Delta PO} + N_{\Delta TE} + N_{\Delta T\alpha} &\leq 60 \\ N_{\Delta FP} + N_{\Delta PO} + N_{\Delta TE} + N_{\Delta T\alpha} &\leq 400 \end{split}$

(**23**)

Table 5.10Factors for Method B		
Variable	Description	Factor
K _{fb}	Integral welded	Per Tables 5.11 and
		5.12
	Integral nonwelded	1.0
	Nonintegral	3.0
H _c	Attachments and nozzles in the knuckle region of formed heads	1.35

All other components

1.0

Table 5.11 Weld Surface Fatigue-Strength-Reduction Factors								
		Quality Levels (See Table 5.12)						
Weld Condition	Surface Condition	1	2	3	4	5	6	7
Full penetration	Machined	1.0	1.5	1.5	2.0	2.5	3.0	4.0
	As-welded	1.2	1.6	1.7	2.0	2.5	3.0	4.0
Partial penetration	Final surface machined	NA	1.5	1.5	2.0	2.5	3.0	4.0
	Final surface as-welded	NA	1.6	1.7	2.0	2.5	3.0	4.0
	Root	NA	NA	NA	NA	NA	NA	4.0
Fillet	Toe machined	NA	NA	1.5	NA	2.5	3.0	4.0
	Toe as-welded	NA	NA	1.7	NA	2.5	3.0	4.0
	Root	NA	NA	NA	NA	NA	NA	4.0

Fatigue-Strength-Reduction Factor	Quality Level	Definition			
1.0	1	Machined or ground weld that receives a full volumetric examination, and a surface th receives MT/PT examination and a VT examination			
1.2	1	As-welded weld that receives a full volumetric examination, and a surface that receiv MT/PT and VT examination			
1.5	2	Machined or ground weld that receives a partial volumetric examination, and a surfa that receives MT/PT examination and VT examination			
1.6	2	As-welded weld that receives a partial volumetric examination, and a surface that receives MT/PT and VT examination			
1.5	3	Machined or ground weld surface that receives MT/PT examination and a VT examination (visual), but the weld receives no volumetric examination inspection			
1.7	3	As-welded surface that receives MT/PT examination and a VT examination (visual), I the weld receives no volumetric examination inspection			
2.0	4	Weld has received a partial or full volumetric examination, and the surface has receiv VT examination, but no MT/PT examination			
2.5	5	VT examination only of the surface; no volumetric examination nor MT/PT examinat			
3.0	6	Volumetric examination only			
4.0	7	Weld backsides that are nondefinable and/or receive no examination			

GENERAL NOTES:

Γ

(a) Volumetric examination is RT or UT in accordance with Part 7.

(b) MT/PT examination is magnetic particle or liquid penetrant examination in accordance with Part 7.

(c) VT examination is visual examination in accordance with Part 7.

(d) See WRC Bulletin 432 for further information.

Table 5.13 Fatigue Penalty Factors for Fatigue Analysis						
		ote (1)]	T _{max} [Note (2)]			
Material	m	n	°C	°F		
Low alloy steel	2.0	0.2	371	700		
Martensitic stainless steel	2.0	0.2	371	700		
Carbon steel	3.0	0.2	371	700		
Austenitic stainless steel	1.7	0.3	427	800		
Nickel-chromium-iron	1.7	0.3	427	800		
Nickel-copper	1.7	0.3	427	800		

NOTES:

(1) Fatigue penalty factor.

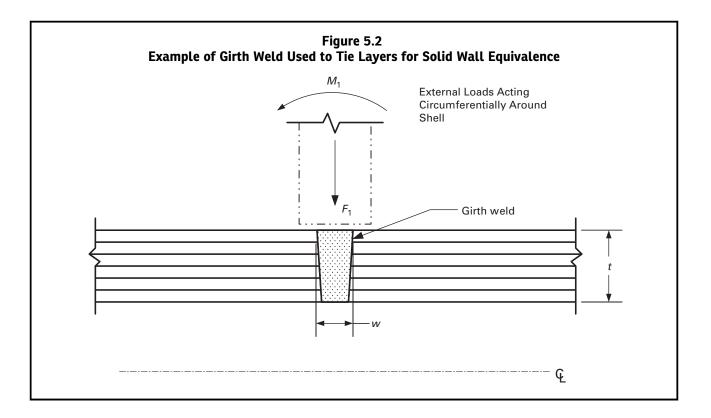
(2) The fatigue penalty factor should be used only if all of the following are satisfied:

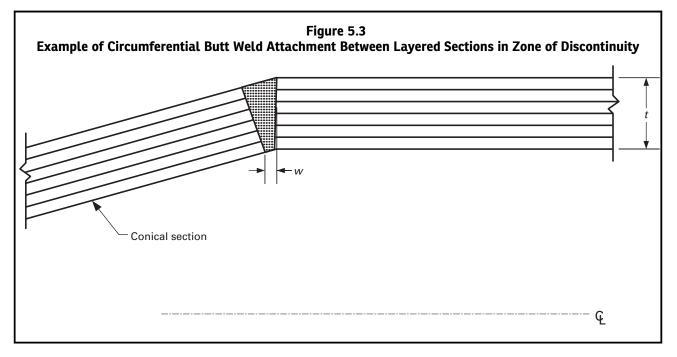
The component is not subject to thermal ratcheting.The maximum temperature in the cycle is within the value in the table for the material.

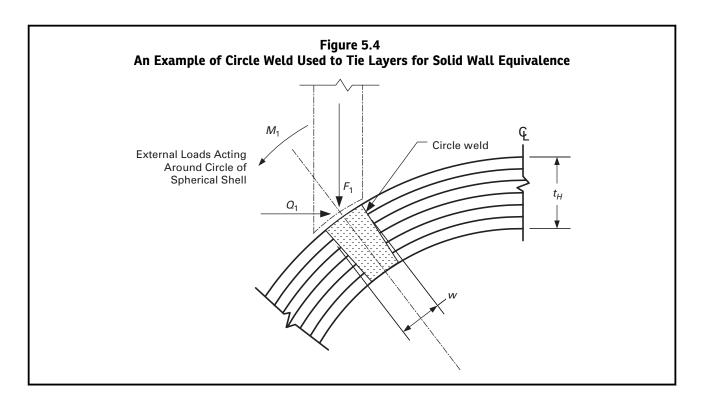
ASME BPVC.VIII.2-2023

Load Case, k	Load Combination [Notes (1) and (2)]		
(1)	$\beta_b(P+P_s+D)$		
(2)	$0.88 \beta_b (P + P_s + D + T) + 1.13 \beta_b L + 0.36 \beta_b S_s$		
(3)	$0.88 \beta_b (P + P_s + D) + 1.13 \beta_b S_s + \beta_b (0.71L \text{ or } 0.36W)$		
(4)	$0.88 \beta_b (P + P_s + D) + 0.71 \beta_b W + 0.71 \beta_b L$ or $0.36 \beta_b S_s$		
(5	$0.88 \beta_b (P + P_s + D) + 0.71 \beta_b E + 0.71 \beta_b L$ or $0.14 \beta_b S_s$		
(n) [Note (3)]	Per the UDS		

(1) The load combinations in this column are defined in Table 5.2.


(2) These load combinations shall be considered to act in combinations that produce the most unfavorable effect (i.e., highest compressive stress) in the component being considered. The effects of one or more loads not acting shall be considered. Effects of loads acting alone shall also be considered.


(3) *n* is the total number of load combinations.


5.15 FIGURES

Г

	S		Figure 5.1 nd Limits of Equiva	alent Stress			
Stress		Primary	Secondary	Peak			
Category	General Local Membrane Membrane		Bending			Membrane plus Bending	
Description (For examples, see Table 5.2.)	Average primary stress across solid section. Excludes discontinuities and concentrations. Produced only by mechanical loads.	Average stress across any solid section. Considers discontinuities but not concentrations. Produced only by mechanical loads.	Component of primary stress proportional to distance from centroid of solid section. Excludes discontinuities and concentrations. Produced only by mechanical loads.	Self-equilibrating stress necessary to satisfy continuity of structure. Occurs at structural disconti- nuities. Can be caused by mechani- cal load or by differential thermal expansion. Excludes local stress concentrations.	 Increment added to primary or secondary stress by a concentra- tion (notch). Certain thermal stresses that may cause fatigue but not distortion of vessel shape. 		
Symbol	P _m	PL	P _b	0	F		
P_{m}							

ANNEX 5-A LINEARIZATION OF STRESS RESULTS FOR STRESS CLASSIFICATION

(Informative)

5-A.1 SCOPE

This Annex provides recommendations for post-processing of the results from an elastic finite element stress analysis for comparison to the limits in 5.2.2.

5-A.2 GENERAL

(*a*) In the finite element method, when continuum elements are used in an analysis, the total stress distribution is obtained. Therefore, to produce membrane and bending stresses, the total stress distribution shall be linearized on a stress component basis and used to calculate the equivalent stresses. If shell elements (shell theory) are used, then the membrane and bending stresses shall be obtained directly from shell stress resultants.

(*b*) Membrane and bending stresses are developed on cross sections through the thickness of a component. These sections are called stress classification planes (SCPs). In a planar geometry, a Stress Classification Line (SCL) is obtained by reducing two opposite sides of a SCP to an infinitesimal length. SCPs are flat planes that cut through a section of a component and SCLs are straight lines that cut through a section of a component. SCLs are surfaces when viewed in an axisymmetric or planar geometry. Examples of an SCP and SCL are given in Figure 5-A.1 and Figure 5-A.2.

(c) The following three approaches are provided for linearization of finite element results.

(1) Stress Integration Method – This method can be used to linearize stress results from continuum finite element models [Ref. WRC-429].

(2) Structural Stress Method Based on Nodal Forces – This method is based on processing of nodal forces, and has been shown to be mesh insensitive and correlate well with welded fatigue data [Ref. WRC-474].

(3) Structural Stress Method Based on Stress Integration – This method utilizes the Stress Integration Method, but restricts the set of elements that contribute to the line of nodes being processed.

(*d*) The Structural Stress Method based on Stress Integration is recommended unless another method can be shown to produce a more accurate assessment for the given component and loading condition. This method matches the Structural Stress Method Based on Nodal Forces, which is insensitive to mesh refinement. In addition, this method can be performed with post-processing tools typically provided by commercial finite element analysis software.

5-A.3 SELECTION OF STRESS CLASSIFICATION LINES

(*a*) Pressure vessels usually contain structural discontinuity regions where abrupt changes in geometry, material or loading occur. These regions are typically the locations of highest stress in a component. For the evaluation of failure modes of plastic collapse and ratcheting, Stress Classification Lines (SCLs) are typically located at gross structural discontinuities. For the evaluation of local failure and fatigue, SCLs are typically located at local structural discontinuities.

(*b*) For SCLs that span a material discontinuity (e.g., base metal with cladding), the SCL should include all materials and associated loadings. If one of the materials, such as cladding, is neglected for strength calculations, then only the base metal thickness should be used to calculate the membrane and bending stresses from the linearized forces and moments across the full section for the evaluation of plastic collapse.

(c) To most accurately determine the linearized membrane and bending stresses for comparison to elastic stress limits, the following guidelines should be followed. These guidelines can be used as a qualitative means to evaluate the applicability of different SCLs. Failure to comply with any of these criteria may not produce valid membrane and/or bending stresses. Application of the limit-load or elastic-plastic analysis methods in Part 5 is recommended for cases where elastic stress analysis and stress linearization may produce ambiguous results.

(1) SCLs should be oriented normal to contour lines of the stress component of highest magnitude. However, as this may be difficult to implement, similar accuracy can be obtained by orienting the SCL normal to the mid-surface of the cross section. SCL orientation guidelines are shown in Figure 5-A.3.

(2) Hoop and meridional component stress distributions on the SCL should be monotonically increasing or decreasing, except for the effects of stress concentration or thermal peak stresses, see Figure 5-A.3, sketch (b).

(3) The distribution of the through-thickness stress should be monotonically increasing or decreasing. For pressure loading the through-thickness stress should be equal to the compressive pressure on the applied surface, and approximately zero on the other surface defining the SCL [see Figure 5-A.3, sketch (c)]. When the SCL is not perpendicular to the surfaces, this requirement will not be satisfied.

(4) The shear stress distribution should be parabolic and/or the stress should be low relative to the hoop and meridional stresses. Depending on the type of loading, the shear stress should be approximately zero on both surfaces defined by the SCL. Guidelines are provided in Figure 5-A.3, sketch (d).

(-a) The shear stress distribution along an SCL will approximate a parabolic distribution only when the inner and outer surfaces are parallel and the SCL is normal to the surfaces. If the surfaces are not parallel or an SCL is not normal to the surfaces, the appropriate shear distribution will not be obtained. However, if the magnitude of shear stress is small as compared to the hoop or meridional stresses, this orientation criterion can be waived.

(-b) When the shear stress distribution is approximately linear, the shear stress is likely to be significant.

(5) For pressure boundary components, the hoop or meridional stresses typically are the largest magnitude component stresses and are the dominant terms in the equivalent stress. Typically the hoop or meridional stresses deviate from a monotonically increasing or decreasing trend along an SCL if the SCL is skewed with respect to the interior, exterior, or mid surfaces. For most pressure vessel applications, the hoop or meridional stresses due to pressure should be nearly linear.

5-A.4 STRESS INTEGRATION METHOD

5-A.4.1 CONTINUUM ELEMENTS

5-A.4.1.1 Overview

Stress results derived from a finite element analysis utilizing two-dimensional or three-dimensional continuum elements may be processed using the stress integration method. Stress components are integrated along SCLs through the wall thickness to determine the membrane and bending stress components. The peak stress components can be derived directly using this procedure by subtracting the membrane plus bending stress distribution from the total stress distribution. Using these components, the equivalent stress shall be computed per eq. (5.1).

5-A.4.1.2 Stress Linearization Procedure

The methods to derive the membrane, bending, and peak components of a stress distribution are shown below, and in Figure 5-A.4. The component stresses used for the calculations shall be based on a local coordinate system defined by the orientation of the SCL, see Figure 5-A.2.

Step 1. Calculate the membrane stress tensor. The membrane stress tensor is the tensor comprised of the average of each stress component along the stress classification line, or

$$\sigma_{ij,m} = \frac{1}{t} \int_{0}^{t} \sigma_{ij} dx \tag{5-A.1}$$

Step 2. Calculate the bending stress tensor.

(*a*) Bending stresses are calculated only for the local hoop and meridional (normal) component stresses, and not for the local component stress parallel to the SCL or in-plane shear stress.

(*b*) The linear portion of shear stress needs to be considered only for shear stress distributions that result in torsion of the SCL (out-of-plane shear stress in the normal-hoop plane, see Figure 5-A.2).

ASME BPVC.VIII.2-2023

(c) The bending stress tensor is comprised of the linear varying portion of each stress component along the stress classification line, or

$$\sigma_{ij,b} = \frac{6}{t^2} \int_0^t \sigma_{ij} \left(\frac{t}{2} - x \right) dx$$
(5-A.2)

Step 3. Calculate the peak stress tensor. The peak stress tensor is the tensor whose components are equal to

$$\sigma_{ij,F}(x)\big|_{x=0} = \sigma_{ij}(x)\big|_{x=0} - \left(\sigma_{ij,m} + \sigma_{ij,b}\right)$$
(5-A.3)

$$\sigma_{ij,F}(x)\big|_{x=t} = \sigma_{ij}(x)\big|_{x=t} - \left(\sigma_{ij,m} - \sigma_{ij,b}\right)$$
(5-A.4)

Step 4. Calculate the three principal stresses at the ends of the SCL based on components of membrane and membrane plus bending stresses.

Step 5. Calculate the equivalent stresses using eq. (5.1) at the ends of the SCL based on components of membrane and membrane plus bending stresses.

5-A.4.2 SHELL ELEMENTS

5-A.4.2.1 Overview

Stress results derived from a finite element analysis utilizing two-dimensional or three-dimensional shells are obtained directly from the analysis results. Using the component stresses, the equivalent stress shall be computed per eq. (5.1).

5-A.4.2.2 Stress Linearization Procedure

The methods to derive the membrane, bending, and peak components of a stress distribution are shown below. *(a)* The membrane stress tensor is the tensor comprised of the average of each stress component along the stress classification line, or

$$\sigma_{ij,m} = \frac{\sigma_{ij,in} + \sigma_{ij,out}}{2}$$
(5-A.5)

(b) The bending stress tensor is the tensor comprised of the linear varying portion of each stress component along the stress classification line, or

$$\sigma_{ij,b} = \frac{\sigma_{ij,\text{in}} - \sigma_{ij,\text{out}}}{2}$$
(5-A.6)

(c) The peak stress tensor is the tensor whose components are equal to

$$\sigma_{ij,F} = \left(\sigma_{ij,m} + \sigma_{ij,b}\right) \left(K_f - 1\right)$$
(5-A.7)

5-A.5 STRUCTURAL STRESS METHOD BASED ON NODAL FORCES

5-A.5.1 OVERVIEW

Stress results derived from a finite element analysis utilizing continuum or shell elements may be processed using the Structural Stress Method based on nodal forces. The mesh-insensitive structural stress method provides a robust procedure for capturing the membrane and bending stresses and can be directly utilized in fatigue design of welded joints. With this method, the structural stress normal to a hypothetical cracked plane at a weld is evaluated. For typical pressure vessel component welds, the choice of possible crack orientations is straightforward (e.g., toe of fillet weld). Two alternative calculation procedures for the structural stress method are presented for continuum elements; a procedure based on nodal forces and a procedure based on stress integration. A typical finite element continuum model and stress evaluation line for this type of analysis is shown in Figure 5-A.5.

5-A.5.2 CONTINUUM ELEMENTS

(*a*) Stress results derived from a finite element analysis utilizing two-dimensional or three-dimensional continuum elements may be processed using the structural stress method and nodal forces as described below. The membrane and bending stresses can be computed from element nodal internal forces using the equations provided in Table 5-A.1. The process is illustrated in Figure 5-A.6. This method is recommended when internal force results can be obtained as part of the finite element output because the results are insensitive to the mesh density.

(*b*) When using three-dimensional continuum elements, forces and moments must be summed with respect to the mid-thickness of a member from the forces at nodes in the solid model at a through-thickness cross section of interest. For a second order element, three summation lines of nodes are processed along the element faces through the wall thickness. The process is illustrated in Figure 5-A.7.

(c) For a symmetric structural stress range, the two weld toes have equal opportunity to develop fatigue cracks. Therefore, the structural stress calculation involves establishing the equilibrium equivalent membrane and bending stress components with respect to one-half of the plate thickness. The equivalent structural stress calculation procedure for a symmetric stress state is illustrated in Figure 5-A.8.

5-A.5.3 SHELL ELEMENTS

(*a*) Stress results derived from a finite element analysis utilizing shell elements may be processed using the structural stress method and nodal forces. The membrane and bending stresses can be computed from element nodal internal forces using the equations provided in Table 5-A.2. A typical shell model is illustrated in Figure 5-A.9.

(*b*) When using three-dimensional shell elements, forces and moments with respect to the mid-thickness of a member must be obtained at a cross section of interest. The process is illustrated in Figure 5-A.10.

5-A.6 STRUCTURAL STRESS METHOD BASED ON STRESS INTEGRATION

As an alternative to the nodal force method above, stress results derived from a finite element analysis utilizing twodimensional or three-dimensional continuum elements may be processed using the Structural Stress Method Based on Stress Integration. This method utilizes the Stress Integration Method of 5-A.3, but restricts the set of elements that contribute to the line of nodes being processed. The elements applicable to the SCL for the region being evaluated shall be included in the post-processing, as is illustrated in Figure 5-A.11.

5-A.7 NOMENCLATURE

- F_i = nodal force resultant for element location position *i*
- f_i = line force at element location position *i*
- K_f = fatigue strength reduction factor used to compute the cyclic stress amplitude or range
- M_i = nodal moment resultant for element location position *i*
- m_i = line moment at element location position *i*
- n = number of nodes in the through-wall thickness direction
- NF_{ij} = nodal force at node *j*, normal to the section, for element location position *i*
- NF_i = nodal force at node *j*, normal to the section
- NM_i = in-plane nodal moment at node *j*, normal to the section, for a shell element
 - *P* = primary equivalent stress
 - Q = secondary equivalent stress
 - r_i = radial coordinate of node *j* for an axisymmetric element
 - s_j = local coordinate, parallel to the stress classification line, that defines the location of nodal force ' NF_j relative to the mid-thickness of the section
 - t = minimum wall thickness in the region under consideration, or the thickness of the vessel, as applicable
 - w = width of the element to determine structural stresses from Finite Element Analysis
 - *x* = through-wall thickness coordinate
 - X_q = global X axis
 - X_L = local X axis, oriented parallel to the stress classification line
 - Y_q = global Y axis
 - Y_L = local Y axis, oriented normal to the stress classification line
- $\Delta \sigma_s$ = structural stress range
- σ_b = bending stress

5-A.7

- σ_{bi} = bending stress for element location position *i*
- σ_{ij} = stress tensor at the point under evaluation
- $\sigma_{ij,b}$ = bending stress tensor at the point under evaluation
- $\sigma_{ij,F}$ = peak stress component
- $\sigma_{ij,\mathrm{in}}\,$ = stress tensor on the inside surface of the shell
- $\sigma_{ij,m}$ = membrane stress tensor at the point under evaluation
- $\sigma_{ij,out}$ = stress tensor on the outside surface of the shell
 - σ_m = membrane stress
 - σ_{mi} = membrane stress for element location position *i*
 - σ_s = structural stress

5-A.8 TABLES

Table 5-A.1 Structural Stress Definitions for Continuum Finite Elements			
Element Type	Membrane Stress	Bending Stress	
Two-dimensional axisymmetric second order (8-node) continuum elements	$\sigma_m = \frac{1}{t} \Sigma \frac{NF_j}{2\pi r_j}$	$\sigma_b = \frac{6}{t^2} \Sigma \frac{NF_j \cdot S_j}{2\pi r_j}$	
Two-dimensional second order plane stress or plane strain (8-node) continuum elements	$\sigma_m = \frac{1}{t} \Sigma \frac{NF_j}{w}$	$\sigma_b = \frac{6}{t^2} \Sigma \frac{NF_j \cdot S_j}{w}$	
Three-dimensional second order (20-node) continuum elements	$\sigma_{mi} = \frac{f_i}{t}$ [Note (1)]	$\sigma_{bi} = \frac{6 \cdot m_i}{t^2} \text{ [Note (2)]}$	

NOTES:

(1) f_i represents the line force corresponding to the element location positions (i = 1, 2, 3) along the element width, w; position i = 2 corresponds to the midside of the element (see Figure 5-A.7).

$$f_1 = \frac{3(6F_1 + 2F_3 - F_2)}{2_w}$$
$$f_2 = \frac{-3(2F_1 + 2F_3 - 3F_2)}{4_w}$$
$$f_3 = \frac{3(2F_1 + 6F_3 - F_2)}{2_w}$$

In the above, F_1 , F_2 , and F_3 are the nodal force resultants (producing normal membrane stress to Section A-A) through the thickness and along the width, w, of the group of elements $F_i = \Sigma N F_{ij}$ summed over the nodes from j = 1, n (number of nodes in the through-thickness direction) at Section A-A (see Figure 5-A.7).

(2) m_i represents the line moment corresponding to the element location positions (i = 1, 2, 3) along the element width, w; position i = 2 corresponds to the midside of the element (see Figure 5-A.7).

$$m_1 = \frac{3(6M_1 + 2M_3 - M_2)}{2_w}$$
$$m_2 = \frac{-3(2M_1 + 2M_3 - 3M_2)}{4_w}$$
$$m_3 = \frac{3(2M_1 + 6M_3 - M_2)}{2}$$

In the above, M_1 , M_2 , and M_3 are the nodal moment resultants (producing normal bending stress to Section A-A) calculated based on nodal forces with respect to the mid-thickness S_j along the width, w, of the group of elements $M_i = \Sigma N F_{ij} \cdot S_j$ summed over the nodes from j = 1, n (number of nodes in the through-thickness direction) at Section A-A (see Figure 5-A.7).

Table 5-A.2 Structural Stress Definitions for Shell or Plate Finite Elements				
Element Type	Membrane Stress	Bending Stress		
Three-dimensional second order (8-node) shell elements	$\sigma_{mi} = \frac{f_i}{t} \text{ [Note (1)]}$	$\sigma_{bi} = \frac{6 \cdot m_i}{t^2} \text{ [Note (2)]}$		
Three-dimensional first order (4-node) shell elements	$\sigma_{mi} = \frac{f_i}{t} \text{ [Note (3)]}$	$\sigma_{bi} = \frac{6 \cdot m_i}{t^2} \text{ [Note (4)]}$		
Axisymmetric linear and parabolic shell finite element	$\sigma_m = \frac{NF_j}{2\pi r_j t}$	$\sigma_b = \frac{6 \cdot NM_j}{2\pi r_j t^2}$		

NOTES:

f_i represents the force corresponding to the element location positions (i = 1, 2, 3) along the element width, w; position i = 2 corresponds to the midside of the element (see Figure 5-A.10).

$$f_1 = \frac{3(6NF_1 + 2NF_3 - NF_2)}{2w}$$
$$f_2 = \frac{-3(2NF_1 + 2NF_3 - 3NF_2)}{4w}$$
$$f_3 = \frac{3(2NF_1 + 6NF_3 - NF_2)}{2w}$$

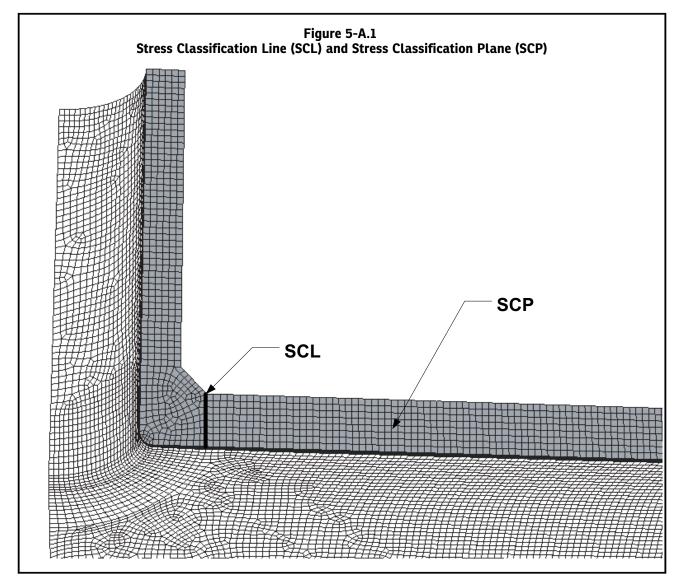
In the above, NF_1 , NF_2 , and NF_3 are the internal nodal forces (in the direction normal to Section A-A) from the shell model along a weld (see Figure 5-A.10).

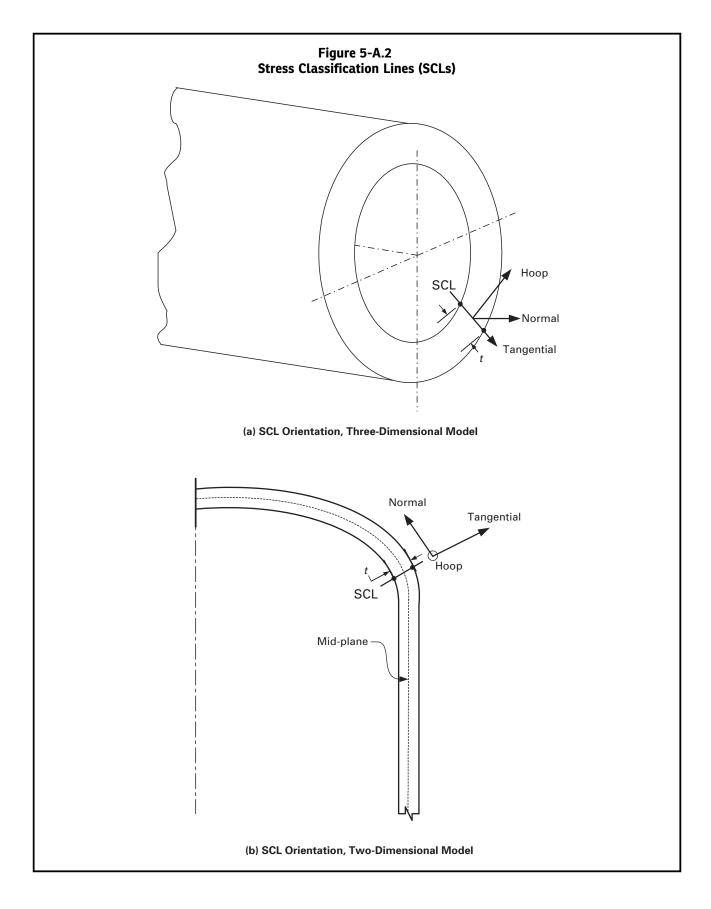
(2) m_i represents the moment corresponding to the element location positions (i = 1, 2, 3) along the element width, w; position i = 2 corresponds to the midside of the element (see Figure 5-A.10).

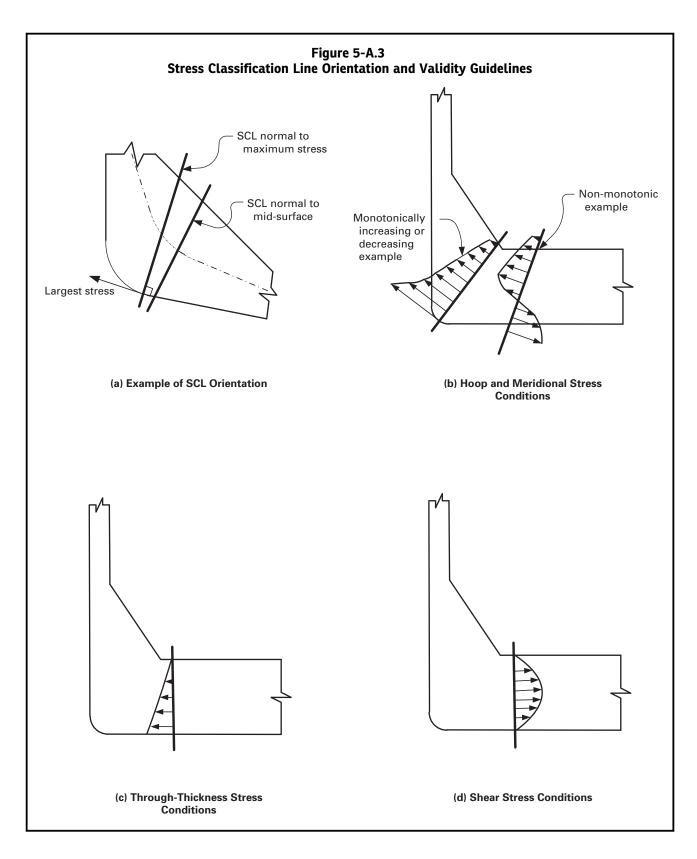
$$m_1 = \frac{3(6NM_1 + 2NM_3 - NM_2)}{2w}$$
$$m_2 = \frac{-3(2NM_1 + 2NM_3 - 3NM_2)}{4w}$$
$$m_3 = \frac{3(2NM_1 + 6NM_3 - NM_2)}{2w}$$

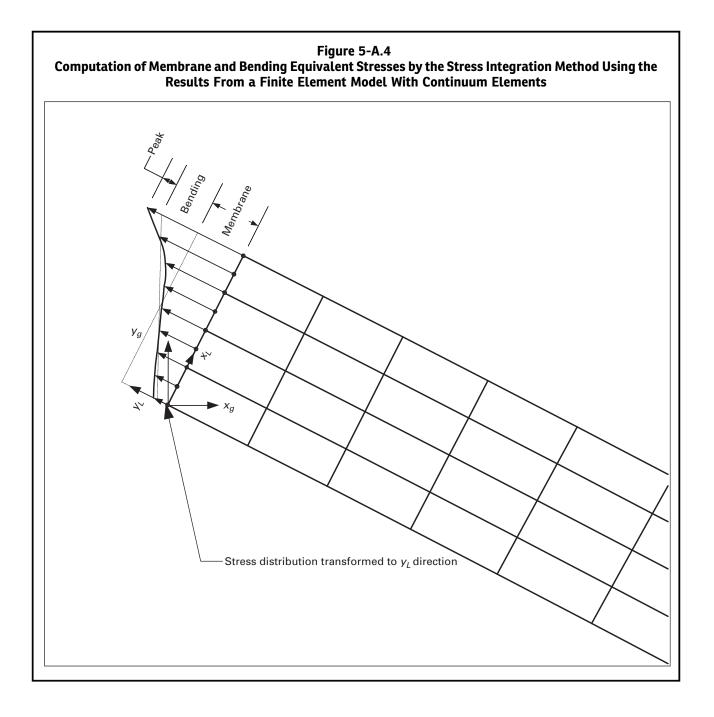
In the above, *NM*₁, *NM*₂, and *NM*₃ are the internal nodal moments (producing normal bending stresses to Section A-A) from the shell model along a weld (see Figure 5-A.10).

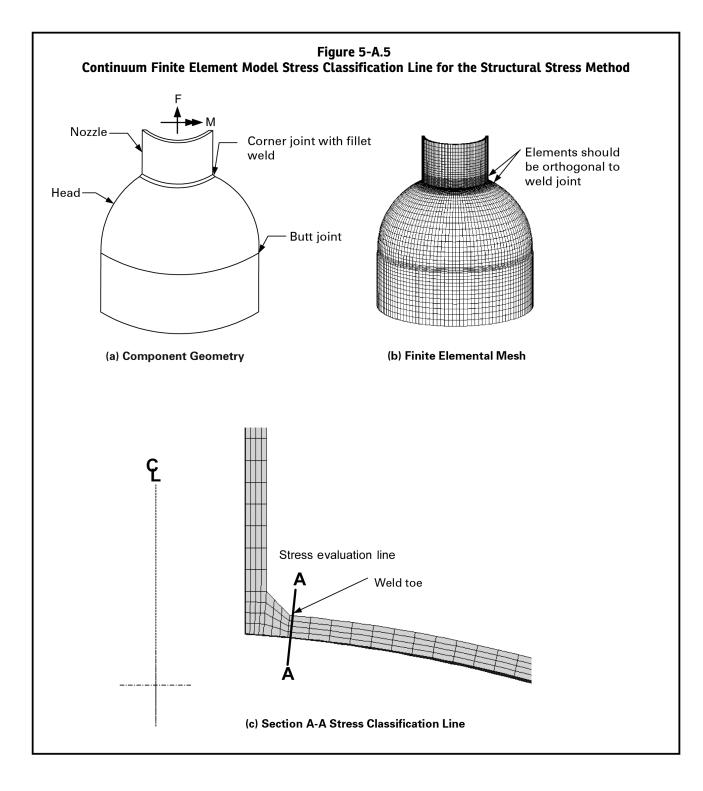
(3) f_i represents the force corresponding to the element corner node location positions (i = 1, 2) along the element width, w.

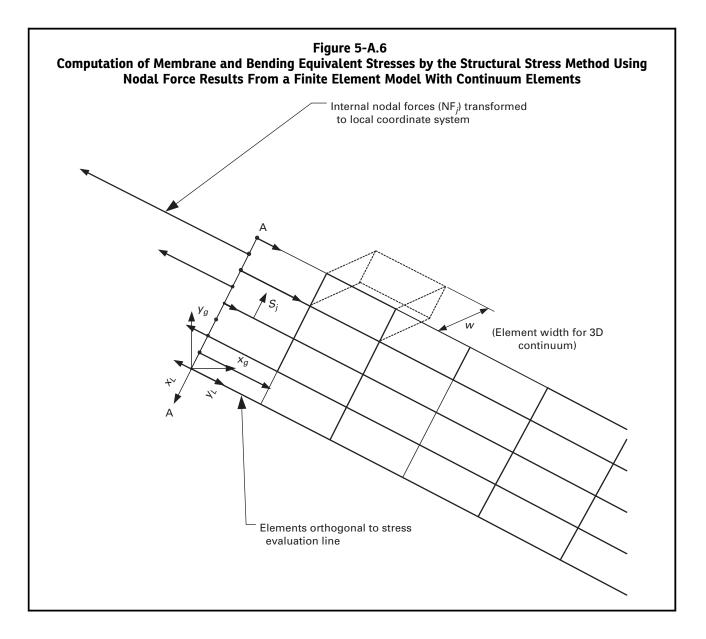

$$f_1 = \frac{2\left(2NF_1 - NF_2\right)}{w}$$

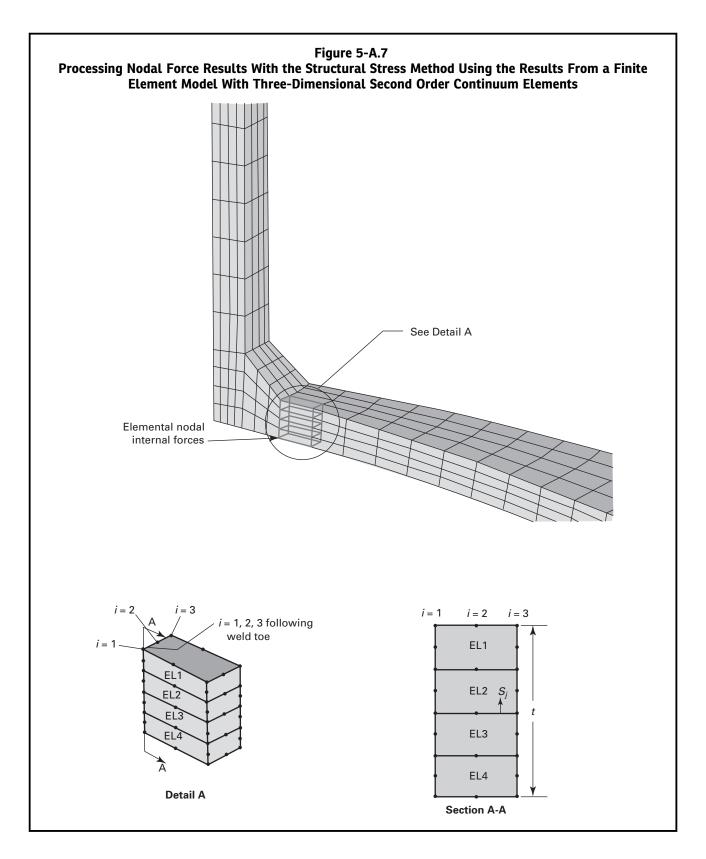

$$f_2 = \frac{2(2NF_2 - NF_1)}{w}$$

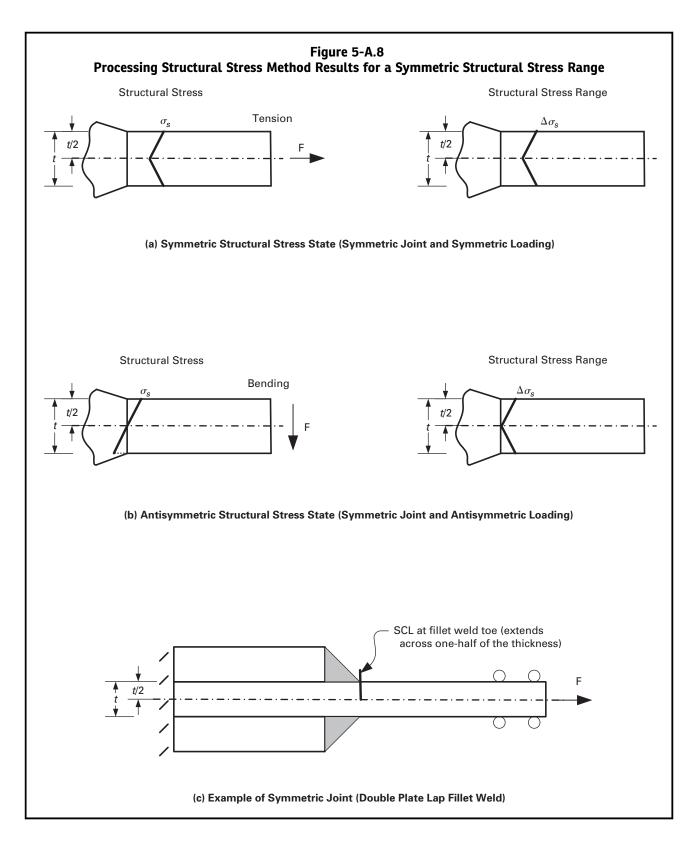

(4) m_i represents the moment corresponding to the element corner node location positions (i 0= 1, 2) along the element width, w.

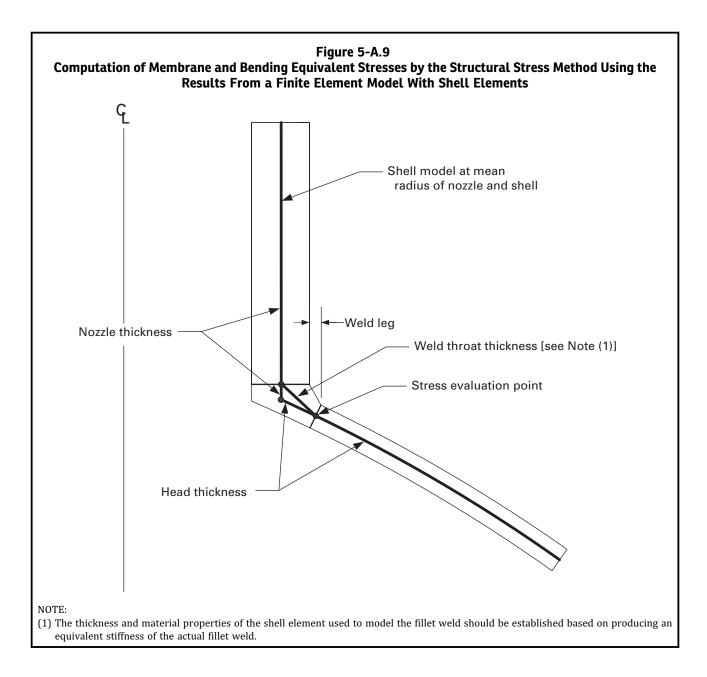

$$m_1 = \frac{2(2NM_1 - NM_2)}{w}$$
$$m_2 = \frac{2(2NM_2 - NM_1)}{w}$$

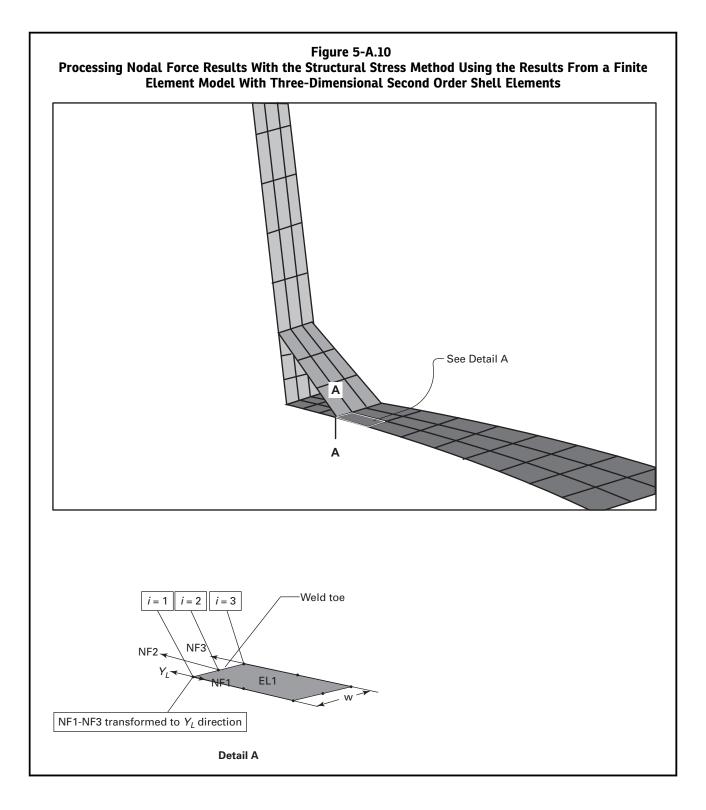

5-A.9 FIGURES











5-A.9

5-A.9

ANNEX 5-B HISTOGRAM DEVELOPMENT AND CYCLE COUNTING FOR FATIGUE ANALYSIS

(Informative)

5-B.1 GENERAL

This Annex contains cycle counting procedures required to perform a fatigue assessment for irregular stress or strain versus time histories. These procedures are used to break the loading history down into individual cycles that can be evaluated using the fatigue assessment rules of Part 5. Two cycle counting methods are presented in this Annex. An alternative cycle counting method may be used if agreed to by the Owner-User.

5-B.2 DEFINITIONS

The definitions used in this Annex are shown below.

(*a*) Event – The User's Design Specification may include one or more events that produce fatigue damage. Each event consists of loading components specified at a number of time points over a time period and is repeated a specified number of times. For example, an event may be the startup, shutdown, upset condition, or any other cyclic action. The sequence of multiple events may be specified or random.

(*b*) Cycle – A cycle is a relationship between stress and strain that is established by the specified loading at a location in a vessel or component. More than one stress–strain cycle may be produced at a location, either within an event or in transition between two events, and the accumulated fatigue damage of the stress–strain cycles determines the adequacy for the specified operation at that location. This determination shall be made with respect to the stabilized stress–strain cycle.

(c) Proportional Loading – During constant amplitude loading, as the magnitudes of the applied stresses vary with time, the size of Mohr's circle of stress also varies with time. In some cases, even though the size of Mohr's circle varies during cyclic loading, if the orientation of the principal axes remains fixed, the loading is called proportional. An example of proportional loading is a shaft subjected to in-phase torsion and bending, where the ratio of axial and torsional stress remains constant during cycling.

(*d*) Non-Proportional Loading – If the orientation of the principal axes are not fixed, but change orientation during cyclic loading, the loading is called non-proportional. An example of non-proportional loading is a shaft subjected to out-of-phase torsion and bending, where the ratio of axial and torsional stress varies continuously during cycling.

(e) Peak – The point at which the first derivative of the loading or stress histogram changes from positive to negative.

(f) Valley – The point at which the first derivative of the loading or stress histogram changes from negative to positive.

5-B.3 HISTOGRAM DEVELOPMENT

5-B.3.1

The loading histogram should be determined based on the specified loadings provided in the User's Design Specification. The loading histogram should include all significant operating loads and events that are applied to the component. The following should be considered in developing the loading histogram.

(a) The number of repetitions of each event during the operation life.

(*b*) The sequence of events during the operation life, if applicable.

(c) Applicable loadings such as pressure, temperature, supplemental loads such as weight, support displacements, and nozzle reaction loadings.

(d) The relationship between the applied loadings during the time history.

5-B.4 CYCLE COUNTING USING THE RAINFLOW METHOD

5-B.4.1

The Rainflow Cycle Counting Method (ASTM Standard No. E1049) is recommended to determine the time points representing individual cycles for the case of situations where the variation in time of loading, stress, or strain can be represented by a single parameter. This cycle counting method is not applicable for non-proportional loading. Cycles counted with the Rainflow Method correspond to closed stress–strain hysteresis loops, with each loop representing a cycle.

5-B.4.2 RECOMMENDED PROCEDURE

Step 1. Determine the sequence of peaks and valleys in the loading histogram. If multiple loadings are applied, it may be necessary to determine the sequence of peaks and valleys using a stress histogram. If the sequence of events is unknown, the worst case sequence should be chosen.

Step 2. Re-order the loading histogram to start and end at either the highest peak or lowest valley, so that only full cycles are counted. Determine the sequence of peaks and valleys in the loading history. Let X denote the range under consideration, and let Y denote the previous range adjacent to X.

Step 3. Read the next peak or valley. If out of data, go to Step 8.

Step 4. If there are less than 3 points, go to Step 3; If not, form ranges *X* and *Y* using the three most recent peaks and valleys that have not been discarded.

Step 5. Compare the absolute values of ranges X and Y.

(a) If X < Y go to Step 3

(b) If $X \ge Y$ go to Step 6

Step 6. Count range as one cycle; discard the peak and valley of *Y*. Record the time points and loadings or component stresses, as applicable, at the starting and ending time points of the cycle.

Step 7. Return to Step 4 and repeat Steps 4 to 6 until no more time points with stress reversals remain.

Step 8. Using the data recorded for the counted cycles perform fatigue assessment in accordance with Part 5.

5-B.5 CYCLE COUNTING USING MAX–MIN CYCLE COUNTING METHOD

5-B.5.1 OVERVIEW

The Max-Min Cycle Counting Method is recommended to determine the time points representing individual cycles for the case of non-proportional loading. The cycle counting is performed by first constructing the largest possible cycle, using the highest peak and lowest valley, followed by the second largest cycle, etc., until all peak counts are used.

5-B.5.2 RECOMMENDED PROCEDURE

Step 1. Determine the sequence of peaks and valleys in the loading history. If some events are known to follow each other, group them together but otherwise arrange the random events in any order.

Step 2. Calculate the elastic stress components σ_{ij} produced by the applied loading at every point in time during each event at a selected location of a vessel. All stress components must be referred to the same global coordinate system. The stress analysis must include peak stresses at local discontinuities.

Step 3. Scan the interior points of each event and delete the time points at which none of the stress components indicate reversals (peaks or valleys).

Step 4. Using the stress histogram from Step 2, determine the time point with the highest peak or lowest valley. Designate the time point as ${}^{m}t$, and the stress components as ${}^{m}\sigma_{ii}$.

Step 5. If time point ${}^{m}t$ is a peak in the stress histogram, determine the component stress range between time point ${}^{m}t$ and the next valley in the stress histogram. If time point ${}^{m}t$ is a valley, determine the component stress range between time point ${}^{m}t$ and the next peak. Designate the next time point as ${}^{n}t$, and the stress components as ${}^{n}\sigma_{ij}$. Calculate the stress component ranges and the von Mises equivalent stress range between time points ${}^{m}t$ and ${}^{n}t$.

$${}^{mn}\Delta\sigma_{ij} = {}^{m}\sigma_{ij} - {}^{n}\sigma_{ij} \tag{5-B.1}$$

$${}^{mn}\Delta S_{range} = \frac{1}{\sqrt{2}} \left[\left({}^{mn}\Delta \sigma_{11} - {}^{mn}\Delta \sigma_{22} \right)^2 + \left({}^{mn}\Delta \sigma_{22} - {}^{mn}\Delta \sigma_{33} \right)^2 + \left({}^{mn}\Delta \sigma_{33} - {}^{mn}\Delta \sigma_{11} \right)^2 + 6 \left({}^{mn}\Delta \sigma_{12}^2 + {}^{mn}\Delta \sigma_{23}^2 + {}^{mn}\Delta \sigma_{31}^2 \right) \right]^{0.5}$$
(5-B.2)

Step 6. Repeat Step 5, for the current time point, ^{*m*} *t* and the time point of the next peak or valley in the sequence of the stress histogram. Repeat this process for every remaining time point in the stress histogram.

Step 7. Determine the maximum von Mises equivalent stress range obtained in Step 5 and record the time points ${}^{m}t$ and ${}^{n}t$ that define the start and end points of the *k*th cycle.

Step 8. Determine the event or events to which the time points ${}^{m}t$ and ${}^{n}t$ belong and record their specified number of repetitions as ${}^{m}N$ and ${}^{n}N$, respectively.

Step 9. Determine the number of repetitions of the *k*th cycle.

(a) If ${}^{m}N < {}^{n}N$: Delete the time point ${}^{m}t$ from those considered in Step 4, and reduce the number of repetitions at time point ${}^{n}t$ from ${}^{n}N$ to ${}^{n}N - {}^{m}N$.

(b) If ${}^{m}N > {}^{n}N$: Delete the time point ${}^{n}t$ from those considered in Step 4, and reduce the number of repetitions at time point ${}^{m}t$ from ${}^{m}N$ to ${}^{m}N - {}^{n}N$.

(c) If ${}^{m}N = {}^{n}N$: Delete both time points ${}^{m}t$ and ${}^{n}t$ from those considered in Step 4.

Step 10. Return to Step 4 and repeat Steps 4 to 10 until no more time points with stress reversals remain.

Step 11. Using the data recorded for the counted cycles, perform fatigue assessment in accordance with Part 5. Note that an elastic-plastic fatigue assessment (see 5.5.4) may be applied if ${}^{nm}\Delta S_{range}$ exceeds the yield point of the cyclic stress range-strain range curve of the material.

5-B.6 NOMENCLATURE

 ${}^{m}N$ = specified number of repetitions of the event associated with time point ${}^{m}t$

 ${}^{mn}\Delta S_{\text{range}}$ = von Mises equivalent stress range between time points ${}^{m}t$ and ${}^{n}t$

 ${}^{mn}\Delta\sigma_{11}$ = stress range associated with the normal stress component in the 1-direction between time points ${}^{m}t$ and ${}^{n}t$ ${}^{mn}\Delta\sigma_{12}$ = stress range associated with the shear stress component in the 1-direction between time points ${}^{m}t$ and ${}^{n}t$ ${}^{mn}\Delta\sigma_{13}$ = stress range associated with the shear stress component in the 2-direction between time points ${}^{m}t$ and ${}^{n}t$ ${}^{mn}\Delta\sigma_{22}$ = stress range associated with the normal stress component in the 2-direction between time points ${}^{m}t$ and ${}^{n}t$ ${}^{mn}\Delta\sigma_{23}$ = stress range associated with the shear stress component in the 2-direction between time points ${}^{m}t$ and ${}^{n}t$ ${}^{mn}\Delta\sigma_{33}$ = stress range associated with the normal stress component in the 3-direction between time points ${}^{m}t$ and ${}^{n}t$

- ${}^{mn}\Delta\sigma_{ij}$ = stress component range between time points ${}^{m}t$ and ${}^{n}t$
 - ${}^{m}t$ = time point under consideration with the highest peak or lowest valley
 - ${}^{m}\sigma_{ij}$ = stress tensor at the point under evaluation at time point ${}^{m}t$
 - ^{n}N = specified number of repetitions of the event associated with time point ^{n}t
 - ^{n}t = time point under consideration that forms a range with time point ^{m}t
 - ${}^{n}\sigma_{ij}$ = stress tensor at the point under evaluation at time point ${}^{n}t$
 - \dot{X} = absolute value of the range (load or stress) under consideration using the Rainflow Cycle Counting Method
 - Y = absolute value of the adjacent range (load or stress) to previous X using the Rainflow Cycle Counting Method
 - σ_{ii} = stress tensor at the point under evaluation

ANNEX 5-C ALTERNATIVE PLASTICITY ADJUSTMENT FACTORS AND EFFECTIVE ALTERNATING STRESS FOR ELASTIC FATIGUE ANALYSIS

(Normative)

5-C.1 SCOPE

5-C.1.1 This Annex contains procedures for the determination of plasticity correction factors and effective alternating equivalent stress for elastic fatigue analysis. These procedures include a modified Poisson's ratio adjustment for local thermal and thermal bending stresses, a notch plasticity adjustment factor that is applied to thermal bending stresses, and a nonlocal plastic strain redistribution adjustment that is applied to all stresses except local thermal and thermal bending stresses. These procedures are an alternative to effective alternating stress calculations in Step 4 of 5.5.3.2.

5-C.2 DEFINITIONS

5-C.2.1 Thermal Bending Stress. Thermal bending stress is caused by the linear portion of the through-wall temperature gradient. Such stresses shall be classified as secondary stresses.

5-C.2.2 Local Thermal Stress. Local thermal stress is associated with almost complete suppression of the differential expansion and thus produces no significant distortion. Such stresses shall be considered only from the fatigue standpoint and are therefore classified as peak stresses. Examples of local thermal stresses are the stress in a small hot spot in a vessel wall, the non-linear portion of a through-wall temperature gradient in a cylindrical shell, and the thermal stress in a cladding material that has a coefficient of expansion different from that of the base metal. Local thermal stresses are characterized by having two principal stresses that are approximately equal.

5-C.3 EFFECTIVE ALTERNATING STRESS FOR ELASTIC FATIGUE ANALYSIS

5-C.3.1 The effective total equivalent stress amplitude is used to evaluate the fatigue damage for results obtained from a linear elastic stress analysis. The controlling stress for the fatigue evaluation is the effective total equivalent stress amplitude, defined as one-half of the effective total equivalent stress range $(P_L + P_b + Q + F)$ calculated for each cycle in the loading histogram.

5-C.3.2 The following procedure shall be used to determine plasticity correction factors for elastic fatigue analysis and the effective alternating equivalent stress.

Step 1. At the point of interest, determine the following stress tensors and associated equivalent stresses at the start and end points (time points ^{m}t and ^{n}t , respectively) for the *k*th cycle counted in Step 2 of 5.5.3.2.

(a) Calculate the component stress range between time points ${}^{m}t$ and ${}^{n}t$ and compute an equivalent stress range due to primary plus secondary plus peak stress as given below.

$$\Delta \sigma_{ij,k} = {}^{m} \sigma_{ij,k} - {}^{n} \sigma_{ij,k} \tag{5-C.1}$$

$$\Delta S_{P,k} = \frac{1}{\sqrt{2}} \left[\left(\Delta \sigma_{11,k} - \Delta \sigma_{22,k} \right)^2 + \left(\Delta \sigma_{11,k} - \Delta \sigma_{33,k} \right)^2 + \left(\Delta \sigma_{22,k} - \Delta \sigma_{33,k} \right)^2 + 6 \left(\Delta \sigma_{12,k}^2 + \Delta \sigma_{13,k}^2 + \Delta \sigma_{23,k}^2 \right) \right]^{0.5}$$
(5-C.2)

(b) Using the linearized stress results due to primary plus secondary stresses, compute the component stress range using eq. (5-C.1). Compute the equivalent stress range using eq. (5-C.2) and designate this quantity as $\Delta S_{n,k}$.

ASME BPVC.VIII.2-2023

(c) Determine the stress tensor due to local thermal and thermal bending stresses at the start and end points for the kth cycle. It may be difficult to calculate the local thermal stress from stress distributions obtained from numerical methods. If this is the case, the procedure below can be used to calculate the local thermal and thermal bending stresses due to a non-linear temperature distribution. This method is based on calculating a thermal stress difference range associated with the linearized temperature distribution along the SCL for the time steps of interest. Consistent with that method, consider the distribution of the temperature from numerical method as a function of the local through thickness direction. The temperature distribution for each time step can be separated into three parts.

(1) A constant temperature equal to the average of the temperature distribution

$$T_{\rm avg} = \frac{1}{t} \int_0^t T dx \tag{5-C.3}$$

(2) The linearly varying portion of the temperature distribution

$$T_b = \frac{6}{t^2} \int_0^t T(\frac{t}{2} - x) dx$$
 (5-C.4)

(3) The non-linear portion of the temperature distribution

$$T_p = T - (T_{\rm avg} + 2T_b/t)$$
 (5-C.5)

By assuming full suppression of the differential expansion of the cross-section, the associated local thermal stress parallel to the surface for each time step may be calculated as given below where T_p is given by eq. (5-C.5).

$$\sigma_{ij,k}^{LT} = \frac{-E\alpha \left[T - \left(T_{avg} + 2T_b / t \right) \right]}{1 - v} \quad \text{for } i = j = 1, 2$$
(5-C.6)

$$\sigma_{ij,k}^{LT} = 0 \text{ for } i \neq j \text{ and } i = j = 3$$
(5-C.7)

Using eqs. (5-C.6) and (5-C.7), determine the local thermal component stress ranges using eq. (5-C.1) and designate this quantity as $\Delta \sigma^{LT}_{ij,k}$. The thermal bending component stress range, $\Delta \sigma^{TB}_{ij,k}$ is determined by linearizing the through-wall stress distribution due to thermal effects only.

(*d*) Compute the equivalent stress ranges due to primary plus secondary plus peak stress minus the local thermal stress using eqs. (5-C.8) and (5-C.9).

$$\Delta \sigma_{ij,k} = \begin{pmatrix} m \sigma_{ij,k} - m \sigma_{ij,k}^{LT} \end{pmatrix} - \begin{pmatrix} n \sigma_{ij,k} - n \sigma_{ij,k}^{LT} \end{pmatrix}$$
(5-C.8)

$$\left(\Delta S_{P,k} - \Delta S_{LT,k}\right) = \frac{1}{\sqrt{2}} \left[\left(\Delta \sigma_{11,k} - \Delta \sigma_{22,k}\right)^2 + \left(\Delta \sigma_{11,k} - \Delta \sigma_{33,k}\right)^2 + \left(\Delta \sigma_{22,k} - \Delta \sigma_{33,k}\right)^2 + 6 \left(\Delta \sigma_{12,k}^2 + \Delta \sigma_{13,k}^2 + \Delta \sigma_{23,k}^2\right) \right]^{0.5}$$
(5-C.9)

(e) Compute the equivalent stress ranges due to local thermal plus thermal bending stress using eqs. (5-C.10) and (5-C.11).

$$\Delta\sigma_{ij,k} = \begin{pmatrix} m\sigma_{ij,k}^{TB} + m\sigma_{ij,k}^{LT} \end{pmatrix} - \begin{pmatrix} n\sigma_{ij,k}^{TB} + n\sigma_{ij,k}^{LT} \end{pmatrix}$$
(5-C.10)

$$\left(\Delta S_{LT,k} - \Delta S_{TB,k}\right) = \frac{1}{\sqrt{2}} \left[\left(\Delta \sigma_{11,k} - \Delta \sigma_{22,k}\right)^2 + \left(\Delta \sigma_{11,k} - \Delta \sigma_{33,k}\right)^2 + \left(\Delta \sigma_{22,k} - \Delta \sigma_{33,k}\right)^2 + 6 \left(\Delta \sigma_{12,k}^2 + \Delta \sigma_{13,k}^2 + \Delta \sigma_{23,k}^2\right) \right]^{0.5}$$
(5-C.11)

(f) If required, see eq. (5-C.32), compute the stress tensor due to nonthermal effects (all loadings except local thermal and thermal bending), $\sigma^{NT}_{ij,k}$, at the start and end points for the *k*th cycle.

Step 2. Determine the Poisson's ratio adjustment, $K_{v,k}$ to adjust local thermal and thermal bending stresses for the *k*th cycle based on the equivalent stress ranges in Step 1 using the following equations, (S_{PS} is defined in 5.5.6.1):

$$K_{v,k} = 1.0 \text{ for } \Delta S_{P,k} \le S_{PS}$$
 (5-C.12)

$$K_{\nu,k} = 0.6 \left(\frac{\left(\Delta S_{P,k} - S_{PS} \right)}{\left(\Delta S_{LT,k} \right) + \Delta S_{TB,k}} \right) + 1.0 \text{ for } \Delta S_{P,k} > S_{PS} \text{ and } \left(\Delta S_{LT,k} + \Delta S_{TB,k} \right) > \left(\Delta S_{P,k} - S_{PS} \right)$$
(5-C.13)

$$K_{\nu,k} = 1.6 \text{ for } \Delta S_{P,k} > S_{PS} \text{ and } \left(\Delta S_{LT,k} + \Delta S_{TB,k} \right) \le \left(\Delta S_{P,k} - S_{PS} \right)$$
(5-C.14)

Step 3. Determine the nonlocal plastic strain redistribution adjustment, $K_{nl,k}$ to adjust all stresses except local thermal and thermal bending for the *k*th cycle. In these equations, the parameters *m* and *n* are defined in Table 5.13.

$$K_{nl,k} = 1.0 \text{ for } \Delta S_{n,k} \le S_{PS}$$
 (5-C.15)

$$K_{nl,k} = 1.0 + \frac{(1-n)}{n(m-1)} \left(\frac{\Delta S_{n,k}}{S_{PS}} - 1 \right) \text{ for } S_{PS} < \Delta S_{n,k} < mS_{PS}$$
(5-C.16)

$$K_{nl,k} = \frac{1}{n} \text{ for } \Delta S_{n,k} \ge mS_{PS}$$
(5-C.17)

Step 4. Determine the notch plasticity adjustment factor, $K_{np,k}$ based on the equivalent stress ranges in Step 1 to adjust thermal bending stresses to account for additional local strain concentration due to a geometric stress riser for the *k*th cycle. In these equations, the parameters *n* are defined in Table 5.13. For numerical results used directly

$$K_{np,k} = 1.0 \text{ for } \left(\Delta S_{P,k} - \Delta S_{LT,k} \right) \le S_{PS}$$
(5-C.18)

$$K_{np,k} = \min[K_1, K_2] \text{ for } \left(\Delta S_{P,k} - \Delta S_{LT,k}\right) > S_{PS}$$

$$(5-C.19)$$

$$K_{1} = \left[\left(\frac{\Delta S_{P,k} - \Delta S_{LT,k}}{\Delta S_{n,k}} \right)^{\left(\frac{1-n}{1+n}\right)} - 1.0 \right] \cdot \left(\frac{\left(\Delta S_{P,k} - \Delta S_{LT,k} \right) - S_{PS}}{\left(\Delta S_{P,k} - \Delta S_{LT,k} \right)} \right) + 1.0$$
(5-C.20)

$$K_2 = \frac{K_{nl,k}}{K_{v,k}} \tag{5-C.21}$$

For numerical results that are adjusted with a stress concentration factor (SCF)

$$K_{np,k} = 1.0 \text{ for } \left(\Delta S_{n,k} \cdot \text{SCF}\right) \le S_{PS}$$
 (5-C.22)

$$K_{np,k} = \min[K_1, K_2] \text{ for } (\Delta S_{n,k} \cdot \text{SCF}) > S_{PS}$$
(5-C.23)

$$K_{1} = \left[\left(\text{SCF} \right)^{\left(\frac{1-n}{1+n}\right)} - 1.0 \right] \cdot \left(\frac{\left(\Delta S_{n,k} \cdot \text{SCF} \right) - S_{PS}}{\left(\Delta S_{n,k} \cdot \text{SCF} \right)} \right) + 1.0$$
(5-C.24)

$$K_2 = \frac{K_{nl,k}}{K_{v,k}}$$
(5-C.25)

Note that the SCF and $K_{np,k}$ values may be dependent upon the component stress direction.

Step 5. Apply the plasticity adjustment factors to the component stresses at the start and end points for the kth cycle. (a) Compute the component stresses including plastic Poisson's ratio and notch plasticity adjustments as given below for time points ${}^{m}t$ and ${}^{n}t$. For numerical results used directly

$$\left(\sigma_{ij}^{LT}\right)_{\text{adj}} = \sigma_{ij,k}^{LT} \cdot K_{\nu,k}$$
(5-C.26)

ASME BPVC.VIII.2-2023

$$\left(\sigma_{ij}^{TB}\right)_{\text{adj}} = \sigma_{ij,k}^{TB} \cdot K_{v,k} \cdot K_{np,k} + \sigma_{ij,k}^{TB} \cdot \left(\text{SCF}_{\text{NUM}} - 1\right) \cdot K_{np,k}$$
(5-C.27)

For numerical results that are adjusted with a stress concentration factor (SCF)

$$\left(\sigma_{ij}^{LT}\right)_{\text{adj}} = \sigma_{ij,k}^{LT} \cdot K_{\nu,k} \cdot \text{SCF}_{LT}$$
(5-C.28)

$$\left(\sigma_{ij}^{TB}\right)_{\text{adj}} = \sigma_{ij,k}^{TB} \cdot K_{\nu,k} \cdot K_{np,k} \cdot \text{SCF} + \sigma_{ij,k}^{TB} \cdot \left(\text{SCF}_{\text{NUM}} - 1\right) \cdot K_{np,k}$$
(5-C.29)

(b) Compute the component stresses including nonlocal plastic strain redistribution adjustment as given below for time points ${}^{m}t$ and ${}^{n}t$. For numerical results used directly

$$\left(\sigma_{ij}^{NT}\right)_{\text{adj}} = \left[\sigma_{ij,k} - \sigma_{ij,k}^{TB} \left(\text{SCF}_{\text{NUM}} - 1\right)\right] \cdot K_{np,k}$$
(5-C.30)

$$SCF_{NUM} = \frac{\left(\Delta S_{p,k} - \Delta S_{LT,k}\right)}{\Delta S_{n,k}}$$
(5-C.31)

For numerical results that are adjusted with a stress concentration factor (SCF)

....

$$\left(\sigma_{ij}^{NT}\right)_{\text{adj}} = \sigma_{ij,k}^{NT} \cdot K_{nl,k} \cdot \text{SCF}$$
(5-C.32)

Step 6. Compute the adjusted component stress ranges between time points ${}^{m}t$ and ${}^{n}t$ as given below.

$$\left(\Delta\sigma_{ij,k}\right)_{\mathrm{adj}} = \left\{ m \left[\left(\sigma_{ij}^{LT}\right)_{\mathrm{adj}} + \left(\sigma_{ij}^{NT}\right)_{\mathrm{adj}} + \left(\sigma_{ij}^{TB}\right)_{\mathrm{adj}} \right] - m \left[\left(\sigma_{ij}^{LT}\right)_{\mathrm{adj}} + \left(\sigma_{ij}^{NT}\right)_{\mathrm{adj}} + \left(\sigma_{ij}^{TB}\right)_{\mathrm{adj}} \right] \right\}$$
(5-C.33)

Step 7. Compute the effective equivalent stress range using the adjusted component stress ranges from Step 6 and eq. (5-C.2). Designate the adjusted effective equivalent stress range as $(\Delta S_{P,k})_{adj}$

Step 8. Compute the effective alternating equivalent stress for the *k*th cycle as given below.

$$S_{\text{alt},k} = 0.5 \left(\Delta S_{P,k} \right)_{\text{adj}}$$
(5-C.34)

5-C.4 NOMENCLATURE

 ${}^{m}t$ = time point under consideration with the highest peak or lowest valley

- ${}^{m}\sigma_{ij,k}$ = stress tensor at the point under evaluation at time point ${}^{m}t$ for the *k*th cycle
- ${}^{m}\sigma_{ij,k}^{LT''}$ = stress tensor due to local thermal stress at the location under evaluation at time point ${}^{m}t$ for the *k*th cycle ${}^{m}\sigma_{ij,k}^{TB}$ = stress tensor due to thermal bending stress at the location under evaluation at time point ${}^{m}t$ for the *k*th cvcle
 - ^{n}t = time point under consideration that forms a range with time point ^{m}t
 - ${}^{n}\sigma_{ii,k}$ = stress tensor at the point under evaluation at time point ${}^{n}t$ for the *k*th cycle
- ${}^{n}\sigma_{ij,k}^{LT}$ = stress tensor due to local thermal stress at the location under evaluation at time point ${}^{n}t$ for the *k*th cycle ${}^{n}\sigma_{ij,k}^{TB}$ = stress tensor due to thermal bending stress at the location under evaluation at time point ${}^{n}t$ for the *k*th cycle
- $B_{ij,k}^{B}$ = stress tensor due to thermal bending stress at the location under evaluation at time point ⁿt for the kth cycle

 $(\Delta S_{P,k})_{adj}$ = adjusted range of primary plus secondary plus peak equivalent stress, including nonlocal strain redistribution, notch plasticity, and plastic Poisson's ratio adjustments for the *k*th cycle

- $(\sigma^{LT}_{ij})_{adj}$ = adjusted stress tensor due to local thermal stress at the location and time point under evaluation for the *k*th cycle
- $(\sigma^{NT}_{ii})_{adj}$ = adjusted stress tensor due to nonthermal stress at the location and time point under evaluation for the kth cycle
- $(\sigma^{TB}_{ij})_{adj}$ = adjusted stress tensor due to thermal bending stress at the location and time point under evaluation for the kth cycle
 - E = Young's Modulus of the material evaluated at the mean temperature of the cycle

- K_1 = parameter used to compute $K_{np,k}$
- K_2 = parameter used to compute $K_{np,k}$
- $K_{nl,k}$ = nonlocal strain redistribution adjustment factor for the *k*th cycle
- $K_{np,k}$ = notch plasticity adjustment factor for the *k*th cycle
- $K_{v,k}$ = plastic Poisson's ratio adjustment factor for the *k*th cycle
 - m = material constant used for the nonlocal strain redistribution adjustment factor, per Table 5.13
 - n = material constant used for the nonlocal strain redistribution adjustment factor, per Table 5.13
- $S_{\text{alt }k}$ = alternating equivalent stress for the *k*th cycle
 - S_{PS} = allowable limit on the primary plus secondary stress range
 - SCF = stress concentration factor
- SCF_{LT} = stress concentration factor applicable for local thermal stress
- SCF_{NUM} = stress concentration factor determined from the numerical model
 - T = temperature distribution
 - t = wall thickness
 - T_{avg} = average temperature component of temperature distribution T
 - T_{h} = equivalent linear temperature component of temperature distribution T
 - T_p = peak temperature component of temperature distribution T
 - v = Poisson's ratio
 - x = position through the wall thickness
 - z = local coordinate for the temperature distribution
 - α = thermal expansion coefficient of the material at the point under consideration, evaluated at the mean temperature of the *k*th cycle
 - $\Delta S_{LT,k}$ = primary plus secondary plus peak equivalent stress range due to local thermal effects for the kth cycle
 - $\Delta S_{n,k}$ = primary plus secondary equivalent stress range for the *k*th cycle
 - $\Delta S_{NT,k}$ = primary plus secondary plus peak equivalent stress range due to nonthermal effects for the kth cycle
 - $\Delta S_{P,k}$ = range of primary plus secondary plus peak equivalent stress for the *k*th cycle
 - $\Delta S_{TB,k}$ = primary plus secondary plus peak equivalent stress range due to thermal bending effects for the kth cycle
 - $\Delta \sigma_{ij,k}$ = stress component range between time points ^mt and ⁿt for the kth cycle
- $\Delta \sigma^{LT}_{ij,k}$ = stress component range due to local thermal stress between time point ^mt and ⁿt for the kth cycle $\Delta \sigma^{TB}_{ij,k}$ = stress component range due to thermal hending stress local thermal hending s $t_{ij,k}$ = stress component range due to thermal bending stress between time points ^mt and ⁿt for the kth cycle adjusted stress tensor, including nonlocal strain redistribution, notch plasticity, and plastic Poisson's ratio
 - adjustments at the location and time point under evaluation for the *k*th cycle
- $\sigma^{LT}_{ii,k}$ = stress tensor due to local thermal stress at the location and time point under evaluation for the kth cycle
- $\sigma^{NT''}_{ij,k}$ = stress tensor due to nonthermal stress at the location and time point under evaluation for the *k*th cycle $\sigma^{TB'}_{ij,k}$ = stress tensor due to thermal bending stress due to the linearly varying portion of the temperature distribution at the location and time point under evaluation for the *k*th cycle

ANNEX 5-D STRESS INDICES

(Normative)

5-D.1 GENERAL

5-D.1.1 In lieu of a detailed stress analysis, stress indices may be used to determine peak stresses around a nozzle opening.

5-D.1.2 The term stress index, is defined as the numerical ratio of the stress components σ_t , σ_n , and σ_r under consideration to the computed membrane hoop stress in the unreinforced vessel material; however, the material which increases the thickness of a vessel wall locally at the nozzle shall not be included in the calculation of these stress components. These stress directions are defined in Figure 5-D.1. When the thickness of the vessel wall is increased over that required to the extent provided hereinafter, the values of r_1 and r_2 in Figure 5-D.2 shall be referred to the thicknesd section.

5-D.1.3 The stress indices in these tables provide only the maximum stresses at certain general locations due to internal pressure. In the evaluation of stresses in or adjacent to vessel openings and connections, it is often necessary to consider the effect of stresses due to external loadings or thermal stresses. In such cases, the combined stress at a given point may be determined by superposition. In the case of combined stresses due to internal pressure and nozzle loading, the maximum stresses for a given location should be considered as acting at the same point and added algebraically unless positive evidence is available to the contrary.

5-D.2 STRESS INDICES FOR RADIAL NOZZLES

5-D.2.1 The stress indices for radial nozzles in spherical shells and spherical portions of formed heads in Table 5-D.1 and for nozzles in cylindrical shells in Table 5-D.2 may be used if all of the items listed below are true.

(*a*) The opening is for a circular nozzle whose axis is normal to the vessel wall. If the axis of the nozzle makes an angle θ with the normal to the vessel wall, an estimate of the σ_n index on the inside may be obtained from the equations shown below provided $d_{ni}/D_i \leq 0.15$. In these equations, K_1 is the σ_n stress index for a radial connection and K_2 is the σ_n stress index for a non-radial connection.

$$K_2 = K_1(1 + 2\sin^2\theta)$$
 (for hillside nozzles in spheres or cylinders) (5-D.1)

$$K_2 = K_1 \left(1 + \left(\tan \theta \right)^{4/3} \right)$$
 (for lateral nozzles in cylinders) (5-D.2)

(b) The arc distance measured between the centerlines of adjacent nozzles along the inside surface of the shell is not less than three times the sum of their inside radii for openings in a head or along the longitudinal axis of a shell and is not less than two times the sum of their radii for openings along the circumference of a cylindrical shell.

(c) For nozzles in cylindrical shells, the following dimensional limitations shown below are satisfied. In addition, the total nozzle reinforcement area on the transverse plane of the nozzle including any outside of the reinforcement limits shall not exceed 200% of that required for the longitudinal plane unless a tapered transition section is incorporated into the reinforcement and the shell.

$$10 \le \frac{D_i}{t} \le 100 \tag{5-D.3}$$

$$\frac{d_{ni}}{D_i} \le 0.50 \tag{5-D.4}$$

$$\frac{d_{ni}}{\sqrt{\frac{D_i t_n r_2}{t}}} \le 1.50 \tag{5-D.5}$$

(*d*) For nozzles in spherical shells, the following dimensional limitations shown below are satisfied. In addition, at least 40% of the reinforcement is located on the outside surface of the nozzle-shell juncture.

$$10 \le \frac{D_i}{t} \le 100 \tag{5-D.6}$$

$$\frac{d_{ni}}{D_i} \le 0.50 \tag{5-D.7}$$

$$\frac{d_{ni}}{\sqrt{D_i t}} \le 0.80 \tag{5-D.8}$$

(e) For nozzles in cylindrical and spherical shells, the following local geometry details shall be satisfied.

(1) The inside corner radius r_1 (see Figure 5-D.2) is one-eighth to one-half of the shell thickness t.

(2) The outer corner radius r_2 (see Figure 5-D.2) is large enough to provide a smooth transition between the nozzles and the shell. In addition, for nozzle diameters greater than 1.5 shell thicknesses in cylindrical shells and 2:1 ellipsoidal heads, or for nozzle diameters greater than 3 shell thicknesses in spherical shells, the value of r_2 shall satisfy the following:

$$r_2 \ge \max\left[\sqrt{2rt_n}, \frac{t}{2}\right] \tag{5-D.9}$$

(3) The value of r_3 shall satisfy the following:

$$r_3 \ge \max\left[\sqrt{rt_p}, \frac{t_n}{2}\right]$$
 (5-D.10)

5-D.2.2 Stress indices for radial nozzles in spherical shells and spherical portions of formed heads and nozzle in cylindrical shells may be developed by stress analysis techniques consistent with the elastic design analysis methods of Part 5, or obtained for other sources.

5-D.3 STRESS INDICES FOR LATERALS

5-D.3.1 The stress indices for laterals in cylindrical shells in Table 5-D.3 may be used when all of the following conditions are satisfied:

(a) The angle θ equals 45 deg; these indices may be used for angles of θ less than 45 deg (see Figure 5-D.3).

(b) The nozzle is of circular cross section and has an axis that intersects the axis of the cylindrical vessel.

(c) The design of the nozzle reinforcement is in accordance with the applicable rules of 4.5.

(d) The following dimensional ratios are satisfied.

$$\frac{D_i}{t} \le 40.0\tag{5-D.11}$$

$$\frac{d_{ni}}{D_i} \le 0.5 \tag{5-D.12}$$

$$\frac{d_{ni}}{\sqrt{D_i t}} \le 3.0\tag{5-D.13}$$

(e) The nominal pressure membrane stress to be used with the pressure indices is determined using the following equations.

$$\sigma_p = \frac{P(D_i + t)}{2t} \qquad \text{(for Regions 1 and 2)} \qquad (5-D.14)$$

$$\sigma_p = \frac{P(d_{ni} + t_p)}{2t_p} \qquad \text{(for Region 3)} \tag{5-D.15}$$

5-D.3.2 Stress indices for laterals in cylindrical shells may be developed by stress analysis techniques consistent with the elastic design analysis methods of Part 5, or obtained for other sources.

5-D.4 NOMENCLATURE

- D_i = inside vessel diameter
- d_{ni} = inside nozzle diameter
- p = pressure
- r_1 = local nozzle radius (see Figure 5-D.2)
- r_2 = local nozzle radius (see Figure 5-D.2)
- r_3 = local nozzle radius (see Figure 5-D.2)
- t = minimum wall thickness in the region under consideration, or the thickness of the vessel, as applicable
- t_p = thickness of perforated plate, or the thickness of the pipe portion of a nozzle, as applicable
- θ = angle between the axis of the nozzle and the normal to the vessel
- σ_n = stress component normal to the plane of the section (ordinarily the circumferential stress around the hole in the shell
- σ_r = stress component normal to the boundary of the section
- σ_t = stress component in the plane of the section under consideration and parallel to the boundary of the section

5-D.5 TABLES

Table 5-D.1 Stress Indices for Nozzles in Spherical Shells and Portions of Formed Heads				
Stress	Inside Corner	Outside Corne		
σ_n	2.0	2.0		
σ_t	-0.2	2.0		
σ_r	$-\frac{2t}{r}$	0.0		
σ	R 2.2	2.0		

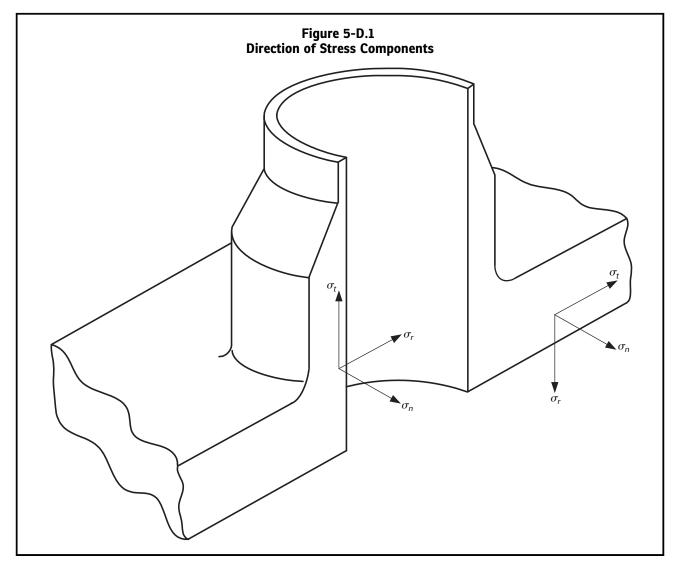
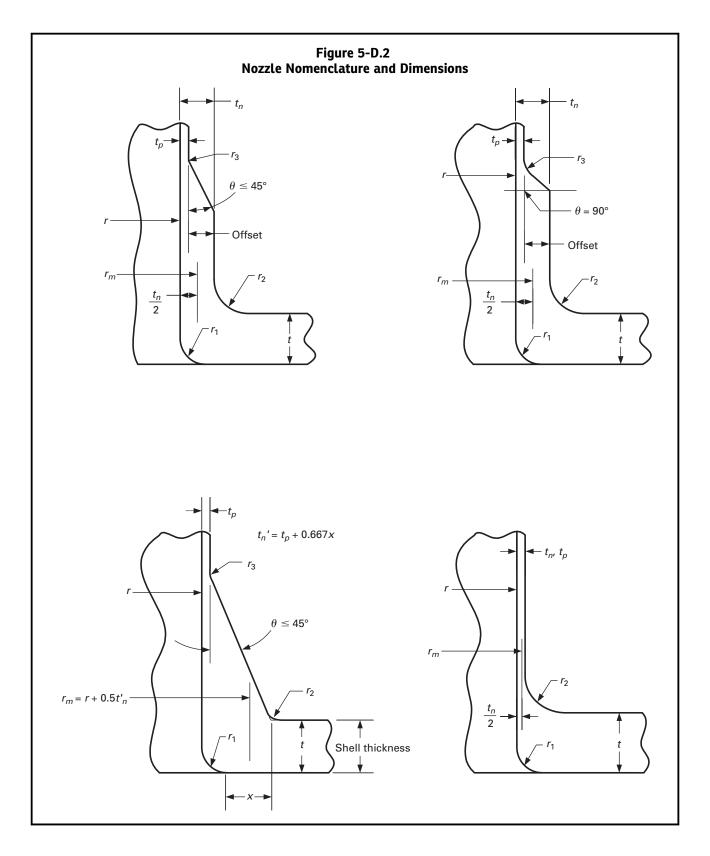
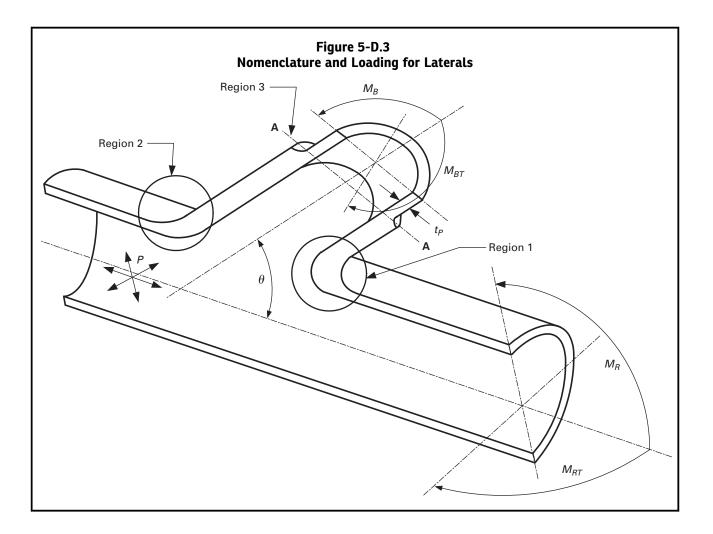

Table 5-D.2 Stress Indices for Nozzles in Cylindrical Shells						
	Longitud	Longitudinal Plane		Transverse Plane		
Material	Inside Corner	Outside Corner	Inside Corner	Outside Corne		
σ_n	3.1	1.2	1.0	2.1		
σ_t	-0.2	1.0	-0.2	2.6		
σr	$-\frac{t}{R}$	0.0	$-\frac{t}{R}$	0.0		
σ	3.3	1.2	1.2	2.6		

Table 5-D.3 Stress Indices for Laterals							
		Region 1		Region 2		Region 3	
		Inside	Outside				
Load	Stress	[Note (1)]	[Note (1)]	Inside	Outside	Inside	Outside
Pressure	$\sigma_{\rm max}$	5.5	0.8	3.3	0.7	1.0	1.0
	S	5.75	0.8	3.5	0.75	1.2	1.1
In-plane branch moment, M_B	$\sigma_{\rm max}$	0.1	0.1	0.5	0.5	1.0	1.6
	S	0.1	0.1	0.5	0.5	1.0	1.6
Vessel moments, M_R or M_{RT}	$\sigma_{\rm max}$	2.4	2.4	0.6	1.8	0.2	0.2
	S	2.7	2.7	0.7	2.0	0.3	0.3
Out-of-plane branch moment, M_{BT}	$\sigma_{\rm max}$	0.13	NA	0.06	NA	NA	2.5 [Note (2)]
	S	0.22	NA	0.07	NA	NA	2.5 [Note (2)]


NOTES:


(1) Inside/outside refers to inside corner (pressure side)/outside fillet and in the plane of symmetry as shown in Figure 5-D.3. (2) Maximum stress/stress intensity in Region 3 for transverse moment M_{BT} occurs 90 deg away from in-plane moment.

5-D.6 FIGURES

5-D.6

ANNEX 5-E DESIGN METHODS FOR PERFORATED PLATES BASED ON ELASTIC STRESS ANALYSIS

(Normative)

5-E.1 OVERVIEW

5-E.1.1 This paragraph contains a method of analysis for flat perforated plates subjected to applied loads or loadings resulting from structural interaction with adjacent members. This method applies to perforated plates that satisfy the following conditions:

(a) The holes are in an equilateral triangular or square penetration pattern.

(b) The holes are circular and the axis of the hole is perpendicular to the surface of the plate.

(c) There are 19 or more holes.

(*d*) The effective ligament efficiency satisfies the following criteria in 5-E.4.

5-E.1.2 Rolling or pressure expansion of tubes into a tubesheet will result in compression on the inside diameter of the tubesheet perforation and the tube itself. Thermal transients that occur during operation may result in thermal differential between the tube and the tubesheet resulting in a loss of the compression obtained during fabrication. For tubes that are also welded, such thermal cycling can cause fatigue of the weld joining the tube to the tubesheet. For tubes that are not welded, thermal cycling can cause the tube to loose contact resulting in leakage. A transient thermal and stress analysis can determine the magnitude of cyclic stress in the tube weld. For small ligaments, the pressure expansion of tubes can cause significant ligament deformation and stresses.

5-E.2 STRESS ANALYSIS OF THE EQUIVALENT SOLID PLATE

5-E.2.1 The analysis method for perforated plates presented in this paragraph is based on the concept of an effective solid plate. In this method, the material properties of the actual perforated plate are replaced by material properties of an effective solid plate that approximate the stiffness of the actual perforated plate. A stress analysis is then performed where the effective solid plate is used in the model that is geometrically similar to the perforated plate, and subject to the actual loading conditions. After completion of the stress analysis, the values of the stresses in the actual perforated plate are obtained by applying stress multiplying factors to the stress results computed for the effective solid plate.

5-E.2.2 An accurate model of the overall tubesheet behavior may be achieved by employing the concept of an equivalent elastic material of anisotropic properties. For triangular penetration patterns the in-plane behavior of the tubesheet is isotropic and the anisotropy of the equivalent material must only be considered for stresses in the thickness direction. The tubesheet can be analyzed using an axisymmetric solid numerical analysis with the effective elastic matrix [E] to simulate the anisotropic behavior. For square penetration patterns the equivalent material properties depend on the orientation of the loading with respect to the symmetry axes of the pattern. The tubesheet can be analyzed using an axisymmetric solid numerical analysis with the effective average elastic matrix [E] for in-plane loading to simulate the anisotropic behavior. When the tubesheet loading is not axisymmetric (e.g., channels with divider plates), a three-dimensional solid numerical analysis may be required.

5-E.3 STIFFNESS EFFECTS OF THE TUBES

5-E.3.1 The in-plane stiffening effect of the tubes in the perforations may be included in the analysis. The extent to which the tubes stiffen the perforated plate depends on the materials, the manufacturing processes, operating conditions, and degree of corrosion. This stiffening effect may be included in the calculations by including part or all of the tube walls in the ligament efficiency used to obtain the effective elastic constants of the plate. Such stiffening may either increase or decrease stresses in the plate itself and in the attached shells.

5-E.3.2 Where applicable, the stiffening effect resulting from the staying action of the tubes should be incorporated into the numerical analysis. For fixed-fixed type exchangers, the axial stiffness of the tubes shall be included in the analysis. When including the tube stiffness, the difference in axial strain due to pressure between the shell and tubes (Poisson's effect) as well as differential thermal expansion between tubes and shell should also be included in the numerical analysis.

5-E.4 EFFECTIVE MATERIAL PROPERTIES FOR THE EQUIVALENT SOLID PLATE

5-E.4.1 The effective elastic constants of the perforated plate are determined as a function of the effective ligament efficiency μ^* that is computed in accordance with 4.18.6.4.

5-E.4.2 If the hole pattern is irregular or has isolated thin ligaments in a uniform hole pattern, the calculated elastic constants shall represent the average ligament size over the entire modeled plate in order to capture the global response. The stress multipliers used for the fatigue assessment of 5-E.7.2 shall be computed considering the appropriate ligament efficiency for the location of interest.

5-E.4.3 The effective elastic constants of the perforated plate material are determined based on the hole pattern and thickness of the plate. Either one of the following two options may be used in the analysis.

(*a*) Option A – The effective elastic constants are provided below. Elastic constants are provided for the effective elastic modulus and effective Poisson's ratio. A value for the effective shear modulus, which is required in the analysis method in this annex, is not provided. The effective shear modulus shall be evaluated using Option B.

(1) Triangular Hole Pattern – The effective elastic modulus and effective Poisson's ratio are provided in Tables 5-E.1 and 5-E.2, respectively.

(2) Square Hole Pattern – The effective elastic modulus and effective Poisson's ratio are provided in Tables 5-E.3 and 5-E.4, respectively. The effective elastic modulus and Poisson's ratio represent an equivalent isotropic value considering the values of the pitch and diagonal properties.

(3) Range of Applicability – The range of applicability in terms of the effective tube pitch is $0.1 \le \mu^* \le 1.0$. The effective elastic constants E^* and v^* can be used for in-plane loading and bending loading of all values of h/p.

(4) The value of the in-plane shear modulus is given by eq. (5-E.1). The value of the out-of-plane shear modulus G_z^* shall be computed using Option B.

$$G^* = \frac{E^*}{2(1+v^*)}$$
(5-E.1)

(b) Option B – The effective elastic constants for plane stress and generalized plane strain are provided below.

(1) Triangular Hole Pattern – The effective elastic modulus and effective Poisson's ratio are provided in Table 5-E.5
 (2) Square Hole Pattern – The effective elastic modulus and effective Poisson's ratio for the pitch and diagonal directions are provided in Tables 5-E.6 and 5-E.7, respectively.

(3) Effects of Poisson's Ratio – The effective material constants in Tables 5-E.5, 5-E.6, and 5-E.7 are based on a Poisson's ratio of v = 0.3. The material constants can be determined for other values of Poisson's ratio using the following procedure.

(-a) For a given value of μ^* , determine E^* and v^* using the equations in Tables 5-E.5, 5-E.6, and 5-E.7, as applicable. These values correspond to v=0.3.

(-b) Determine F_0 using the following equation:

$$F_0 = \frac{E^*}{E} \tag{5-E.2}$$

(-c) Determine F_1 using the following equation:

$$F_1 = v^* - 0.3F_0 \tag{5-E.3}$$

(-d) The value of v^* for any value of the Poisson's ratio, v, is:

$$v^*(v) = F_1 + vF_0 \tag{5-E.4}$$

(-e) With the value of $v^*(v)$ determined above, the effective elastic modulus and shear modulus can be determined for any value of the Poisson's ratio by using the equations in Tables 5-E.5, 5-E.6, and 5-E.7, as applicable.

(4) Range of Applicability – The range of applicability in terms of the effective tube pitch is $0.1 \le \mu^* \le 1.0$. The range of applicability in terms of h/p is:

(-*a*) The effective elastic constants \overline{E}^* and \overline{V}^* can be used for in-plane loading and bending loading when $h/p \ge 2.0$.

(-*b*) The effective elastic constants E^* and v^* can be used for in-plane loading when h/p < 2.0. The effective constants in Option A can be used for bending loading when h/p < 2.0.

(-c) The effective elastic constants G^* , G^*_{p} , G^*_{d} , and G^*_{z} can be used for in-plane loading and bending loading for all values of h/p.

(-*d*) The effective elastic constants for plane stress shall be used when h/p < 2.0, and the effective elastic constants for generalized plane strain shall be used when $h/p \ge 2.0$.

(c) Option C – The effective elastic constants for the geometry being evaluated can be derived by stress analysis. In this case, the tube layout geometry is modeled and loads are applied to introduce normal and shear stresses. The effective elastic constants can be derived from the stress and strain results from the stress analysis.

5-E.4.4 The elasticity matrix [*E*] for the triangular and square patterns that are used in the stress analysis of the effective solid plate are provided in Tables 5-E.8 and 5-E.9, respectively.

5-E.5 PRESSURE EFFECTS IN TUBESHEET PERFORATIONS

5-E.5.1 The effect of pressure in the perforations is not directly included in the stress analyses of the effective solid plate. Pressure in the tubesheet perforations tends to expand the perforated portion of the plate. This expansion is resisted by the solid rim and by the ligaments themselves. The effect of this pressure on the local stresses in the ligaments can be included in the stress analysis results by use of the superposition principle.

5-E.5.2 In order to include the effect of pressure, an additional analysis needs to be performed. In this analysis, the boundary conditions are shown in Figure 5-E.2, sketch (c). These boundary conditions can be achieved by superposing the results from the boundary conditions shown in Figure 5-E.2, sketches (a) and (b), respectively. The solution for the hydrostatic compression boundary condition case, see Figure 5-E.2, sketch (a) is $\sigma_r^* = \sigma_\theta^* = -p_s$ for tubes welded on

the tubeside or $\sigma_r^* = \sigma_{\theta}^* = \sigma_Z^* = -p_t$ for tubes welded on the shellside. The solution for the boundary conditions of Figure 5-E.2, sketch (b) can be obtained from the stress analyses considering the loading conditions shown.

5-E.5.3 A further modification to the boundary conditions used in 5-E.2 can be used to obtain more exact results. The modified boundary conditions are shown in Figure 5-E.3.

5-E.5.4 The stress results obtained using the boundary conditions shown in Figures 5-E.2 and 5-E.3 must be superposed before P_m , $P_L + P_b$, and $P_L + P_b + Q$ stresses are evaluated and before transforming the cylindrical coordinate stresses to the local x-y-z coordinate system for computing $P_L + P_b + Q + F$ stresses.

5-E.6 PROTECTION AGAINST PLASTIC COLLAPSE

5-E.6.1 Uniform Hole Pattern. The following equations shall be used for a perforated plate with a uniform hole pattern. The equivalent stresses P_m , $P_L + P_b$, and $P_L + P_b + Q$ are determined from the in-plane stress components determined by stress analysis of the equivalent solid plate. The loads to be considered in the design shall include, but not be limited to, those given in Table 4.1.1. The load combinations that shall be considered for each loading condition shall include, but not be limited to those given in Table 4.1.2.

(a) General Primary Membrane Equivalent Stress P_m – evaluate the through thickness stress distribution from the numerical analysis of the equivalent plate for mechanical plus pressure loading. The membrane stress is determined by linearization of the through thickness stress distribution. The maximum stress intensity, P_m , shall satisfy the following:

$$\int_{a^{*}}^{b^{*}} \leq S_{m}$$
(5-E.5)

ASME BPVC.VIII.2-2023

(b) Primary Membrane (General or Local) Plus Primary Bending Equivalent Stress $(P_L + P_B)$ – determine the linearized surface stresses from the numerical analysis of the equivalent plate for mechanical plus pressure loading. The maximum stress intensity, $(P_L + P_b)$, shall satisfy the following:

$$\frac{(P_L + P_b)K_{PS}}{\mu^*} \le 1.5S_m$$
(5-E.6)

$$K_{PS} = \left(\frac{1.07802 - 0.342503\beta + 1.50452\beta^2}{1 - 0.0706632\beta + 1.15182\beta^2 + 0.158343\beta^3}\right)^2$$
(5-E.7)

$$\beta = \frac{\sigma_r^*}{\sigma_\theta^*} \text{ or } \frac{\sigma_\theta^*}{\sigma_r^*} \text{ where } -1 \le \beta \le 1$$
(5-E.8)

5-E.6.2 Primary Membrane (General or Local) Plus Primary Bending Plus Secondary Equivalent Stress, $P_L + P_B + Q$. If a fatigue analysis is required, determine the linearized surface stresses from the numerical analysis of the equivalent plate for mechanical, pressure, and thermal loading. The maximum primary plus secondary equivalent stress, $P_L + P_B + Q$, shall satisfy the following where K_{PS} is computed using eq. (5-E.7).

$$\frac{(P_L + P_B + Q)K_{PS}}{\mu^*} \le S_{PS}$$
(5-E.9)

5-E.7 PROTECTION AGAINST CYCLIC LOADING

5-E.7.1 Stress Components From the Equivalent Plate. The stress components $\sigma_{x}^*, \sigma_{y}^*, \sigma_{z}^*, \tau_{xy}^*, \tau_{xz}^*$ and τ_{yz}^* , are determined from the stress analysis of the equivalent solid plate.

(*a*) Triangular Hole Pattern – For material constants evaluated using Option A, B, or C (see 5-E.4.3), the perforated plate displacements and stresses are minimally affected by the orientation with respect to the hole pattern. Therefore, the numerical stress results can be used directly in the evaluation.

(b) Square Hole Pattern – The determination of the stress results depends on the material property model.

(1) For material constants evaluated using Option A or Option C (see 5-E.4.3), the perforated plate displacements and stresses are minimally affected by the orientation with respect to the hole pattern. Therefore, the numerical stress results can be used directly in the evaluation.

(2) For material constants evaluated using Option B, the square pattern displacements do not dependent strongly on the orientation with respect to the hole pattern; therefore, the axisymmetric approximation provides sufficiently accurate strain results. However, the stress components have directional dependence with the stiffness properties. Therefore, the stress components shall be determined using the equations in Table 5-E.10 where the elasticity matrix is dependent on the orientation of the hole pattern with respect to the equivalent plate cylindrical coordinate system. Using the axisymmetric strains in the plate, the non-axisymmetric nominal stresses in the pitch and diagonal directions for the square pattern perforations can be obtained from the equations below.

$$\left(\sigma_r^*\right)_p = \left(\sigma_r^*\right)_a - \frac{1}{2} \left(G_p^* - G_d^*\right) \left(\varepsilon_r^* - \varepsilon_\theta^*\right)$$
(5-E.10)

$$\left(\sigma_{\theta}^{*}\right)_{p} = \left(\sigma_{\theta}^{*}\right)_{a} + \frac{1}{2}\left(G_{p}^{*} - G_{d}^{*}\right)\left(\varepsilon_{r}^{*} - \varepsilon_{\theta}^{*}\right)$$
(5-E.11)

$$\left(\sigma_r^*\right)_d = \left(\sigma_r^*\right)_a + \frac{1}{2}\left(G_p^* - G_d^*\right)\left(\varepsilon_r^* - \varepsilon_\theta^*\right)$$
(5-E.12)

$$\left(\sigma_{\theta}^{*}\right)_{d} = \left(\sigma_{\theta}^{*}\right)_{a} - \frac{1}{2}\left(G_{p}^{*} - G_{d}^{*}\right)\left(\varepsilon_{r}^{*} - \varepsilon_{\theta}^{*}\right)$$
(5-E.13)

 $\sigma_Z^* = \left(\sigma_Z^*\right)_a \tag{5-E.14}$

$$\sigma_{rZ}^* = \left(\sigma_{rZ}^*\right)_a \tag{5-E.15}$$

(c) For both the triangular and square pattern perforated plates, the hydrostatic compression stress must be superposed prior to transformation to the x-y-z Cartesian coordinate system (see Figure 5-E.4 or Figure 5-E.5) for computing the peak stresses.

5-E.7.2 Stress Components for Fatigue Assessment. The stress components for the fatigue assessment are computed using the following equations.

(a) Stress Results in the Perforated Region of the Plate – the stress multipliers K_x , K_y , K_{xy} , K_{xz} , and K_{yz} for triangular and square hole patterns are given in Tables 5-E.11 through 5-E.15 and Tables 5-E.16 through 5-E.18, respectively. The stress orientation associated with the stress multipliers for triangular and square hole patterns are shown in Figures 5-E.4 and 5-E.5, respectively. The stress results in 5-E.7.1 must be transformed to the local x-y-z Cartesian coordinate system before the stress multipliers can be applied.

$$\sigma_{11} = \sigma_{\theta} = \frac{1}{\mu^*} \Big(K_X \sigma_X^* + K_Y \sigma_Y^* + K_{XY} \tau_{XY}^* \Big)$$
(5-E.16)

$$\sigma_{12} = \tau_{\theta Z} = \frac{1}{\mu^*} \Big(K_{XZ} \tau_{XZ}^* + K_{YZ} \tau_{YZ}^* \Big)$$
(5-E.17)

$$\sigma_{13} = 0.0$$
 (5-E.18)

At the tubeside surface of the plate

 $\sigma_{22} = -p_t \tag{5-E.19}$

At the shellside surface of the plate

$$\sigma_{22} = -p_s$$
 (5-E.20)

Between the surfaces of the plate through the thickness

$$\sigma_{22} = v \left(\sigma_{11} - p_h \right) + \left(\frac{E}{E_z^*} \right) \left[\sigma_z^* - v \left(\sigma_x^* + \sigma_y^* \right) \right]$$
(5-E.21)

and

$$\sigma_{23} = 0.0$$
 (5-E.22)

$$\sigma_{33} = -p_h$$
 (5-E.23)

(b) Stress Results at the Rim – the region of the perforated plate outside the diameter D_o is called the plate rim (see Figure 5-E.1). The stress components for the fatigue assessment at the outer most hole shall be computed using the following equations. The stress results in 5-E.7.1 must be transformed to the local x-y-z Cartesian coordinate system before the stress multipliers can be applied.

$$\sigma_{11,\text{rim}} = \sigma_{\theta,\text{rim}} = K_{\theta,\text{rim}}\sigma_{\theta,\text{rim}} + K_{r,\text{rim}}\sigma_{r,\text{rim}}$$
(5-E.24)

$$\sigma_{12,\text{rim}} = \tau_{\theta_Z,\text{rim}} = K_{r_Z,\text{rim}} \tau_{12,\text{rim}}$$
(5-E.25)

$$\sigma_{13,\text{rim}} = 0.0$$
 (5-E.26)

At the tubeside surface of the plate

$$\sigma_{22,\text{rim}} = -p_t \tag{5-E.27}$$

At the shellside surface of the plate

$$\sigma_{22,\rm rim} = -p_s$$
 (5-E.28)

Between the surfaces of the plate through the thickness

$$\sigma_{22,\text{rim}} = v \Big(\sigma_{11,\text{rim}} - p_h \Big) + \Big[\sigma_{Z,\text{rim}} - v \Big(\sigma_{r,\text{rim}} + \sigma_{\theta,\text{rim}} \Big) \Big]$$
(5-E.29)

and

$$\sigma_{23,\text{rim}} = 0.0$$
 (5-E.30)

$$\sigma_{33,\text{rim}} = -p_h$$
 (5-E.31)

The stress multipliers are computed using the information in Tables 5-E.11 through 5-E.18, as applicable, with the following modifications.

$$K_{\theta,\text{rim}} = K_X$$
 evaluated at $\mu^* = 1.0$ (5-E.32)

$$K_{r,rim} = K_y$$
 evaluated at $\mu^* = 1.0$ (5-E.33)

$$K_{rz,rim} = K_{xz}$$
 evaluated at $\mu^* = 1.0$ (5-E.34)

(c) Thermal Skin Stresses – the temperature gradient through the thickness of a perforated plate can be closely approximated by a step change in the metal temperature near the surface of the plate. Significant thermal stresses develop only in the skin layer of the plate at the surface where the temperature change occurs and the thermal stresses in the remainder of the plate are negligible. The thermal skin stresses at any location on the surface of the equivalent solid plate are given by eq. (5-E.35). The thermal skin stresses should be added to the stresses determined from the numerical analysis

$$\sigma_r^* = \sigma_r^* = K_{\text{skin}} \left[\frac{E\alpha (T_m - T_s)}{(1 - v)} \right]$$
(5-E.35)

with

$$K_{\rm skin} = \frac{9.43983 - 421.179\mu^* + 6893.05\mu^{*2}}{1 + 4991.39\mu^* + 6032.92\mu^{*2} - 1466.19\mu^{*3}}$$
(5-E.36)

(*d*) Stress Results In The Solid Rim and Other Locations – the stress components from the solid rim and other locations that do not contain perforations can be used directly in the fatigue assessment.

5-E.7.3 Stress Range for Fatigue Assessment. The stress range to be used in the fatigue assessment is determined in accordance with **5.5**.

5-E.8 NOMENCLATURE

- A = unit cell area
- A_0 = tube open area
- d^* = effective tube hole diameter
- D_o = equivalent diameter of outer tube limit circle
- d_t = nominal outside diameter of tubes
- E = modulus of elasticity for tubesheet material at tubesheet design temperature
- E^* = effective Young's modulus for the perforated plate for a triangular hole pattern
- E_{d}^{*} = effective Young's modulus for the perforated plate for a square hole pattern diagonal direction
- E_{p}^{*} = effective Young's modulus for the perforated plate for a square hole pattern pitch direction
- E_{z}^{*} = effective Young's modulus for thickness direction loading for perforated plate
- E_{11} = coefficient of the elasticity matrix
- E_{12} = coefficient of the elasticity matrix
- E_{13} = coefficient of the elasticity matrix
- E_{21} = coefficient of the elasticity matrix
- E_{22} = coefficient of the elasticity matrix
- E_{23} = coefficient of the elasticity matrix

- E_{31} = coefficient of the elasticity matrix
- E_{32} = coefficient of the elasticity matrix
- E_{33} = coefficient of the elasticity matrix
- E_{44} = coefficient of the elasticity matrix
- E_{55} = coefficient of the elasticity matrix
- E_{66} = coefficient of the elasticity matrix
- E_t = modulus of elasticity for tube material at tube design temperature
- F_0 = Poisson's ratio factor
- F_1 = Poisson's ratio factor
- G = shear modulus for the perforated plate, G = E/2(1 + v)
- G^* = effective shear modulus for the perforated plate for a triangular hole pattern
- G_{d}^{*} = effective shear modulus for the perforated plate for a square hole pattern diagonal direction
- G_{p}^{*} = effective shear modulus for the perforated plate for a square hole pattern pitch direction
- G_{z}^{*} = effective Shear modulus for transverse shear loading for perforated plate.
- *h* = tubesheet thickness
- K_L = stress intensity load factor (see Part 5)
- K_{PS} = stress multiplier applied to surface stresses to determine local membrane plus bending primary stress averaged across the width of the ligament but not through the thickness.
- $K_{r,rim}$ = local stress multiplier for solid rim plate

 $K_{rz,rim}$ = local stress multiplier for solid rim plate

- $K_{\rm skin}$ = stress multiplier for the thermal skin stress
 - K_x = local stress multiplier for perforated material
 - K_{xy} = local stress multiplier for perforated material
 - K_{xz} = local stress multiplier for perforated material
 - K_v = local stress multiplier for perforated material
 - K_{yz} = local stress multiplier for perforated material
- $K_{\theta, \text{rim}}$ = local stress multiplier for solid rim plate
 - l_{tx} = expanded length of tube in tubesheet ($0.0 \le l_{tx} \le 1.0$. An expanded tube-to-tubesheet joint is produced by applying pressure inside the tube such that contact is established between the tube and tubesheet. In selecting an appropriate value of expanded length, the designer shall consider the degree of initial expansion, differences in thermal expansion, or other factors that could result in loosening of the tubes within the tubesheet [see Figure 4.18.2, sketch (b)].
 - p =tube pitch
 - p^* = effective tube pitch
 - p_1 = tubeside pressure acting on the surface of the plate
 - p_2 = shellside pressure acting on the surface of the plate
 - p_3 = shellside pressure acting on the surface of the rim
 - p_4 = pressure acting on the shell
 - p_5 = tubeside pressure acting on the surface of the rim
 - P_b = primary bending stress intensity.
 - p_h = pressure acting in the hole of the plate
 - P_L = local primary membrane stress intensity.
 - P_m = general primary membrane stress intensity.
 - p_s = shellside pressure acting on the surface of the plate
 - p_t = tubeside pressure acting on the surface of the plate
 - Q = secondary stress intensity.
 - r_o = radius to outermost tube hole center
 - S_m = allowable stress intensity for the perforated plate material at the design temperature
 - S_{PS} = allowable limit on the primary plus secondary stress range.
 - S_{tm} = allowable stress intensity for the tube material at the design temperature
 - T_m = mean temperature averaged through the thickness of the plate
 - T_s = temperature at the surface of the plate
 - t_t = nominal tube wall thickness
 - U_L = largest center-to-center distance between adjacent tube rows, but not to exceed 4p
 - v = Poisson's ratio for the perforated plate
 - v^* = effective Poisson's ratio for the perforated plate for a triangular hole pattern
 - v_{d}^{*} = effective Poisson's ratio for the perforated plate for a square hole pattern diagonal direction

ASME BPVC.VIII.2-2023

- v_p^* = effective Poisson's ratio for the perforated plate for a square hole pattern pitch direction
 - α = coefficient of thermal expansion
- β = biaxiality stress factor
- ε_r^* = calculated radial strain from the stress analysis of a equivalent perforated plate
- ε_z^* = calculated axial strain from the stress analysis of a equivalent perforated plate
- ε_{θ}^{*} = calculated circumferential strain from the stress analysis of a equivalent perforated plate
- θ = orientation for the stress calculation in the referenced to the local Cartesian coordinate system (see Figures 5-E.4 and 5-E.5)
- μ = ligament efficiency
- μ^* = effective ligament efficiency
- ρ = tube expansion depth ratio; $0.0 \le \rho \le 1.0$
- $(\sigma_{r}^{*})_{a}$ = normal radial stress from the stress analysis of the equivalent plate
- $(\sigma_{r}^{*})_{d}$ = normal radial stress computed from the elasticity matrix for the square hole pattern in the diagonal direction
- $(\sigma_{r}^{*})_{p}$ = normal radial stress computed from the elasticity matrix for the square hole pattern in the pitch direction $(\sigma_{r}^{*})_{p}$ = normal aigum forestial stress from the stress analysis of the equivalent plate
- $(\sigma_{*}^{*}\theta)_{a}$ = normal circumferential stress from the stress analysis of the equivalent plate
- $(\sigma_{\theta}^{*})_{d}$ = normal circumferential stress computed from the elasticity matrix for the square hole pattern in the diagonal direction
- $(\sigma_{\theta}^{*})_{p}$ = normal circumferential stress computed from the elasticity matrix for the square hole pattern in the pitch direction
 - σ_r^* = normal radial stress at the perforated plate to solid ring interface calculated from the stress analysis
 - σ_r^* = normal radial stress calculated from the stress analysis of a equivalent perforated plate
 - σ_{z}^{*} = normal axial stress calculated from the stress analysis of a equivalent perforated plate
 - σ_{θ}^{*} = normal circumferential stress at the perforated plate to solid ring interface calculated from the stress analysis
 - σ^*_{θ} = normal circumferential stress calculated from the stress analysis of a equivalent perforated plate
- σ_{11} = normal stress in the 1-direction
- $\sigma_{11,rim}$ = normal stress in the 1-direction at the rim
- σ_{12} = shear stress in the 1-direction on the 2-plane
- $\sigma_{12,rim}$ = shear stress in the 1-direction on the 2-plane at the rim
- σ_{13} = shear stress in the 1-direction on the 3-plane
- $\sigma_{13,rim}$ = shear stress in the 1-direction on the 3-plane at the rim
 - σ_{22} = normal stress in the 2-direction
- $\sigma_{22, \text{rim}}$ = normal stress in the 2-direction at the rim
- σ_{23} = shear stress in the 2-direction on the 3-plane
- $\sigma_{23,rim}$ = shear stress in the 2-direction on the 3-plane at the rim
- σ_{33} = stress in the 3-direction
- $\sigma_{33,rim}$ = stress in the 3-direction at the rim
 - τ_{rz}^{*} = shear stress at the perforated plate to solid ring interface calculated from the stress analysis
 - τ^*_{rz} = normal shear stress calculated from the stress analysis of a equivalent perforated plate
 - $\tau^*_{r\theta}$ = normal shear stress calculated from the stress analysis of a equivalent perforated plate
 - $\tau^*_{z\theta}$ = normal shear stress calculated from the stress analysis of a equivalent perforated plate
 - γ^*_{rz} = calculated shear strain from the stress analysis of a equivalent perforated plate
 - $\gamma^*_{r\theta}$ = calculated shear strain from the stress analysis of a equivalent perforated plate
 - $\gamma_{z\theta}^{*}$ = calculated shear strain from the stress analysis of a equivalent perforated plate

5-E.9 TABLES

Г

Г

		h,	/p	
Coefficients	0.1	0.25	0.5	2.0
A_0	1.496410 E-05	6.352630 E-06	-1.333850 E-03	7.285910 E-04
A_1	6.620641 E+01	1.151132 E+03	-2.556960 E+00	-7.005325 E-01
A_2	4.301938 E+00	1.275654 E+01	6.777985 E-01	1.151695 E-02
A ₃	-3.393999 E+01	-1.643137 E+03	3.994838 E+00	2.440697 E+00
A_4	7.672133 E+01	1.202564 E+03	1.550319 E-01	4.439786 E+00
A ₅	1.497235 E+00	1.257743 E+03	-4.396305 E+00	-5.840415 E+00
A_6	-3.012851 E+01	-9.998214 E+02	-2.431697 E+00	-8.312674 E+00
A 7	1.613346 E+01	-5.511521 E+02	2.177133 E+00	4.123150 E+00
A_8	0.0	0.0	1.819010 E+00	4.780299 E+00

- (c) If h/p < 0.1, then use h/p = 0.1. (d) If h/p > 2.0, then use h/p = 2.0.

			h	/p		
Coefficients	0.1	0.15	0.25	0.5	1.0	2.0
B ₀	1.722338 E-02	-7.248304 E-01	3.824487 E+02	2.860400 E+00	1.483591 E+00	9.823512 E-01
B_1	-3.203150 E+01	-3.180156 E+01	1.539472 E+04	5.679314 E+01	1.504975 E+01	9.655558 E-01
B ₂	1.765880 E+00	1.599207 E+01	2.264094 E+03	4.717135 E-01	-1.976814 E+00	-2.811381 E+00
<i>B</i> ₃	2.321240 E+02	2.859222 E+02	-4.175812 E+04	-2.166572 E+02	-6.193608 E+01	4.633821 E+00
B_4	-2.593198 E+01	-9.517465 E+01	-1.461539 E+04	-3.787845 E+01	-7.869233 E+00	5.917858 E+00
B 5	-2.171148 E+02	-1.388896 E+02	7.152697 E+04	3.226507 E+02	1.094078 E+02	7.097756 E+00
B ₆	9.357422 E+01	2.547347 E+02	2.981678 E+04	8.368412 E+01	2.733155 E+01	0.0
B 7	1.107294 E+02	7.201617 E+01	1.387188 E+04	0.0	0.0	0.0
B ₈	-4.095396 E+01	-1.182527 E+02	0.0	0.0	0.0	0.0

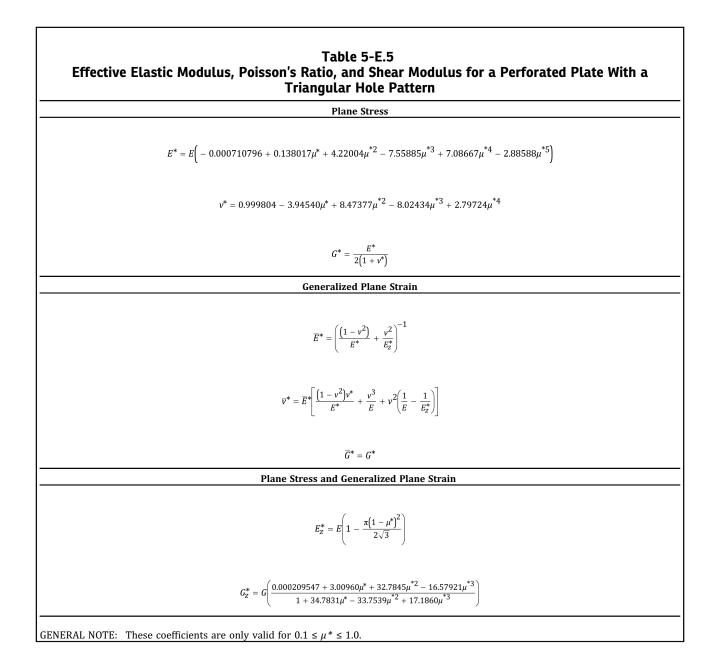
- (c) If h/p < 0.1, then use h/p = 0.1. (d) If h/p > 2.0, then use h/p = 2.0.

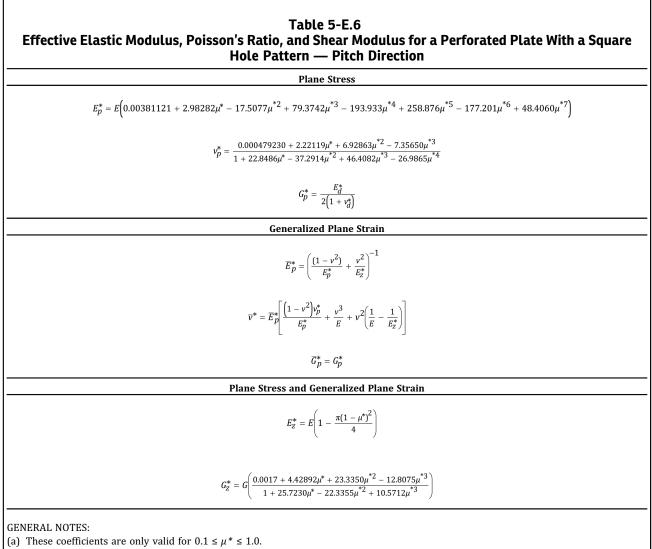
	Values of E^* for Per	forated Tubesheets	With a Square Patter	n
		h	/p	
Coefficients	0.1	0.25	0.5	2.0
A_0	-4.085600 E-05	-4.828500 E-04	8.925870 E-05	1.589308 E-03
A_1	5.231431 E+02	8.372334 E+00	1.783577 E+01	1.814855 E+01
A_2	-6.376136 E+00	2.947067 E+00	2.896931 E+00	2.693793 E+00
A ₃	7.857623 E+03	-9.963856 E+00	-1.945644 E+01	-2.374421 E+01
A_4	2.284635 E+03	3.710254 E+00	1.377083 E+01	9.002308 E+00
A 5	-7.366960 E+03	7.250874 E+00	8.840783 E+00	1.627106 E+01
A 6	4.844156 E+03	0.0	-8.457560 E+00	0.0
A_7	6.092597 E+03	0.0	0.0	0.0

(a) $E^* = E\left(\frac{A_0 + A_2\mu^* + A_4\mu^{*2} + A_6\mu^{*3}}{1 + A_1\mu^* + A_3\mu^{*2} + A_5\mu^{*3} + A_7\mu^{*4}}\right)$ (b) These coefficients are valid for $0 \le \mu^* \le 1.0$, data for $\mu^* = 2.0$ is provided for information only.

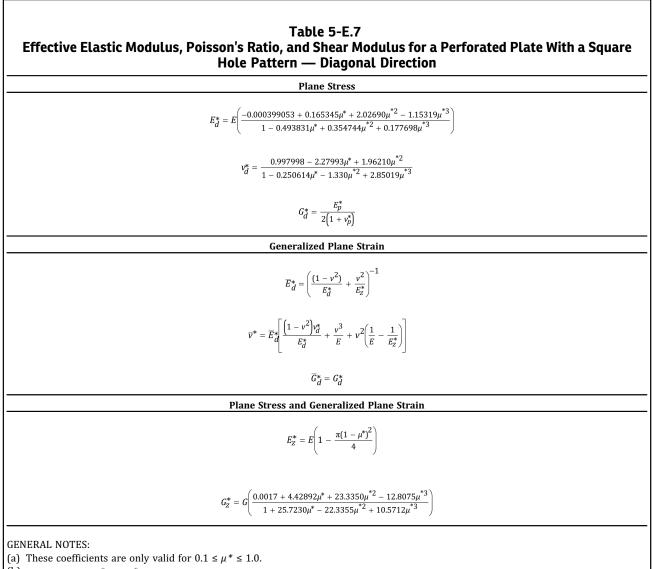
(c) If h/p < 0.1, then use h/p = 0.1.

(d) If h/p > 2.0, then use h/p = 2.0.

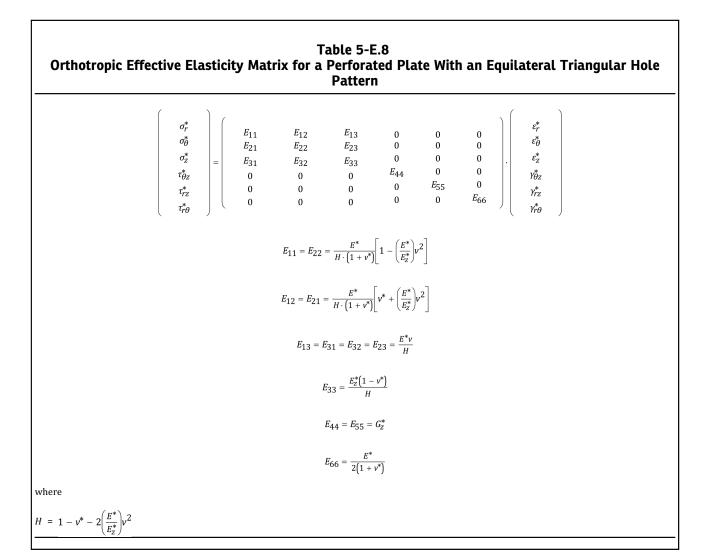

	Values	Table 5-E.4Values of v^* for Perforated Tubesheets With a Square Pattern									
			h	/p							
Coefficients	0.1	0.15	0.25	0.5	1.0	2.0					
B ₀	-7.288894 E-02	2.089015 E+00	1.397869 E+03	4.915542 E-01	3.475156 E-01	3.337833 E-01					
B_1	-1.127111 E+01	1.199162 E+02	8.678686 E+04	2.202591 E+01	-1.094083 E+00	2.923681 E+00					
B ₂	1.325618 E+00	-1.535964 E+01	5.003924 E+03	4.392312 E+00	-5.737278 E-01	1.132010 E+00					
B ₃	3.949776 E+01	-7.543170 E+02	-1.857192 E+05	-5.969066 E+01	4.985966 E+00	-1.209380 E+01					
B_4	-8.530838 E+00	6.129051 E+01	-2.174219 E+04	-1.407781 E+01	1.875825 E+00	-4.921427 E+00					
B ₅	-2.359313 E+01	1.921504 E+03	2.363003 E+05	6.022030 E+01	6.108286 E-01	1.656896 E+01					
B ₆	2.130422 E+01	-1.346693 E+02	5.674145 E+04	1.627461 E+01	0.0	6.722375 E+00					
B 7	5.916208 E+00	-1.921418 E+03	0.0	0.0	0.0	2.496675 E+00					
<i>B</i> ₈	-1.056089 E+01	1.808025 E+02	0.0	0.0	0.0	0.0					
B_{9}	0.0	9.465777 E+02	0.0	0.0	0.0	0.0					


GENERAL NOTES:

(a) $v^* = \left(\frac{B_0 + B_2\mu^* + B_4\mu^{*2} + B_6\mu^{*3} + B_8\mu^{*4}}{1 + B_1\mu^* + B_3\mu^{*2} + B_5\mu^{*3} + B_7\mu^{*4} + B_9\mu^{*5}}\right)$ (b) These coefficients are valid for $0 \le \mu^* \le 1.0$, data for $\mu^* = 2.0$ is provided for information only.


(c) If h/p < 0.1, then use h/p = 0.1.

(d) If h/p > 2.0, then use h/p = 2.0.



(b) The constants E_d^* and v_d^* can be determined using the equations in Table 5-E.7.

(b) The constants E_p^* and v_p^* can be determined using the equations in Table 5-E.6.

	σ_r^* $\sigma_{ heta}^*$ σ_Z^* $\tau_{ heta Z}^*$ τ_{rZ}^* τ_{rR}^* $\tau_{r heta}^*$	$= \begin{pmatrix} E_{11} \\ E_{21} \\ E_{31} \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$E_{12} \\ E_{22} \\ E_{32} \\ 0 \\ 0 \\ 0 \\ 0$	E_{13} E_{23} E_{33} 0 0 0	$egin{array}{c} 0 \\ 0 \\ E_{44} \\ 0 \\ 0 \\ 0 \end{array}$	0 0 0 <i>E</i> ₅₅ 0	$\left. \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ E_{66} \end{array} \right).$	εr ε _θ εz Yθz Yrz Yrθ	
		<i>E</i> ₁₁ =	$E_{22} = \frac{E_p^*}{H \cdot \left(1 + \frac{E_p^*}{E_p}\right)}$	$\overline{v_p^*} \left[1 - \left(\frac{E_p^*}{E_z^*} \right) \right]$	$\left v^2\right + \frac{1}{2}\left(G_p^*\right)$	$E = \frac{E_p^*}{2(1-v_p^*)}$	$\left[\frac{*}{p}\right]$		
		<i>E</i> ₁₂ =	$E_{21} = \frac{E_p^*}{H \cdot \left(1 + \right)}$	$\overline{v_p^*} \left[v_p^* + v^2 \left(\frac{1}{2} \right) \right]$	$\begin{bmatrix} \frac{5^*}{p} \\ \frac{5^*}{z} \end{bmatrix} = \frac{1}{2} \left(G_{\mu}^* \right)$	$b^*_p = \frac{E^*_p}{2(1-v)}$	$\overline{\binom{p}{p}}$		
			<i>E</i> ₁₃ =	$E_{31} = E_{32} =$	$E_{23} = \frac{E_p^* v}{H}$				
				$E_{33} = \frac{E_z^* (1 - H_z)}{H_z}$	- v _p *)				
				$E_{44} = E_{55} =$	G_Z^*				
			Ee	$G_{6} = G_{p}^{*} = \frac{1}{2(2)}$	$\frac{E_d^*}{1+v_d^*}$				

 G_p^* in the elasticity matrix shown above.

quations for I		Stress Co is for an	omponer		d on th				quivale	nt Plate
	$ \left(\begin{array}{c} \left(\sigma_{r}^{*}\right)_{a} \\ \left(\sigma_{\theta}^{*}\right)_{a} \\ \left(\sigma_{z}^{*}\right)_{a} \\ \left(\tau_{\theta z}^{*}\right)_{a} \\ \left(\tau_{r z}^{*}\right)_{a} \\ \left(\tau_{r r \theta}^{*}\right)_{a} \end{array}\right) = $	$ \begin{pmatrix} E_{11} \\ E_{22} \\ E_{33} \\ 0 \\ 0 \\ 0 \end{pmatrix} $	$E_{12} \\ E_{22} \\ E_{33} \\ 0 \\ 0 \\ 0 \\ 0$	E_{13} E_{23} E_{33} 0 0 0	0 0 <i>E</i> 444 0 0	0 0 0 <i>E</i> 55 0	$\left. \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ E_{66} \end{array} \right).$	$\left(\begin{array}{c} \varepsilon_r^* \\ \varepsilon_{\theta}^* \\ \varepsilon_z^* \\ \gamma_{\theta z}^* \\ \gamma_{rz}^* \\ \gamma_{r\theta}^* \end{array}\right)$		
	E_1	$_1 = E_{22} = \frac{1}{H}$	$\frac{E_p^*}{\left(1+v_p^*\right)} \left[1-\right.$	$\left(\frac{E_p^*}{E_z^*}\right)v^2\right]+4$	$\sin^2 \theta \cos^2 \theta$	$\left(G_p^* - \frac{B}{2\left(1\right)}\right)$	$\left(\frac{z^*}{p} + v_p^*\right)$			
	<i>E</i> ₁	$E_2 = E_{21} = \frac{1}{H \cdot I_2}$	$\frac{E_p^*}{\left(1+v_p^*\right)}\left[v_p^*+\right]$	$v^2 \left(\frac{E_p^*}{E_z^*}\right) \right] + 4$	sin ² θcos ² θ	$\left(G_p^*-\frac{1}{2\left(1\right)}\right)$	$\left(\frac{E_p^*}{+v_p^*}\right)$			
			$E_{13} = E_{32}$	$E_{1} = E_{32} = E_{2}$	$_{3}=\frac{E_{p}^{*}v}{H}$					
	E ₁₄	$= E_{41} = -E_{24}$	$E = -E_{42} = 2$	$\left(G_p^* - \frac{E_p^*}{2\left(1 + v\right)}\right)$	$\left(\frac{1}{p}\right)$ sin θ cos	$\theta(\cos^2\theta -$	$-\sin^2\theta$)			
			E ₃₃	$B_3 = \frac{E_Z^* \left(1 - v_\mu^*\right)}{H}$	<u>;)</u>					
			E_4	$E_{4} = E_{55} = G_{2}$	*					
		Ee	$G_6 = G_p^* - 4$ si	$n^2\theta\cos^2\theta \left(G_{\mu}^{*}\right)$	$\frac{E_p^*}{2(1+v_p^*)}$	<u>)</u>				

GENERAL NOTES:

(a) The constants E^{*}_p, v^{*}_p, E^{*}_z, G^{*}_z, H, and v are evaluated from Tables 5-E.5 through 5-E.9.
(b) The angle θ defines the orientation of the radial direction in the equivalent solid plate with respect to the pitch direction of the square hole pattern.

	Stress Fac	Table tor K_x Coefficient	5-E.11 s — Triangular H	lolo Dattorn	
μ*					C 5
<u> </u>	-2.48810 E-03	0.00000 E+00	2.29959 E-04	0.00000 E+00	-8.60430 E-0
0.05	-4.15591 E-03	0.00000 E+00	2.29939 E-04 3.99110 E-04	0.00000 E+00	-1.66750 E-0
0.1	9.71786 E-03	0.00000 E+00	2.27507 E-04	0.00000 E+00	-2.02240 E-0
0.15	2.44173 E-02	-2.05029 E-03	-1.50600 E-04	2.92198 E-06	2.80179 E-0
0.25	4.97018 E-03	-4.07320 E-04	-4.68940 E-04	1.34485 E-05	-7.98040 E-0
0.3	-4.38107 E-02	1.63067 E-03	-6.65130 E-04	1.92456 E-05	-1.14750 E-0
0.333	-9.22413 E-02	3.29146 E-03	-6.93000 E-04	2.32530 E-05	-2.12050 E-0
0.4	-2.09998 E-01	6.59092 E-03	-5.32060 E-04	1.63467 E-05	-1.04550 E-0
0.5	-4.01999 E-01	-3.94910 E-04	2.45399 E-04	-1.44260 E-05	1.19709 E-0
0.6	-5.75989 E-01	-1.66130 E-04	5.74246 E-04	-4.90600 E-06	3.73271 E-0
0.7	-7.14696 E-01	-8.35510 E-05	8.53270 E-04	-7.23000 E-06	5.22499 E-0
0.8	-8.19200 E-01	-8.61900 E-04	1.26476 E-03	-3.60460 E-05	2.33690 E-0
0.9	-9.07202 E-01	-3.10980 E-04	1.16915 E-03	-6.47650 E-06	2.87057 E-0
1	-1.00000 E+00	-6.01550 E-04	1.40134 E-03	-2.02820 E-05	1.00488 E-0
μ*	C ₆	C ₇	C ₈	C9	C ₁₀
0.05	0.00000 E+00	3.79570 E-10	0.00000 E+00	-5.00380 E-14	0.00000 E+0
0.1	0.00000 E+00	7.52024 E-10	0.00000 E+00	-9.80750 E-14	0.00000 E+0
0.15	0.00000 E+00	9.96594 E-10	0.00000 E+00	-1.38990 E-13	0.00000 E+0
0.2	-3.48070 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.25	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.23	-6.26280 E-11	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.333	4.79506 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.333	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.4	-3.91660 E-08	8.96544 E-10	-1.42550 E-11	1.38091 E-13	-7.22820 E-1
0.5	-1.21420 E-08	2.55297 E-10	-3.89990 E-12	3.65760 E-14	-1.81670 E-1
0.0	-2.46600 E-08	6.39236 E-10	-1.03660 E-11	1.01715 E-13	-5.48690 E-1
0.7	-9.59670 E-08	2.34704 E-09	-3.58780 E-11	3.34855 E-13	-1.74180 E-1
0.8	-1.57740 E-08	4.06586 E-10	-6.50940 E-11	6.42221 E-14	-3.52630 E-1
1	-3.55490 E-08	4.00300 E-10 6.67355 E-10	-7.22950 E-12	4.25909 E-14	-1.05160 E-1
μ*	C ₁₁	C ₁₂	C ₁₃	C ₁₄	C ₁₅
0.05	2.03746 E-18	0.00000 E+00	-1.02414 E-03	0.00000 E+00	6.61817 E-02
0.1	4.37065 E-18	0.00000 E+00	-6.92440 E-04	0.00000 E+00	6.50223 E-07
0.15	7.88278 E-18	0.00000 E+00	5.49459 E-07	0.00000 E+00	2.94340 E-0
0.2	0.00000 E+00	-7.40767 E-02	2.51869 E-03	-4.42910 E-05	3.93678 E-02
0.25	0.00000 E+00	-5.46478 E-02	1.59424 E-03	-2.61460 E-05	2.33088 E-02
0.3	0.00000 E+00	-3.98100 E-02	1.04897 E-03	-1.75510 E-05	1.75088 E-02
0.333	0.00000 E+00	-3.57930 E-02	8.10224 E-04	-1.19240 E-05	1.11006 E-0
0.4	0.00000 E+00	-3.13608 E-02	7.61981 E-04	-1.15130 E-05	1.06015 E-02
0.5	1.57382 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.6	3.65531 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.7	1.24975 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.8	3.86817 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.9	8.21600 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
1	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
μ^*	C ₁₆	C17	C ₁₈	C19	
0.05	0.00000 E+00	-2.21770 E-10	3.53954 E-14	-1.97610 E-18	
0.1	0.00000 E+00	-2.34390 E-10	3.92678 E-14	-2.04780 E-18	
0.15	0.00000 E+00	-8.74970 E-11	1.41889 E-14	-6.43590 E-20	
0.2	-1.36300 E-09	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.25	-8.31760 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	

Table 5-E.11Stress Factor K_x Coefficients — Triangular Hole Pattern (Cont'd)					
μ*	C ₁₆	C ₁₇	C ₁₈	C ₁₉	
0.3	-7.17880 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.333	-4.62140 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.4	-4.07500 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.5	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.6	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.7	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.8	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.9	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
1	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	

(a) $K_{\rm x} = \frac{C_1 + C_2\theta + C_3\theta^2 + C_4\theta^3 + C_5\theta^4 + C_6\theta^5 + C_7\theta^6 + C_8\theta^7 + C_9\theta^8 + C_{10}\theta^9 + C_{11}\theta^{10}}{2}$
$\Lambda_{X} = \frac{1}{1 + C_{12}\theta + C_{13}\theta^{2} + C_{14}\theta^{3} + C_{15}\theta^{4} + C_{16}\theta^{5} + C_{17}\theta^{6} + C_{18}\theta^{8} + C_{19}\theta^{10}}$
(b) See Figure 5-E.4 for definition of K_x and θ (θ is in degrees, $0 \le \theta \le 90$).
(a) Valid manage is 0.1 < < 1.0. data fam < 0.07 is manaided fam information and

(c) Valid range is $0.1 \le \mu^* \le 1.0$; data for $\mu^* = 0.05$ is provided for information only.

Table 5-E.12 Stress Factor K _y Coefficients — Triangular Hole Pattern							
μ^{*}	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3	<i>C</i> ₄	<i>C</i> 5		
0.05	1.03339 E+00	0.00000 E+00	-2.84109 E-03	0.00000 E+00	4.19314 E-06		
0.1	1.07512 E+00	0.00000 E+00	-2.27215 E-03	0.00000 E+00	3.65504 E-06		
0.15	1.10022 E+00	0.00000 E+00	-1.22107 E-03	0.00000 E+00	2.78469 E-06		
0.2	1.11688 E+00	-8.46125 E-02	2.79641 E-03	-2.96440 E-05	-2.88860 E-08		
0.25	1.16107 E+00	-5.62139 E-02	1.52480 E-03	-5.12960 E-06	-2.84200 E-07		
0.3	1.23266 E+00	-7.01751 E-02	2.10035 E-03	-2.92840 E-05	1.38335 E-07		
0.333	1.29302 E+00	0.00000 E+00	9.21649 E-04	0.00000 E+00	1.47528 E-07		
0.4	1.44919 E+00	-5.25533 E-02	1.13847 E-03	-1.51710 E-05	7.22991 E-08		
0.5	1.71400 E+00	-2.27180 E-05	-2.32310 E-04	5.53814 E-07	-2.02130 E-07		
0.6	1.98420 E+00	2.88144 E-04	-6.45880 E-04	9.50408 E-06	-5.54150 E-07		
0.7	2.24001 E+00	-2.21010 E-04	-7.35030 E-04	-1.06590 E-05	7.63943 E-07		
0.8	2.47998 E+00	-9.56630 E-06	-9.88900 E-04	2.31615 E-07	1.03079 E-07		
0.9	2.72430 E+00	-6.11640 E-05	-1.11908 E-03	3.82662 E-06	-2.21980 E-07		
1	3.00000 E+00	6.01553 E-04	-1.40134 E-03	2.02817 E-05	-1.00490 E-06		
μ^{*}	C 6	<i>C</i> ₇	<i>C</i> 8	C ₉	C ₁₀		
0.05	0.00000 E+00	-1.64540 E-09	0.00000 E+00	2.29250 E-13	0.00000 E+00		
0.1	0.00000 E+00	-1.39530 E-09	0.00000 E+00	1.83217 E-13	0.00000 E+00		
0.15	0.00000 E+00	-1.06820 E-09	0.00000 E+00	1.44899 E-13	0.00000 E+00		
0.2	9.69984 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.25	2.10463 E-09	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.3	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.333	0.00000 E+00	-1.56830 E-10	0.00000 E+00	1.06849 E-14	0.00000 E+00		
0.4	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.5	4.62233 E-09	-1.14270 E-10	2.12833 E-12	-1.80180 E-14	5.56084 E-17		
0.6	1.65435 E-08	-2.97480 E-10	3.50182 E-12	-2.37960 E-14	7.59107 E-17		
0.7	-2.78200 E-08	6.69142 E-10	-9.94040 E-12	8.96030 E-14	-4.52210 E-16		
0.8	-1.72350 E-09	7.31083 E-11	-1.64730 E-12	1.93694 E-14	-1.18190 E-16		
0.9	1.52399 E-08	-4.17110 E-10	6.84700 E-12	-6.81690 E-14	3.74951 E-16		
1	3.55493 E-08	-6.67360 E-10	7.22950 E-12	-4.25910 E-14	1.05163 E-16		

μ^{*}	C ₁₁	C ₁₂	C ₁₃	C14	C15
0.05	2.03746 E-18	0.00000 E+00	-1.02414 E-03	0.00000 E+00	6.61817 E-0
0.05	-1.10020 E-17	0.00000 E+00	-1.30100 E-04	0.00000 E+00	1.62821 E-0
0.1	-8.94190 E-18	0.00000 E+00	-4.43300 E-04	0.00000 E+00	5.47099 E-0
0.15	-1.02870 E-17	0.00000 E+00	9.13766 E-05	0.00000 E+00	1.17503 E-0
0.2	0.00000 E+00	-7.50744 E-02	2.84658 E-03	-5.41970 E-05	5.06334 E-0
0.25	0.00000 E+00	-4.84213 E-02	1.54856 E-03	-2.82640 E-05	2.81005 E-0
0.3	0.00000 E+00	-5.72395 E-02	1.69354 E-03	-2.71490 E-05	2.33083 E-0
0.333	0.00000 E+00	0.00000 E+00	5.88781 E-04	0.00000 E+00	-2.31450 E-0
0.4	0.00000 E+00	-3.63267 E-02	7.41010 E-04	-8.51480 E-06	5.71068 E-0
0.5	-7.05120 E-21	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.6	-6.43060 E-20	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.7	9.79922 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.8	2.94832 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.9	-8.72370 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
1.0	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
μ^{*}	C ₁₆	C17	C ₁₈	<i>C</i> ₁₉	
0.05	0.00000 E+00	-1.12070 E-10	2.48827 E-14	-1.26920 E-18	
0.1	0.00000 E+00	-2.01280 E-10	3.33735 E-14	-1.26370 E-18	
0.15	0.00000 E+00	2.78911 E-11	-1.41260 E-14	3.28174 E-18	
0.2	-1.68980 E-09	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.25	-1.01320 E-09	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.3	-8.14480 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.333	0.00000 E+00	2.63945 E-11	-7.08690 E-16	0.00000 E+00	
0.4	-1.57550 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.5	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.6	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.7	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.8	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.9	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
1	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	

(b) See Figure 5-E.4 for definition of
$$K_y$$
 and θ (θ is in degrees, $0 \le \theta \le 90$).

(c) Valid range is $0.1 \le \mu^* \le 1.0$; data for $\mu^* = 0.05$ is provided for information only.

	Table 5-E.13Stress Factor K_{xy} Coefficients — Triangular Hole Pattern							
μ^{*}	<i>C</i> ₁	<i>C</i> ₂	С3	<i>C</i> ₄	<i>C</i> 5			
0.05	-7.39914 E-03	-1.08535 E+00	8.22248 E-02	-2.38787 E-03	3.01315 E-05			
0.1	1.01945 E-03	-5.69877 E-01	4.14104 E-02	-1.17352 E-03	1.45770 E-05			
0.15	6.42492 E-04	-3.76414 E-01	2.49867 E-02	-6.82750 E-04	8.40611 E-06			
0.2	2.06985 E-04	-2.82692 E-01	3.19868 E-03	-1.11430 E-04	3.35540 E-05			
0.25	8.93706 E-05	-2.26878 E-01	1.27974 E-03	2.90909 E-05	1.42069 E-05			
0.3	4.18418 E-05	-1.91445 E-01	6.07889 E-04	4.80215 E-05	7.84724 E-06			
0.333	-6.40560 E-06	-1.73543 E-01	5.82276 E-03	-6.51600 E-05	2.43193 E-07			
0.4	3.27439 E-06	-1.49979 E-01	3.96703 E-03	-2.72410 E-05	-6.26590 E-08			
0.5	9.56664 E-07	-1.27747 E-01	4.80727 E-05	4.22320 E-05	5.50887 E-07			
0.6	2.03447 E-06	-1.15912 E-01	-9.13650 E-06	3.52216 E-05	-3.00780 E-08			

٦

	Table 5-E.13 Stress Factor K _{xy} Coefficients — Triangular Hole Pattern (Cont'd)						
μ*	<i>C</i> ₁	<i>C</i> ₂	С ₃	<i>C</i> ₄	C 5		
0.7	-5.55990 E-06	-1.13285 E-01	8.09445 E-05	1.53690 E-05	8.34663 E-0		
0.8	1.24527 E-05	-1.17560 E-01	3.80773 E-05	2.14282 E-05	1.42560 E-0		
0.9	5.89104 E-06	-1.26273 E-01	-1.97790 E-04	4.88674 E-05	-1.39820 E-0		
1	-5.06060 E-06	-1.39930 E-01	7.41931 E-05	2.11002 E-05	3.89961 E-0		
 μ*	С ₆	C ₇	C ₈	<i>C</i> 9	C ₁₀		
μ 0.05	-1.36240 E-07	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0		
0.1	-6.52070 E-08	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0		
0.15	-3.76500 E-08	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0		
0.13	-1.81580 E-06	4.43342 E-08	-5.67960 E-10	3.77794 E-12	-1.10280 E-1		
0.2	-8.15470 E-07	4.45542 E-08 1.95441 E-08	-2.39950 E-10	1.46392 E-12	-3.30050 E-1		
0.23	-4.62740 E-07	1.13561 E-08	-1.49140 E-10	1.05550 E-12	-3.56840 E-1		
0.5	-4.02/40 E-0/	1.15501 E-00	-1.49140 E-10	1.05550 E-12	-3.30040 E-1		
0.333	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0		
0.4	9.03506 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0		
0.5	-3.69530 E-08	7.98203 E-10	-1.17410 E-11	1.14039 E-13	-6.19170 E-1		
0.6	-4.53810 E-09	8.45235 E-12	2.94347 E-13	3.60809 E-16	-2.58250 E-1		
0.7	-3.67350 E-08	8.44596 E-10	-1.27320 E-11	1.19515 E-13	-6.25560 E-1		
0.8	-4.81590 E-09	2.63934 E-11	2.41904 E-13	-5.36000 E-15	3.73993 E-1		
0.9	4.84996 E-08	-1.11690 E-09	1.57464 E-11	-1.35440 E-13	6.54802 E-1		
1	-1.46850 E-08	2.79200 E-10	-3.87640 E-12	3.48700 E-14	-1.78540 E-1		
μ^*	C ₁₁	C ₁₂	C ₁₃	<i>C</i> ₁₄	C 15		
0.05	0.00000 E+00	-6.11957 E-02	4.96171 E-03	-1.55160 E-04	1.81866 E-06		
0.1	0.00000 E+00	-5.41190 E-02	2.12818 E-03	-4.49070 E-05	4.21399 E-07		
0.15	0.00000 E+00	-5.41630 E-02	1.83445 E-03	-2.83810 E-05	1.56135 E-07		
0.2	6.17870 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.25	-1.74160 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.3	3.78562 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.333	0.00000 E+00	-3.32979 E-02	9.89014 E-04	-2.00760 E-05	2.13657 E-07		
0.4	0.00000 E+00	-2.63120 E-02	6.77611 E-04	-1.18360 E-05	1.19749 E-07		
0.5	1.39801 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.6	9.98442 E-20	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.7	1.39 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.8	-9.40150 E-20	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.9	-1.36400 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
1	3.96745 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
μ*	C ₁₆						
0.05	-6.24160 E-09						
0.1	-9.84060 E-10						
0.15	2.71970 E-10						
0.2	0.00000 E+00						
0.25	0.00000 E+00						
0.3	0.00000 E+00						
0.333	-8.79980 E-10						
0.4	-4.63550 E-10						
0.5	0.00000 E+00						
0.6	0.00000 E+00						
0.7	0.00000 E+00						
0.8	0.00000 E+00						
0.9	0.00000 E+00						
1	0.00000 E+00						

Table 5-E.13 Stress Factor K_{xy} Coefficients — Triangular Hole Pattern (Cont'd)

GENERAL NOTES:

(a) $K_{xy} = \frac{C_1 + C_2\theta + C_3\theta^2 + C_4\theta^3 + C_5\theta^4 + C_6\theta^5 + C_7\theta^6 + C_8\theta^7 + C_9\theta^8 + C_{10}\theta^9 + C_{11}\theta^{10}}{1 + C_{12}\theta + C_{13}\theta^2 + C_{14}\theta^3 + C_{15}\theta^4 + C_{16}\theta^5}$ (b) See Figure 5-E.4 for definition of K_{xy} and θ (θ is in degrees, $0 \le \theta \le 90$). (c) Valid range is $0.1 \le \mu^* \le 1.0$; data for $\mu^* = 0.05$ is provided for information only.

	Stress Fact		5-E.14 ts — Triangular I	Hole Pattern	
μ^*	C ₁	<i>C</i> ₂	<i>C</i> 3	<i>C</i> ₄	<i>C</i> 5
0.05	-9.29310 E-06	-2.40230 E-05	5.42804 E-06	-1.72080 E-06	3.22669 E-08
0.1	-9.93840 E-06	-8.18720 E-04	1.65045 E-05	-4.11550 E-06	8.28294 E-0
0.15	-6.53010 E-06	-3.54095 E-03	1.29674 E-04	-1.15250 E-05	2.09898 E-0
0.2	-3.61560 E-06	-7.06114 E-03	2.25220 E-04	-1.50590 E-05	2.53461 E-0
0.25	2.74788 E-06	-1.06818 E-02	-8.15910 E-06	-6.69010 E-06	-1.84370 E-0
0.3	1.04406 E-06	-1.36716 E-02	-4.17830 E-05	-2.20820 E-07	-3.72820 E-0
0.333	-1.38930 E-06	-1.55881 E-02	5.74404 E-05	2.27610 E-06	-1.01860 E-0
0.4	3.13558 E-06	-1.85694 E-02	1.62032 E-05	-3.46980 E-06	9.27417 E-0
0.5	-3.16530 E-06	-2.18793 E-02	2.88419 E-05	-3.40110 E-06	2.55929 E-0
0.6	5.79860 E-06	-2.42588 E-02	-9.32380 E-06	3.04863 E-06	-1.99940 E-0
0.7	9.28851 E-06	-2.60522 E-02	-1.68180 E-04	2.26662 E-05	-1.42040 E-0
0.8	-2.46430 E-06	-2.92418 E-02	8.80912 E-05	-8.59660 E-06	5.62546 E-0
0.9	-9.50950 E-07	-3.19965 E-02	9.74574 E-05	-9.48760 E-06	6.50771 E-0
1	7.19047 E-05	-3.65095 E-02	5.74262 E-04	-6.81290 E-05	4.06484 E-0
μ^{*}	C 6	<i>C</i> ₇	C 8	C 9	C ₁₀
0.05	-1.69180 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.1	-4.76560 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.15	-1.18870 E-09	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.2	-1.43010 E-09	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.25	1.57697 E-08	-4.29970 E-10	7.54160 E-12	-8.49970 E-14	5.28050 E-1
0.3	1.85814 E-08	-4.27470 E-10	6.37333 E-12	-6.30240 E-14	3.60467 E-1
0.333	-3.88610 E-11	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.4	-1.95120 E-09	6.35820 E-11	-1.12390 E-12	9.39092 E-15	-3.50260 E-1
0.5	-1.10830 E-08	3.19647 E-10	-5.61770 E-12	5.80545 E-14	-3.26310 E-1
0.6	1.00071 E-08	-2.81100 E-10	4.70851 E-12	-4.66620 E-14	2.51901 E-1
0.7	5.53414 E-08	-1.32840 E-09	1.98654 E-11	-1.80260 E-13	9.07814 E-1
0.8	-1.75270 E-08	3.17054 E-10	-3.27550 E-12	1.70610 E-14	-2.46830 E-1
0.9	-2.27660 E-08	5.02323 E-10	-7.09120 E-12	6.20570 E-14	-3.06570 E-1
1	-1.31660 E-07	2.53689 E-09	-2.94940 E-11	1.99428 E-13	-6.98860 E-1
μ*	C ₁₁	C ₁₂	C ₁₃	C14	C15
0.05	0.00000 E+00	-8.88523 E-02	3.57223 E-03	-7.14600 E-05	6.88731 E-0
0.1	0.00000 E+00	-6.91433 E-02	2.51059 E-03	-4.68590 E-05	4.27074 E-0
0.15	0.00000 E+00	-4.77362 E-02	1.62971 E-03	-2.86370 E-05	2.42889 E-0
0.2	0.00000 E+00	-3.67894 E-02	1.24346 E-03	-2.08690 E-05	1.72584 E-0
0.25	-1.34680 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.3	-8.76600 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.333	0.00000 E+00	-2.49274 E-03	-6.12320 E-04	1.55087 E-05	-1.58170 E-0
0.4	4.17428 E-20	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.5	7.71866 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.6	-5.70300 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.7	-1.94600 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.8	-7.44600 E-20	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.9	6.53218 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
1	9.11009 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
μ*	<i>C</i> ₁₆				-
0.05	-2.49920 E-09				
0.1	-1.42360 E-09				
0.15	-6.24940 E-10				
0.2	-3.32030 E-10				
0.25	0.00000 E+00				

0.00000 E+00 5.79203 E-10 0.00000 E+00					
).00000 E+00					
0.00000 E+00					
0.00000 E+00					
0.00000 E+00					
0.00000 E+00					
0.00000 E+00					
0.00000 E+00					
	0.00000 E+00 0.00000 E+00 0.00000 E+00 0.00000 E+00				

	Table 5-E.15 Stress Factor <i>K_{yz}</i> Coefficients — Triangular Hole Pattern						
μ^{*}	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3	<i>C</i> ₄	<i>C</i> 5		
0.05	1.01759 E+00	-3.05131 E-02	-2.78780 E-04	2.03038 E-05	-1.95910 E-07		
0.1	1.03660 E+00	0.00000 E+00	-4.75940 E-04	0.00000 E+00	1.16120 E-07		
0.15	1.05819 E+00	0.00000 E+00	-2.90970 E-04	0.00000 E+00	9.78866 E-08		
0.2	1.08253 E+00	0.00000 E+00	-2.23930 E-04	0.00000 E+00	1.07827 E-07		
0.25	1.10950 E+00	4.96099 E-05	-5.02180 E-04	-1.98140 E-06	5.75502 E-07		
0.3	1.14000 E+00	-2.73920 E-05	-3.62530 E-04	-6.23200 E-06	6.95315 E-07		
0.333	1.16250 E+00	-2.10030 E-04	-2.75170 E-04	-8.95280 E-06	7.13417 E-07		
0.4	1.21360 E+00	-2.84640 E-04	-1.95400 E-04	-9.99600 E-06	7.08864 E-07		
0.5	1.30250 E+00	-1.43900 E-04	-2.00590 E-04	-2.55510 E-06	1.10218 E-07		
0.6	1.40640 E+00	1.24641 E-04	-2.51630 E-04	2.42722 E-06	-8.75060 E-08		
0.7	1.52461 E+00	3.88729 E-05	-2.36130 E-04	9.04305 E-07	-1.24720 E-07		
0.8	1.66000 E+00	-3.42500 E-04	-1.40620 E-04	-1.24210 E-05	6.95292 E-07		
0.9	1.81620 E+00	2.57972 E-04	-3.23520 E-04	5.03588 E-06	-3.24240 E-07		
1	1.99998 E+00	-4.08690 E-04	-1.78600 E-04	-1.48060 E-05	9.30412 E-07		
μ^{*}	C 6	<i>C</i> ₇	<i>C</i> 8	C ₉	C10		
0.05	3.45278 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.1	0.00000 E+00	6.24853 E-11	0.00000 E+00	-1.80420 E-14	0.00000 E+00		
0.15	0.00000 E+00	3.81940 E-11	0.00000 E+00	-8.05400 E-15	0.00000 E+00		
0.2	0.00000 E+00	9.71070 E-12	0.00000 E+00	-2.67240 E-15	0.00000 E+00		
0.25	-1.94130 E-08	4.82249 E-10	-8.70230 E-12	9.41449 E-14	-5.33350 E-16		
0.3	-2.45770 E-08	6.01127 E-10	-1.00750 E-11	1.02627 E-13	-5.62150 E-16		
0.333	-2.28300 E-08	4.99708 E-10	-7.60450 E-12	7.21191 E-14	-3.73300 E-16		
0.4	-2.43360 E-08	5.54380 E-10	-8.38470 E-12	7.82984 E-14	-4.03120 E-16		
0.5	-2.17130 E-10	-6.35380 E-11	1.67167 E-12	-2.03770 E-14	1.26185 E-16		
0.6	1.65579 E-09	8.28289 E-12	-8.55000 E-13	1.42028 E-14	-1.02380 E-16		
0.7	7.97510 E-09	-2.53680 E-10	4.60393 E-12	-4.82230 E-14	2.71723 E-16		
0.8	-2.18310 E-08	4.14476 E-10	-4.70290 E-12	3.00729 E-14	-9.16970 E-17		
0.9	1.33468 E-08	-3.36510 E-10	5.33822 E-12	-5.18350 E-14	2.81329 E-16		
1	-3.45480 E-08	8.17163 E-10	-1.23080 E-11	1.14381 E-13	-5.97320 E-16		

μ*	C ₁₁	<i>C</i> ₁₂	- Triangular Hole	C ₁₄	C ₁₅
0.05	0.00000 E+00	-3.04984 E-02	2.88546 E-03	-1.07790 E-04	1.51472 E-06
0.03	1.13734 E-18	0.00000 E+00	9.03802 E-04	0.00000 E+00	-5.17010 E-07
0.15	2.65237 E-19	0.00000 E+00	5.85740 E-04	0.00000 E+00	-1.71680 E-07
0.2	0.00000 E+00	0.00000 E+00	3.96930 E-04	0.00000 E+00	-5.73760 E-08
0.25	1.22126 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.3	1.27005 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.333	8.01462 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.4	8.72462 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.5	-3.18710 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.6	2.82046 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.7	-6.38360 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.8	7.44602 E-20	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
0.9	-6.53220 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
1	1.33972 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00
μ^{*}	C ₁₆	C ₁₇	C ₁₈	C19	
0.05	-6.83930 E-09	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.1	0.00000 E+00	1.70274 E-10	-1.81320 E-14	4.14493 E-19	
0.15	0.00000 E+00	7.75559 E-11	-6.99310 E-15	3.38942 E-19	
0.2	0.00000 E+00	3.85892 E-11	-3.13170 E-15	2.30988 E-19	
0.25	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.3	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.333	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.4	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.5	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.6	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.7	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.8	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.9	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
1	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	

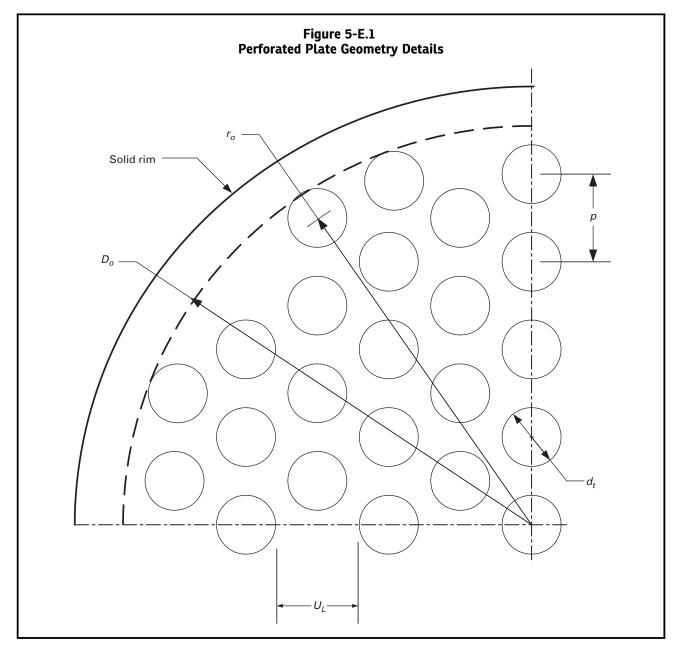
(b) See Figure 5-E.4 for definition of K_y and θ (θ is in degrees, $0 \le \theta \le 90$). (c) Valid range is $0.1 \le \mu^* \le 1.0$; data for $\mu^* = 0.05$ is provided for information only.

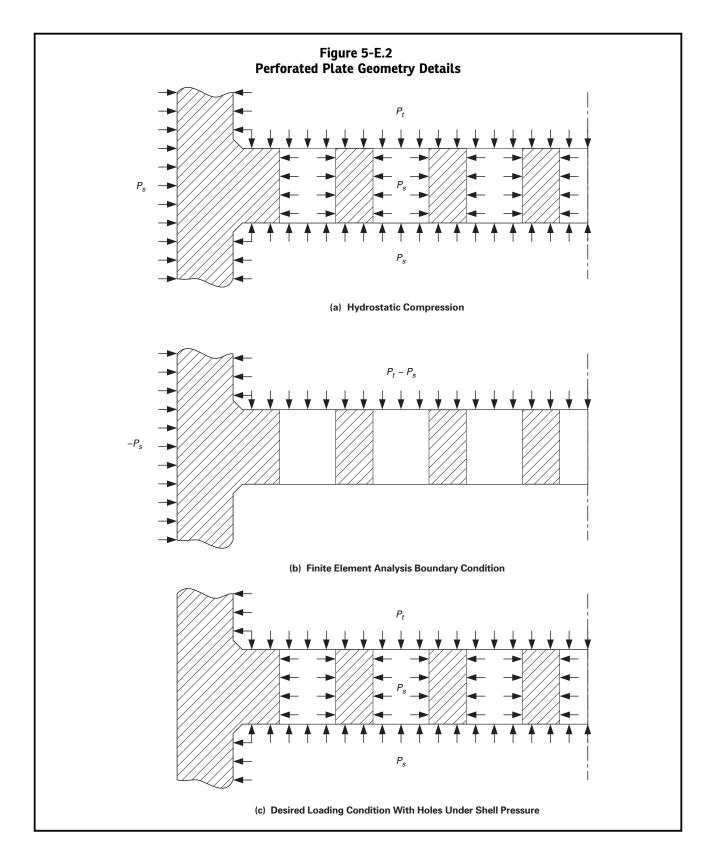
μ^{*}	<i>C</i> ₁	<i>C</i> ₂	C ₃	C4	<i>C</i> ₅
0.05	-1.47580 E-05	1.87249 E-03	-7.61080 E-04	1.08786 E-04	-7.15640 E-0
0.1	9.61530 E-05	1.49451 E-03	-6.65180 E-04	1.10521 E-04	-8.80780 E-0
0.15	4.52677 E-04	7.25376 E-04	-3.88940 E-04	6.22683 E-05	-5.84370 E-0
0.2	-4.59662 E-03	4.14890 E-04	-3.50340 E-04	3.59267 E-05	-3.37600 E-0
0.25	-2.32447 E-02	1.14393 E-04	-2.62490 E-04	1.07287 E-05	-9.18750 E-0
0.3	-5.81960 E-02	9.31334 E-05	-2.19360 E-04	6.95148 E-06	-2.82680 E-0
0.4	-1.67582 E-01	0.00000 E+00	7.67000 E-06	0.00000 E+00	3.12582 E-0
0.5	-3.04997 E-01	2.44227 E-04	2.90749 E-04	1.03388 E-05	-6.09000 E-0
0.6	-4.51190 E-01	1.82289 E-04	5.63428 E-04	5.55595 E-06	-3.11900 E-0
0.7	-5.99893 E-01	-1.25650 E-04	7.97795 E-04	3.53441 E-06	-4.01310 E-0
0.8	-7.47205 E-01	4.48376 E-04	8.14352 E-04	1.59400 E-05	-1.01130 E-0
0.9	-8.84697 E-01	-5.33590 E-05	1.07553 E-03	5.57335 E-06	-6.58380 E-0
1	-1.00000 E+00	-6.01550 E-04	1.40134 E-03	-2.02820 E-05	1.00488 E-0
μ^{*}	C 6	<i>C</i> ₇	C 8	<i>C</i> 9	C10
0.05	2.33550 E-07	-3.74710 E-09	2.27673 E-11	1.04903 E-13	-2.01210 E-1
0.1	3.52872 E-07	-7.55790 E-09	8.91862 E-11	-5.51610 E-13	1.43371 E-1
0.15	2.70724 E-07	-6.52480 E-09	8.77846 E-11	-6.62150 E-13	2.58130 E-1
0.2	1.75074 E-07	-4.56500 E-09	6.55342 E-11	-5.31400 E-13	2.28801 E-1
0.25	6.90285 E-08	-2.06050 E-09	3.07767 E-11	-2.48780 E-13	1.04292 E-1
0.3	3.61104 E-08	-1.24330 E-09	1.96093 E-11	-1.63430 E-13	7.05734 E-1
0.4	0.00000 E+00	-2.94550 E-11	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.5	2.93634 E-08	-8.08080 E-10	1.21405 E-11	-1.02700 E-13	4.65426 E-1
0.6	9.48432 E-09	-1.97890 E-10	2.10909 E-12	-9.14970 E-15	-5.90480 E-1
0.7	1.46249 E-08	-3.61090 E-10	5.25001 E-12	-4.39820 E-14	1.97926 E-1
0.8	3.05689 E-08	-6.27430 E-10	8.21919 E-12	-6.62010 E-14	3.01974 E-1
0.9	2.64004 E-08	-7.20270 E-10	1.19106 E-11	-1.16290 E-13	6.21431 E-1
1	-3.55490 E-08	6.67355 E-10	-7.22950 E-12	4.25909 E-14	-1.05160 E-1
μ^*	<i>C</i> ₁₁	<i>C</i> ₁₂	C ₁₃	C ₁₄	C ₁₅
0.05	7.12847 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.1	-2.92300 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.15	-3.93740 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.2	-4.06880 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.25	-1.77570 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.3	-1.25400 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.4	0.00000 E+00	3.66644 E-04	1.39889 E-08	4.71280 E-12	-9.52780 E-1
0.5	-8.85620 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.6	1.17895 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.7	-3.69860 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.8	-6.00950 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.9	-1.40370 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
1	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
	$\frac{2\theta + C_3\theta^2 + C_4\theta^3 + C_5\theta^4 + C_6}{1 + C_{12}\theta^2 + C_6}$.4 for definition of K_x and				

	Str	ess Factor K_{xy} —	- Square Hole Pat	tern	
μ*	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3	<i>C</i> ₄	C 5
0.05	4.10628 E-04	-1.03092 E+00	-2.60562 E-02	1.42763 E-02	-1.13154 E-0
0.1	-1.82830 E-04	-4.93550 E-01	-1.94314 E-02	4.90571 E-03	-2.95940 E-0
0.15	-5.94810 E-05	-3.51560 E-01	-4.36757 E-03	1.34861 E-03	-5.37530 E-0
0.2	5.45892 E-04	-2.81094 E-01	1.23677 E-02	-2.05420 E-04	1.14121 E-0
0.25	1.32829 E-05	-2.22708 E-01	-2.00720 E-04	2.29490 E-04	1.05088 E-0
0.3	6.15483 E-06	-1.89244 E-01	2.07521 E-04	9.47928 E-05	5.03027 E-0
0.4	1.66864 E-06	-1.48510 E-01	4.61787 E-05	6.25567 E-05	9.48205 E-0
0.5	-1.20220 E-06	-1.28243 E-01	2.58038 E-03	-2.56740 E-05	1.42611 E-0
0.6	-4.63660 E-06	-1.19644 E-01	-3.38840 E-05	3.23761 E-05	-2.36380 E-0
0.7	4.34520 E-06	-1.18318 E-01	3.89048 E-05	1.89838 E-05	4.09430 E-0
0.8	6.30422 E-06	-1.21221 E-01	1.89750 E-06	2.05803 E-05	4.80584 E-0
0.9	-4.40310 E-07	-1.28514 E-01	9.10516 E-05	1.44325 E-05	7.77422 E-0
1	-5.06060 E-06	-1.39930 E-01	7.41931 E-05	2.11002 E-05	3.89961 E-0
μ^{*}	C 6	<i>C</i> ₇	C 8	C ₉	<i>C</i> ₁₀
0.05	4.58608 E-05	-1.11640 E-06	1.69499 E-08	-1.57290 E-10	8.16374 E-1
0.1	9.90563 E-06	-2.11290 E-07	2.94076 E-09	-2.59170 E-11	1.31470 E-2
0.15	1.01724 E-06	-1.01090 E-08	3.65386 E-11	2.29882 E-13	-2.45460 E-2
0.2	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.25	-3.33450 E-07	9.60689 E-09	-1.41310 E-10	1.24782 E-12	-6.33550 E-1
0.3	-3.62510 E-07	9.01762 E-09	-1.24960 E-10	1.06743 E-12	-5.33570 E-2
0.4	-8.06470 E-08	1.46557 E-09	-1.09650 E-11	2.84023 E-14	1.52304 E-2
0.5	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.6	4.87650 E-09	-2.33200 E-10	5.13313 E-12	-5.70940 E-14	3.17302 E-2
0.7	-1.81480 E-08	3.88068E-10	-5.54280E-12	4.99395E-14	-2.55870E-2
0.8	-2.62660E-08	6.99127E-10	-1.15610E-11	1.13080 E-13	-5.99740 E-2
0.9	-3.24290 E-08	7.59367 E-10	-1.16550 E-11	1.09684 E-13	-5.72670 E-1
1	-1.46850 E-08	2.79200 E-10	-3.87640 E-12	3.48700 E-14	-1.78540 E-1
μ^{*}	C ₁₁	<i>C</i> ₁₂	<i>C</i> ₁₃	<i>C</i> ₁₄	C ₁₅
0.05	-1.81420 E-15	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.1	-2.92160 E-16	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.15	5.45478 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.2	0.00000 E+00	-3.78601 E-02	1.24548 E-03	-1.83300 E-05	1.01840 E-0
0.25	1.40788 E-17	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.3	1.18572 E-17	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.4	-3.38450 E-20	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.5	0.00000 E+00	-2.00096 E-02	4.98896 E-04	-6.14640 E-06	3.41459 E-0
0.6	-7.05110 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.7	5.68605 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.8	1.33276 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
0.9	1.27259 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0
1	3.96745 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+0

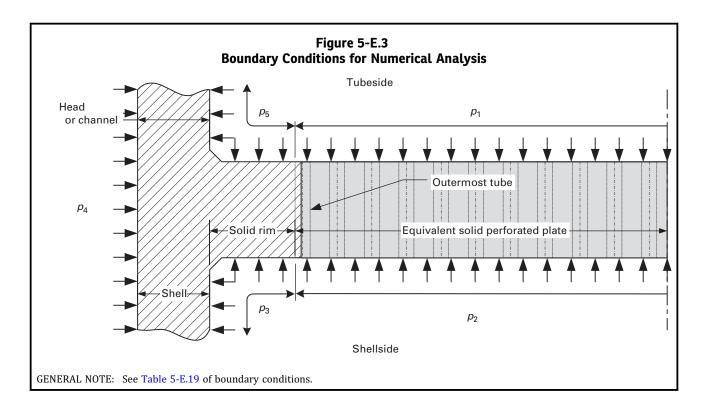
 $K_{xy} = \frac{c_1 + c_2 \sigma + c_3 \sigma + c_4 \sigma + c_5 \sigma + c_6 \sigma + c_7 \sigma + c_8 \sigma + c_9 \sigma + c_{10} \sigma + c_{11} \sigma}{1 + c_{12} \theta + c_{13} \theta^2 + c_{14} \theta^3 + c_{15} \theta^4}$ (b) See Figure 5-E.4 for definition of K_{xy} and θ (θ is in degrees, $0 \le \theta \le 90$). (c) Valid range is $0.1 \le \mu^* \le 1.0$; data for $\mu^* = 0.05$ is provided for information only.

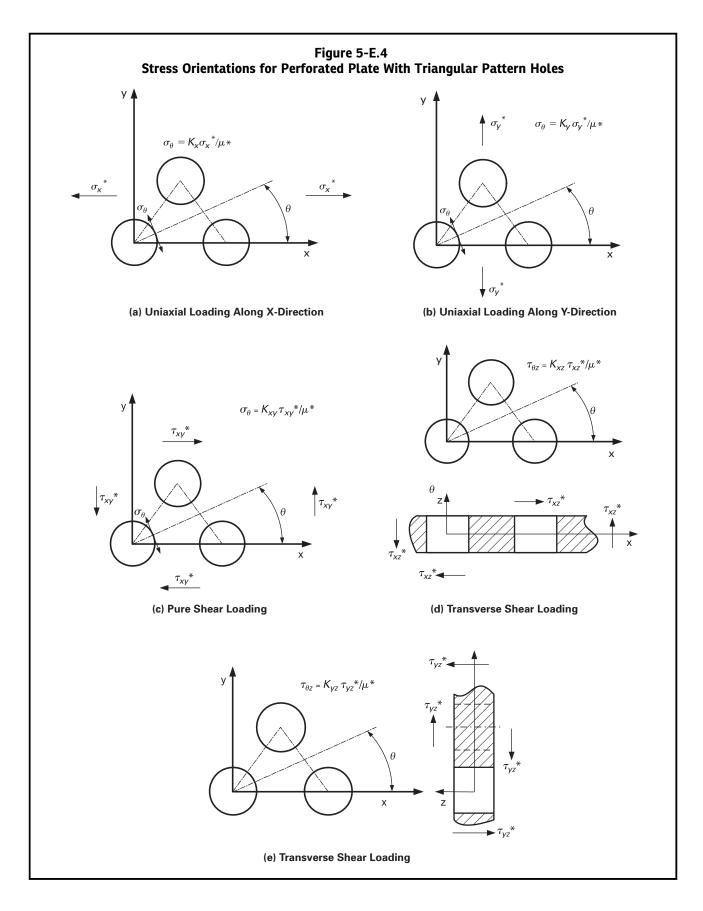
Table 5-E.18Stress Factors K_{xz} and K_{yz} — Square Hole Pattern						
μ*			-			
	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3	<i>C</i> ₄	<i>C</i> 5	
0.05	-8.65900 E-05	0.00000 E+00	3.39079 E-06	0.00000 E+00	-9.00340 E-08	
0.1	-9.16630 E-06	1.70502 E-04	-2.18240 E-04	3.03915 E-05	-2.60740 E-06	
0.15	-7.50710 E-06	-1.70443 E-03	6.97716 E-06	-6.04360 E-06	8.60699 E-08	
0.2	5.53257 E-07	-3.89704 E-03	-1.93130 E-05	-2.30990 E-06	-3.09000 E-07	
0.25	3.23710 E-07	-6.44426 E-03	-6.52400 E-05	2.93245 E-06	-5.32400 E-07	
0.3	-6.76800 E-07	-9.59777 E-03	3.72356 E-05	-8.93710 E-06	3.33448 E-07	
0.4	2.53798 E-06	-1.47723 E-02	-2.99370 E-05	2.92311 E-06	-3.37840 E-07	
0.5	8.12376 E-06	-1.93888 E-02	2.78977 E-05	-3.32890 E-06	2.15640 E-07	
0.6	3.52335 E-06	-2.25507 E-02	-1.01380 E-04	1.34464 E-05	-8.10840 E-07	
0.7	7.44733 E-06	-2.58912 E-02	-2.05060 E-05	4.19794 E-06	-2.12710 E-07	
0.8	1.25243 E-05	-2.86525 E-02	4.06228 E-06	-3.16500 E-06	5.12292 E-07	
0.9	-9.44320 E-06	-3.16364 E-02	-3.74000 E-05	8.62779 E-06	-5.59110 E-07	
1	-1.97550 E-05	-3.43965 E-02	-1.45890 E-04	1.85432 E-05	-1.03270 E-06	
μ^{*}	<i>C</i> ₆	<i>C</i> ₇	C 8	C 9	C10	
0.05	0.00000 E+00	1.39181 E-11	0.00000 E+00	-2.65320 E-15	0.00000 E+00	
0.1	1.08751 E-07	-2.67100 E-09	4.13442 E-11	-4.00270 E-13	2.20859 E-15	
0.15	-5.10320 E-10	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.2	-5.10320 E-10 1.60946 E-08	-3.29790 E-10	3.54744 E-12	-2.20680 E-14	8.74181 E-17	
0.25	2.31330 E-08	-4.96950 E-10	6.17680 E-12	-2.20880 E-14 -4.62380 E-14	2.01806 E-16	
0.23		3.01384 E-10	-5.42280 E-12	5.71883 E-14	-3.19690 E-16	
	-1.09310 E-08					
0.4	1.47598 E-08	-3.45240 E-10	4.84820 E-12	-4.08380 E-14	1.90865 E-16	
0.5	-8.79080 E-09	2.38954 E-10	-4.04210 E-12	4.10517 E-14	-2.29180 E-16	
0.6	2.96526 E-08	-6.57410 E-10	9.03011 E-12	-7.49820 E-14	3.44094 E-16	
0.7	8.54418 E-09	-2.09120 E-10	3.16043 E-12	-2.87240 E-14	1.43406 E-16	
0.8	-2.58810 E-08	7.24790 E-10	-1.20140 E-11	1.17377 E-13	-6.25690 E-16	
0.9	2.39629 E-08	-6.08270 E-10	9.39984 E-12	-8.70290 E-14	4.43996 E-16	
1	3.80915 E-08	-8.85470 E-10	1.30648 E-11	-1.18880 E-13	6.08423 E-16	
μ^{*}	<i>C</i> ₁₁	C ₁₂	C ₁₃	C14	C ₁₅	
0.05	1.37550 E-19	0.00000 E+00	1.79422 E-05	0.00000 E+00	4.15212 E-07	
0.1	-5.25320 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.15	0.00000 E+00	2.23725 E-03	-9.03060 E-04	3.77631 E-05	-5.40970 E-07	
0.2	-1.98940 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.25	-4.09670 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.3	7.31063 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.4	-3.82080 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.5	5.40118 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.6	-6.68450 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.7	-3.01410 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.8	1.40496 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
0.9	-9.60370 E-19	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
1	-1.33970 E-18	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00	
μ*	<i>C</i> ₁₆	<i>C</i> ₁₇	C ₁₈	<i>C</i> ₁₉		
0.05	0.00000 E+00	-9.82930 E-11	7.22485 E-15	-6.39790 E-20		
0.1	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.15	2.68316 E-09	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.2	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.25	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.3	0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.4	0.00000 E · 00	0 00000 E · 00	0.00000 E.00	0.00000 5.00		
0.4 0.5	0.00000 E+00	0.00000 E+00 0.00000 E+00	0.00000 E+00	0.00000 E+00		
0.5 0.6	0.00000 E+00 0.00000 E+00	0.00000 E+00 0.00000 E+00	0.00000 E+00 0.00000 E+00	0.00000 E+00 0.00000 E+00		

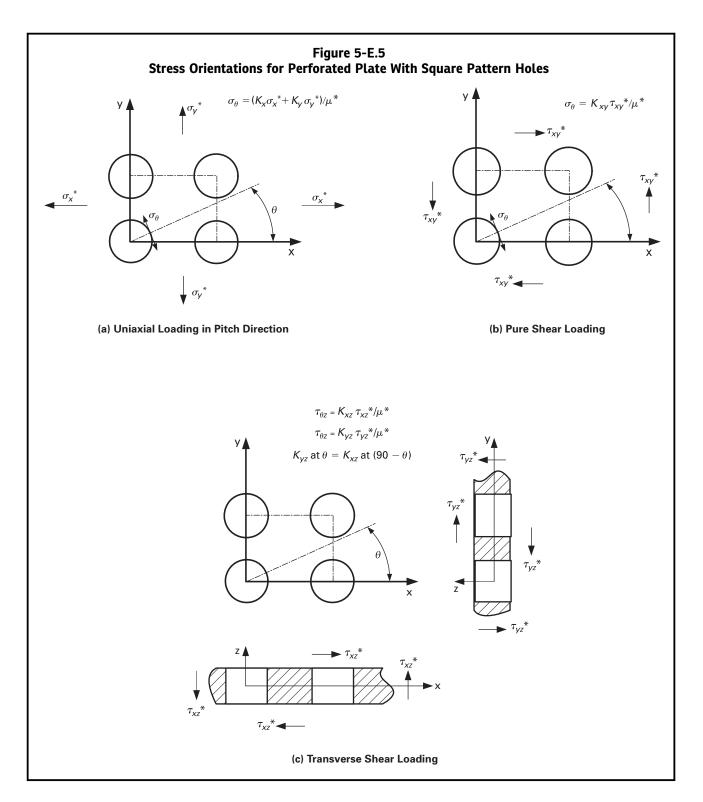

Table 5-E.18Stress Factors K_{xz} and K_{yz} — Square Hole Pattern (Cont'd)							
C ₁₆	C17	C ₁₈	C ₁₉				
0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00				
0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00				
0.00000 E+00	0.00000 E+00	0.00000 E+00	0.00000 E+00				
	С ₁₆ 0.00000 Е+00 0.00000 Е+00	C16 C17 0.00000 E+00 0.00000 E+00 0.00000 E+00 0.00000 E+00	C16 C17 C18 0.00000 E+00 0.00000 E+00 0.00000 E+00 0.00000 E+00 0.00000 E+00 0.00000 E+00	C16 C17 C18 C19 0.00000 E+00 0.00000 E+00 0.00000 E+00 0.00000 E+00 0.00000 E+00 0.00000 E+00 0.00000 E+00 0.00000 E+00			


Table 5-E.19 Boundary Conditions for the Numerical Analysis (See Figure 5-E.3)						
Pressur	e Region		Applied Pressure			
p	1		$p_t^* - p_h$			
p	2		$p_s^* - p_h$			
р	3	$p_s - p_h$				
p	4	$-p_h$				
р	5	$p_t - p_h$				
	1	Defi	nitions	1		
Fube Expansion Into Tubesheet	Tube-to-Tubesheet Weld Location	<i>p</i> [*] _t	p*s	<i>p</i> * _{<i>h</i>}		
	Tubeside	$P_t \left(1 - q \frac{A_h}{A}\right)$	$P_{S}\left(1-q\frac{A_{tS}}{A}\right)$	p _s		
Unexpanded	Shellside	$P_t \left(1 - \frac{A_h}{A}\right)$	$P_{\mathcal{S}}\left(1-q\frac{A_{ts}}{A}\right)-\left(q-1\right)\frac{A_{h}}{A}P_{t}$	p _t		
	Tubeside	$P_t \left(1 - q rac{A_h}{A} ight)$	$P_{S}\left(1-q\frac{A_{ts}}{A}\right)$	$\frac{t_{ts}}{h}P_t + \left(1 - \frac{t_{ts}}{h}\right)P_s$		
Expanded	Shellside	$P_t \left(1 - \frac{A_h}{A}\right)$	$P_{s}\left(1-qrac{A_{ts}}{A} ight)-\left(q-1 ight)rac{A_{h}}{A}P_{t}$	<i>p</i> _t		

GENERAL NOTES: (a) q = 0 (for the U-tube design) (b) q = 1 (for the Fixed Tubesheet design) (c) $\frac{A_{ts}}{A} = f_p \left(\frac{d}{p}\right)^2$ (d) $\frac{A_h}{A} = f_p \left(\frac{d-t_t}{p}\right)^2$ (e) $f_p = \frac{\pi}{2\sqrt{3}}$ (for the triangular pattern) (f) $f_p = \frac{\pi}{2\sqrt{3}}$ (for the square pattern)


(f) $f_p = \frac{\pi}{4}$ (for the square pattern)


5-E.10 FIGURES



5-E.10

ANNEX 5-F EXPERIMENTAL STRESS AND FATIGUE ANALYSIS

(Normative)

5-F.1 OVERVIEW

5-F.1.1 The critical or governing stresses in parts may be substantiated by experimental stress analysis. Experimental analysis may be used to determine governing stresses by strain measurement, and to evaluate the adequacy of a part for cyclic loading.

5-F.1.2 The test procedures followed and the interpretation of the results shall be such as to discount the effects of material added to the thickness of members, such as corrosion allowance or other material that cannot be considered as contributing to the strength of the part.

5-F.1.3 Reevaluation is not required for configurations for which there are available detailed experimental results that are consistent with the requirements of this Annex.

5-F.1.4 The use of this Annex requires the approval of the user or an agent acting on behalf of the user and the acceptance of its use shall be documented in the Manufacturer's Design Report.

5-F.2 STRAIN MEASUREMENT TEST PROCEDURE FOR STRESS COMPONENTS

5-F.2.1 Permissible types of tests for the determination of governing stresses are strain measurement and photoelastic tests. Either two-dimensional or three-dimensional photoelastic techniques may be used as long as the model represents the structural effects of the loading.

5-F.2.2 Strain gages used may be of any type capable of indicating strains to 0.00005 in./in. (0.005%). It is recommended that the gage length be such that the maximum strain within the gage length does not exceed the average strain within the gage length by more than 10%. Instrumentation shall be such that both surface principal stresses may be determined at each gage location in the elastic range of material behavior at that gage location. A similar number and orientation of gages at each gage location are required to be used in tests beyond the elastic range of material behavior. The strain gages and cements that are used shall be shown to be reliable for use on the material surface finish, test temperature, and configuration considered to strain values at least 50% higher than those expected.

5-F.2.3 Strain gage data may be obtained from the actual component or from a model component of any scale that meets the gage length requirements defined in 5-F.2.2. The model material need not be the same as the component material but shall have an elastic modulus that is either known or has been measured at the test conditions. The requirements of dimensional similitude shall be met.

5-F.2.4 Sufficient locations on the vessel shall be investigated to ensure that measurements are taken at the most critical areas. The location of the critical areas and the optimum orientation of test gages may be determined by a brittle coating test.

5-F.2.5 Pressure gages shall meet the requirements of Part 8.

5-F.2.6 The internal pressure or mechanical load shall be applied in such increments that the variation of strain with load can be plotted so as to establish the ratio of stress to load in the elastic range. If the first loading results in strains that are not linearly proportional to the load, then it is permissible to unload and reload successively until the linear proportionality has been established. When frozen stress photoelastic techniques are used, only one load value can be applied in which case the load shall not be so high as to result in deformations that invalidate the test results. After all instrumentation has been deemed acceptable, the test should be continued on a strain or displacement controlled basis with adequate time permitted between load changes for all metal flow to be completed.

5-F.2.7 Linear elastic theory shall be used to determine the design load stresses from the strain gage data. The calculations shall be performed under the assumption that the material is elastic. The elastic constants used in the evaluation of experimental data shall be those applicable to the test material at the test temperature.

5-F.2.8 The extent of experimental stress analysis performed shall be sufficient to determine the governing stresses. When possible, combined analytical and experimental methods shall be used to distinguish between primary, secondary, and peak stresses.

5-F.2.9 Stress determined by experimental results shall be evaluated for protection against plastic collapse using the criterion in 5.2.2. Protection against cyclic loading shall be evaluated in accordance with 5.5.3 or 5-F.3.

5-F.2.10 Tests conducted in accordance with this paragraph do not need to be witnessed by the Inspector. However, a detailed report of the test procedure and the results obtained shall be included with the Design Report. The Report shall show that the instrumentation used was within calibration.

5-F.3 PROTECTION AGAINST CYCLIC LOADING

5-F.3.1 The adequacy of a vessel or part to withstand cyclic loading may be demonstrated by means of a fatigue test in lieu of the methods of 5.5.3. The fatigue test shall not be used, however, as justification for exceeding the allowable values of primary or primary plus secondary stresses. This procedure shall not be used when the design temperature exceed the maximum temperature allowed for the fatigue curves as given in Annex 3-F. This procedure shall not be used when the number of design cycles exceed 50,000.

5-F.3.2 When a fatigue test is used to demonstrate the adequacy of a component to withstand cyclic loading, a description of the test shall be included in the Manufacturer's Design Report. This description shall contain sufficient detail to show compliance with the requirements of this Annex.

5-F.3.3 The test component or portion thereof shall be constructed of material having the same composition and subjected to mechanical working and heat treatment that result in mechanical properties equivalent to those of the material in the prototype component. Geometrical similarity must be maintained, at least in those portions whose ability to withstand cyclic loading is being investigated and in those adjacent areas which affect the stresses in the portion under test.

5-F.3.4 The test component or portion thereof shall withstand the number of cycles as set forth in 5-F.3.5 before failure occurs. Failure is herein defined as a propagation of a crack through the entire thickness, such as would produce a measurable leak in a pressure-retaining member.

5-F.3.5 The minimum number of cycles, N_T , which the component must withstand, and the magnitude of the loading, L_T , to be applied to the component during test, shall be determined by multiplying the design service cycles N_D by a specified factor K_{TN} and the design service loads L_D by a specified factor K_{TN} . Values of these factors shall be determined by means of the test parameter ratio diagram, the construction of which is as follows and is shown in Figure 5-F.1.

(a) Project a vertical line from the design service cycles, N_D , on the abscissa of the S_a versus N diagram, until the line intersects the fatigue design curve, label this point S_{aD} . Determine the value of $K_s \cdot S_{aD}$ to establish point A. The parameter K_s is determined using 5-F.3.9.

(b) Extend a horizontal line through the point D from the ordinate axis to an abscissa value of K_n times N_D . Label this point B. This parameter K_n is determined using 5-F.3.9.

(c) Connect the points A and B. The segment AB embraces all the allowable combinations of K_{TS} and K_{TN} . Any point C on this segment may be chosen. The factors K_{TS} and K_{TN} are defined by the following equations (see Figure 5-F.1).

$$K_{TS} = \frac{S_{aC}}{S_{aD}}$$
(5-F.1)

$$K_{TN} = \frac{N_C}{N_D}$$
(5-F.2)

Therefore

$$L_T = K_{TS} \cdot L_D \tag{5-F.3}$$

$$N_T = K_{TN} \cdot N_D \tag{5-F.4}$$

ASME BPVC.VIII.2-2023

5-F.3.6 It should be noted that if the test article is not a full size component but a geometrically similar model, the value L_T would have to be adjusted by the appropriate scale factor, to be determined from structural similitude principles, if the loading is other than pressure. The number of cycles that the component must withstand during this test without failure must not be less than N_T , while subjected to a cyclic test loading L_T which shall be adjusted, if required, using model similitude principles if the component is not full size.

5-F.3.7 Accelerated fatigue testing (test cycles N_T are less than design cycles N_D) may be conducted if the design cycles N_D are greater than 104 and the testing conditions are determined by the following procedures which are illustrated in Figure 5-F.2. In this figure, the points A, B, and D correspond to similar labeled points in Figure 5-F.1.

(a) The minimum number of test cycles N_{Tmin} is given by eq. (5-F.5). Project a vertical line through N_{Tmin} on the abscissa of the S_a versus N diagram such that it intersects and extends beyond the fatigue design curve.

$$N_{T\min} = 10^2 \sqrt{N_D}$$
 (5-F.5)

(b) Project a vertical line from the design service cycles, N_D , on the abscissa of the S_a versus N diagram, until the line intersects the fatigue design curve, label this point S_{aD} . Determine the value of $K_s \cdot S_{aD}$ to establish point A. The parameter K_s is determined using 5-F.3.9.

(c) Construct a curve through the point A by multiplying all of the ordinate values (Sa values) on the fatigue design curve by the factor N_D . Label the intersection of this curve and a vertical line projection of N_D as A'.

(*d*) Any point *C* on the segment A', A, B determines the allowable combinations of K_{TS} and K_{TN} . The factors K_{TS} and K_{TN} are obtained in the same manner as in 5-F.3.5.

5-F.3.8 In certain instances, it may be desirable (or possible) in performing the test to increase only the loading or number of cycles, but not both, in which event two special cases of interest result from the above general case.

(a) Case 1 (Factor Applied to Cycles Only) – In this case $K_{TS} = 1$ and the value of K_{TN} is determined by eq. (5-F.6). The number of test cycles that the component shall withstand during this test shall not be less than given by eq. (5-F.7) while subjected to the cyclic design service loading, adjusted as required, if a geometrically similar model is used.

$$K_{TN} = \frac{N_B}{N_D}$$
(5-F.6)

$$N_T = N_B = K_{TN} \cdot N_D \tag{5-F.7}$$

(*b*) Case 2 (Factor Applied to Loading Only) – In this case $K_{TN} = 1$ and the value of K_{TS} is determined by eq. (5-F.8). The component shall withstand a number of cycles at least equal to the number of design service cycles given by eq. (5-F.9) while subjected to a cyclic test loading again adjusted as required, if a geometrically similar model is used.

$$K_{TS} = \frac{S_{aA}}{S_{aD}}$$
(5-F.8)

$$L_T = K_{TS} \cdot L_D \tag{5-F.9}$$

5-F.3.9 The values of K_n and K_s are the multiples of factors which account for the effects of size, surface finish, cyclic rate, temperature, and the number of replicate tests performed. They shall be determined as follows:

$$K_n = \max\left[\left(K_s\right)^{4.3}, 2.6\right]$$
 (5-F.10)

$$K_{S} = \max\left[\left(K_{sc} \cdot K_{sl} \cdot K_{sf} \cdot K_{st} \cdot K_{ss}\right), 1.25\right]$$
(5-F.11)

where

$$K_{sc} = \max\left[\left(\frac{S_{a}(N,T_{C})}{S_{a}(N,T_{D})} \cdot \frac{S_{ae}(T_{T})}{S_{ae}(T_{C})}\right), 1.0\right]$$
(5-F.12)

$$K_{sl} = \max[(1.5 - 0.5R_{LP}), 1.0]$$
(5-F.13)

$$K_{sf} = \max[(1.175 - 0.175R_{SF}), 1.0]$$
(5-F.14)

$$K_{St} = \max\left[\left(\frac{S_{a(N,T_T)}}{S_{a(N,T_D)}}\right), 1.0\right]$$
(5-F.15)

$$K_{ss} = \max[(1.470 - 0.044N_{RT}), 1.0]$$
(5-F.16)

5-F.3.10 Experimental determination of fatigue strength reduction factors shall be in accordance with the following procedures.

(*a*) The test part shall be fabricated from a material within the same P-Number grouping, and shall be subjected to the same heat treatment as the component.

(b) The stress level in the specimen shall be such that the equivalent stress satisfies eq. (5-F.17).

$$\left(P_L + P_b + Q\right) \le S_{PS} \tag{5-F.17}$$

(c) The configuration, surface finish, and stress state of the specimen shall closely simulate those expected in the components. In particular, the stress gradient shall not be less abrupt than that expected in the component.

(d) The cyclic rate shall be such that appreciable heating of the specimen does not occur.

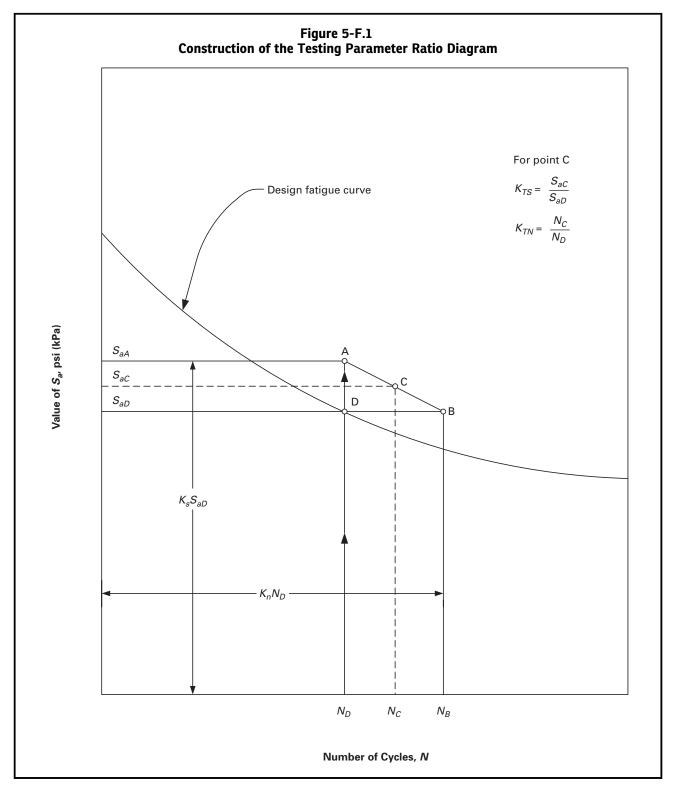
(e) The fatigue strength reduction factor shall preferably be determined by performing tests on notched and unnotched specimens, and calculated as the ratio of the unnotched stress to the notched stress for failure.

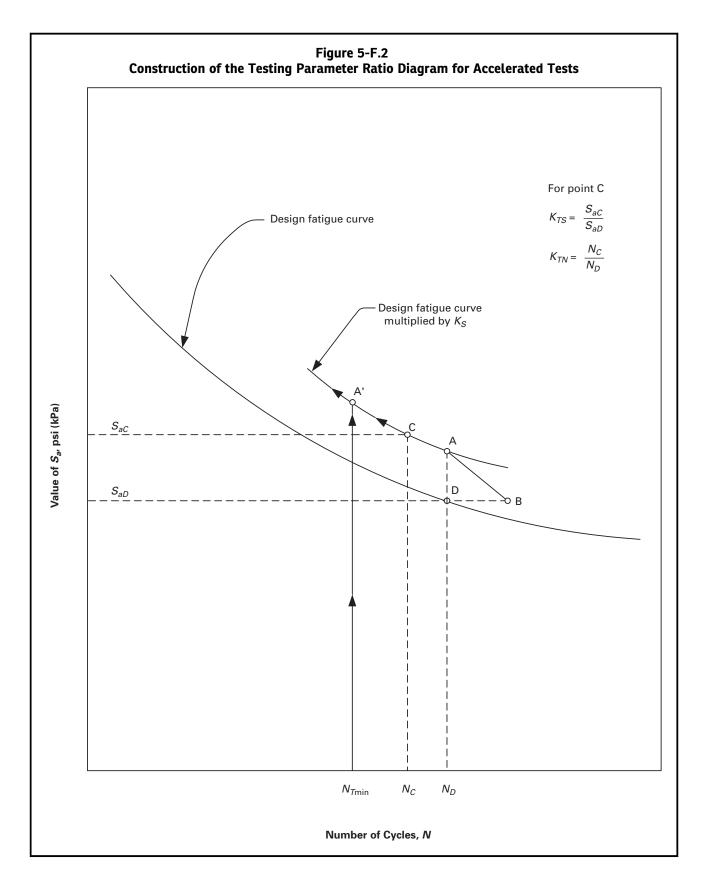
5-F.4 NOMENCLATURE

- K_n = multiplier to design cycles that accounts for the effects of size, surface finish, cyclic rate, temperature, and the number of replicate tests performed
- K_s = multiplier to design allowable stress that accounts for the effects of size, surface finish, cyclic rate, temperature, and the number of replicate tests performed
- K_{sc} = factor for differences in design fatigue curves at various temperatures
- K_{sf} = factor for the effect of surface finish
- K_{skin} = stress multiplier for thermal skin stress
- K_{sl} = factor for the effect of size on fatigue life
- K_{TN} = multiplier for test cycles
- K_{TS} = multiplier for test loading
- K_{ss} = factor for the statistical variation in test results
- K_{st} = factor for the effect of test temperature
- L_D = design service loading
- L_T = cyclic test loading
- N_B = fatigue cycles at point B
- N_C = fatigue cycles at point C
- N_D = design cycles

 N_{RT} = number of replicate tests

$$N_T$$
 = test cycles


- $N_{T\min}$ = minimum number of test cycles
 - P_b = primary bending stress intensity
 - P_L = local primary membrane stress intensity
 - Q = secondary stress intensity
 - R_{LP} = ratio of model linear size to the linear size of the fabricated part
 - R_{SF} = ratio of model surface finish to surface finish of the fabricated part
 - S_a = alternating stress obtained from a fatigue curve for the specified number of operating cycles
 - S_{aA} = alternating stress at point A
 - S_{aC} = alternating stress at point C
- S_{aD} = alternating stress at point D


 $S_a(N,T_c)$ = stress amplitude from the applicable design fatigue curve (see Annex 3-F) for N cycles evaluated at T_c

ASME BPVC.VIII.2-2023

- $S_a(N,T_D)$ = stress amplitude from the applicable design fatigue curve (see Annex 3-F) for N cycles evaluated at the design temperature, T_D
- $S_a(N,T_T)$ = stress amplitude from the applicable design fatigue curve (see Annex 3-F) for N cycles evaluated at the test temperature, T_T
- $S_{ae}(T_c)$ = stress amplitude from the applicable design fatigue curve (see Annex 3-F) at the maximum number of cycles defined on the curve (possibly the endurance limit) evaluated at T_c
- $S_{as}(T_T)$ = stress amplitude from the applicable design fatigue curve (see Annex 3-F) at the maximum number of cycles defined on the curve (possibly the endurance limit) evaluated at the test temperature, T_T
 - S_{as} = stress from the applicable design fatigue curve (see Annex 3-F). If the design cycles is greater than 10⁶, then S_{as} is determined from the fatigue curve at 10⁶ cycles; otherwise, S_{as} is taken as the stress associated with the maximum number of cycles on the design fatigue curve
 - T_C = component temperature
 - T_D = design temperature T_T = test temperature

5-F.5 FIGURES

PART 6 FABRICATION REQUIREMENTS

6.1 GENERAL FABRICATION REQUIREMENTS

6.1.1 MATERIALS

6.1.1.1 Documentation of Material Treatments, Tests, and Examination. The vessel Manufacturer shall document compliance with the special requirements of Part 3 for any of the treatments, tests, or examinations specified therein that are performed. The documentation shall include reports of the results of all tests and examinations performed on the materials by the vessel Manufacturer.

6.1.1.2 Material Identification.

(a) Material Marking – Material for pressure parts should be laid out so that when the vessel is completed, one complete set of the original identification markings required in the specifications for the material will be plainly visible. In case the original identification markings are unavoidably cut out or the material is divided into two or more parts, one set shall either be accurately transferred prior to cutting by the pressure vessel Manufacturer to a location where the markings will be visible on the completed vessel, or a coded marking, acceptable to the Inspector, shall be used to assure identification of each piece of material during fabrication and subsequent identification of the markings on the completed vessel. In either case an as-built sketch or a tabulation of materials shall be made, identifying each piece of material with the test report or Certificate of Compliance and the coded marking. Except as indicated in (b), material may be marked by any method acceptable to the Inspector. The Inspector need not witness the transfer of the marks but shall satisfy himself that it has been correctly done.

(b) Method of Transferring Markings – Where the service conditions prohibit die stamping for material identification, and when so specified by the user, the required data shall be marked on the plates in a manner that will allow positive identification upon delivery. The markings must be recorded so that each plate will be positively identified in its position in the finished vessel to the satisfaction of the Inspector. Transfer of markings for material that is to be divided shall be done in accordance with (a).

(c) Transfer of Markings by Other than the Manufacturer – If the material is formed into shapes by anyone other than the Manufacturer of the completed pressure vessel and the original markings as required by the applicable material specification are unavoidably cut out, or the material is divided into two or more parts, then the manufacturer of the shape shall either:

(1) Transfer the original identification markings to another location on the shape; or

(2) Provide for identification by the use of a coded marking traceable to the original required marking, using a marking method agreed upon and described in the Quality Control System of the Manufacturer of the completed pressure vessel.

(*d*) The material test report for this material, in conjunction with the above modified marking requirements, shall be considered sufficient to identify these shapes. Manufacturer's Partial Data Reports and parts stamping are not a requirement unless there has been fabrication to the shapes that includes welding beyond that exempted by 3.2.8.2.

6.1.1.3 Repair of Defective Materials. Defects may be removed and the material repaired by the vessel Manufacturer or, unless prohibited by the material specification, may also be repaired by the material manufacturer with the approval of the vessel Manufacturer. Material repairs that exceed those permitted by the material specification shall be made to the satisfaction of the Inspector. All repairs shall be in accordance with the following paragraphs.

(a) Examination of Defective Areas – Areas from which defects have been removed shall be examined by either the magnetic particle or by the liquid penetrant method in accordance with Part 7 to ensure complete removal of the defect.

(*b*) Repair by Welding – For the repair of materials by welding, the procedures and welds must be qualified in accordance with Section IX of the Code. If the base metal requires impact testing in accordance with 3.11, then a procedure test plate shall be welded and the deposited weld metal impact tested in accordance with 3.11 and shall meet the same minimum requirements as established for the base material. The repaired material shall be heat treated in accordance with the postweld heat treatment requirements of 6.4.2 when required.

(c) Examination of Finished Weld-Repaired Surfaces

(1) The finished surface of the weld repair shall be prepared and inspected by either the magnetic particle or by the liquid penetrant method in accordance with Part 7.

(2) The area repaired by welding shall be examined by radiography in accordance with Part 7 if the depth of the weld deposit exceeds either 10 mm ($\frac{3}{8}$ in.) or one-half the material thickness.

(*d*) All repairs to materials shall be documented (see 2.3.5).

6.1.2 FORMING

6.1.2.1 Forming Shell Sections and Heads.

(*a*) All materials for shell sections and for heads shall be formed to the required shape by any process that will not unduly impair the mechanical properties of the material.

(*b*) Limits are provided on cold working of all carbon and low alloy steels, nonferrous alloys, high alloy steels, and ferritic steels with tensile properties enhanced by heat treatment (see 6.1.2.2, 6.1.2.4, 6.1.2.5, and 6.6.3). Forming strains or extreme fiber elongation shall be determined by the equations in Table 6.1.

6.1.2.2 Thickness for Forming.

(*a*) The selected thickness shall be such that the forming processes will not reduce the thickness of the material at any point below the minimum value required by the design computation.

(*b*) A reduction in weld thickness due to a forming operation is acceptable, provided all of the following conditions are met:

(1) Prior to the forming operation, the weld(s) are verified to comply with 6.2.4.1(b)(1) and 6.2.4.1(b)(2) by the Manufacturer and the Inspector.

(2) The reduced weld thickness, at any point, shall not be less than the minimum required thickness of the component.

(3) The reduction in thickness shall not exceed 1 mm ($\frac{1}{32}$ in.) or 10% of the nominal thickness of the adjoining surface, whichever is less.

6.1.2.3 Forming of Carbon and Low Alloy Material Parts.

(a) Plates shall not be formed cold by blows.

(*b*) Plates may be formed by blows at a forging temperature, provided the plate is subsequently heat treated per the PWHT requirements of this Division.

(c) Except as addressed in (d) and for materials exempted below, the cold-formed areas of vessel shell sections, heads, and other pressure parts shall be heat treated if the resulting extreme fiber elongation determined by the equations in Table 6.1 exceeds 5% from the supplied condition. Heat treatment shall be applied in accordance with 6.4.2, except that alternative heating and cooling rates and hold times may be applied to formed pipe and tube having a nominal thickness of 6 mm ($\frac{1}{4}$ in.) or less when the heat treatment method is demonstrated to achieve a thorough heating of the pipe or tube.

(1) Cold-formed or bent P-No. 1 pipe and tube material having a nominal thickness not greater than 19 mm $\binom{3}{4}$ in.) does not require post-forming heat treatment.

(2) For P-No. 1, Group Nos. 1 and 2 materials other than those addressed by (1), post-forming heat treatment is required when the extreme fiber elongation exceeds 40% or if the extreme fiber elongation exceeds 5% and any of the following conditions exist:

(-a) The MDMT determined in accordance with 3.11 requires that the material be impact tested.

(-*b*) The reduction by cold forming from the as-rolled thickness is more than 10% at any location where the extreme fiber elongation exceeds 5%.

(-c) The temperature of the material during forming is in the range of 250°F to 900°F (120°C to 480°C).

(-*d*) The thickness of the part before cold forming exceeds 16 mm ($\frac{5}{8}$ in.).

(3) Cold-formed or bent P-Nos. 3 through 5 C pipe and tube materials having an outside diameter not greater than NPS 4 (DN 100) and a nominal thickness not greater than 13 mm ($\frac{1}{2}$ in.) do not require a post-forming heat treatment.

(*d*) Forming of Creep Strength Enhanced Ferritic Steels (P-No. 15E Materials). The cold-formed areas of vessel shell sections, heads, and other pressure boundary parts of the creep strength enhanced ferritic steels shall be heat treated when the design metal temperature and the forming strains exceed the limits shown in Table 6.2.A. Heat treatment shall be performed according to the requirements in Table 6.2.A. Cold forming is defined as any method that is performed at a temperature below 705°C (1,300°F) and produces permanent strain in the material. Hot forming is defined as any method that is performed at a temperature at or above 705°C (1,300°F) and produces permanent strain in the material. Forming strains shall be determined by the equations in Table 6.1.

(1) When the forming strains cannot be calculated as shown in Table 6.1, the Manufacturer shall have the responsibility to determine the maximum forming strain.

(2) For cold-formed flares, swages, or upsets in tubing and pipe, normalizing and tempering in accordance with Note (1) of Table 6.2.A shall apply, regardless of the amount of strain.

(3) For any hot-formed product form, normalizing and tempering in accordance with Note (1) of Table 6.2.A shall apply, regardless of the amount of strain.

(e) When vessel shell sections, heads, or other pressure parts of carbon or low alloy steel are cold formed by other than the Manufacturer of the vessel, the required certification for the part shall indicate whether or not the part has been heat treated.

6.1.2.4 Forming High Alloy Material Parts. If the following conditions prevail, the cold formed areas of pressureretaining parts manufactured of austenitic alloys shall be solution annealed by heating at the temperatures given in Table 6.2.B for 0.8 min/mm (20 min/in.) of thickness, followed by rapid cooling.

(a) The finishing-forming temperature is below the minimum heat-treating temperature given in Table 6.2.B; and

(*b*) The design metal temperature and the forming strains exceed the limits shown in Table 6.2.B. The forming strains shall be calculated using the equations in Table 6.1. If the forming strains cannot be calculated as shown in this table, the Manufacturer shall determine the maximum forming strain.

(c) For flares, swages, or upsets, heat treatment in accordance with Table 6.2.B shall apply regardless of the amount of strain.

6.1.2.5 Forming Nonferrous Material Parts.

(*a*) A shell section that has been formed by rolling may be brought true-to-round for its entire length by pressing or rolling.

(*b*) If the following conditions prevail, the cold formed areas of pressure-retaining parts manufactured of the alloys listed in Table 6.3 shall be solution annealed by heating at the temperatures given in Table 6.3 for 0.8 min/mm (20 min/in.) of thickness, followed by rapid cooling.

(1) The finishing-forming temperature is below the minimum heat-treating temperature given in Table 6.3; and

(2) The design metal temperature and the forming strains exceed the limits shown in Table 6.3. The Forming strains shall be calculated using the equations in Table 6.1. If the forming strains cannot be calculated as shown in this table, then the Manufacturer shall have the responsibility to determine the maximum forming strain.

(c) For flares, swages, or upsets, heat treatment in accordance with Table 6.3 shall apply regardless of the amount of strain.

6.1.2.6 Preliminary Shaping of Edges of Plates to Be Rolled. If the plates are to be rolled, the adjoining edges of longitudinal joints of cylindrical vessels shall first be shaped to the proper curvature by preliminary rolling or forming in order to avoid having objectionable flat spots along the completed joints (see 6.1.2.7).

6.1.2.7 Forming Tolerances for vessel parts shall be in accordance with the following requirements.

(*a*) Shells and Heads Subject to Internal Pressure – tolerances for shells and heads fabricated from plate that are subject to internal pressure are stipulated in 4.3.2.

(*b*) Shells and Heads Subject to External Pressure – tolerances for shells and heads fabricated from plate that are subject to external pressure are stipulated in 4.4.4.

(c) Tolerances for Shells Fabricated from Pipe – vessel shells fabricated from pipe, meeting all other requirements of this Part, may have variations of diameter permitted by the specification for such pipe.

(*d*) Tolerances for Heads Fabricated from Pipe Caps – vessel heads fabricated from pipe caps, meeting all other requirements of this Part, may have variations of shape permitted by the applicable product specification.

6.1.2.8 Lugs and Fitting Attachments. All lugs, brackets, saddle type nozzles, manhole frames, reinforcement around openings, and other appurtenances shall be formed and fitted to conform to the curvature of the shell or surface to which they are attached.

(a) If pressure parts, such as saddle type nozzles, manhole frames, and reinforcement around openings, extend over pressure-retaining welds, these welds shall be ground flush for the portion of the weld to be covered.

(*b*) If nonpressure parts, such as lugs, brackets, and support legs and saddles, extend over pressure-retaining welds, these welds shall be ground flush as described in (a) above, or such parts shall be notched or coped to clear those welds.

6.1.2.9 Spin-Holes. Spin-holes are permitted within heads or segments thereof to facilitate forming. Spin-holes with a diameter less than or equal to 60 mm $(2^{3}_{/8} \text{ in.})$ may be closed with a full-penetration weld using either a welded plug or weld metal. The thickness of the weld and plug shall be greater than or equal to the thickness of the head material adjacent to the spin-hole. The finished weld shall be examined by the magnetic particle or liquid penetrant method in accordance with Part 7. Full volumetric inspection of the weld in accordance with Part 7 shall be performed in addition to any examinations required by the material specification.

6.1.3 BASE METAL PREPARATION

6.1.3.1 Examination of Materials.

(*a*) All materials to be used in constructing a pressure vessel shall be examined before fabrication for the purpose of detecting, as far as possible, discontinuities that will affect the safety of the vessel. As fabrication progresses, the vessel Manufacturer shall carefully examine the edges of base materials (including the edges of openings cut through the thickness) to detect defects that have been uncovered during fabrication, and they shall be repaired in accordance with 6.1.1.3.

(b) Except as required in (c), cut edges in base materials with thicknesses over 38 mm $(1^{1}/_{2} \text{ in.})$ that are to be welded shall be examined for discontinuities by the magnetic particle or liquid penetrant method in accordance with Part 7.

(c) For openings, cut edges in base materials in all thicknesses shall be examined for discontinuities as specified below using the magnetic particle method or liquid penetrant method in accordance with Part 7. Additional testing of materials prior to fabrication should be considered by the purchaser (i.e., ultrasonic testing of plate to SA-435 or SA-578, and of forgings to SA-388) for those services in which laminar discontinuities may be harmful.

(1) Examination is required for openings shown in Table 4.2.10, Details 1, 2, and 7.

(2) For other types of openings, this examination is not required for the cut edges of openings 75 mm (3 in.) in diameter or smaller.

(3) Discontinuities that have been detected by magnetic particle or liquid penetrant examination shall be investigated by ultrasonic examination to confirm they are laminar. Non-laminar discontinuities (having length not parallel to the material surface) shall be removed.

(4) Discontinuities parallel to the surface, such as inclusions, which are disclosed by either method, are acceptable without repair if they do not exceed 25 mm (1 in.) in length.

(*d*) If a pressure part is to be welded to a flat plate thicker than 13 mm $\binom{1}{2}$ in.) to form a corner joint in accordance with 4.2.5.4(d), then the weld joint preparation and the peripheral edges of the flat plate forming a corner joint shall be examined as described below before welding by either the magnetic particle or liquid penetrant method in accordance with Part 7. After welding, the peripheral edge of the flat plate and any remaining exposed surface of the weld joint preparation shall be reexamined as specified below.

(1) The weld edge preparation of typical joint preparations in flat plate as shown in Table 4.2.6, Details 1 through 3 and Table 4.2.8, Detail 1.

(2) The outside peripheral edge of the flat plate after welding as shown in Table 4.2.6, Details 1 and 2.

(3) The outside peripheral edge of the flat plate after welding as shown in Table 4.2.6, Details 3, if the distance from the edge of the completed weld to the peripheral edge of the flat plate is less than the thickness of the flat plate.

(4) The inside peripheral surface of the flat plate after welding as shown in Table 4.2.9, Details 3 and 4.

6.1.3.2 Cutting Plates and Other Stock.

(*a*) Plates, edges of heads, and other parts may be cut to shape and size by mechanical means such as machining, shearing, and grinding; or by thermal cutting. After thermal cutting, all slag and detrimental discoloration of material, which has been molten shall be removed by mechanical means prior to further fabrication or use. When thermal cutting is used, the effect on mechanical properties shall be taken into consideration. The edges to be welded shall be uniform and smooth.

(*b*) In general, nonferrous materials cannot be cut by the conventional oxyfuel equipment commonly used for steels. They may be melted and cut by oxyfuel powder cutting, carbon arc, oxygen arc, and other means. When such thermal means for cutting are employed, a shallow contaminated area adjacent to the cut results. This contamination shall be removed by grinding, machining, or other mechanical means after thermal cutting and prior to use or further fabrication.

6.1.3.3 Shearing of Nozzles and Manhole Necks. The ends of nozzles or manhole necks that are to remain unwelded in the completed vessel may be cut by shearing, provided sufficient additional material is removed by any other method that produces a smooth finish. The cut edges shall be examined by the magnetic particle or liquid penetrant method in accordance with Part 7.

6.1.4 FITTING AND ALIGNMENT

6.1.4.1 Parts that are being welded shall be fitted, aligned, and retained in position during the welding operation. If two parts are joined by the inertia and continuous drive friction welding processes, then one of the two parts must be held in a fixed position and the other part rotated. The two faces to be joined must be essentially symmetrical with respect to the axis of rotation. Some of the basic types of applicable joints are solid round to solid round, tube to tube, solid round to tube, solid round to plate, and tube to plate.

6.1.4.2 Means for Maintaining Alignment During Welding. Bars, jacks, clamps, tack welds, or other appropriate means may be used to maintain the alignment of the edges to be welded. Tack welds, if used to maintain alignment, shall either be removed completely when they have served their purpose, or their stopping and starting ends shall be properly prepared by grinding or other suitable means so that they may be satisfactorily incorporated into the final weld. Tack welds shall be made by qualified procedures and welders, shall be examined visually for defects, and, if found to be defective, shall be removed. If the work is done under the provisions of 2.3, then it is not necessary that a subcontractor making such tack welds for a vessel or parts manufacturer be a holder of a Code Certificate of Authorization. The requirements of 2.3.8.4 do not apply to such tack welds. Temporary tack welds used to secure the shape of a component during handling or transportation are not required to be deposited by a holder of a Code Certificate of Authorization, provided they will be completely removed and will not be incorporated into the final weld. In addition, the areas shall be examined by the magnetic particle or liquid penetrant methods in accordance with Part 7.

6.1.4.3 Aligning Edges of Butt Joints. The edges of butt joints shall be held during welding so that the tolerances in 6.1.6 are not exceeded in the joint. When fitted girth joints have deviations exceeding the permitted tolerances, the head or shell ring, whichever is out-of-tolerance, shall be reformed until the allowable limits [see 6.1.6.1(a)] are satisfied.

6.1.4.4 Removal of Temporary Attachments. The areas from which temporary attachments have been removed shall be dressed smooth and shall be examined by the magnetic particle method or liquid penetrant method in accordance with Part 7. Defects shall be removed and the material shall be inspected to ensure that the defects have been removed. If weld repairs are necessary, then the repairs shall be made using qualified welding procedures and welders, and the repairs shall be examined in accordance with 6.1.1.3(c).

6.1.5 CLEANING OF SURFACES TO BE WELDED

6.1.5.1 The surfaces to be welded shall be clean and free of scale, rust, oil, grease, slag, detrimental oxides, and other deleterious foreign material. The method and extent of cleaning should be determined based on the material to be welded and the contaminants to be removed. When weld metal is to be deposited over a previously welded surface, all slag shall be removed by a roughing tool, chisel, chipping hammer, or other suitable means so as to prevent inclusion of impurities in the weld.

6.1.5.2 Cast surfaces to be welded shall be machined, chipped, or ground to remove foundry scale and to expose sound metal.

6.1.5.3 The requirements in 6.1.5.1 and 6.1.5.2 above are not intended to apply to any process of welding by which proper fusion and penetration are otherwise obtained and by which the weld remains free from defects.

6.1.6 ALIGNMENT TOLERANCES FOR EDGES TO BE BUTT WELDED

6.1.6.1 Alignment of sections at edges to be butt welded shall be such that the maximum offset is not greater than shown below. Alternatively, offsets greater than those permitted below are allowable, provided that the maximum offset is acceptable to the Inspector prior to welding and the requirements of 4.14 or Part 5, and the requirements of 6.1.6.2 are satisfied. If the vessel is operating at a temperature where the allowable stress is governed by time-dependent properties (see 4.1.1.3), or if a fatigue analysis is required (see 4.1.1.4), the alignment of sections shall be considered in the design.

(*a*) Cylindrical Shells – The maximum allowable offset in welded joints in cylindrical shells shall be as given in Table 6.4

(*b*) Spherical Shells and for Hemispherical Heads Welded to Cylindrical Shells – Joints in spherical vessels, joints within heads, and joints between cylindrical shells and hemispherical heads shall meet the requirements in Table 6.4.

(c) Alignment tolerances at edges to be butt welded for quenched and tempered high strength steels shall be in accordance with 6.6.5.4.

6.1.6.2 Fairing of Offsets Within Allowable Tolerances. Any offset within the allowable tolerance provided above shall be faired at a 3:1 taper over the width of the finished weld or, if necessary, by adding additional weld metal beyond what would have been the edge of the weld. If additional weld metal buildup is used, then it shall satisfy the requirements of 6.2.4.9.

6.1.6.3 Peaking of Welds in Shells and Heads for Internal Pressure.

(*a*) If the vessel is operating at a temperature where the allowable stress is governed by time dependent properties, see 4.1.1.3, or if a fatigue analysis is required, see 4.1.1.4, then the peaking height, d_p , at Category A weld joints shall be measured by either an inside or outside template, as appropriate (see Figure 6.1). As an alternative, the peaking angle may be determined using the procedure described in Part 8 of API 579-1/ASME FFS-1.

(*b*) The chord length of the template shall be the larger of D/6 or 300 mm (12 in.), but need not exceed 900 mm (36 in.). If the weld joint is in a torispherical or an ellipsoidal head, the inside diameter, D, shall be equal to the diameter of the spherical portion of the head. If the weld joint is in a 2:1 ellipsoidal head, D shall be equal to 1.8 times the nominal inside diameter of the attached cylindrical shell.

(c) If the vessel is operating at a temperature where the allowable stress is governed by time dependent properties, or if a fatigue analysis is required, the allowable value of d_p shall be determined using 4.14 and shall be shown in the Manufacturer's Design Report.

6.2 WELDING FABRICATION REQUIREMENTS

6.2.1 WELDING PROCESSES

6.2.1.1 See below.

(*a*) The welding processes that may be used in the construction of vessels under this Part are limited to those accepted by Section IX with the additional restrictions shown in Table 6.5.

(*b*) Other than pressure inherent to the welding processes, no mechanical pressure or blows shall be applied except as permitted for peening in 6.2.5.3

6.2.1.2 Welding of titanium, zirconium, and their alloys is to be by gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), plasma arc welding (PAW), electron beam welding (EBW), laser beam welding (LBW), or the resistance welding process meeting the requirements of Section IX. All processes are as defined in Section IX.

6.2.2 WELDING QUALIFICATIONS AND RECORDS

6.2.2.1 Manufacturer's Responsibility.

(*a*) Each Manufacturer or parts manufacturer is responsible for the welding done by his organization. The Manufacturer or parts manufacturer shall establish the procedure and be responsible for the tests required in Section IX with any additional tests required by this Division to qualify the welding procedures and the performance of welders and welding operators who apply these procedures.

(b) Nonmandatory Guidelines for Welding Material Selections. The Manufacturer is responsible for the selection of welding consumables and welding processes. These nonmandatory guidelines for welding material selections are intended to achieve suitable vessel performance for the intended service conditions, but may not be appropriate for every condition in the absence of specific technical reasons to do otherwise. The user or his designated agent should inform the Manufacturer when a specific filler metal selection is necessary to achieve satisfactory vessel performance for the intended service conditions.

(1) The tensile strength of the weld should equal or exceed that of the base metals to be joined. When base metals of different strengths are to be joined by welding, the tensile strength of the weld metal should equal or exceed that of the weaker of the two base metals.

(2) When considerations such as corrosion resistance, toughness, or fatigue resistance require selecting welding consumables or processes that produce weld joints of a lesser strength than either of the base metals, the strength of the resulting joint should be reviewed and the design adjusted as appropriate for the intended service conditions.

(3) When welding materials of like composition, the nominal composition of the weld metal should be analogous to the nominal composition of the base metal, except when creep or corrosion performance is an overriding consideration.

(4) When welding materials of different nominal composition, the nominal composition of the weld metal should be analogous to one of the base metals, or be of an acceptable alternative composition.

(5) When joining nonferrous base metals, filler metal selections should follow the recommendations of the manufacturer of the nonferrous metal or applicable industry associations.

(c) The Manufacturer (Certificate Holder) may engage individuals by contract or agreement for their services as welders at the shop location shown on the Certificate of Authorization and at field sites (if allowed by the Certificate of Authorization) for the construction of pressure vessels or vessel parts, provided all of the following conditions are met:

(1) All Code construction shall be the responsibility of the Manufacturer.

(2) All welding shall be performed in accordance with the Manufacturer's Welding Procedure Specifications, in accordance with the requirements of Section IX.

(3) All welders shall be qualified by the Manufacturer in accordance with the requirements of Section IX.

(4) The Manufacturer's Quality Control System shall include the following as a minimum:

(-*a*) a requirement for complete and exclusive administrative and technical supervision of all welders by the Manufacturer

(-b) evidence of the Manufacturer's authority to assign and remove welders at his discretion without involvement of any other organization

(-c) a requirement for assignment of welder identification symbols

(-d) evidence that this program has been accepted by the Manufacturer's Authorized Inspection Agency

(5) The Manufacturer shall be responsible for Code compliance of the completed pressure vessel or part, including stamping with the Certification Mark and providing Data Report Forms properly executed and countersigned by the Inspector.

NOTE: "Welder" includes brazer, welding operator, and brazing operator.

6.2.2.2 Qualification Test Limitations. Welding of all test coupons shall be conducted by the Manufacturer. Testing (23) of all test coupons shall be the responsibility of the Manufacturer. Alternatively, the AWS Standard Welding Procedure Specifications that have been accepted by Section IX may be used, provided these specifications meet all other requirements of this Division. Qualification of a welding procedure by one Manufacturer shall not qualify that procedure for use by any other Manufacturer, except as provided for in Section IX, QG-106. A performance qualification test conducted by one Manufacturer shall not qualify a welder or welding operator to do work for any other Manufacturer, except as provided for in Section IX, QG-106.

Welding procedures qualified in accordance with the simultaneous procedure qualification rules of Section IX, QG-106.4 are permitted by this Division.

6.2.2.3 Production Welding Prior to Qualification. Production welding shall not be undertaken until after the welding procedures that are to be used have been qualified.

6.2.2.4 Qualification of Welding Procedure.

(a) Each welding procedure that is to be followed in construction shall be recorded in detail by the Manufacturer.

(*b*) The procedure used in welding pressure parts and in joining load-carrying nonpressure parts, such as attachments, to pressure parts shall be qualified in accordance with Section IX.

(c) When making procedure test plates for butt welds in accordance with Section IX, consideration shall be given to the effect of angular, lateral, and end restraint on the weldment. This applies particularly to material and weld metal with an ultimate tensile strength of 550 MPa (80,000 psi) or higher and thick sections of both low and high tensile strength material. The addition of restraint during the welding may result in cracking that otherwise might not occur.

(*d*) The procedure used in welding non-pressure-bearing attachments, which have essentially no load-carrying function (such as extended heat transfer surfaces, insulation support pins, etc.), to pressure parts shall meet the following requirements.

(1) If the welding process is manual, machine, or semiautomatic, then the procedure qualification is required in accordance with Section IX.

(2) If the welding is performed using any automatic welding process performed in accordance with a Welding procedure Specification (in compliance with Section IX as far as applicable), then the procedure qualification testing is not required.

6.2.2.5 Tests of Welders and Welding Operators.

(*a*) Welders and the welding operators used in welding pressure parts and in joining load-carrying nonpressure parts (attachments) to pressure parts shall be qualified in accordance with Section IX.

(1) The qualification test for welding operators of machine welding equipment shall be performed on a separate test plate prior to the start of welding or on the first work piece.

(2) When stud welding is used to attach load-carrying studs, a production stud weld test of the procedure and welding operator shall be performed on a separate test plate or tube prior to the start of welding on each work shift. This weld test shall consist of five studs, welded and tested in accordance with either the bend or torque stud weld testing described in Section IX.

(b) Welders and welding operators used in welding non-pressure-bearing attachments, that have essentially no loadcarrying function (such as extended heat transfer surfaces, insulation support pins, etc.), to pressure parts shall comply with the following.

(1) If the welding process is manual, machine, or semiautomatic, qualification in accordance with Section IX is required.

(2) If welding is done by any automatic welding process, performance qualification testing is not required.

(3) If stud welding is used, a production stud weld test, appropriate to the end use application requirements, shall be specified by the Manufacturer and carried out on a separate test plate or tube at the start of each shift.

6.2.2.6 Maintenance of Qualification Records. The Manufacturer shall maintain a record of the welding procedures and the welders and welding operators employed by the Manufacturer. The record shall indicate the date and results of tests and the identification mark assigned to each welder. These records shall be maintained in accordance with Section IX.

6.2.3 PRECAUTIONS TO BE TAKEN BEFORE WELDING

6.2.3.1 Identification, Handling, and Storing of Electrodes and Other Welding Materials. The Manufacturer is responsible for control of the welding electrodes and other materials which are to be used in the fabrication of the vessel. Suitable identification, storage, and handling of electrodes, flux, and other welding materials shall be maintained. Precautions shall be taken to minimize absorption of moisture by electrodes and flux. The methods used shall be documented in the Manufacturer's Quality Control System.

6.2.3.2 Lowest Permissible Minimum Temperature for Welding. No welding of any kind shall be done when the temperature of the metal is lower than -20° C (0°F). If the temperature is between 0°C (32°F) and -20° C (0°F), then the surface of all areas within 75 mm (3 in.) of the point where a weld is to be started shall be heated to a temperature at least warm to the hand [estimated to be above 15°C (60°F)] before welding is started. No welding shall be done when surfaces are wet or covered with ice, when snow is falling on the surfaces to be welded, or during periods of high wind unless the welders or welding operators and the work are properly protected.

6.2.4 SPECIFIC REQUIREMENTS FOR WELDED JOINTS

6.2.4.1 Type No. 1 Butt Joints.

(a) Definition – Type No. 1 butt joints are defined in 4.2.5.1(a) and Table 4.2.2.

(b) Weld Penetration and Reinforcement

(1) Butt-welded joints shall have complete penetration and full fusion. As-welded surfaces are permitted; however, the surface of the welds shall be sufficiently free from coarse ripples, grooves, overlaps, and abrupt ridges and valleys to permit proper interpretation of radiographic and other required nondestructive examinations. If it is suspected that an indication on a radiograph is due to the surface condition of the weld, the radiograph shall be compared to the actual weld surface to aid in interpretation.

(2) A reduction in thickness due to the welding process is acceptable, provided all of the following conditions are met. Note that it is not the intent of this paragraph to require measurement of reductions in thickness due to the welding process. If a disagreement between the Manufacturer and the Inspector exists as to the acceptability of any reduction in thickness, the depth shall be verified by actual measurement.

(-*a*) The reduction in thickness shall not reduce the material of the adjoining surfaces below the minimum required thickness at any point.

(-b) The reduction in thickness shall not exceed 0.8 mm $\binom{1}{32}$ in.) or 10% of the nominal thickness of the adjoining surface, whichever is less.

(c) Examination Requirements – Examination requirements shall be in accordance with Part 7.

(*d*) Weld Reinforcement – to assure that the weld grooves are completely filled so that the surface of the weld metal at any point does not fall below the surface of the adjoining base materials, weld metal may be added as reinforcement on each face of the weld. The thickness of the weld reinforcement on each face shall not exceed that shown in Table 6.6. Concavity due to the welding process on the root side of a single-welded circumferential butt weld is permitted when the resulting thickness of the weld is at least equal to the thickness of the thinner member of the two sections being joined and the contour of the concavity is smooth.

6.2.4.2 Type No. 2 Butt Joints.

(a) Definitions – Type No. 2 butt joints are defined in 4.2.5.1(a) and Table 4.2.2.

(*b*) Penetration and Reinforcement – If Type No. 2 butt joints are used, then particular care shall be taken in aligning and separating the components to be joined so that there will be complete penetration and fusion at the bottom of the joints for their full length. However, for assuring complete filling of the weld grooves, weld reinforcement in accordance with the limits specified in 6.2.4.1(d) need be supplied only on the side opposite the backing strip.

(c) **Class 2:** Backing Strips – Backing strips shall be continuous and any splices shall be butt welded. Circumferential single-welded butt joints with one plate offset to form a backing strip are prohibited.

(d) Examination Requirements – Examination requirements shall be in accordance with Part 7.

6.2.4.3 Full Penetration Corner Joints.

(*a*) Definition – Full penetration corner joints are joints defined in 4.2.5.1(c).

(b) Penetration and Fusion – Welds in full penetration corner joints shall be groove welds extending completely through at least one of the parts being joined and shall be fully fused to each part.

(c) Examination Requirements – Examination requirements shall be in accordance with Part 7.

6.2.4.4 Partial Penetration Corner Joints for Nozzle Attachments.

(a) Definition – Partial penetration corner joints are defined in 4.2.5.5(c)(8) and Table 4.2.14.

(*b*) Penetration Requirements – Partial penetration welds shall have a minimum depth of penetration equal to that required by Table 4.2.14.

(c) Examination Requirements - Examination requirements shall be in accordance with Part 7.

6.2.4.5 Fillet Welded Joints.

(a) Definition – Fillet welded joints are defined in 4.2.5.1(d) and Table 4.2.2.

(b) Quality Requirements – The weld metal for a fillet weld shall be deposited in such a way that adequate penetration into the base metal at the root of the weld is secured. The reduction of the thickness of the base metal due to the welding process at the edges of the fillet weld shall meet the same requirements as for butt welds. [see 6.2.4.1(b)]

(c) Examination Requirements - Examination requirements shall be in accordance with Part 7.

6.2.4.6 Welds Attaching Nozzles and Other Connections. The design requirements for welds attaching nozzle necks and other connections are given in 4.2.5.5.

6.2.4.7 Welds Attaching Nonpressure Parts and Stiffeners.

(*a*) The design requirements for welds attaching nonpressure parts and stiffeners to pressure parts are given in 4.2.5.6.

(b) Examination Requirements - Examination requirements shall be in accordance with Part 7.

6.2.4.8 Austenitic Chromium–Nickel Alloy Steel Welds. All austenitic chromium–nickel alloy steel welds, both butt and fillet, in parts with a shell thickness that exceeds 19 mm (0.75 in.) shall be examined by the liquid penetrant method in accordance with Part 7. This examination shall be made following heat treatment, if heat treatment is performed. All cracks shall be repaired.

6.2.4.9 Surface Weld Metal Buildup.

(*a*) Construction in which deposits of weld metal are applied to the surface of base metal for the purpose of restoring the thickness of the base metal or modifying the configuration of weld joints in order to provide the tapered transition requirements of 4.2 shall be performed in accordance with (b) and (c).

(*b*) Procedure Qualification – A groove welding procedure qualification in accordance with the provisions of Section IX shall be performed for the thickness of weld metal deposited, prior to production welding.

(c) Examination Requirements

(1) All weld metal build-up shall be examined over the full surface of the deposit by the magnetic particle or liquid penetrant method in accordance with Part 7. This requirement does not apply to weld overlay.

(2) When such surface weld metal buildup is used in welded joints that require radiographic examination in accordance with Part 7, the weld metal buildup shall be included in this examination.

6.2.5 MISCELLANEOUS WELDING REQUIREMENTS

6.2.5.1 Preparation of Reverse Side of Double-Welded Joints. The reverse side of double-welded joints shall be prepared by chipping, grinding, or melting out, so as to secure sound metal at the base of the weld metal first deposited before applying weld metal from the reverse side. These requirements are not intended to apply to any process of welding by which proper fusion and penetration are otherwise obtained and by which the base of the weld remains free from impurities.

6.2.5.2 Aligning and Separating Components of Single-Welded Joints. If single-welded joints are used, the components to be joined shall be aligned and separated so that there will be complete penetration and fusion at the bottom of the joint for its full length.

6.2.5.3 Peening.

(*a*) Weld metal and heat-affected zones may be peened by manual, electric, or pneumatic means when it is deemed necessary or helpful to control distortion, to relieve residual stresses, improve fatigue life, or to improve the quality of the weld. Peening shall not be used on the initial (root) layer of weld metal or on the final (face) layer unless the weld is subsequently postweld heat treated. In no case, however, is peening to be performed in lieu of any postweld heat treatment required by these rules.

(b) Controlled shot peening and other similar methods, which are intended only to enhance surface proper- ties of the vessel or vessel parts, shall be performed after any nondestructive examinations and pressure tests required by these rules.

6.2.5.4 Identification Markings or Records for Welders and Welding Operators.

(a) Each welder and welding operator shall stamp or mark the identifying number, letter, or symbol assigned by the Manufacturer on or adjacent to and at intervals of not more than 0.9 m (3 ft) along the welds they make in plates as specified below.

(1) For steel plates 6 mm ($\frac{1}{4}$ in.) and over in thickness and for nonferrous plates 13 mm ($\frac{1}{2}$ in.) and over in thickness, weld identification markings shall be stamped.

(2) For identifying welds on vessels in which the wall thickness is less than 6 mm $\binom{1}{4}$ in.) for steel material and less than 13 mm $\binom{1}{2}$ in.) for nonferrous material, suitable stencil or other surface markings shall be used, or a stamp may be used provided the vessel part is not deformed and the following additional requirements are met.

(-a) For Ferrous Materials

(-1) The materials shall be limited to P-No. 1, Groups 1 and 2.

(-2) The nominal plate thickness shall be 5 mm ($\frac{3}{16}$ in.) or greater, or the nominal pipe wall thickness shall be 3.91 mm (0.154 in.) or greater.

(-3) The minimum design metal temperature shall be no colder than -29°C (-20°F).

(-b) For Nonferrous Materials

(-1) The materials shall be limited to aluminum as follows: SB-209 Alloys 3003, 5083, 5454, and 6061; SB-241 Alloys 3003, 5083, 5086, 5454, 6061, and 6063; and SB-247 Alloys 3003, 5083, and 6061.

(-2) The nominal plate thickness shall be 6 mm ($\frac{1}{4}$ in.) or greater, or the nominal pipe thickness shall be 3.37 mm (0.133 in.) or greater.

Alternatively, a record shall be kept by the Manufacturer of those employed on welding each joint that shall be made available to the Inspector.

(*b*) If a multiple number of permanent nonpressure part load-bearing attachment welds, non-load-bearing welds, such as stud welds, or special welds, such as tube-to-tubesheet welds, are made on a vessel, the Manufacturer need not identify the welder or welding operator that welded each individual joint, provided:

(1) The Manufacturer's Quality Control System includes a procedure that will identify the welders or welding operators that made such welds on each vessel so that the Inspector can verify that the welders or welding operators were all properly qualified; and

(2) The welds in each category are all of the same type and configuration and are welded with the same Welding Procedure Specification.

(c) Permanent identification of welders or welding operators making tack welds that become part of the final pressure weld is not required, provided the Manufacturer's Quality Control System includes a procedure to permit the Inspector to verify that such tack welds were made by qualified welders or welding operators.

6.2.5.5 Friction Welding Visual Examination. The welded joint between two members joined by the inertia and continuous drive friction welding processes shall be a full penetration weld. Visual examination of the as-welded flash roll of each weld shall be made as an in-process check. The weld upset shall meet the specified amount within ±10%. The flash shall be removed to sound metal.

6.2.5.6 Capacitor Discharge Welding. Capacitor discharge welding may be used for welding temporary attachments and permanent nonstructural attachments without postweld heat treatment, provided the following requirements are met.

(*a*) The Welding Procedure Specification shall be prepared in accordance with Section IX, insofar as possible describing the capacitor discharge equipment, the combination of materials to be joined, and the technique of application. Qualification of the Welding Procedure is not required.

(b) The energy output shall be limited to 125 W-sec.

6.2.5.7 Burr Grinding of Completed Weld Joints. Burr grinding of weld joints to improve fatigue life performance shall be in accordance with Figure 6.2 when specified in the User's Design Specification. The remaining ligament after burr grinding (i.e., t - g, see Figure 6.2) shall be greater than or equal to the minimum required wall thickness for the component obtained using Part 4 or Part 5, as applicable.

6.2.5.8 Corrosion Resistance of Alloy Welds. Alloy welds that are exposed to the corrosive action or environmental degradation of the contents of the vessel should have a resistance to corrosion that is not substantially less than that of the base metal. The use of filler metal that will deposit weld metal with practically the same composition as the material joined is recommended. Alternatively, filler metal of a different composition may be used, provided the strength of the weld metal at the operating temperature is not appreciably less than that of the high alloy material to be welded, and the user or an agent acting on behalf of the user is satisfied that its resistance to corrosion is satisfactory for the intended

service. The columbium content of weld metal shall not exceed 1.00%, except that ENiCrMo-3, ERNiCrMo-3, and ENiCrMo-12 weld filler metal made to SFA-5.11 and SFA-5.14 may be used to weld S31254, S31603, S31703, S31725, S31726, and any Table 3-A.6 material to a maximum design temperature of 480°C (900°F).

6.2.6 SUMMARY OF JOINTS PERMITTED AND THEIR EXAMINATION

6.2.6.1 Types of Joints Permitted. The types of weld joints permitted for each Weld Category are given in 4.2.

6.2.6.2 **Examination Requirements.** Examination requirements shall be in accordance with Part 7.

6.2.7 REPAIR OF WELD DEFECTS

6.2.7.1 Removal of Unacceptable Defects. Unacceptable defects detected visually or by the examinations in Part 7, and defects detected by leakage tests, shall be removed by mechanical means or by thermal gouging processes.

6.2.7.2 Rewelding of Areas to Be Repaired. The areas to be repaired shall be rewelded by qualified welders using qualified welding procedures.

6.2.7.3 Examination of Repaired Welds. Repaired welds shall be reexamined by the methods of the original examination of the weld. The repaired weld shall not be accepted unless the examination shows the repair to be satisfactory.

6.2.7.4 Postweld Heat Treatment of Repaired Welds. The postweld heat treatment rules in 6.4 shall apply to all weld repairs.

6.2.8 SPECIAL REQUIREMENTS FOR WELDING TEST PLATES FOR TITANIUM MATERIALS

6.2.8.1 If a vessel of welded titanium contains Category A or B weld joints, then a production test plate of the same specification, grade, and thickness shall be made of sufficient size to provide at least one face and one root bend specimen or two-side bend specimens dependent upon plate thickness. Where longitudinal joints are involved, the test plate shall be attached to one end of the longitudinal joint and welded continuously with the joint. Where circumferential joints only are involved, the test plate need not be attached but shall be welded along with the joint, and each welder or welding operator shall deposit weld metal in the test plate at the location and proportional to that deposited in the production weld.

6.2.8.2 Test plates shall represent each welding process or combination of processes or a change from machine to manual or vice versa. At least one test plate is required for each vessel, provided not over 30 m (100 ft) of Category A or B joints are involved. An additional test plate, meeting the same requirements as outlined above, shall be made for each additional 30 m (100 ft) of Category A or B joints involved. The bend specimens shall be prepared and tested in accordance with Section IX, QW-160. Failure of either bend specimen constitutes rejection of the weld.

6.3 SPECIAL REQUIREMENTS FOR TUBE-TO-TUBESHEET WELDS

6.3.1 MATERIAL REQUIREMENTS

Tubes may be attached to tubesheets by welding, provided the tubes and tubesheets or tubesheet facings are of weldable materials covered by this Division.

6.3.2 HOLES IN TUBESHEETS

6.3.2.1 Preparing Holes in Tubesheets. Tube holes in tubesheets shall be produced by any process that does not impair the properties of the material and produces a tube hole with a finish meeting the requirements of 6.3.2.3.

6.3.2.2 Clearance between Tubes and Tube Holes. The clearance between the outside surface of the tubes and the inside surfaces of the tube holes shall not exceed the clearance specified by the welding procedure qualification tests.

6.3.2.3 Finish of Holes. The edges of the tubesheet at the tube holes on the side to be welded shall be free of burrs, and the edges of the tubesheet at the tube hole on the side opposite the weld shall have sharp corners removed. The surfaces of tube holes in tubesheets shall have a workmanship-like finish.

6.3.3 WELD DESIGN AND JOINT PREPARATION

The weld dimensions and weld detail, and joint preparation, if used, shall comply with the details included in the Welding Procedure Specification.

6.3.4 QUALIFICATION OF WELDING PROCEDURE

Tube-to-tubesheet welding procedure specifications shall be qualified in accordance with the requirements of Section IX, QW-193.

6.4 PREHEATING AND HEAT TREATMENT OF WELDMENTS

6.4.1 REQUIREMENTS FOR PREHEATING OF WELDS

6.4.1.1 The Welding Procedure Specification for the material being welded shall specify the minimum preheating requirements in accordance with the weld procedure qualification requirements of Section IX. Where preheating is not required by the welding procedure, preheating may be employed during welding to assist in completion of the welded joint. The need for and temperature of preheat are dependent on a number of factors, such as the chemical analysis, degree of restraint of the parts being joined, elevated-temperature physical properties, and material thicknesses. Mandatory rules for preheating are, therefore, not given in this Division, except for those that provide for exemptions to postweld heat treatment as noted in Tables 6.8 through 6.15.

6.4.1.2 Guidelines for preheating are provided in Table 6.7 for the materials listed by P-Numbers of Section IX. It is cautioned that the preheating parameters shown in this table do not necessarily ensure satisfactory completion of the welded joint, and requirements for individual materials for the P-Number listing may have preheating requirements that are more restrictive.

6.4.2 REQUIREMENTS FOR POSTWELD HEAT TREATMENT

6.4.2.1 Before applying the detailed requirements and exemptions in these paragraphs, satisfactory qualification of the welding procedures to be used shall be performed in accordance with all the variables of Section IX and 6.3.4, including conditions of postweld heat treatment or its omission, and the restrictions listed in this paragraph.

6.4.2.2 Postweld heat treatment requirements for all materials of construction are shown below.

(*a*) Postweld heat treatment requirements for quenched and tempered high strength steel materials listed in Table 3-A.2 are covered in 6.6.6.

(b) Postweld heat treatment requirements for nonferrous materials are covered in 6.4.6.

(c) $2^{1}/_{4}$ Cr-1Mo- $^{1}/_{4}$ V and 3Cr-1Mo- $^{1}/_{4}$ V-B Materials – The final postweld heat treatment shall be in accordance with the requirements of this Division for P-No. 5C materials.

(d) 2^{1}_{4} Cr-1Mo Materials – The final postweld heat treatment temperature shall be in accordance with the requirements of this Division for P-No. 5A materials, except that, for the materials listed in Table 3.1, the permissible minimum normal holding temperature is 650°C (1,200°F) and the holding time shall be 2.5 min/mm (1 hr/in.). For thicknesses over 125 mm (5 in.), the holding time shall be 5 hr plus 0.6 min for each additional mm (15 min for each additional inch) over 125 mm (5 in.).

(e) Postweld heat treatment requirements for all other materials are covered in the tables listed below. Except as otherwise provided in these tables, all welds in pressure vessels or pressure vessel parts shall be given a postweld heat treatment at a temperature not less than that specified in the applicable table based on the nominal thickness as defined in 6.4.2.7. The materials shown below are identified by P-Numbers and Group Numbers in accordance with Section IX, Table QW/QB-422 and are provided in Annex 3-A for each material specification. When there is a conflict in P-Number or Group Number, the numbers in Section IX govern.

(1) Table 6.8 – Materials P-No. 1, Group 1, 2, 3

(2) Table 6.9 - Materials P-No. 3, Group 1, 2, 3

(3) Table 6.10 – Materials P-No. 4, Group 1, 2

(4) Table 6.11 - Materials P-No. 5A, P-No. 5B Group 1, and P-No. 5C Group 1, P-No. 15E Group 1

(5) Table 6.12 - Materials P-No. 6, Group 1, 2, 3

(6) Table 6.13 - Materials P-No. 7, Group 1, 2 and P-No. 8

(7) Table 6.14 – Materials: P-No. 9A, Group 1 and P-No. 9B, Group 1

(8) Table 6.15 – Materials: P-No. 10A, Group 1; P-No. 10C, Group 1; P-No. 10H, Group 1; P-No. 10I, Group 1; P-No. 10K, Group 1; and P-No. 45

(9) Table 6.16 - Alternative Postweld Heat Treatment Requirements For Carbon and Low Alloy Steels

6.4.2.3 Additional postweld heat treatment requirements, other than those cited in 6.4.2.2(e), may be mandatory based on the requirements of 3.11.

6.4.2.4 The exemptions from postweld heat treatment permitted in 6.4.2.2 are not permitted when postweld heat teatment is a service requirement as set forth in 3.11.2.9, when welding ferritic materials greater than 3 mm ($\frac{1}{8}$ in.) thick with the electron beam welding process, or when welding P-No. 3, P-No. 4, P-No. 5A, P-No. 5B, P-No. 15E, P-No. 5C, P-No. 6, P-No. 7 (except for Type 405 and Type 410S), and P-No. 10 materials using the inertia and continuous drive friction welding process.

6.4.2.5 When Holding Temperatures and Times May Be Exceeded. Except where prohibited in 6.4.2.2, holding temperatures and/or holding times in excess of the minimum values given in these tables may be used. used. Intermediate postweld heat treatments need not conform to the requirements of 6.4.2.2. A time-temperature recording of all postweld heat treatments shall be provided for review by the Inspector. The holding time at temperature specified in the table references of 6.4.2.2 need not be continuous. It may be an accumulation of time of multiple postweld heat treat cycles.

6.4.2.6 Heat Treatment of Pressure Parts Consisting of Different P-Number Groups. When pressure parts of two different P-Number groups are joined by welding, engineering judgment shall be applied when selecting the postweld heat treatment temperature and holding time to produce material properties suitable for the intended service. Alternatives such as welding with buttering as described in Section IX, QW-283 may be considered. When nonpressure parts are welded to pressure parts, the postweld heat treatment temperature of the pressure part shall control.

6.4.2.7 Definition of Nominal Thickness Governing Postweld Heat Treatment. The nominal thickness as used in this paragraph is the thickness of the welded joint as defined below. For pressure vessels or parts of pressure vessels being postweld heat treated in a furnace charge, it is the greatest weld thickness for all weld types as defined in (a) through (g) below in any vessel or vessel part that has not previously been postweld heat treated.

(*a*) When the welded joint connects parts of the same thickness, using a full penetration butt weld, the nominal thickness is the total depth of the weld exclusive of any permitted weld reinforcement.

(*b*) For groove welds, the nominal thickness is the depth of the groove. For single- or double-sided groove welds, the nominal thickness is the total depth of the groove.

(c) For fillet welds, the nominal thickness is the throat dimension. If a fillet weld is used in conjunction with a groove weld, the nominal thickness is the depth of the groove or the throat dimension, whichever is greater.

(d) For stud welds, the nominal thickness shall be the diameter of the stud.

(e) When a welded joint connects parts of unequal thicknesses, the nominal thickness shall be the following:

(1) the thinner of two adjacent butt-welded parts, including head-to-shell connections

(2) the thickness of the shell or the fillet weld, whichever is greater, in connections to intermediate heads of the type shown in Table 4.2.5, Detail 6

(3) the thickness of the shell in connections to tubesheets, flat heads, covers, flanges (except for welded parts shown in Table 4.2.9, Detail 9, where the thickness of the weld shall govern), or similar constructions

(4) for nozzles, the thickness of the weld across the nozzle neck or shell or head or reinforcing pad or attachment fillet weld, whichever is the greater

(5) the thickness of the nozzle neck at the joint in nozzle neck to flange connections

(6) the thickness of the weld at the point of attachment when a nonpressure part is welded to a pressure part

(7) the thickness of the tube in tube-to-tubesheet connections

(f) For repairs, the nominal thickness is the depth of the repair weld.

(g) The thickness of the weld metal overlay when weld metal overlay is the only welding applied.

(*h*) The thickness of the head, shell, nozzle neck, or other parts as used in (a) through (g) above shall be the wall thickness of the part at the welded joint under consideration. For plate material, the thickness as shown on the Material Test Report or material Certificate of Compliance before forming may be used, at the Manufacturer's option, in lieu of measuring the wall thickness at the welded joint.

6.4.2.8 Heat Treatment of Electroslag Welds in Ferritic Materials. Electroslag welds in ferritic materials over 38 mm $(1^{1}/_{2} \text{ in.})$ in thickness at the joint shall be given a grain refining (austenitizing) heat treatment. For P-No.1 materials only, the heating and cooling rate restrictions of 6.4.4(b) and 6.4.4(e) do not apply when the heat treatment following welding is in the austenitizing range.

6.4.2.9 Nonmandatory Guideline for Relaxation Cracking. Relaxation cracking⁴ can occur in P-No. 8 materials not only in cold-formed areas but also in welds where high-level residual tensile stress exists. Unless one or more of the following conditions are satisfied, PWHT at the temperature listed in Table 6.2.B for the specific material grade may be advisable to avoid relaxation cracking:

(a) The design temperature does not exceed 540°C (1,000°F).

(*b*) The welding is limited to the following (singularly or in combination):

⁴ See Section II, Part D, Nonmandatory Appendix A, A-206.

(1) circumferential butt welds in pressure parts with a nominal base metal thickness of 13 mm ($\frac{1}{2}$ in.) or less at the weld

(2) circumferential fillet welds with a throat thickness of 13 mm ($\frac{1}{2}$ in.) or less, and combination groove and fillet welds with a weld thickness of 13 mm ($\frac{1}{2}$ in.) or less

(3) attaching extended heat-absorbing fins to pipe and tube materials by electric resistance welding, provided the following requirements are met:

(-*a*) a maximum pipe or tube size of DN 100 (NPS 4)

(-*b*) a maximum specified carbon content (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits) of not more that 0.15%

(-c) a maximum fin thickness of 3 mm ($\frac{1}{8}$ in.)

In addition, prior to using the welding procedure, the Manufacturer shall demonstrate that the heat-affected zone does not encroach upon the minimum wall thickness.

(4) attaching non-load-carrying studs not exceeding 13 mm ($\frac{1}{2}$ in.) in diameter when using an automatic arc stud welding or automatic resistance stud welding process

(5) attaching bare-wire thermocouples by capacitor discharge welding or electric resistance welding under the requirements of 6.4.5.3 with a nominal base metal thickness not less than 5 mm (0.2 in.)

6.4.3 PROCEDURES FOR POSTWELD HEAT TREATMENT

6.4.3.1 The postweld heat treatment shall be performed in accordance with one of the procedures of 6.4.3.1 through 6.4.3.7. In the procedures that follow, the soak band is defined as the volume of metal required to meet or exceed the minimum PWHT temperatures required in 6.4.2.2. As a minimum, the soak band shall contain the weld, heat-affected zone, and a portion of base metal adjacent to the weld being heat treated. The minimum width of this volume is the widest width of weld plus the nominal thickness defined in 6.4.2.7 or 50 mm (2 in.), whichever is less, on each side or end of the weld. For additional detail recommendations regarding implementation and performance of these procedures refer to Welding Research Council (WRC) Bulletin 452, June 2000, "Recommended Practices for Local Heating of Welds in Pressure Vessels".

6.4.3.2 Heating Vessel in a Furnace in One Heat. Postweld heat treatment is performed by heating the vessel as a whole in a closed furnace. This procedure is preferable and should be used whenever practicable.

6.4.3.3 Heating Vessel Portions in a Furnace in More Than One Heat. Postweld heat treatment is performed by heating the vessel in more than one heat in a furnace, provided the overlap of the heated sections of the vessel is at least 1.5 m (5 ft). When this procedure is used, the portion outside of the furnace shall be shielded so that the temperature gradient is not harmful. The cross section where the vessel projects from the furnace shall not intersect a nozzle or other structural discontinuity.

6.4.3.4 Heating Shell Sections, Heads, and Other Portions Before Joining. Postweld heat treatment is performed by heating of shell sections, heads, and/or portions of vessels for postweld heat treatment of longitudinal joints or complicated welded details before joining to make the completed vessel. If it is not practical to postweld heat treat the complete vessel as a whole or in two or more heats as provided in 6.4.3.3, then any circumferential joints not previously postweld heat treated may be locally postweld heat treated by any appropriate means that will assure the required uniformity. For such local heating, the soak band shall extend around the full circumference. The portion outside the soak band shall be protected so that the temperature gradient is not harmful. This procedure may also be used to postweld heat treat portions of new vessels after repairs subject to the owner/user's approval.

6.4.3.5 Heating Vessel Internally. Postweld heat treatment is performed by internally heating the vessel. The internal heating may be provided by any appropriate means. Adequate indicating and recording temperature devices shall be utilized to aid in the control and maintenance of a uniform distribution of temperature in the vessel wall. Previous to this operation, the vessel shall be fully enclosed with insulating material, or the permanent insulation may be installed provided it is suitable for the required temperature. In this procedure, the internal pressure should be kept as low as practicable but shall not exceed 50% of the maximum allowable working pressure at the highest metal temperature expected during the postweld heat treatment period.

6.4.3.6 Local Heating of Nozzles to Vessels and External Attachments.

(*a*) Local heating of nozzles and attachments shall be performed by heating a circumferential band containing nozzles or other welded attachments that require postweld heat treatment in such a manner that the entire band shall be brought up uniformly to the required temperature and held for the specified time. Except as modified in the paragraph below, the soak band shall extend around the entire vessel and shall include the nozzle or welded attachment.

(1) The portion of the vessel outside of the circumferential soak band shall be protected so that the temperature gradient is not harmful; this procedure may also be used for local heat treatment of circumferential joints in pipe, tubing, or nozzle necks. In the latter case, proximity to the shell increases thermal restraint, and the designer should provide adequate length to permit heat treatment without harmful gradients at the nozzle attachment, or heat a full circumferential band around the shell, including the nozzle.

(2) The circumferential soak band width may be varied away from the nozzle or attachment weld requiring PWHT, provided the required soak band around the nozzle or attachment weld is heated to the required temperature and held for the required time. As an alternative to varying the soak band width, the temperature within the circumferential band away from the nozzle or attachment may be varied and need not reach the required temperature, provided the required soak band around the nozzle or attachment weld is heated to the required temperature, provided the required soak band around the nozzle or attachment weld is heated to the required temperature, held for the required time, and the temperature gradient is not harmful throughout the heating and cooling cycle. The portion of the vessel outside of the circumferential soak band shall be protected so that the temperature gradient is not harmful.

(b) The procedure in (a) may also be used to postweld heat treat portions of vessels after repairs.

6.4.3.7 Local Area Heating of Double Curvature Heads or Shells. Postweld heat treatment is performed by heating a local area around nozzles or welded attachments in the larger radius sections of a double curvature head or a spherical shell or head in such a manner that the area is brought up uniformly to the required temperature and held for the specified time. The soak band shall include the nozzle or welded attachment. The minimum soak band size shall be a circle whose radius is the widest width of the weld attaching the nozzle, reinforcing plate, or structural attachment to the shell, plus the nominal thickness as defined in 6.4.2.7, or 50 mm (2 in.), whichever is less. The portion of the vessel outside of the soak band shall be protected so that the temperature gradient is not harmful.

6.4.3.8 Heating of Other Configurations. Postweld heat treatment performed by local area heating of other configurations such as "spot" or bulls eye" local heating not addressed in 6.4.3.2 through 6.4.3.7 is permitted, provided that other measures (based upon sufficiently similar documented experience or evaluation) are taken that consider the effect of thermal gradients, all significant structural discontinuities (such as nozzles, attachments, head-to-shell junctions), and any mechanical loads which may be present during PWHT. The portion of the vessel outside of the soak band shall be protected so that the temperature gradient is not harmful. The soak band shall include a circle that extends beyond the edges of the attachment weld in all directions by a minimum of the nominal thickness defined in 6.4.2.7 or 50 mm (2 in.), whichever is less.

6.4.4 OPERATION OF POSTWELD HEAT TREATMENT

The operation of postweld heat treatment shall be carried out by one of the procedures given in 6.4.3 in accordance with the following requirements.

(a) When postweld heat treatment is performed in a furnace (see 6.4.3.2), the temperature of the furnace shall not exceed 425° C (800° F) at the time the vessel or part is placed in it.

(*b*) Above 425°C (800°F), the rate of heating shall be not more than 220°C/hr (400°F/hr) divided by the maximum metal thickness of the shell or head plate in inches, but in no case more than 220°C/hr (400°F/hr) and in no case need it be less than 55°C/hr (100°F/hr). During the heating period there shall not be a greater variation in temperature throughout the portion of the vessel being heated than 140°C (250°F) within any 4.6 m (15 ft) interval.

(c) The vessel or vessel part shall be held at or above the temperature specified in 6.4.2 for the period of time specified in this paragraph. During the holding period, there shall not be a difference greater than 85°C (150°F) between the highest and lowest temperatures throughout the portion of the vessel being heated, except where the range is further limited in 6.4.2.

(*d*) When post weld heat treatment is performed in a furnace (see 6.4.3.2), during the heating and holding periods, the furnace atmosphere shall be so controlled as to avoid excessive oxidation of the surface of the vessel. The furnace shall be of such design as to prevent direct impingement of the flame on the vessel.

(e) Above 425°C (800°F), cooling shall be done at a rate not greater than 280°C/hr (500°F/hr) divided by the maximum metal thickness of the shell or head plate in inches, but in no case need it be less than 55°C/hr (100°F/hr). At temperatures above 425°C (800°F), temperature variations within the heated portion during the cooling phase shall not be greater than 140°C (250°F) within any 4.6 m (15 ft) interval. From 425°C (800°F), the vessel may be cooled in still air.

6.4.5 POSTWELD HEAT TREATMENT AFTER REPAIRS

6.4.5.1 Except as permitted in 6.4.5.2 below, vessels or parts of vessels that have been postweld heat treated in accordance with the requirements of 6.4 shall again be postweld heat treated after welded repairs have been made.

ASME BPVC.VIII.2-2023

6.4.5.2 Weld Repairs Made After Postweld Heat Treatment. Weld repairs to P-No.1 Gr. Nos. 1-3 materials and to P-No. 3 Gr. Nos. 1-3 materials, and to the weld metals used to join these materials, may be made after the final PWHT but prior to the final hydrostatic test without additional PWHT, provided that all the requirements below are satisfied. The welded repairs shall meet the requirements shown below. These requirements do not apply when the welded repairs are minor restorations of the material surface such as those required after the removal of construction fixtures and provided that the surface is not exposed to the vessel contents.

(*a*) PWHT is not a service requirement defined by the user.

(b) The material is not required to be impact tested to qualify toughness properties in accordance with 3.11.

(c) The Manufacturer shall give prior notification of the repair to the user or to his designated agent and shall not proceed until acceptance has been obtained. Such repairs shall be recorded on the Data Report.

(d) The total repair depth shall not exceed 38 mm ($1\frac{1}{2}$ in.) for P-No. 1 Gr. Nos. 1-3 materials and 16 mm ($\frac{5}{8}$ in.) for P-No. 3 Gr. Nos. 1-3 materials. The total depth of a weld repair shall be taken as the sum of the depths for repairs made from both sides of a weld at a given location.

(e) After removal of the defect, the groove shall be examined, using either the magnetic particle or liquid penetrant examination methods in accordance with Part 7.

(f) In addition to the requirements of Section IX for qualification of Welding Procedure Specifications for groove welds, the following requirements shall apply.

(1) The weld shall be deposited by one or more of the following processes:

(-*a*) shielded metal-arc process using low-hydrogen electrodes with a maximum bead width of 4 times the electrode core diameter.

(-b) gas tungsten-arc process with a maximum bead width of $\frac{1}{2}$ in. (13 mm).

(-c) gas metal-arc process with a maximum bead width of $\frac{1}{2}$ in. (13 mm). When flux-cored filler materials are used, they shall be low-hydrogen.

(-d) submerged-arc process using low-hydrogen consumables.

(-e) plasma-arc process with a maximum bead width of $\frac{1}{2}$ in. (13 mm).

The low-hydrogen electrodes, filler materials, and consumables shall be properly conditioned in accordance with Section II, Part C .

(2) For P-No. 1 Gr. Nos. 1-3 materials, the repair area shall be preheated and maintained at a minimum temperature of 95°C (200°F) during welding.

(3) For P-No. 3 Gr. Nos. 1-3 materials, the repair weld method shall be limited to the SMAW half bead weld repair and weld temper bead reinforcement technique. The repair area shall be preheated and maintained at a minimum temperature of $175^{\circ}C$ ($350^{\circ}F$) during welding. The maximum interpass temperature shall be $230^{\circ}C$ ($450^{\circ}F$). The initial layer of weld metal shall be deposited over the entire area using 3 mm ($\frac{1}{8}$ in.) maximum diameter electrodes. Approximately one-half the thickness of this layer shall be removed by grinding before depositing subsequent layers. The subsequent weld layers shall be deposited using 4 mm ($\frac{5}{32}$ in.) maximum diameter electrodes in such a manner as to ensure tempering of the prior weld beads and their heat-affected zones. A final temper bead weld shall be applied to a level above the surface being repaired without contacting the base material but close enough to the edge of the underlying weld bead to ensure tempering of the base material heat-affected zone. After completing all welding, the repair area shall be maintained at a temperature of 205°C (400°F) to 260°C (500°F) for a minimum of 4 hr. The final temper bead reinforcement layer shall be removed substantially flush with the surface of the base material.

(g) After the finished repair weld has reached ambient temperature, it shall be examined using the magnetic particle or liquid penetrant examination methods in accordance with Part 7. If the examination is by magnetic particle method, only the alternating current yoke type is acceptable. For P-No. 3 Gr. No.3 materials, the examination shall be made after the material has been at ambient temperature for a minimum period of 48 hr to determine the presence of possible delayed cracking of the weld. In addition, welded repairs greater than 10 mm ($^{3}_{/8}$ in.) deep in materials, and in welds that are required to be examined using the radiographic method in accordance with Part 7, shall be examined using the radiographic method in accordance with Part 7.

(*h*) The vessel shall be hydrostatically tested after making the welded repair.

6.4.5.3 Capacitor discharge or electric resistance welding may be used for attaching bare wire thermocouples, without subsequent postweld heat treatment, provided the energy output for welding is limited to a maximum 125 W-sec, and any requirements specified in the applicable notes as found in Tables 6.8 through 6.15 shall apply. A welding procedure specification shall be prepared and the content shall describe, as a minimum, the capacitor discharge equipment, the combination of materials to be joined, and the technique of application. Qualification of the welding procedure is not required.

6.4.6 POSTWELD HEAT TREATMENT OF NONFERROUS MATERIALS

6.4.6.1 Postweld heat treatment of nonferrous materials is normally not necessary nor is it desirable. Except as required in 6.4.6.2 and 6.4.6.3, postweld heat treatment shall not be performed except by agreement between the purchaser and the Manufacturer. The temperature, time and method of heat treatment shall be covered by agreement.

6.4.6.2 Within 14 days after welding, all products of zirconium Grade R60705 shall be heat treated at 540°C (23) to 595°C (1,000°F to 1,100°F) for a minimum of 1 hr for thicknesses up to 25 mm (1 in.) plus 0.5 hr for each additional 25 mm (1 in.) of thickness. Above 425°C (800°F) cooling shall be done at a rate not greater than 280°C/hr (500°F/hr) divided by the maximum metal thickness of the shell or head plate in inches but in no case more than 280°C/hr (500°F /hr). From 425°C (800°F), the vessel may be cooled in still air.

6.4.6.3 Postweld Heat Treatment of UNS Numbers N08800, N08810, and N08811 Alloys.

(*a*) Pressure boundary welds and welds to pressure boundaries in vessels with design temperatures above 540°C (1,000°F) fabricated from UNS No. N08800 (Alloy 800), UNS No. N08810 (Alloy 800H), or UNS No. N08811 (Alloy 800HT) shall be postweld heat treated. The postweld heat treatment shall consist of heating to a minimum temperature of 885°C (1,625°F) for 1.5 hr for thicknesses up to 25 mm (1 in.), and for 1.5 hr plus 0.04 hr/mm (1 hr/in.) of thickness for thicknesses in excess of 25 mm (1 in.). Cooling and heating rates shall be by agreement between the purchaser and Manufacturer. As an alternative, solution annealing in accordance with the material specification is acceptable. Postweld heat treatment of tube-to-tubesheet and expansion bellows attachment welds is neither required nor prohibited.

(b) Except as permitted in (c), vessels or parts of vessels that have been postweld heat treated in accordance with the requirements of this paragraph shall again be postweld heat treated after welded repairs have been made.

(c) Weld repairs to the weld metal and heat-affected zone in welds joining these materials may be made after the final PWHT, but prior to the final hydrostatic test, without additional PWHT. The weld repairs shall meet the requirements shown below.

(1) The Manufacturer shall give prior notification of the repair to the user or to his designated agent and shall not proceed until acceptance has been obtained.

(2) The total repair depth shall not exceed 13 mm ($\frac{1}{2}$ in.) or 30% of the material thickness, whichever is less. The total depth of a weld repair shall be taken as the sum of the depths for repairs made from both sides of a weld at a given location.

(3) After removal of the defect, the groove shall be examined. The weld repair area must also be examined using the liquid penetrant method in accordance with Part 7.

(4) The vessel shall be hydrostatically tested after making the welded repair.

6.4.6.4 Postweld heat treatment of UNS R31233 is required prior to cold forming when the cold-forming bend radius at the weld is less than 4 times the thickness of the component. Postweld heat treatment shall consist of annealing at 1 120°C (2,050°F) minimum, immediately followed by water quenching.

6.5 SPECIAL REQUIREMENTS FOR CLAD OR WELD OVERLAY LININGS, AND LINED PARTS

6.5.1 MATERIALS

6.5.1.1 Integral or Weld Metal Overlay Clad Base Material or Parts. Integral or weld metal overlay clad base material or parts having applied corrosion resistant linings shall conform to the requirements of 3.3.6. For the purposes of this Paragraph, the term corrosion resistant includes, but is not limited to, cladding, weld overlay, hard facing, etc., where welding is used to deposit the material.

6.5.1.2 Inserted Strips in Clad Materials. The nominal thickness of inserted strips used to restore cladding at joints shall be equal to the nominal thickness of cladding specified for the plates, backed if necessary with corrosion resistant weld metal deposited in the groove to bring the insert flush with the surface of the adjacent cladding. When insert strips are used, the cladding shall not be considered part of the shell for strength purposes.

6.5.1.3 Weld Metal Composition. Welds that are exposed to the corrosive action of the contents of the vessel should have a resistance to corrosion that is not substantially less than that of the corrosion resistant integral or weld metal overlay cladding or lining. The use of filler metal that will deposit weld metal with practically the same composition as the material joined is recommended. By agreement between the user and Manufacturer, a weld metal of different composition may be used, provided it has better mechanical properties and its resistance to corrosion is satisfactory for the intended service.

6.5.2 JOINTS IN CORROSION RESISTANT CLAD OR WELD METAL OVERLAY LININGS

(*a*) The types of joints and welding procedures used shall be selected to minimize the formation of brittle weld composition that may result from the mixture of the corrosion resistant alloy and base material.

(*b*) When a shell, head, or other pressure part is welded to form a corner joint, as in Table 4.2.6, the weld shall be made between the base materials either by removing the clad material prior to welding the joint or by using weld procedures that will ensure the base materials are fused. The corrosion resistance of the joint may be provided by using corrosion-resistant and compatible weld filler material or may be restored by any other appropriate means.

NOTE: Because of the different thermal coefficients of expansion of dissimilar metals, caution should be exercised in design and construction under provisions of these paragraphs in order to avoid difficulties in service under extreme temperature conditions or with unusual restraint of parts such as may occur at points of stress concentration.

6.5.3 WELDING PROCEDURES

Welding procedures for corrosion resistant clad and weld overlay linings shall be prepared and qualified in accordance with the requirements of Section IX.

6.5.4 METHODS TO BE USED IN ATTACHING APPLIED LININGS

Applied linings may be attached to the base material and other parts by any method and process of welding that is not excluded by the rules of this Division.

6.5.5 POSTWELD HEAT TREATMENT OF CLAD AND LINED WELDMENTS

6.5.5.1 Requirements When Base Metal Must Be Postweld Heat Treated.

(a) Vessels or parts of vessels constructed of corrosion resistant integral or weld metal overlay clad, or applied corrosion resistant lining material shall be postweld heat treated when the base material is required to be postweld heat treated.

(*b*) When the thickness of the base material requires postweld heat treatment, it shall be performed after the application of corrosion resistant weld metal overlay cladding or applied corrosion resistant lining unless exempted by 6.4.2.2.

6.5.5.2 Requirements When Base Metal or Lining Is Chromium Alloy Steel. Vessels or parts of vessels constructed of chromium alloy stainless steel clad base material and those lined with chromium alloy stainless steel applied linings shall be postweld heat treated in all thicknesses, except that vessels clad or lined with Type 405 or Type 410S and welded with an austenitic electrode or non-air-hardening nickel-chromium-iron electrode need not be postweld heat treated unless required by 6.5.5.1.

6.5.6 REQUIREMENTS FOR BASE MATERIAL WITH CORROSION RESISTANT INTEGRAL OR WELD METAL OVERLAY CLADDING

6.5.6.1 Procedure Qualification for Groove Welds in Base Material With Corrosion Resistant Integral or Weld Metal Overlay Cladding. The requirements in Section IX, for procedure qualification shall be followed.

6.5.6.2 When the Integral or Weld Metal Overlay Cladding Thickness is Included in Design Thickness. The welding procedure for groove welds in integral or weld overlay shall be qualified as provided in 6.2.2.4 when any part of the cladding thickness of the clad base material is included in the design calculations in accordance with 4.1.9.

6.5.6.3 When the Integral or Weld Metal Overlay Cladding Thickness Is Not Included in Design Thickness. When the cladding thickness is not included in the design calculations (see 6.5.6.2), the procedure for groove welds in integral or weld overlay shall be qualified as in 6.5.3. Alternatively, the weld in the base joint or cladding joint may be qualified by itself with the rules in Section IX.

6.5.6.4 Performance Qualification for Groove Welds in Base Material With Corrosion Resistant Integral or Weld Metal Overlay Cladding. Welders and welding operators shall be qualified in accordance with the requirements of Section IX.

6.5.7 EXAMINATION REQUIREMENTS

Examination requirements for vessels with clad or weld metal overlay linings are located in 7.4.8.1 and 7.4.8.2.

6.5.8 INSPECTION AND TESTS

Inspection and testing requirements for vessels with clad or weld metal overlay linings are located in 7.4.8.3 and Part 8, respectively.

6.5.9 STAMPING AND REPORTS

The provisions for stamping and reports in Part 2 shall apply to vessels that have clad or weld overlay corrosion resistant linings. The Manufacturer's Data Reports shall include the specification and type of lining material and the applicable paragraph under which the shell and heads were designed.

6.6 SPECIAL REQUIREMENTS FOR TENSILE PROPERTY ENHANCED Q&T FERRITIC STEELS

6.6.1 GENERAL

The following supplemental rules are applicable to steels suitable for welded vessel parts where the tensile properties that have been enhanced by the quenching and tempering heat treatments shown in Table 6.17 and Table 3-A.2. These supplemental rules shall be used in conjunction with the general requirements for fabrication in Part 6, as applicable. The provisions of 3.10.5.2(d) shall also apply to materials whose tensile properties are enhanced by quenching and tempering heat treatment. The heat treatment may be applied to the individual parts of a vessel prior to assembly by welding, to partially fabricated components, or to an entire vessel after completion of welding. The rules of this Part are not intended to cover integrally forged vessels, quenched and tempered, that do not contain welded seams.

6.6.2 MARKING ON PLATES AND OTHER MATERIALS

Any steel stamping shall be done with "low stress" stamps, as commercially available. Steel stamping of all types may be omitted on material below 13 mm ($\frac{1}{2}$ in.) in thickness. Requirements for the use of other markings in lieu of stamping are covered in 6.1.1.2(b).

6.6.3 REQUIREMENTS FOR HEAT TREATING AFTER FORMING

(*a*) Pieces that are formed after quenching and tempering at a temperature lower than the final tempering temperature shall be heat treated in accordance with Table 6.17 when the extreme fiber elongation from forming exceeds 5% as determined by the lesser of the applicable equations in Table 6.1.

(b) Pieces formed at temperatures equal to or higher than the original tempering temperature shall be re-quenched and tempered in accordance with the applicable material specifications either before or after welding into the vessel.

6.6.4 MINIMUM THICKNESS AFTER FORMING

The minimum thickness after forming of any section subject to pressure shall be 1.6 mm (l_{16} in.).

6.6.5 WELDING REQUIREMENTS

6.6.5.1 Qualification of Welding Procedures and Welders. The qualification of the welding procedure and the welders shall conform to the requirements of Section IX and such qualification tests shall be performed on postweld heat-treated specimens when a postweld heat treatment is used.

6.6.5.2 Additional Welding Requirements.

(*a*) Filler metal containing more than 0.06% vanadium shall not be used for weldments subject to postweld heat treatment.

(*b*) The materials in Table 6.18 are exempt from production impact tests of the weld metal in accordance with 3.11 under the conditions given below:

(1) One of the high nickel alloy filler metals in Table 6.19 is used.

(2) All required impact tests shall be performed as part of the procedure qualification tests as specified in 3.11.

(3) Production impact tests of the heat-affected zone shall be performed in accordance with 3.11.

(4) The welding processes are limited to gas metal arc, shielded metal arc, and gas tungsten arc.

(5) The minimum design metal temperature of the vessel shall be not colder than $-195^{\circ}C$ ($-320^{\circ}F$).

(c) Class 2

(1) The filler metals for welding the 9Ni, 8Ni, and $5Ni-\frac{1}{4}Mo$ materials listed in Table 6.18 shall meet the additional requirements in (2) if any of the following are true:

(-a) The filler metal has an unspecified yield strength.

(-b) The specified minimum yield or ultimate tensile strength is below the specified minimums for the base metal.

(-c) The welding procedure qualification test shows that the deposited weld metal tensile test strength is lower than the specified minimum ultimate tensile strength of the base metal.

(2) When any of the conditions of (1) are true, the following additional requirements shall apply and shall be met in the procedure qualification tests:

ASME BPVC.VIII.2-2023

(-*a*) One all-weld-metal tension test specimen that conforms to the dimensional standards of Section II, Part C, SFA-5.11, 12.1 shall be tested to determine the minimum ultimate tensile strength and yield strength.

(-b) The weld metals for welding the 8Ni and 9Ni materials listed in Table 6.18 shall meet 690 MPa (100 ksi) minimum ultimate tensile strength and 430 MPa (62.5 ksi) minimum yield strength.

(-c) The weld metals for welding the $5Ni-\frac{1}{4}Mo$ steel SA-645 Grade A material shall meet 655 MPa (95 ksi) minimum ultimate tensile strength and 405 MPa (59 ksi) minimum yield strength. These weld metals may also be used for welding the 8Ni and 9Ni materials listed in Table 6.18 when the allowable design stresses in Section II, Part D, Subpart 1, Table 5A do not exceed those for ultimate tensile strength of 655 MPa (95 ksi) (see Section II, Part D, Subpart 1, Table 5A, Note W4).

(*d*) For SA-508 and SA-543 materials, the following, in addition to the variables in Section IX, QW-250, shall be considered as essential variables requiring requalification of the welding procedure.

(1) A change in filler metal SFA classification or to weld metal not covered by an SFA specification.

(2) An increase in the maximum interpass temperature or a decrease in the minimum specified preheat temperature. The specified range between the preheat temperature and the interpass temperature shall not exceed 85°C (150°F).

(3) A change in the heat treatment (procedure qualification tests shall be subjected to heat treatment essentially equivalent to that encountered in fabrication of the vessel or vessel parts, including the maximum total aggregate time at temperature or temperatures and cooling rates).

(4) A change in the type of current (AC or DC), polarity, or a change in the specified range for amp, volt, or travel speed.

(5) A change in the thickness, *t*, of the welding procedure qualification test plate as follows:

(-*a*) For welded joints that are quenched and tempered after welding, any increase in thickness. The minimum thickness qualified in all cases is 6 mm ($\frac{1}{4}$ in.).

(-b) For welded joints with a thickness, t, less than 16 mm ($\frac{5}{8}$ in.) that are not quenched and tempered after welding, for any decrease in thickness. The maximum thickness qualified is 2t.

(-c) For welded joints with a thickness, *t*, greater than or equal to 16 mm ($\frac{5}{8}$ in.) that are not quenched and tempered after welding, for any departure from the range of 16 mm ($\frac{5}{8}$ in.) to 2*t*.

(6) Consumables control, drying, storage, and exposure requirements shall be in accordance with the following.

(-a) Due consideration shall be given to protection of electrodes, rods, and fluxes for all welding processes in order to minimize moisture absorption and surface contamination. When low-alloy steel electrodes and filler metals are used, the classification shall include an H4 supplemental diffusible hydrogen designator (4 ml of hydrogen max. per 100 g of weld metal).

(-b) Once electrodes, rods, and fluxes are opened, storage and handling shall be controlled so as to minimize absorption of moisture from the ambient atmosphere. The practice used for controlling the moisture content shall be developed by the vessel Manufacturer or that recommended by the electrode manufacturer.

(7) The minimum preheat temperature is a function of the material thickness, *t*, as shown below. The preheat temperature shall be maintained for a minimum of 2 hr after completion of the weld joint.

(-a) 40°C (100°F) for $t \le 13 \text{ mm} (\frac{1}{2} \text{ in.})$

(-b) 95°C (200°F) for 13 mm ($\frac{1}{2}$ in.) < $t \le 38$ mm ($\frac{1}{2}$ in.)

(-c) 150°C (300°F) for $t > 38 \text{ mm} (1\frac{1}{2} \text{ in.})$

(-d) For SA-517and SA-592 materials, the requirements of (1) through (4) and (6) in addition to the variables in Section IX, QW-250, shall be considered as essential variables requiring requalification of the welding procedure.

(8) The postweld heat treatment temperature as required by Table 6.17 may be waived for SA-517 and SA-592 materials with a nominal thickness, t, such that, 15 mm ($^{9}/_{16}$ in.) < $t \le 32$ mm ($1^{1}/_{4}$ in.) provided all of the following conditions are met:

(-a) A minimum preheat of 95°C (200°F) and a maximum interpass of 205°C (400°F) are used.

(-b) After completion of welding and without allowing the weldment to cool below the minimum preheat temperature, the temperature of the weldment is raised to a minimum of 205° C (400° F) and maintained at that temperature for at least 4 hr; and

(-c) All welds are examined by nondestructive examination in accordance with the provisions of this Part.

6.6.5.3 Preparation of Base Metal. The preparation of plate edges, welding bevels, and chamfers and similar operations involving the removal of metal shall be by machining, chipping, or grinding, by gas cutting or gouging. If metal removal is accomplished by methods involving melting, such as gas cutting or arc air gouging, the metal removal shall be done with appropriate precautions to avoid cracking. When thermal cutting is used, the effect on mechanical properties shall be taken into consideration. The edges to be welded shall be uniform and smooth.

6.6.5.4 Joint Alignment.

(a) Longitudinal Joint Alignment – In lieu of 6.1.6.1, the longitudinal joint misalignment for quenched and tempered steels shall not exceed 20% of the nominal plate thickness or 2.5 mm $\binom{3}{32}$ in.).

(b) Circumferential Joint Alignment - In lieu of 6.1.6.1, the circumferential joint misalignment for quenched and tempered steels shall not exceed the following values.

(1) If $t \le 24 \text{ mm} ({}^{15}\!/_{16} \text{ in.})$, then the tolerance is 20% of the plate thickness. (2) If 24 mm $({}^{15}\!/_{16} \text{ in.}) < t \le 38 \text{ mm} ({}^{1}\!/_{2} \text{ in.})$, then the tolerance is 5 mm $({}^{3}\!/_{16} \text{ in.})$.

(3) If t > 38 mm (1¹/₂ in.), then the tolerance is 12.5% of the nominal plate thickness but not more than 6 mm $(\frac{1}{4} \text{ in.}).$

6.6.5.5 Weld Finish. The requirements of 6.2.4.1 and 7.5.2 shall be met, except that the maximum weld reinforcement shall not exceed 10% of the plate thickness or 3 mm ($\frac{1}{18}$ in.), whichever is less. The edge of the weld deposits shall merge smoothly into the base metal without undercuts or abrupt transitions. This requirement shall apply to fillet and groove welds as well as to butt welds.

6.6.5.6 Attachment and Temporary Welds.

(a) Material for Structural Attachments and Stiffening Rings – Except as permitted by 4.2.5.6, all permanent structural attachments and stiffening rings that are welded directly to pressure parts shall be made of material whose specified minimum yield strength is within $\pm 20\%$ of that of the material to which they are attached.

(b) Fabrication of Structural and Temporary Welds – Welds for pads, lifting lugs, and other nonpressure parts, as well as temporary lugs for alignment, shall be made by qualified welders in full compliance with a qualified welding procedure. The type of welds used shall conform to the requirements of 4.2.5.6. Examination requirements for these welds are covered in 6.6.8.

(c) Removal of Temporary Welds – Temporary welds shall be removed and the metal surface shall be restored to a smooth contour. The area shall be examined by a magnetic particle or liquid penetrant method for the detection and elimination of cracks or crack-like defects. If repair welding is required, it shall be in accordance with a qualified procedure, and the finished weld surface shall be examined in accordance with Part 7. Temporary welds and repair welds shall be considered the same as all other welds insofar as requirements for qualified welders and welding procedures and for heat treatment are concerned.

6.6.6 **POSTWELD HEAT TREATMENT**

6.6.6.1 Vessels or parts of vessels constructed of quenched and tempered steels shall be postweld heat treated when required in Table 6.17, when welding ferritic materials greater than 3 mm ($\frac{1}{6}$ in.) thick with the electron beam welding process, and when welding materials of all thicknesses using the inertia and continuous drive friction welding processes. The total thickness of the base material shall be used as the thickness used to determine postweld heat treatment requirements for clad or weld overlayed parts.

6.6.6.2 **Requirements for Postweld Heat Treatment.**

(a) Postweld heat treatment shall be performed in accordance with 6.4, as modified by the requirements of Table 6.17 and 6.6.6. In no case shall the PWHT temperature exceed the tempering temperature. PWHT and tempering may be accomplished concurrently. The maximum cooling rate established in 6.4.4(e) need not apply. Where accelerated cooling from the tempering temperature is required by the material specification, the same minimum cooling rate shall apply to PWHT.

(b) Except for local heating, such as cutting and welding, heating of SA-841, Grades A and B above 649°C (1,200°F) during fabrication is prohibited.

6.6.6.3 **Postweld Heat Treatment of Connections and Attachments.** All welding of connections and attachments shall be postweld heat treated whenever required by Table 6.17 based on the greatest thickness of material at the point of attachment to the head or shell (see 6.4.2.5 and 6.4.2.6).

6.6.6.4 Heat Treatment Procedure.

(a) Heating Furnace – Furnaces for heating and for quenching and tempering shall be provided with suitable equipment for the automatic recording of temperatures. The metal temperature of the vessel or vessel part during the holding period shall be recorded and shall be controlled within ±15°C (±25°F).

(b) Liquid Quenching of Flat Plates or Parts – Liquid quenching of flat plates and individual parts shall be done as required by the applicable material specifications.

(c) Quenching of Shell Sections or Heads – Formed plates for shell sections and heads may be quenched by sprays or immersion.

(d) Quenching of Entire Vessels – Entire vessels, after completion of all welding operations, may be quenched by sprays or immersion.

6.6.6.5 Design and Operation of Quenching Equipment. The design and operation of spray equipment and the size of tanks and provision for forced circulation shall be selected to produce a severity of quench in the quenched item sufficient to meet, in representative test specimens after tempering, the requirements of the material specifications.

6.6.7 HEAT TREATMENT CERTIFICATION TESTS

6.6.7.1 Heat Treatment Verification Tests. Tests shall be made to verify that the quenching and tempering heat treatments and subsequent thermal treatments, performed by the Manufacturer, have produced the required properties. The requirements of 6.6.7.2(b) and 6.6.7.2(c) shall be taken as minimum steps toward these objectives.

6.6.7.2 Certification Test Procedure.

(*a*) One or more test coupons representative of the material and the welding in each vessel or vessel component shall be heat treated with the vessel or vessel component.

(b) One or more test coupons from each lot of material in each vessel [see (e)] shall be quenched with the vessel or vessel component. A lot is defined as material from the same heat, quenched or normalized simultaneously and whose thicknesses are within $\pm 20\%$ or 13 mm ($\frac{1}{2}$ in.) of nominal thickness, whichever is smaller. The test coupons shall be so proportioned that tensile and impact tests may be taken from the same locations relative to thickness as are required by the applicable material specifications. Weld metal and heat-affected zone impact test specimens shall be taken from locations relative to coupon thickness in accordance with 3.11.8.2. The gage length of tensile specimens and the middle third of the length of impact specimens must be located at a minimum distance of 1*t* from the quenched edge and/or end of the test coupon, where *t* is the thickness of the material that the test coupon represents. If desired, the effect of this distance may be achieved by temporary attachment of suitable thermal buffers. The effectiveness of such buffers shall be demonstrated by tests.

(c) In cases where the test coupon is not attached to the part being treated, it shall be quenched from the same heat treatment charge and under the same conditions as the part which it represents (see 3.10.5). It shall be so proportioned that test specimens may be taken from the locations prescribed in (b).

(d) Tempering Requirements

(1) Attached Test Coupons – The test coupons shall remain attached to the vessel or vessel component during tempering, except that any thermal buffers may be removed after quenching. After the tempering operation and after removal from the component, the coupon shall be subjected to the same thermal treatment(s), if any, to which the vessel or vessel component will be later subjected. The holding time at temperature shall not be less than that applied to the vessel or vessel component (except that the total time at each temperature may be applied in one heating cycle) and the cooling rate shall be no faster.

(2) Separate Test Coupons – Test coupons that are quenched separately, as described in (c), shall be tempered similarly and simultaneously with the vessel or component that they represent. The conditions for subjecting the test coupons to subsequent thermal treatment(s) shall be as described in (b).

(e) Number of Tests – For base materials, one tensile and one impact test shall be made on material from coupons representing each heat-treated lot of material in each vessel or vessel component. A lot is defined as material from the same heat quenched simultaneously and whose thicknesses are within $\pm 20\%$ or 13 mm ($\frac{1}{2}$ in.) of nominal thickness, whichever is smaller.

(1) Coupons not containing welds shall meet the complete tensile requirements of the material specification and impact requirements of this Part.

(2) Coupons containing weld metal shall be tested across the weld and shall meet the ultimate tensile strength requirements of the material specifications; in addition, the minimum impact requirements shall be met by samples with notches in the weld metal. The form and dimension of the tensile test specimen shall conform to Section IX, Figure QW-462.1(a) or Figure QW-462.1(d). The yield strength and elongation are not a requirement of this test. Charpy impact testing shall be in accordance with the requirements of 3.11.

6.6.8 EXAMINATION REQUIREMENTS

Examination requirements for vessels and vessel parts constructed of quenched and tempered steels are located in 7.4.9.

6.6.9 INSPECTION AND TESTS

The provisions for inspection and testing in Part 7 and Part 8, respectively, shall apply to vessels and vessel parts constructed of quenched and tempered steels.

6.6.10 STAMPING AND REPORTS

The provisions for stamping and reports in Part 2 shall apply to pressure vessels constructed in whole or in part of quenched and tempered steels, except that the use of nameplates is mandatory for shell thicknesses below 13 mm $\binom{1}{2}$ in.). Nameplates are preferred on vessels of quenched and tempered steels in thicknesses above 13 mm $\binom{1}{2}$ in.) instead of stamping. In addition to the required marking, the letters QT shall be applied below the Certification Mark and Designator.

6.7 SPECIAL REQUIREMENTS FOR FORGED FABRICATION

6.7.1 GENERAL

The rules in the following paragraphs apply specifically to vessels, main sections of vessels and other vessel parts, and to liquid quenched and tempered, integrally forged vessels without welded joints, and shall be used to supplement the applicable requirements for fabrication given in 6.1. For high alloy steel forged vessels, the applicable paragraphs of Part 3 shall also apply.

6.7.2 ULTRASONIC EXAMINATION

Ultrasonic examination requirements for vessels and vessel parts constructed from forged fabrication are located in 7.4.10.1.

6.7.3 TOUGHNESS REQUIREMENTS

(a) For vessels constructed of SA-372 Grade J, Class 110, and SA-372 Grade L materials, transverse impact tests shall be made at the minimum allowable temperature in accordance with 3.11, except that in no case shall the test temperature be warmer than -30° C (-20° F). 3.11.2.1(b) and 3.11.3.3 are not applicable. Certification is required.

(*b*) For vessels constructed of SA-723 Class 1, Grades 1, 2, and 3, or SA-723 Class 2, Grades 1, 2, and 3 materials, the impact requirements of 3.11.3 shall be met when tested at 4°C (40°F) maximum.

6.7.4 TOLERANCES ON CYLINDRICAL FORGINGS

6.7.4.1 Localized Thin Areas. Forgings are permitted to have small areas thinner than required if the adjacent areas surrounding each has sufficient thickness to satisfy the provisions of Part 5.

6.7.4.2 Tolerances on Body Forgings.

(a) Correction of Surface Irregularities to Meet Tolerances

Irregularities in the surface under consideration may be corrected by welding or other means to meet these tolerances. If welding is done, then it shall meet the requirements of 6.7.7.

(b) Use of Out-of-Round Forgings for Lower Pressure

If out-of-roundness exceeds the limit in 6.1.2.7 and the condition cannot be corrected, then the forging shall be rejected, except that if the out-of-roundness does not exceed 3%, the forging may be certified for a reduced pressure, P^* , calculated using eqs. (6.1) and (6.2). The measurements used in this equation shall be corrected for the specified corrosion allowance.

$$P^* = P\left(\frac{1.25}{S_b/S + 1}\right)$$
 when $S_b \ge 0.25S$ (6.1)

$$P^* = P$$
 when $S_b < 0.25S$ (6.2)

$$S_{b} = \frac{1.5PR_{1}t(D_{1} - D_{2})}{t^{3} + 3\left(\frac{P}{E_{y}}\right)\left(R_{1}R_{a}^{2}\right)}$$
(6.3)

$$R_1 = \frac{D_1 + D_2}{4} \tag{6.4}$$

$$R_a = R_1 + \frac{t}{2} \tag{6.5}$$

6.7.5 METHODS OF FORMING FORGED HEADS

6.7.5.1 Heads shall be made as separate forgings or by closing the extremities of a hollow forged body to such shape and dimensions as may be required to produce the final form desired.

6.7.5.2 Tolerances on Head Forgings.

(a) Tolerances shall meet the requirements of 6.1.2.7.

(*b*) Forged heads shall be as true as it is practicable to make them to the shape shown on the design drawings. Any deviations therefrom shall merge smoothly into the general shape of the head and shall not evidence a decrease of strength for the sections as required by the equations for design.

6.7.5.3 Correction of Surface Irregularities to Meet Tolerances. Irregularities may be corrected in accordance with 6.7.4.2(a).

6.7.6 HEAT TREATMENT REQUIREMENTS FOR FORGED FABRICATION

6.7.6.1 Heat Treatment When Vessels Are Fabricated by Welding.

(*a*) Vessels fabricated by welding of forged parts requiring heat treatment shall be heat treated in accordance with the applicable material specification, as follows:

(1) after all welding is completed, or

(2) prior to welding, followed by postweld heat treatment of the finished weld in accordance with 6.4.2

(*b*) When the welding involves only minor nonpressure attachments to vessels having carbon content exceeding 0.35% but not exceeding 0.50% by ladle analysis, requirements of 6.7.7.2 shall govern.

6.7.6.2 Heat Treatment When Material Is to Be Normalized or Annealed. After all forging is completed, each vessel or forged part fabricated without welding shall be heat treated in accordance with the applicable material specification. When irregularities are corrected by welding, subsequent heat treatment shall be in accordance with 6.7.8.3(b).

6.7.6.3 Heat Treatment of Quenched and Tempered Ferritic Material. Vessels fabricated of SA-372 forging material to be liquid quenched and tempered shall be subjected to this heat treatment in accordance with the applicable material specifications after all forging and welding is completed, except for seal welding of threaded openings, which may be performed either before or after final heat treatment.

(*a*) Examination of Quenched and Tempered Vessels – After the final heat treatment, quenched and tempered vessels shall be examined for the presence of cracks on the outside surface of the shell and heads and on the inside surface where practicable. This examination shall be made by the liquid penetrant or a magnetic particle method in accordance with Part 7.

(*b*) Check of Heat Treatment by Hardness Testing – After the final heat treatment, liquid quenched and tempered forgings, except those made of austenitic steels, shall be subjected to Brinnell hardness tests in at least three different locations representing approximately the center and each end of the heat-treated shell. The tests shall meet the following requirements:

(1) The distance between adjacent test locations shall be not more than 5 ft (1.5 m).

(2) A minimum of four hardness readings shall be taken at each location.

(3) The average of the four readings (HB_{ave}) at each location shall be calculated and the range of all average values shall not exceed 40 Brinell scale.

(4) The specified minimum and maximum tensile strengths of SA-372 forging shall be converted to Brinell hardness values as HB_{min} and HB_{max} , respectively, in accordance with ASME SA-370. HB_{ave} values shall be not less than 90% of HB_{min} and not more than HB_{max} .

Other hardness testing methods, except superficial or micro hardness, may be used and converted to Brinell numbers in accordance with ASME SA-370. Reheat treatment is permitted if the hardness test results do not meet the above requirements.

(c) For vessels that are integrally forged, having an overall length less than 1.5 m (5 ft) and a nominal thickness not exceeding 13 mm ($\frac{1}{2}$ in.), the requirements of (b) above may be modified by taking a minimum of two hardness readings at each end of the vessel. These four hardness readings shall satisfy the requirements of (b) above as if the four hardness were applicable to one section.

6.7.6.4 Heat Treatment of Austenitic Material. In the case of austenitic steels, the heat treatment procedures followed shall be in accordance with 6.4.

6.7.6.5 Ferrous Material Not Requiring PWHT. Postweld heat treatment of vessels fabricated by welding of forged parts not requiring heat treatment shall meet the requirements of 6.4.

6.7.7 WELDING FOR FABRICATION

6.7.7.1 All welding used in connection with the fabrication of forged vessels or components shall comply with the applicable requirements of 6.2 except as modified in 6.7.7.2. Procedure qualification in accordance with Section IX shall be performed with the heat treatment condition of the base metal and weld metal as in 6.7.6 as contemplated for the actual work.

6.7.7.2 Restrictions on Ferrous Materials With Carbon Content Exceeding 0.35%. When the carbon content of the material exceeds 0.35% by heat analysis, the vessel shall be fabricated without welding, except for repairs in accordance with 6.7.8.2, for minor nonpressure attachments and seal welding of threaded openings limited to fillet welds of not over 6 mm ($\frac{1}{4}$ in.) throat dimension, and for adding reinforcement to threaded, flanged, or studded openings. Such welding shall be allowed under the following conditions:

(*a*) The suitability of the electrode and procedure, including preheat and postheat, shall be established by making a groove weld specimen as shown in Section IX, Figures QW-461.2 and QW-461.3 in material of the same analysis and of thickness in conformance with Section IX, Tables QW-451.1 and QW-451.2. The specimen before welding shall be in the same condition of heat treatment as the work it represents, and after welding the specimen shall be subjected to heat treatment equivalent to that contemplated for the work. Tension and bend specimens, as shown in Section IX, Figures QW-462.1(a) through QW-462.1(e), Figure QW-462.2, and Figure QW-462.3(a), shall be made. These tests shall meet the requirements of Section IX, QW-150 and QW-160. The radius of the mandrel used in the guided bend test shall be as shown in Table 6.20.

(*b*) Welders shall be qualified for minor nonpressure attachments, seal welds, and for fillet welds specified by making and testing a specimen in accordance with Section IX, QW-180 and Figure QW-462.4(b). Welders shall be qualified for adding weld reinforcement for openings and for repair welding by making a test plate in accordance with Section IX, QW-461, from which the bend tests outlined in Section IX, Tables QW-452.1(a) and QW-452.1(b) shall be made. The electrode used in making these tests shall be of the same AWS classification as that specified in the procedure. The material for these tests can be carbon steel plate or pipe, provided the test specimens are preheated, welded, and postweld heat treated in accordance with the procedure specification for the type of electrode involved.

(c) The finished welds shall be postweld heat treated or given a further heat treatment as required by the applicable material specification. The welding permitted in 6.7.7.2 shall be performed prior to final heat treatment except for seal welding of threaded openings, which may be performed either before or after final heat treatment.

(*d*) The finished welds shall be examined after postweld heat treatment by the liquid penetrant method or magnetic particle method in accordance with Part 7.

6.7.8 REPAIR OF DEFECTS IN MATERIAL

6.7.8.1 Removal of Surface Defects. Surface imperfections such as chip marks, blemishes, or other irregularities may be removed by grinding or machining, and the surface exposed shall be blended smoothly into the adjacent surface when sufficient wall thickness permits thin areas in compliance with the requirements of 6.7.4.1.

6.7.8.2 Repair of Defects by Welding. Thinning to remove defects may be repaired by welding only after approval by the Inspector. Defects shall be removed to sound metal and verified using an acid etch or any other suitable method of examination. The welding shall meet the requirements of 6.7.8.3 and 6.7.8.4.

6.7.8.3 Weld Repairs of Material Containing 0.35% Carbon or Less. Material having carbon content of 0.35% or less (by heat analysis) may be repaired by welding, provided the requirements of 6.7 are met.

(*a*) Qualification of Welding Procedure and Welders – The welding procedure and welders shall be qualified in accordance with Section IX.

(b) Postweld Heat Treatment - Postweld heat treatment after welding shall be governed as follows.

(1) All welding shall be postweld heat treated if required by 6.4.2.

(2) Fillet welds need not be postweld heat treated unless required by (1) or unless the fillet welds exceed the limits given in 6.4.2, in which case they shall be heat treated in accordance with the requirements of 6.4.2.

(3) Repair welding shall be postweld heat treated when required by (1), if it exceeds 3780 mm² (6 in.²) at any spot, or if the maximum depth exceeds 6 mm ($\frac{1}{4}$ in.).

(c) Examination of Weld Repairs – See 7.4.10.2(a).

6.7.8.4 Weld Repairs of Material Containing More Than 0.35% Carbon. Material having carbon content over 0.35% (by heat analysis) may be repaired by welding when the requirements of this paragraph are met.

(*a*) Qualification of Welding Procedure and Welders – The welding procedure and welders shall be qualified in accordance with Section IX and the additional requirements of 6.7.7.2.

(*b*) Postweld Heat Treatment – The finished repair welds shall be postweld heat treated or given a further heat treatment as required by the applicable material specification.

(c) Examination of Weld Repairs – see 7.4.10.2(b).

6.7.8.5 Repair of Weld Defects.

(*a*) The repair of welds in forgings having carbon content not exceeding 0.35% by heat analysis shall follow the requirements of 6.2.7.

(*b*) The repair of welds in forgings having a carbon content exceeding 0.35% by heat analysis shall follow the requirements of 6.7.8.4.

6.7.9 THREADED CONNECTIONS TO VESSEL WALLS, FORGED NECKS, AND HEADS

6.7.9.1 Requirements for Straight Threaded Openings. Straight threaded openings shall meet the rules governing openings and reinforcements in 4.5, except as limited in 6.7.9.2. The length of thread engagement shall be calculated for the opening design, but shall not be less than that shown in Table 4.5.1.

6.7.9.2 Location and Maximum Size of Straight Threaded Openings. Straight threaded center openings in integrally forged heads with nozzle extensions shall not exceed the smaller of one-half the vessel diameter or DN 200 (NPS 8) as shown in Figure 6.3.

6.7.9.3 Requirements for Tapered Threaded Openings. Tapered threaded openings shall meet the limitations and requirements of 4.5.3.1(c).

6.7.9.4 Seal Welding of Threaded Openings. When piping or fittings are installed in threaded openings and seal welding is employed, the work shall be performed and examined at the vessel Manufacturer's plant and included in the certification. Seal welding shall comply with 6.7.7.

6.7.10 INSPECTION, EXAMINATION, AND TESTING

6.7.10.1 The rules in the following paragraphs apply specifically to the inspection, examination, and testing of forged vessels and their component parts. These rules shall be used to supplement the applicable requirements and examination in Part 7.

(*a*) All forged vessels shall be examined as manufacturing proceeds to ensure freedom from loose scale, gouges or grooves, and cracks or seams. After fabrication has passed the machining stage, the vessel body shall be measured at suitable intervals along its length to get a record of variations in wall thickness, and the nozzles for connecting piping and other important details shall be checked for conformity to the design dimensions.

(*b*) Surfaces that are not to be machined shall be carefully examined for visible defects such as seams, laps, or folds. On surfaces to be machined, the examination shall be made after machining. Regions from which defective material has been removed shall be examined after removal and again after any necessary repair.

6.7.10.2 Forged Parts.

(*a*) Partial Data Reports Required – When welding is used in the fabrication of forged parts completed elsewhere, the manufacturer of the forged parts shall furnish a Partial Data Report, Form A-2.

(*b*) Identification and Certification – All parts forgings completed elsewhere shall be marked with the forging manufacturer's name and the forging identification, including material designation. Should identifying marks be obliterated in the fabrication process, and for small parts, other means of identification shall be used. The forging manufacturer shall furnish reports of chemical and mechanical properties of the material and certification that each forging conforms to all requirements of Part 3.

(c) Welded Repairs and Their Certification – Welded repairs to parts forgings need not be inspected by an Authorized Inspector at the plant of the forging manufacturer, but the forging manufacturer shall obtain the approval of the vessel Manufacturer and furnish a report of the extent and location of such repairs, together with certification that they were made in accordance with all other requirements of 6.7.8.4, as applicable. If desired, welding repairs of forgings made elsewhere may be made, examined, and tested at the shop of the vessel Manufacturer.

6.7.10.3 Check of Heat Treatment and Postweld Heat Treatment. The Inspector shall check the provisions made for heat treatment to ensure that the heat treatment is carried out in accordance with the provisions of 6.7.6. The Inspector shall also ensure that postweld heat treatment is done after repair welding when required under the rules of 6.7.8.3(b).

6.7.10.4 Inspection of Test Specimens and Witnessing Tests.

(*a*) Test Specimens – When test specimens are to be taken under the applicable material specifications, the Inspector may witness the selection, identifying stamping, and testing of these specimens.

(b) Tests and Retests – Tests and retests shall be made in accordance with the requirements of the material specification.

6.7.11 STAMPING AND REPORTS FOR FORGED VESSELS

6.7.11.1 Stamping Requirements. The rules of Part 2 shall apply to forged vessels as far as practicable. Vessels constructed of liquid quenched and tempered material, other than austenitic steels, shall be stamped on the thickened head, using low stress stamps as commercially available unless a nameplate is used.

6.7.11.2 Information Required on Data Reports for Integrally Forged Vessels. Data reports for integrally forged vessels shall include the heat number or numbers of the metal in the ingot from which the vessel was forged and the test results obtained for the forging.

6.7.12 OVERPRESSURE PROTECTION

The provisions for overpressure protection of Part 9 shall apply without supplement.

6.8 SPECIAL FABRICATION REQUIREMENTS FOR LAYERED VESSELS

6.8.1 GENERAL

The rules in the following paragraphs apply specifically to layered shells, layered heads, and layered transition sections and shall be used to supplement, or be used in lieu of, the applicable requirements given in 6.1 through 6.6. Where requirements differ from those of 6.2, 6.4, and 6.6, they are specifically delineated.

6.8.2 GENERAL FABRICATION REQUIREMENTS

Requirements shall be in accordance with 6.1. For layered vessels, the minimum thickness permitted for layers is 3 mm ($\frac{1}{8}$ in.).

6.8.3 WELDING FABRICATION REQUIREMENTS

The welding fabrication shall be in accordance with 6.2, except that the welding procedure qualification requirements are modified for layered construction as given in 6.8. Also the specified requirements are modified for welded joints in 4.13 and for nondestructive examination in 6.8.6.

6.8.4 WELDING QUALIFICATION AND RECORDS

6.8.4.1 Requirements for welding qualification and records shall be in accordance with 6.2.2, except that the layered test plate welding procedure qualification of Section IX in 6.2.2.1 and 6.2.2.4 shall be as modified in 6.8.4.2.

6.8.4.2 Welding Procedure Qualification.

(*a*) The minimum and maximum thicknesses qualified by procedure qualification test plates shall be as shown in Section IX, Tables QW-451.1 through QW-451.4, except that:

(1) For the longitudinal joints of the layer section of the shell, the qualification shall be based upon the thickness of the thickest individual layer exclusive of the inner shell or inner head.

(2) For circumferential joint procedure qualification, the thickness of the layered test plate need not exceed 75 mm (3 in.), shall consist of at least 2 layers, but shall not be less than 50 mm (2 in.) in thickness.

(3) For circumferential weld joints made individually for single layers and spaced at least one layer thickness apart, the procedure qualification for the longitudinal joint applies.

(b) The longitudinal weld joint of the inner shell or inner head and the longitudinal weld joint of the layer shell or layer head shall be qualified separately except if of the same P-Number material. The weld gap of the longitudinal layer weld joint shall be the minimum width used in the procedure qualification for layers 22 mm ($\frac{7}{8}$ in.) and less in thickness.

(c) The circumferential weld joint of the layer to layer shell or to layer head shall be qualified with a simulated layer test plate as shown in Figure 6.4 for layer thicknesses 22 mm ($\frac{7}{8}$ in.) and under. A special type of joint tensile specimen shall be made from the layer test coupon as shown in Figure 6.5. Face and root bend specimens shall be made of both the inner and outer weld to the thickness of the layer by cutting the weld to the layer thickness.

(*d*) The circumferential weld joint of the layer shell for layer thicknesses 22 mm ($^{7}/_{8}$ in.) and under to the solid head, flange, or end closure shall be qualified with a simulated layer test coupon as shown in Figure 6.4, wherein one side of the test coupon is solid throughout its entire thickness. A special type of joint tensile specimen shall be made from the test coupon as shown in Figure 6.5. Face and root bend specimens shall be made of both the inner and outer weld to the thickness of the layer by slicing the weld and solid portion to the layer thickness.

6.8.4.3 Welding Performance Qualification. Welding shall be performed only by welders and welding operators who have been qualified in accordance with Section IX. The minimum and maximum thicknesses qualified by any welder test plate shall be as shown in Section IX, Tables QW-452.1(a) and QW-452.1(b).

6.8.5 SPECIFIC REQUIREMENTS FOR WELDED JOINTS

6.8.5.1 The rules of the following paragraphs shall be used in lieu of 6.2.4 and 6.2.6.

6.8.5.2 Welding of Joints. 4.13.6 covers the types of joints permitted, according to location, in layered vessels and their components. 4.13.7 covers rules for attaching nozzles and other pressure connections by welding. 4.2.5.6 and 4.13.10 provide rules for attaching nonpressure parts and stiffeners. Examination requirements are summarized in Table 7.4.

6.8.5.3 Type No. 1 Butt Joints.

(a) Type No. 1 butt joints are defined in 4.2.3 and Table 4.2.2.

(*b*) Type No. 1 butt joints shall have complete joint penetration and full fusion and shall be free from undercuts, overlaps, or abrupt ridges or valleys (see Table 7.6, No. 6). To assure that the weld grooves are completely filled so that the surface of the weld metal at any point does not fall below the surface of the adjoining plate, weld metal may be built up as reinforcement on both sides of the plate. The thickness of the reinforcement on each side of the plate shall not exceed the limits specified in 6.2.4.1(d).

6.8.5.4 Type No. 2 Butt Joints.

(a) Type No. 2 butt joints are defined in 4.2.3 and Table 4.2.2.

(*b*) When Type No. 2 butt joints are used, the components to be joined shall be aligned and separated so that there will be complete penetration and fusion at the bottom of the joints for their full length. However, for assuring complete filling of the weld grooves, weld reinforcement need be supplied only on the side opposite the backing strip. Weld reinforcement need not be provided on welds which are subsequently ground flush.

(c) Backing strips shall be continuous and any splices shall be butt welded. Circumferential single-welded butt joints with one plate offset to form a backing strip are prohibited.

6.8.5.5 Fillet Welded Joints.

(a) Fillet welded joints are defined in 4.2.5.1(d) and Table 4.2.2.

(*b*) The surface of fillet welds shall be free from coarse ripples or grooves, undercuts, overlaps, and abrupt ridges or valleys, and shall merge smoothly with the surfaces joined.

6.8.5.6 Welds Attaching Nonpressure Parts and Stiffeners. The rules governing the types of welds which may be used to join supports, lugs, brackets, stiffeners, and other attachments to the vessel wall are set forth in 4.2.5.6.

6.8.5.7 Surface Weld Metal Buildup.

(*a*) Construction in which deposits of weld metal are applied to the surface of base metal for the purpose of restoring the thickness of the base metal for strength consideration or modifying the configuration of weld joints in order to provide the tapered transition requirements of 4.2 or 6.1.6.2 in solid wall sections shall be performed in accordance with the requirements of 6.2.4.9. Details for using layers as transitions are covered in 4.13.

(*b*) A butt welding procedure qualification in accordance with the provisions of Section IX shall be per- formed for the thickness of weld metal deposited, prior to production welding.

6.8.6 NONDESTRUCTIVE EXAMINATION OF WELDED JOINTS

Nondestructive examination requirements for layered vessels are located in 7.4.11.

6.8.7 WELDED JOINT EFFICIENCY

If the nondestructive examination outlined in 6.8.6 is complied with, the weld joint efficiency for design purposes shall be 100%.

6.8.8 CONTACT BETWEEN LAYERS

6.8.8.1 Requirements for contact between layers are covered in 4.13.12.1.

6.8.8.2 Alternative to Measuring Contact Between Layers During Construction. An alternative to measuring the contact between layers during construction is provided in 4.13.12.2.

6.8.8.3 Rules for Calculating Maximum Permissible Gaps. Rules for computing permissible gaps are provided in 4.13.12.3.

6.8.9 VENT HOLES

Vent holes shall be provided to detect leakage of the inner shell and to prevent buildup of pressure within the layers as follows.

(a) In each shell course or head segment, a layer may be made up of one or more plates. Each layer plate shall have at least two vent holes 6 mm ($\frac{1}{4}$ in.) minimum diameter. The vents holes may be drilled radially through the multiple layers or may be staggered in individual layer plates.

(b) For continuous coil wrapped layers, each layered section shall have at least four vent holes 6 mm ($\frac{1}{4}$ in.) minimum diameter. Two of these vent holes shall be located near each end of the section and spaced approximately 180 deg apart.

(c) The minimum requirement for spirally wound strip layered construction shall be 6 mm ($\frac{1}{4}$ in.) minimum diameter vent holes drilled near both edges of the strip. These vent holes shall be spaced for the full length of the strip and shall be located a distance of approximately πR_m /tan θ . If a strip weld covers a vent hole, partially or totally, an additional vent hole shall be drilled on each side of the obstructed hole. In addition to the above, holes may be drilled radially through the multiple layers.

(*d*) Vent holes shall not be obstructed. If a monitoring system is used, it shall be designed to prevent buildup of pressure within the layers.

6.8.10 HEAT TREATMENT OF WELDMENTS

(*a*) When required, pressure parts shall be postweld heat treated in accordance with 6.4 and 6.6; however, the completed layered vessels or layered vessel sections need not be postweld heat treated, provided the requirements of (b) are satisfied.

(b) Unless required by 6.4.2, completed layered vessels or layered vessel sections need not be postweld heat treated when welded joints connect a layered section to a layered section, or a layered section to a solid wall, provided all of the following conditions are met.

(1) The thickness referred to in 6.4.2.7 or 6.6.6 is the thickness of one layer. Should more than one layer be used, the thickness of the thickest layer shall govern.

(2) The finished joint preparation of a solid section or solid nozzle that is required to be postweld heat treated under the provisions of 6.4.2.6 or 6.6.6 shall be provided with a buttered layer (i.e., built-up overlay welding) of at least 3 mm ($\frac{1}{8}$ in.) thick of weld not requiring postweld heat treatment. Solid sections constructed of P-No. 1 materials need not have this buttered layer. Postweld heat treatment of the buttered solid section shall then be performed prior to attaching to the layered sections. Postweld heat treatment following attachment to the layered section is not required unless the layered section is required to be postweld heat treated.

(3) The multipass welding technique is used and the weld layer thickness is limited to 10 mm ($\frac{3}{8}$ in.) maximum. When quenched and tempered materials are used (see Table 3-A.2), the last pass shall be completed using a temper bead welding technique, except for 5%, 8%, and 9% nickel steels. The temper bead welding treatment is done when the final beads of welding are made over-flush, deposited only on previous beads of welding for tempering purposes without making contact with the base metal, and then removing these final beads.

(c) The postweld heat treating rules in 6.8.10 shall apply to all weld repairs.

6.9 SPECIAL FABRICATION REQUIREMENTS FOR EXPANSION JOINTS

6.9.1 BELLOWS EXPANSION JOINTS

(a) Longitudinal weld seams shall be butt-type full penetration welds; Type 1 welds of Table 4.2.4.

(*b*) Circumferential welds attaching the bellows to the shell or weld end elements shall be full penetration groove welds or full fillet welds as shown in Figure 4.19.11.

(c) Other than the attachment welds, no circumferential welds are permitted in the fabrication of bellows convolutions.

(d) U-shaped unreinforced and reinforced bellows shall be manufactured to the tolerances listed in Table 6.21.

(e) Toroidal bellows shall be manufactured to the tolerances shown in Figure 6.6.

6.9.2 FLEXIBLE SHELL ELEMENT EXPANSION JOINTS

(*a*) The flexible element is the flanged-only head, the flanged-and-flued head, the annular plate, or the flued-only head, as appropriate to the expansion joint configuration per Figure 4.20.1. The flexible element may be fabricated from a single plate (without welds) or from multiple plates or shapes welded together. When multiple plates or shapes are used to fabricate the flexible element, the following requirements apply:

(1) Welds shall be butt-type full penetration welds; Type 1 welds of Table 4.2.4.

(2) Welds shall be ground flush and smooth on both sides. For flexible elements to be formed, this shall be done prior to forming.

(*b*) The circumferential weld attaching the flexible element to the shell, mating flexible element, or outer shell element, as appropriate to the expansion joint configuration per Figure 4.20.1, shall be as follows:

- (1) Butt joints shall be full penetration welds; Type 1 welds of Table 4.2.4.
- (2) Corner joints shall be full penetration welds; Type 7 welds of Table 4.2.16.

(c) Nozzles, backing strips, clips, or other attachments shall not be located in highly stressed areas of the expansion joint, i.e., inner torus, annular plate, and outer torus. As an exception, a thin cylindrical liner, having approximately the shell inside diameter, may be attached to an inner torus or an annular plate inside corner. A liner is considered thin when its thickness is no more than t/3; however, it need not be thinner than 1.6 mm ($\frac{1}{16}$ in.). This liner shall be attached to only one side. The weld attaching the liner shall have a maximum dimension (groove depth or either fillet leg) no larger than the liner thickness.

(*d*) The welds within the shell courses adjacent to flexible elements shall be butt-type full penetration welds, Type 1 of Table 4.2.4, for a distance of $2.5\sqrt{R_t}$, where *R* is R_a or R_b , and *t* is the thickness of the shell or outer shell element, as applicable.

6.10 NOMENCLATURE

- D = inside diameter
- d = original inside diameter
- D_1 = maximum inside diameter
- D_2 = minimum inside diameter
- D_b = diameter of the blank plate or the diameter of the intermediate product
- D_f = final outside diameter of component after forming
- d_f = final inside diameter
- d_p = peaking dimension
- E_y = modulus of elasticity at the service temperature, see Annex 3-D
- g = depth of blend grind
- L = initial length
- L_f = final length
- P = design pressure
- P^* = reduced operating pressure due to out-of-roundness
- r = nominal outside radius of pipe or tube or blend grind radius
- R_1 = average inside radius at critical section
- R_a = average radius to middle of the shell wall at critical section
- R_f = final mean radius
- R_o = original mean radius, equal to infinity for a flat plate
- S = allowable stress from Annex 3-A evaluated at the design temperature
- S_b = bending stress at the service temperature due to out-of-roundness
- t = nominal thickness of the plate, pipe, or tube before forming
- t_A = measured average wall thickness of pipe or tube
- t_B = measured minimum wall thickness of the extrados of the bend
- t_f = final thickness after forming
- ε_f = calculated forming strain
- ε_L = longitudinal contraction
- ε_T = tangential contraction
- θ = acute angle of the spiral wrap measured from the longitudinal centerline

6.11 TABLES

Table 6.1 Equations for Calculating Forming Strains				
Type of Part Being Formed	Forming Strain, %			
For all one-piece , double-curved circumferential products, formed by any process that includes dishing or cold spinning (for example, dished heads or cold spun heads)	$\varepsilon_f = 100 \ln \left(\frac{D_b}{D_f - 2t} \right)$			
Cylinders formed from plate	$\varepsilon_f = \frac{50t}{R_f} \left(1 - \frac{R_f}{R_o} \right)$			
For heads that are assembled from formed segments (for example, spherical dished shell plates or dished segments of elliptical or torispherical heads)	$\varepsilon_f = \frac{75t}{R_f} \left(1 - \frac{R_f}{R_o} \right)$			
Tube and pipe bends	$\varepsilon_f = \max\left[\left(\frac{r}{R_f}\right), \left(\frac{t_A - t_B}{t_A}\right)\right] \cdot 100$			

Po	Table 6.2.A Post-Cold-Forming Strain Limits and Heat-Treatment Requirements for P-No. 15E Materials									
		Lin	nitations in	Lower Ter	nperature	Range		itations in mperature	0	
		F	or Design T		re s Than or	- -		Design erature	A	Required Heat Treatment When Design
Guada	UNS		eding	Equ	al to	And Forming	Exce	eding	And Forming	Temperature and Forming Strain Limits
Grade	Number	°C	°F	°C	°F	Strains	°C	°F	Strains	Are Exceeded Normalize and temper
91	K90901	540	1,000	600	1,115	>5 to ≤25%	600	1,115		[Note (1)] Post-forming heat treatment [Note (2)], [Note (3)], [Note (4)]

GENERAL NOTE: The limits shown are for cylinders formed from plates, spherical or dished heads formed from plate, and tube and pipe bends. The forming strain limits tabulated above shall be divided by 2 if the equation, from Table 6.1, for one-piece, double-curved circumferential products is applied.

NOTES:

- (1) Normalization and tempering shall be performed in accordance with the requirements of the base material specification and shall not be performed locally. The material shall either be heat treated in its entirety or the cold-strained area (including the transition to the unstrained portion) shall be cut away from the balance of the tube or component and heat treated separately, or replaced.
- (2) Post-forming heat treatments shall be performed at 730°C to 780°C (1,350°F to 1,435°F) for 1 h/25 mm (1 hr/in.) or 30 min, minimum. Alternatively, a normalization and temper in accordance with the requirements in the base metal specification may be performed.
- (3) For materials with greater than 5% strain, but less than or equal to 25% strain with design temperatures less than or equal to 600°C (1,115°F), if a portion of the component is heated above the heat treatment temperature allowed in [Note (2)], one of the following actions shall be performed:
 - (a) The component in its entirety shall be renormalized and tempered.
 - (b) The allowable stress shall be that for Grade 9 material (i.e., SA-213 T9, SA-335 P9, or equivalent product specification) at the design temperature, provided that portion of the component that was heated to a temperature exceeding the maximum holding temperature is subjected to a final heat treatment within the temperature range and for the time required in [Note (2)] above. The use of this provision shall be noted on the Manufacturer's Data Report.
- (4) If a longitudinal weld is made to a portion of the material that is cold strained, that portion shall be normalized and tempered, prior to or following welding. This normalizing and tempering shall not be performed locally.

		Limitations	in Lower Temper	rature Range			
		0	Гетреrature, (°F)		Limitation: Temperat	s in Higher ure Range	Minimum Heat-Treatment Temperature, °C (°F), When
Grade	Number	Exceeding	And Less Than or Equal to	And Forming Strains, %, Exceeding	For Design Temperature, °C (°F), Exceeding	And Forming Strains, %, Exceeding	Design Temperature Limits and Forming Strain Limits Are Exceeded [Note (1)] [Note (2)]
201-1	S20100 heads	All	All	All	All	All	1 065 (1,950)
201-1	S20100 all other	All	All	4	All	4	1 065 (1,950)
201-2	S20100 heads	All	All	All	All	All	1 065 (1,950)
201-2	S20100 all other	All	All	4	All	4	1 065 (1,950)
201LN	S20153 heads	All	All	All	All	All	1 065 (1,950)
201LN	S20153 all other	All	All	4	All	4	1 065 (1,950)
204	S20400 heads	All	All	All	All	All	1 065 (1,950)
204	S20400 all other	All	All	4	All	4	1 065 (1,950)
304	S30400	580 (1,075)	675 (1,250)	20	675 (1,250)	10	1 040 (1,900)
304H	S30409	580 (1,075)	675 (1,250)	20	675 (1,250)	10	1 040 (1,900)
304L	S30403	580 (1,075)	675 (1,250)	20	675 (1,250)	10	1 040 (1,900)
304N	S30451	580 (1,075)	675 (1,250)	15	675 (1,250)	10	1 040 (1,900)
309S	S30908	580 (1,075)	675 (1,250)	20	675 (1,250)	10	1 095 (2,000)
310H	S31009	580 (1,075)	675 (1,250)	20	675 (1,250)	10	1 095 (2,000)
310S	S31008	580 (1,075)	675 (1,250)	20	675 (1,250)	10	1 095 (2,000)
316	S31600	580 (1,075)	675 (1,250)	20	675 (1,250)	10	1 040 (1,900)
316H	S31609	580 (1,075)	675 (1,250)	20	675 (1,250)	10	1 040 (1,900)
316N	S31651	580 (1,075)	675 (1,250)	15	675 (1,250)	10	1 040 (1,900)
321	S32100	595 (1,100)	675 (1,250)	15 [Note (3)]	675 (1,250)	10	1 040 (1,900)
321H	S32109	595 (1,100)	675 (1,250)	15 [Note (3)]	675 (1,250)	10	1 095 (2,000)
347	S34700	595 (1,100)	675 (1,250)	15	675 (1,250)	10	1 040 (1,900)
347H	S34709	595 (1,100)	675 (1,250)	15	675 (1,250)	10	1 095 (2,000)
347LN	S34751	595 (1,100)	675 (1,250)	15	675 (1,250)	10	1 040 (1,900)
348	S34800	595 (1,100)	675 (1,250)	15	675 (1,250)	10	1 040 (1,900)
348H	S34809	595 (1,100)	675 (1,250)	15	675 (1,250)	10	1 095 (2,000)

GENERAL NOTE: The limits shown are for cylinders formed from plates, spherical or dished heads formed from plate, and tube and pipe bends.

NOTES:

(1) The rate of cooling from heat-treatment temperature is not subject to specific control limits.

(2) While minimum heat-treatment temperatures are specified, it is recommended that the heat-treatment temperature range be limited to 85°C (150°F) above that minimum. The range can be extended to 140°C (250°F) above the maximum temperature range for 347, 347H, 347LN, 348, and 348H.

(3) For simple bends of tubes or pipes whose outside diameter is less than 90 mm ($3\frac{1}{2}$ in.), this limit is 20%.

		Limitations in Lower Temperature Range For Design Temperature, °C (°F)		ature Range	Limitation: Temperat	0	Minimum Heat-Treatment Temperature, °C (°F),	
Grade	UNS Number	Exceeding	And Less Than or Equal to	And Forming Strain, %, Exceeding	For Design Temperature, °C (°F), Exceeding	And Forming Strain, %, Exceeding	- When Design Temperature Limits and Forming Strain Limits Are Exceeded [Note (1)], [Note (2)]	
	N06002	540 (1,000)	675 (1,250)	15	675 (1,250)	10	1 105 (2,025)	
	N06022	580 (1,075)	675 (1,250)	15			1 120 (2,050)	
	N06059	580 (1,075)	675 (1,250)	15	675 (1,250)	10	1 120 (2,050)	
	N06230	595 (1,100)	760 (1,400)	15	760 (1,400)	10	1 205 (2,200)	
600	N06600	580 (1,075)	650 (1,200)	20	650 (1,200)	10	1 040 (1,900)	
617	N06617	540 (1,000)	675 (1,250)	15	675 (1,250)	10	1 150 (2,100)	
625	N06625	540 (1,000)	675 (1,250)	15	675 (1,250)	10	1 095 (2,000)	
	N08330	595 (1,100)	675 (1,250)	15	675 (1,250)	10	1 040 (1,900)	
800	N08800	595 (1,100)	675 (1,250)	15	675 (1,250)	10	985 (1,800)	
800H	N08810	595 (1,100)	675 (1,250)	15	675 (1,250)	10	1 120 (2,050)	
800HT	N08811	595 (1,100)	675 (1,250)	15	675 (1,250)	10	1 150 (2,100)	
	N10003	595 (1,100)	675 (1,250)	15	675 (1,250)	10	1 175 (2,150)	
	N10276	565 (1,050)	675 (1,250)	15	675 (1,250)	10	1 120 (2,050)	
	R30556	595 (1,100)	675 (1,250)	15	675 (1,250)	10	1 175 (2,150)	

GENERAL NOTE: The limits shown are for cylinders formed from plates, spherical or dished heads formed from plate, and tube and pipe bends.

NOTES:

 The rate of cooling from heat-treatment temperature is not subject to specific control limits.
 The temperature indicated is the minimum furnace set point, and the load temperatures as much as 15°C (25°F) below the set temperature are acceptable.

Maxim	Table 6.4 um Allowable Offset in Welded J	loints
Section Thickness	Category A Joints	Category B, C, D Joints
13 mm $(\frac{1}{2} \text{ in.}) \le t$	t/4	t/4
13 mm (¹ / ₂ in.) < $t \le 19$ mm (³ / ₄ in.)	3 mm (¹ / ₈ in.)	t/4
19 mm ($\frac{3}{4}$ in.) < $t \le 38$ mm ($1\frac{1}{2}$ in.)	3 mm (¹ / ₈ in.)	5 mm (³ / ₁₆ in.)
38 mm (1 ¹ / ₂ in.) < $t \le 50$ mm (2 in.)	3 mm (¹ / ₈ in.)	t/8
t > 50 mm (2 in.)	min $[t/16, 10 \text{ mm} (\frac{3}{8} \text{ in.})]$	min [<i>t</i> /8, 19 mm (³ /4 in.)]

	Table 6.5 Welding Process Application Lim	litations		
Welding Process	Application/Limitation	Special Heat-Treatment Requirement		
Electron beam	All material	Exceptions for postweld heat treatment as provided in 6.4.2 are not permitted when welding of ferritic materials greater than 3 mm ($\frac{1}{8}$ in.) in thickness.		
Shielded metal arc Submerged arc Explosion welding Induction	All material except titanium and zirconium	None		
Electrogas Electroslag	 Except for SA-841, butt weld only in ferritic steel and the following austenitic steels: SA-240 - TP304, TP304L, TP316, TP316L SA-182 - F304, F304L, TP316, TP316L, SA-351 - CF3,CF3A, CF3M, CF8, CF8A, CF8M 	For electroslag welding in ferritic materials over 38 mm ($1\frac{1}{2}$ in.) in thickness at the joint or electroga welding with a single pass greater than 38 mm ($1\frac{1}{2}$ in.), the joint shall be given a grain-refining (austenitizing) heat treatment.		
Inertia Continuous drive friction	Materials assigned a P-Number in Section IX excluding rimmed, semikilled steel, or titanium and zirconium	Exceptions for post weld heat treatment as provided in 6.4.2 are not permitted when welding P-Nos. 3, 4, 5A 5B, 15E, 5C, 6, 7 (except TP405 and TP410S), and 1		
Arc stud Resistance stud	 Nonpressure parts having a load- or non-load-carrying function except for quenched and tempered high-strength steels (see Table 3-A.2), provided that, in the case of ferrous materials, heat treatment requirements of 6.4.1 and 6.4.2 for the materials used in the vessel are met. Stud shall be limited to 25 mm (1 in.) diameter for round studs and an equivalent cross section area for studs with other shapes. 	In case of ferrous material, heat treatment requirements of 6.4.3.6 and 6.6.6.3 for the material used in the vessel shall be met.		

Maximu	Table 6.6 m Reinforcement for Welded Joints	
Section Thickness	Category B and C Butt Welds	Other Welds
$t < 2.5 \text{ mm} (\frac{3}{32} \text{ in.})$	2.5 mm $\binom{3}{32}$ in.)	0.8 mm (¹ / ₃₂ in.)
2.5 mm $\binom{3}{32}$ in.) $\leq t < 5$ mm $\binom{3}{16}$ in.)	2.5 mm $\binom{3}{32}$ in.)	1.5 mm $\binom{1}{16}$ in.)
$5 \text{ mm} (\frac{3}{16} \text{ in.}) \le t < 13 \text{ mm} (\frac{1}{2} \text{ in.})$	3 mm $(\frac{1}{8} \text{ in.})$	2.5 mm $\binom{3}{32}$ in.)
$13 \text{ mm} (\frac{1}{2} \text{ in.}) \le t < 25 \text{ mm} (1 \text{ in.})$	4.0 mm $(\frac{5}{32}$ in.)	2.5 mm $\binom{3}{32}$ in.)
$25 \text{ mm} (1 \text{ in.}) \le t < 50 \text{ mm} (2 \text{ in.})$	4.0 mm $(\frac{5}{32}$ in.)	$3 \text{ mm} (\frac{1}{8} \text{ in.})$
$50 \text{ mm} (2 \text{ in.}) \le t < 76 \text{ mm} (3 \text{ in.})$	4.0 mm $(\frac{5}{32}$ in.)	4.0 mm $(\frac{5}{32}$ in.)
76 mm (3 in.) $\leq t < 100$ mm (4 in.)	5.5 mm $(\frac{7}{32}$ in.)	5.5 mm $(\frac{7}{32}$ in.)
$100 \text{ mm} (4 \text{ in.}) \le t < 125 \text{ mm} (5 \text{ in.})$	6 mm $(\frac{1}{4} in.)$	$6 \text{ mm} (\frac{1}{4} \text{ in.})$
$t \ge 125 \text{ mm} (5 \text{ in.})$	8 mm $(\frac{5}{16}$ in.)	$8 \text{ mm} (\frac{5}{16} \text{ in.})$

	Table 6.7 Minimum Preheat Temperatures for Welding
P-No.	Minimum Preheat Temperature
1	80°C (175°F) for a material that has a specified maximum carbon content in excess of 0.30% and a thickness at the joint excess of 25 mm (1 in.) 10°C (50°F) for all other materials
3	80°C (175°F) for a material that has either a specified minimum tensile strength in excess of 480 MPa (70,000 psi or a thickness at the joint in excess of 16 mm (⁵ / ₈ in.) 10°C (50°F) for all other materials
4	120°C (250°F) for a material that has either a specified minimum tensile strength in excess of 410 MPa (60,000 psi or a thickness at the joint in excess of 13 mm (½ in.) 10°C (50°F) for all other materials
5A, 5B, 5C, 15E	205°C (400°F) for a material that has either a specified minimum tensile strength in excess of 410 MPa (60,000 psi or has both a specified minimum chromium content above 6.0% and a thickness at the joint in excess of 13 mm (¹ / ₂ in.) 150°C (300°F) for all other materials
6	205°C (400°F)
7	None
8	None
9A and 9B	150°C (300°F)
10A	150°C (300°F) with interpass temperature maintained between 175°C and 230°C (350°F and 450°F)
11A	For 5% and 9% nickel steels, preheat is neither required nor prohibited.
11B Gr. 1-6	80°C (175°F)
21 to 24, inclusive	None
31 to 35, inclusive	None
41 to 44, inclusive	None

(**23**)

Table 6.8
Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for
Materials: P-No. 1, Group 1, 2, 3

PWHT Requirements	Holding Temperature and Time Based on the Nominal Thickness
(a) PWHT is mandatory for the following conditions: (1) for welded joints over 38 mm ($1\frac{1}{2}$ in.) nominal thickness. (2) for welded joints over 32 mm ($1\frac{1}{4}$ in.) through 38 mm ($1\frac{1}{2}$ in.) nominal thickness unless a 95°C (200°F) minimum preheat is applied during welding. This preheat need not be applied to SA-841, Grades A and B, provided that the carbon content and carbon equivalent (CE) for the plate material, by heat analysis, do not exceed 0.14% and 0.40%, respectively, where CE = C + $\frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Cu + Ni}{15}$ (3) for pressure parts subject to direct firing when the thickness at welded joints exceeds 16 mm ($\frac{5}{6}$ in.), except under the following conditions: (-a) for groove welds not over 13 mm ($\frac{1}{2}$ in.) in size and fillet welds with a throat not over 13 mm ($\frac{1}{2}$ in.) that attach nozzle connections that have a finished inside diameter not greater than 50 mm (2 in.), provided the connections do not form ligaments that require an increase in shell or head thickness, and preheat to a minimum temperature of 95°C (200°F) is applied. (-b) for groove welds not over 13 mm ($\frac{1}{2}$ in.) in size or fillet welds with a throat thickness of 13 mm ($\frac{1}{2}$ in.) or less that attach tubes to a tubesheet when the tube diameter does not exceed 50 mm (2 in.). A preheat of 95°C (200°F) minimum must be applied when the carbon content of the tubesheet exceeds 0.22%. (-c) for groove welds not over 13 mm ($\frac{1}{2}$ in.) in size or fillet welds with a throat thickness of 13 mm ($\frac{1}{2}$ in.) or less used for attaching nonpressure parts to pressure parts, provided preheat to a minimum temperature of 95°C (200°F) is applied when the thickness of the pressure part exceeds 32 mm ($1\frac{1}{4}$ in.). (-d) for studs welded to pressure parts, provided preheat to a minimum temperature of 95°C (200°F) is applied when the thickness of the pressure part exceeds 32 mm ($1\frac{1}{4}$ in.). (-e) for hard-facing weld metal overlay, corrosion-resistant weld metal overlay cladding, or for we	 SI Units For t_n ≤ 50 mm: 595°C, 0.04 h/mm, 15 min minimum For t_n > 50 mm: 595°C, 2 h plus 0.6 min for each additional millimeter over 50 mm U.S. Customary Units For t_n ≤ 2 in: 1,100°F, 1 hr/in., 15 min minimum For t_n > 2 in.: 1,100°F, 2 hr plus 15 min for each additional inch over 2 in.

730

(23)

PWHT Requirements	Holding Temperature and Time Based on the Nominal Thickness
(a) PWHT is mandatory for P-No. 3, Gr. No. 3 material in all thicknesses. (b) Except for the exemptions in (c), PWHT is mandatory under the following conditions for other P number Group Number combinations: (1) on P-No. 3, Gr. No. 1 and P-No. 3, Gr. No. 2 material over 16 mm ($\frac{7}{9}_{8}$ in.) nominal thickness. For these materials, PWHT is mandatory on material up to and including 16 mm ($\frac{7}{9}_{8}$ in.) nominal thickness unless the deposited weld metal thickness qualified without PWHT in the welding procedure qualification test coupon is equal to or greater than the deposited weld metal thickness in the production weld (2) if for pressure parts subject to direct firing. (c) Except for P-No. 3, Gr. No. 3, for welding connections and attachments to pressure parts PWHT is not mandatory under the conditions specified below: (1) for attaching to pressure parts that have a specified maximum carbon content of nor more than 0.25% (SA material specification carbon content, except when further limited by the Purchaser to a value within the specification limits) or to non-pressure parts with groove welds not over 13 mm ($\frac{1}{2}$ in.) size or fillet welds having a throat thickness of 13 mm ($\frac{1}{2}$ in.) or less, nor olded preheat to a minimum temperature of 95°C (200°F) is applied (2) for circumferential but welds between pipe, tube, and wrought or forged but weld fittings where the material has both a nominal wall thickness of 13 mm ($\frac{1}{2}$ in.) or less and a specified maximum carbon content of not more than 0.25% (SA material specification carbor content, except when further limited by the Purchaser to a value within the specification limits) (3) for studs welded to pressure parts that have a specified maximum carbon content on ontor more than 0.25% (SA material specification limits), provided preheat to a minimum temperature of 95°C (200°F) is applied (4) for hard-facing weld metal overlay, corrosion-resistant weld metal overlay cladding or for welds attaching corrosion-resistant ap	SI Units • For $t_n \le 50$ mm: 595°C, 0.04 h/mm, 15 min minimum • For $t_n > 50$ mm: 595°C, 2 h plus 0.6 min for each additional millimeter over 50 mm • U.S. Customary Units • For $t_n \le 2$ in: 1,100°F, 1 hr/in, 15 min minimum • For $t_n > 2$ in: 1,100°F, 2 hr plus 15 min for each additional inch over 2 in. • for $t_n > 1$ and $t_n > 1$ minimum • for $t_n > 1$

6.11

(**23**)

Table 6.10
Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for
Materials: P-No. 4, Group 1, 2

PWHT Requirements	Holding Temperature and Time Based on the Nominal Thickness
(a) PWHT is mandatory under the following conditions:	SI Units
(1) on material of all thicknesses for pressure parts subject to direct firing	• For $t_n \leq 125$ mm: 650°C, 0.04 h/mm, for the
(2) on all other P-No. 4 Gr. Nos. 1 and 2 materials	following holding times:
(b) PWHT is not mandatory under the conditions specified below:	(a) Class 1: 15 min minimum
(1) for circumferential butt welds between pipe, tube, and wrought or forged butt weld	(b) Class 2: 1 h minimum
fittings that comply with all of the following conditions:	 For t_n > 125 mm: 650°C, 5 h plus 0.6 min for each
(-a) a maximum nominal thickness of 16 mm $\binom{5}{8}$ in.)	additional millimeter over 125 mm
(-b) maximum specified carbon content of not more than 0.15% (SA material	U.S. Customary Units
specification carbon content, except when further limited by the Purchaser to a value	• For $t_n \le 5$ in.: 1,200°F, 1 hr/in., for the following
within the specification limits)	holding times:
(-c) a minimum preheat of 120°C (250°F)	(a) Class 1: 15 min minimum
(2) for pipe, tube, and wrought or forged fittings meeting the requirements of (a)(1) and	(b) Class 2: 1 hr minimum
(a)(2) above, having nonpressure attachments fillet welded to them, provided	 For t_n > 5 in.: 1,200°F, 5 hr plus 15 min for eac
(-a) the fillet welds have a maximum throat thickness of 13 mm $(\frac{1}{2} \text{ in.})$	additional inch over 5 in.
(-b) a minimum preheat temperature of 120°C (250°F) is applied	
(3) for pipe, tube, and wrought or forged fittings meeting the requirements of (a)(1) and	
(a)(2) above, having studs welded to them, provided a minimum preheat temperature of	
120°C (250°F) is applied	
(4) for pipe, tube, and wrought or forged fittings meeting the requirements of (a)(1) and	
(a)(2) above, having extended heat-absorbing fins electrically resistance-welded to them,	
provided	
(-a) the fins have a maximum thickness of 3 mm $\binom{1}{8}$ in.)	
(-b) prior to using the welding procedure, the Manufacturer shall demonstrate that the	
heat-affected zone does not encroach upon the minimum pipe or tube wall thickness	
(5) for tubes or pressure-retaining handhole and inspection plugs or fittings that are	
secured by mechanical means (tube expansion, shoulder construction, machine threads,	
etc.) and seal welded, provided the seal weld has a throat thickness of 10 mm ($^3\!\!/_8$ in.) or less,	
and preheat to a minimum temperature of 120°C (250°F) is applied when the thickness of	
either part exceeds 16 mm ($\frac{5}{8}$ in.)	
(c) If during the holding period of PWHT, the maximum time or temperature of any vessel	
component exceeds the provisions of 3.10.5 , additional test coupons shall be made and tested.	

Table 6.11 Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 5A; P-No. 5B, Group 1; and P-No. 5C, Group 1

PWHT Requirements	Holding Temperature and Time Based on the Nominal Thickness
(a) Except under the following conditions, PWHT is mandatory:	SI Units
(1) for circumferential butt welds between pipe, tube, and wrought or forged butt weld	• For $t_n \leq 125$ mm: 675°C, 0.04 h/mm, for the
fittings that comply with all of the following conditions:	following holding times:
(-a) a maximum specified chromium content of 3.0%	(a) Class 1: 15 min minimum
(-b) a maximum nominal thickness of 16 mm $(\frac{5}{8}$ in.)	(b) Class 2: 1 h minimum
(-c) a maximum specified carbon content of not more than 0.15% (SA material	 For t_n > 125 mm: 675°C, 5 h plus 0.6 min for each
specification carbon content, except when further limited by the Purchaser to a value	additional millimeter over 125 mm
within the specification limits)	U.S. Customary Units
(-d) a minimum preheat of 150°C (300°F) is applied	• For $t_n \le 5$ in.: 1,250°F, 1 hr/in., for the followin
(2) for pipe, tube, and wrought or forged fittings meeting the requirements of $(1)(-a)$,	holding times:
(1)(-b), and (1)(-c) having nonpressure attachments fillet welded to them, provided	(a) Class 1: 15 min minimum
(-a) the fillet welds have a maximum throat thickness of 13 mm $\binom{1}{2}$ in.)	(b) Class 2: 1 hr minimum
(-b) a minimum preheat temperature of 150°C (300°F) is applied	• For $t_n > 5$ in.: 1,250°F, 5 hr plus 15 min for each
(3) for pipe, tube, and wrought or forged fittings meeting the requirements of (1)(-a),	additional inch over 5 in.
(1)(-b), and (1)(-c) having studs welded to them, provided a minimum preheat temperature	
of 150°C (300°F) is applied	
(4) for pipe, tube, and wrought or forged fittings meeting the requirements of (1)(-a) and	
(1)(-c) above, having extended heat-absorbing fins electrically resistance-welded to them,	
provided	
(-a) the fins have a maximum thickness of 3 mm $\binom{1}{8}$ in.)	
(b) prior to using the welding procedure, the Manufacturer shall demonstrate that the	
heat-affected zone does not encroach upon the minimum pipe or tube wall thickness	
(5) for tubes or pressure-retaining handhole and inspection plugs or fittings in P-No. 5A	
materials with a specified maximum chromium content of 6% that are secured by mechanical	
matching with a specifical maximum enformant content of 0 % that are secured by internancent means (tube expansion, shoulder construction, machine threads, etc.) and seal welded,	
provided the seal weld has a throat thickness of 10 mm ($\frac{3}{8}$ in.) or less, and preheat to a	
minimum temperature of 150° C (300° F) is applied when the thickness of either part exceeds	
16 mm ($\frac{5}{8}$ in.)	
(b) If during the holding period of PWHT, the maximum time or temperature of any vessel	
component exceeds the provisions of 3.4.3 for materials listed in Table 3.1, or 3.10.53.10.5 for	
other materials, additional test coupons shall be made and tested.	
(c) When it is impractical to postweld heat treat P-No. 5A; P-No. 5B, Group No. 1; and P-No.	
5C, Group No. 1 materials at the temperature specified in this Table, it is permissible to	
perform the PWHT at 650°C (1,200°F) minimum provided that, for material up to 50 mm	
(2 in.) nominal thickness, the holding time is increased to the greater of 4 h minimum or 9.6	
min/mm (4 hr/in.) of thickness; for thickness over 50 mm (2 in.), the specified holding times	
are multiplied by 4. The requirements in 3.10.2.2 must be accommodated in this reduction in	
PWHT.	
(d) Postweld heat treatment is not mandatory for attaching bare wire thermocouples by	
capacitor discharge welding or electric resistance welding, provided	
(1) the requirements of 6.4.5.3 are met	
(2) the maximum carbon content of the base material is restricted to 0.15%	
(3) the minimum wall thickness shall be 5.0 mm (0.20 in.)	

Table 6.11.A Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 15E, Group 1		
PWHT Requirements	Holding Temperature and Time Based on the Nominal Thickness	
 (a) If the nominal thickness is ≤13 mm (¹/₂ in.), the minimum holding temperature is 675°C (1,250°F). (b) For dissimilar metal welds (i.e., welds made between a P-No.15 E, Group 1 and another lower chromium ferritic, austenitic, or nickel-based steel), if the filler metal chromium content is less than 3.0% or if the filler metal is nickel-based or austenitic, the minimum holding temperature shall be 705°C (1,300°F). (c) For welds made with matching Grade 91 filler metal (e.g., AWS A.5.5 E90xx-B91 and ISO EN CrMo91), the maximum holding temperature shall be determined as follows: (1) If the Ni + Mn content of the filler metal is greater than 1.0% but less than or equal to 1.2%, the maximum PWHT temperature shall be 790°C (1,455°F). (2) If the Ni + Mn content of the filler metal is greater than 1.2%, the maximum PWHT temperature shall be at least 10°C (20°F) below the lower critical transformation temperature (Ac1) as determined by measurement of that temperature for the specific heat (or heats) of filler metal to be used in accordance with ASTM A1033; in such case, the following additional restrictions will apply: (-a) The Ac1 temperature of the filler metal as measured in accordance with ASTM A1033 shall be included in the Manufacturer's construction records. (-b) The maximum operating temperature for any vessel constructed using filler metal with a Ni + Mn content in excess of 1.2% shall be 525°C (975°F). (4) If multiple welds made with matching Grade 91 filler metal in a pressure part or pressure vessel are to be postweld heat treated at the same time, the maximum PWHT temperature shall be attermined based on the weld with the highest Ni + Mn content. The lower transformation temperature for matching filler material is affected by alloy content, primarily the total Ni + Mn. The maximum holding temperature has been set to avoid heat treatment in the interritical zone. (d) If a portion of the component is heated ab	 For t_n ≤ 125 mm: 705°C min., 0.04 h/mm, 30 min minimum For t_n > 125 mm: 705°C min., 5 h plus 0.6 min for each additional millimeter over 125 mm U.S. Customary Units For t_n ≤ 5 in.: 1,300°F min., 1 hr/in., 30 min minimum. For t_n > 5 in.: 1,300°F min., 5 hr plus 15 min for each additional inch over 5 in. 	

Table 6.11.A Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 15E, Group 1 (Cont'd)

PWHT Requirements	Holding Temperature and Time Based on the Nominal Thickness
(e) Postweld heat treatment is not mandatory for electric resistance welds used to attach	
extended heat-absorbing fins to pipe and tube materials provided the following	
requirements are met:	
(1) a maximum pipe or tube size of 100 DN (NPS 4)	
(2) a maximum specified carbon content (SA material specification carbon content,	
except when further limited by the Purchaser to a value within the specification limits) of	
not more than 0.15 %	
(3) a maximum fin thickness of 3 mm $\binom{1}{8}$ in.)	
(4) prior to using the welding procedure, the Manufacturer shall demonstrate that the	
heat-affected zone does not encroach upon the minimum wall thickness.	
(f) Postweld heat treatment is not mandatory for attaching bare wire thermocouples by	
capacitor discharge welding or electric resistance welding, provided	
(1) the requirements of $6.4.5.3$ are met	
(2) the maximum carbon content of the base material is restricted to 0.15%	
(3) the minimum wall thickness shall be 5.0 mm (0.20 in.)	

Table 6.12Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for
Materials: P-No. 6, Group 1, 2, 3

PWHT Requirements	Holding Temperature and Time Based on the Nominal Thickness
PWHT Requirements (a) PWHT is not required for vessels constructed of Type 410 material with carbon content not to exceed 0.08% and welded with electrodes that produce an austenitic chromium-nickel weld deposit or a non-air-hardening nickel-chromium-iron weld deposit, provided the nominal thickness does not exceed 10 mm ($\frac{3}{4}_8$ in.), and for thicknesses over 10 mm ($\frac{3}{4}_8$ in.) to 38 mm ($1^{1}_{1/2}$ in.) provided a preheat of 230°C (450°F) is maintained during welding and that the joints are completely radiographed. (b) If during the holding period of PWHT the maximum time or temperature of any vessel component exceeds the provisions of 3.10.5, additional test coupons shall be made and tested.	SI Units • For $t_n \le 50$ mm: 760°C, 0.04 h/mm, for the following holding times: (a) Class 1: 15 min minimum (b) Class 2: 1 h minimum • For $t_n > 50$ mm: 760°C, 2 h plus 0.6 min for each additional millimeter over 50 mm U.S. Customary Units • For $t_n \le 2$ in.: 1,400°F, 1 hr/in., for the following holding times: (a) Class 1: 15 min minimum (b) Class 2: 1 hr minimum • For $t_n > 2$ in.: 1,400°F, 2 hr plus 15 min for each
	additional inch over 2 in.

(**23**)

(**23**)

Table 6.13 Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 7, Group 1, 2; and P-No. 8 Holding Temperature and Time Based on the

PWHT Requirements	Holding Temperature and Time Based on the Nominal Thickness
Materials: P-No. 7, Group 1, 2	
(a) PWHT shall be performed as prescribed in 6.4.2 except that the cooling rate shall be a maximum of 55°C/h (100°F/hr) in the range above 650°C (1,200°F), after which the cooling rate shall be sufficiently rapid to prevent embrittlement. PWHT is not required for vessels constructed of Type 405 and Type 410S material with carbon content not to exceed 0.08%, welded with electrodes that produce an austenitic chromium-nickel weld deposit or a non-air-hardening nickel-chromium-iron weld deposit, provided the nominal thickness does not exceed 3 mm ($\frac{1}{18}$ in.), and for thicknesses over 3 mm ($\frac{1}{18}$ in.) to 38 mm ($\frac{1}{2}$ in.) provided a preheat of 230°C (450°F) is maintained during welding and that the joints are completely radiographed. (b) If during the holding period of PWHT, the maximum time or temperature of any vessel component exceeds the provisions of 3.10.5, additional test coupons shall be made and tested.	 For t_n ≤ 50 mm: 730°C, 0.04 h/mm, for the following holding times: (a) Class 1: 15 min minimum (b) Class 2: 1 h minimum For t_n > 50 mm: 730°C, 2 h plus 0.6 min for each additional millimeter over 50 mm U.S. Customary Units For t_n ≤ 2 in.: 1,350°F, 1 hr/in., for the following
Materials: P-No. 8	
 (a) PWHT is neither required nor prohibited. (b) If postweld heat treatment is performed for P-No. 8 materials, the Manufacturer shall consider the steps necessary to avoid embrittlement, sensitization, and the precipitation of deleterious phases. See Section II, Part D, Nonmandatory Appendix A, A-207 through A-210. 	

Holding Temperature and Time Based on the Nominal Thickness SI Units 595°C: 1 h minimum, plus 0.6 min for each additional millimeter over 25 mm U.S. Customary Units 1,100°F: 1 hr minimum, plus 15 min for each additional inch over 1 in.
595°C: 1 h minimum, plus 0.6 min for each additional millimeter over 25 mm U.S. Customary Units 1,100°F: 1 hr minimum, plus 15 min for each
595°C: 1 h minimum, plus 0.6 min for each additional millimeter over 25 mm U.S. Customary Units 1,100°F: 1 hr minimum, plus 15 min for each

Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 9A, Group 1, and P-No. 9B, Group 1 (Cont'd)		
PWHT Requirements	Holding Temperature and Time Based on th Nominal Thickness	
Materials: P-No. 9B, Group 1		
 (a) PWHT is mandatory under the following conditions: (1) on material over 16 mm (⁵/₈ in.) nominal thickness. For material up to and including 16 mm (⁵/₈ in.) nominal thickness, PWHT is mandatory unless the deposited weld metal thickness qualified without PWHT in the welding procedure qualification test coupon is equal to or greater than the deposited weld metal thickness in the production weld. (2) on pressure parts subject to direct firing (b) PWHT is not mandatory under the conditions specified below: (1) for attaching nonpressure parts to pressure parts with groove welds not over 13 mm (¹/₂ in.) in size or fillet welds that have a throat thickness of 13 mm (¹/₂ in.) or less, provided preheat to a minimum temperature of 95°C (200°F) is applied; (2) for studs welded to pressure parts, provided preheat to a minimum temperature of 95°C (200°F) is applied; (3) for hard-facing weld metal overlay, corrosion-resistant weld metal overlay cladding, or for welds attaching corrosion-resistant applied lining (see 6.5.5.1), provided preheat to a minimum temperature of 95°C (200°F) is maintained during application of the first layer. (c) The holding temperature for PWHT shall not exceed 635°C (1,175°F). (d) If during the holding period of PWHT, the maximum time or temperature of any vessel component exceeds the provisions of 3.10.5, additional test coupons shall be made and tested. (e) When the heating rate is less than 30°C/h (50°F/hr) between 425°C (800°F) and the holding temperature can provide evidence that the minimum temperature has been achieved throughout the thickness, the additional 0.6 min/mm (15 min/in.) holding time is not required. (f) When it is impractical to postweld heat treat at the temperature specified in this Table, it is permissible to carry out the PWHT at lower temperatures 540°C (1,000°F) minimum for longer periods of time in accordance with Table 6.16. When PWHT is performed in acco	U.S. Customary Units 1,100°F: 1 hr minimum, plus 15 min for each additional inch over 1 in.	

Table 6.15Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments forMaterials: P-No. 10A, Group 1; P-No. 10C, Group 1; P-No. 10H, Group 1; P-No. 10I, Group 1; P-No.10K, Group 1; and P-No. 45

(**23**)

6.11

Table 6.15 Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 10A, Group 1; P-No. 10C, Group 1; P-No. 10H, Group 1; P-No. 10I, Group 1; P-No. 10K, Group 1; and P-No. 45 (Cont'd)

	PWHT Requirements		Holding Temperature and Time Based On the Nominal Thickness
	Ν	Materials: P-No. 10C, Group 1	
 (1) for welded joints ov (2) for welded joints ov (2) for welded joints ov (2) for welded joints ov (3) on pressure parts si (b) Postweld heat treatme (1) for groove welds no 13 mm (¹/₂ in.) that attach no than 50 mm (2 in.), provided shell or head thickness and p (2) for groove welds no 13 mm (¹/₂ in.) or less used in minimum temperature of 95 exceeds 32 mm (1¹/₄ in.) (3) for studs welded to p (200°F) is applied when the (4) for hard-facing welds for welds attaching corrosion minimum temperature of 95 the thickness of the pressure (c) When the heating rational pressure (c) When the heating rational pressure (d) When it is impractical to permissible to carry out the p 	nt is mandatory under the foll- ver 38 mm $(1^{1}/_{2}$ in.) nominal the ver 32 mm $(1^{1}/_{4}$ in.) through num preheat is applied during ubject to direct firing nt is not mandatory under the ot over 13 mm $(^{1}/_{2}$ in.) in size at ozzle connections that have a find the connections do not form 1 preheat to a minimum temper- t over 13 mm $(^{1}/_{2}$ in.) in size or 16 for attaching nonpressure part if or attaching nonpressure part if or attaching nonpressure part if or (200°F) is applied when the pressure parts, provided prehea- thickness of the pressure part d metal overlay, corrosion-resis n-resistant applied lining (see °C (200°F) is maintained durir e part exceeds 32 mm (1 ¹ / ₄ in.) e is less than 30°C/h (50°F/h ditional 0.6 min/mm (15 min/i ufacturer can provide evidence e thickness, the additional 0.6 m to postweld heat treat at the ter- postweld heat treat ment at lower	owing conditions: hickness 38 mm ($1\frac{1}{2}$ in.) nominal thickness welding conditions specified below: and fillet welds with throat not over finished inside diameter not greater ligaments that require an increase in ature of 95°C (200°F) is applied fillet welds having throat thickness of is to pressure parts and preheat to a e thickness of the pressure part at to a minimum temperature of 95°C exceeds 32 mm ($1\frac{1}{4}$ in.) stant weld metal overlay cladding, o 6.5.5.1), provided preheat to a ng application of the first layer when between 425°C (800°F) and the in.) holding time is not required. e that the minimum temperature has min/mm (15 min/in.) holding time is mperature specified in this Table, it is er temperatures for longer periods of the in accordance with this provision	U.S. Customary Units 1,000°F: 1 hr minimum, plus 15 min for each additional inch over 1 in.
		Aaterials: P-No. 10H, Group 1	
required nor prohibited. F listed below and followed	rought or cast duplex stainless Iowever, if heat treatment is p by liquid quenching or rapid c PWI	steels listed below, PWHT is neithe erformed, it shall be performed as cooling by other means: HT Temperature	·
Alloy	Do.	°F	
J93345 S31200 S31260	1 120 minimum 1 040 minimum 1 020-1 100 975-1 025 1 040 minimum	2,050 minimum 1,900 minimum 1,870–2,010 1,785–1,875 1,900 minimum	
S31500 S31803, S32205 S32202 S32304	980–1 080 980 minimum	1,800–1,975 1,800 minimum	
S31803, S32205 S32202	980-1 080	1,800–1,975	
S31803, S32205 S32202 S32304	980–1 080 980 minimum	1,800–1,975 1,800 minimum	
S31803, S32205 S32202 S32304 S32550	980–1 080 980 minimum 1 040 minimum	1,800–1,975 1,800 minimum 1,900 minimum	
S31803, S32205 S32202 S32304 S32550 S32750	980–1 080 980 minimum 1 040 minimum 1 025–1 125	1,800–1,975 1,800 minimum 1,900 minimum 1,880–2,060	
S31803, S32205 S32202 S32304 S32550 S32750 S32760	980–1080 980 minimum 1040 minimum 1025–1125 1100–1140	1,800–1,975 1,800 minimum 1,900 minimum 1,880–2,060 2,010–2,085	

Table 6.15Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments forMaterials: P-No. 10A, Group 1; P-No. 10C, Group 1; P-No. 10H, Group 1; P-No. 10I, Group 1; P-No.10K, Group 1; and P-No. 45 (Cont'd)

	PWHT Requirements		Holding Temperature and Time Based On the Nominal Thickness
		laterials: P-No. 10I, Group 1	
 (1,200°F) after which the cool (b) PWHT is neither required (c) For alloy S44635, the r PWHT is neither prohibited n welding, it shall be performed 425°C (800°F). (d) If during the holding performent exceeds the provision (e) When the heating rate holding temperature, the addit Additionally, where the Manu 	ling rate shall be rapid to preved nor prohibited for a thicknules for ferritic chromium stator required. If heat treatment at 1 010°C (1,850°F) minimum eriod of PWHT the maximum sions of 3.10.5, additional test is less than 30°C/h (50°F/h itional 0.6 min/mm (15 min/i facturer can provide evidence		 SI Units 730°C: (a) Class 1: 0.04 h/mm, 15 min minimum (b) Class 2: 1 h minimum, plus 0.6 min for each additional millimeter over 25 mm U.S. Customary Units 1,350°F: (a) Class 1: 1 hr/in., 15 min minimum (b) Class 2: 1 hr minimum, plus 15 min for each additional inch over 1 in.
	Μ	laterials: P-No. 10K, Group 1	
PWHT is neither required nor welding, it shall be performed 10 min followed by rapid coo <i>(b)</i> If during the holding pe	r prohibited. If heat treatment at 815°C (1,500°F) to 1 065°C ling. eriod of PWHT the maximum	inless steel shall apply, except that is performed after forming or (1,950°F) for a period not to exceed time or temperature of any vessel coupons shall be made and tested.	
	Ν	Materials: P-No. 45 [See 6.4]	
stainless steels of the P-No. 4 (b) Cooling Requirements: 1 (c) If postweld heat treatm	tt is neither required nor prob 5 group. Liquid quenching or rapid coo nent is performed, the Manuf rittlement, sensitization, and t	nibited for joints between austenitic ling by other means. acturer shall consider applying the he precipitation of deleterious	
	PWF	IT Temperature	
Alloy	°C	°F	
	1 140 -1 170	2,085-2,138	

(**23**)

Table 6.16 Alternative Postweld Heat Treatment Requirements									
Decrease in Temperature Below Minimum Specified Temperature, °C (°F)	Minimum Holding Time at Decreased Temperature, h [Note (1)]								
≤30 (≤50) 55 (100)	2 4								
85 (150) [Note (2)]	10								
110 (200) [Note (2)]	20								

(a) Applicable only when permitted by Tables 6.8 through 6.15.(b) Interpolation for time based on temperature reduction between values greater than 30°C (50°F) is permitted.

NOTES:

(1) Minimum holding time for 25 mm (1 in.) thickness or less. Add 15 min for each additional 25 mm (1 in.) of thickness greater than 25 mm (1 in.).

(2) These lower postweld heat-treat temperatures are permitted only for P-No 1, Group 1 and Group 2 materials.

Specification	Grade or Type	P-No. and Group No.	(Nominal) Thickness Requiring PWHT, mm (in.)	Postweld Heat-Treatment Temp., °C (°F)	Holding Time, h/mm (hr/in.)	Minimum Holding Time, h
			Plate Steels			
SA-353	9Ni	11A Gr. 1	Over 50 (2)	550-585 (1,025-1,085)	1	2
SA-517	Grade A	11B Gr. 1	Over 15 (0.58)	540-595 (1,000-1,100)	1	1/4
SA-517	Grade B	11B Gr. 4	Over 15 (0.58) [Note (1)]	540-595 (1,000-1,100)	1	$\frac{1}{4}$
SA-517	Grade E	11B Gr. 2	Over 15 (0.58)	540-595 (1,000-1,100)	1	$\frac{1}{4}$
SA-517	Grade F	11B Gr. 3	Over 15 (0.58) [Note (1)]	540-595 (1,000-1,100)	1	1/4
SA-517	Grade P	11B Gr. 8	Over 15 (0.58)	540-595 (1,000-1,100)	1	1/4
SA-533	Grades B and D, CI. 3	11A Gr. 4	Over 15 (0.58)	540-565 (1,000-1,050)	¹ / ₂	¹ / ₂
SA-543	Types B and C, CI. 1	11A Gr. 5	[Note (2)]	540-565 (1,000-1,050)	1	1
SA-543	Types B and C, CI. 2	11A Gr. 10	[Note (2)]	540-565 (1,000-1,050)	1	1
SA-543	Types B and C, CI. 3	3 Gr. 3	[Note (2)]	540-565 (1,000-1,050)	1	1
SA-553	Types I, II, and III	11A Gr. 1	[Note (2)]	550-585 (1,025-1,085)	1	2
SA-645	Grade A	11A Gr. 2	Over 50 (2)	550–585 (1,025–1,085)	1	2
SA-724	Grades A and B	1 Gr. 4	None	NA	NA	NA
SA-724	Grade C	1 Gr. 4	Over 38 (1 ¹ / ₂)	565–620 (1,050–1,150)	1	1/2

Specification	Grade or Type	P-No. and Group No.	(Nominal) Thickness Requiring PWHT, mm (in.)	Postweld Heat-Treatment Temp., °C (°F)	Holding Time, h/mm (hr/in.)	Minimum Holding Time, h
			Pipes and Tubes			
SA-333	Grade 8	11A Gr. 1	Over 50 (2)	550–585 (1,025–1,085)	1	2
SA-334	Grade 8	11A Gr. 1	Over 50 (2)	550–585 (1,025–1,085)	1	2
			Forgings			
SA-372	Grade D		See 6.7.6.3 and SA-3	372 for heat-treating	requirements	
SA-372	Grade E, CI. 70		See 6.7.6.3 and SA-3	372 for heat-treating	requirements	
SA-372	Grade F, CI. 70		See 6.7.6.3 and SA-3	372 for heat-treating	requirements	
SA-372	Grade G, CI. 70		See 6.7.6.3 and SA-3	372 for heat-treating	requirements	
SA-372	Grade H, CI. 70		See 6.7.6.3 and SA-3	372 for heat-treating	requirements	
SA-372	Grade J, CI. 70		See 6.7.6.3 and SA-3	372 for heat-treating	requirements	
SA-372	Grade J, CI. 110		See 6.7.6.3 and SA-3	372 for heat-treating	requirements	
SA-508	Grade 4N, CI. 1	11A Gr. 5	[Note (2)]	540-565 (1,000-1,050)	1	1
SA-508	Grade 4N, Cl. 2	11B Gr. 10	[Note (2)]	540-565 (1,000-1,050)	1	1
SA-522	Туре 1	11A Gr. 1	Over 50 (2)	550–585 (1,025–1,085)	1	2
SA-592	Grade A	11B Gr. 1	Over 15 (0.58) [Note (1)]	540-595 (1,000-1,100)	1	1/4
SA-592	Grade E	11B Gr. 2	Over 15 (0.58) [Note (1)]	540-595 (1,000-1,100)	1	1/4
SA-592	Grade F	11B Gr. 3	Over 15 (0.58) [Note (1)]	540-595 (1,000-1,100)	1	1/4

GENERAL NOTE: NA indicates not applicable.

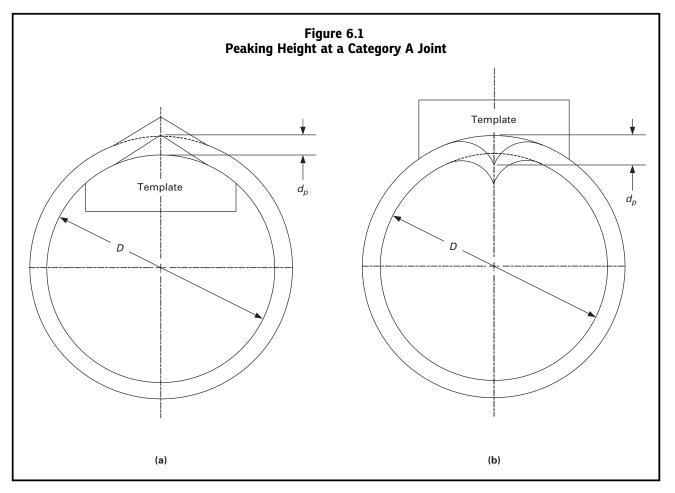
NOTES:

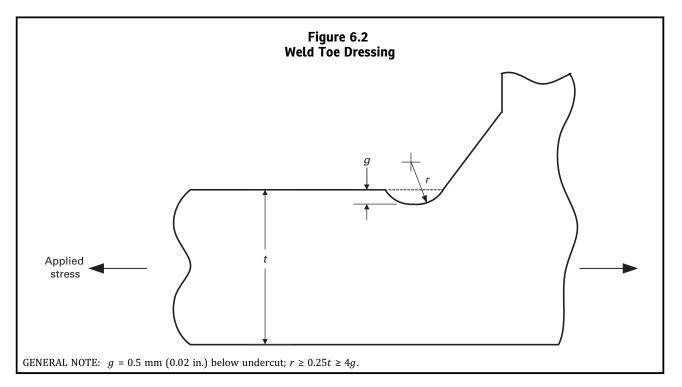
(1) See 6.6.5.2(d)(8).
(2) PWHT is neither required nor prohibited. Consideration should be given to the possibility of temper embrittlement. The cooling rate from PWHT, when used, shall not be slower than that obtained by cooling in still air.

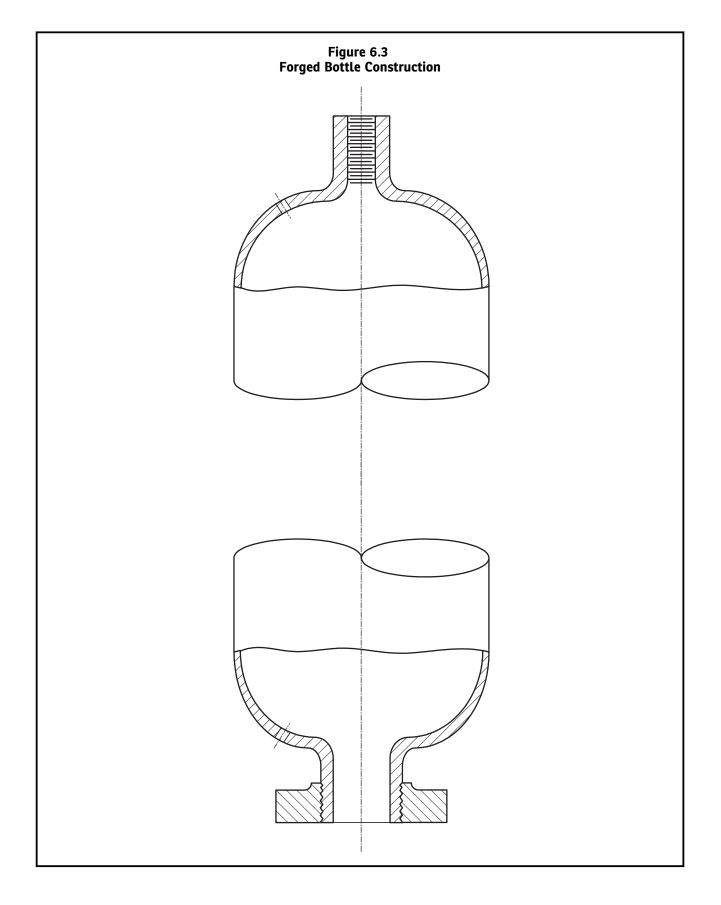
Table 6.18 Quench and Tempered Steels Conditionally Exempt From Production Impact Tests							
Specification	UNS	P-No./Group No.					
SA-333, Grade 8	K81340	11A/1					
SA-334, Grade 8	K81340	11A/1					
SA-420, Grade WPL8	K81340	11A/1					
SA-353	K81340	11A/1					
SA-522, Type I	K81340	11A/1					
SA-553, Type I	K81340	11A/1					
SA-553, Type II	K71340	11A/1					
SA-553, Type III	K61365	11A/1					
SA-645, Grade A	K41583	11A/2					

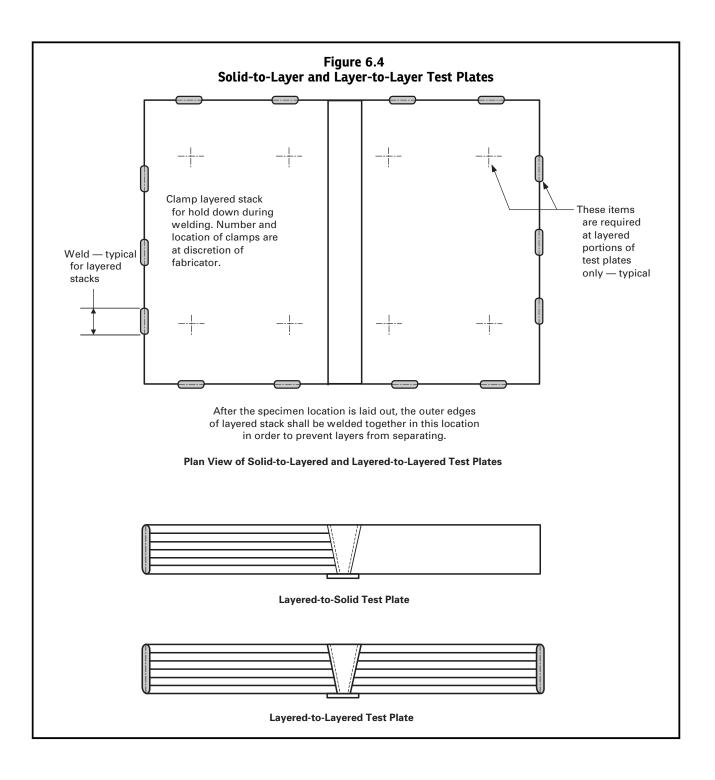
Table 6.19 High Nickel Alloy Filler for Quench and Tempered Steels								
Specification	Classification	F-Number						
SFA-5.11	ENiCrFe-2	43						
SFA-5.11	ENiCrFe-3	43						
SFA-5.11	ENiCrMo-3	43						
SFA-5.11	ENiCrMo-6	43						
SFA-5.14	ERNiCr-3	43						
SFA-5.14	ERNiCrFe-6	43						
SFA-5.14	ERNiCrMo-3	43						
SFA-5.14	ERNiCrMo-4	43						

Specimen Thickness	Radius for Guided Bend Tests for Fo Radius of Mandrel, B [Note (1)]	Radius of Die, D [Note (1)]
10 mm $\binom{3}{8}$ in.)	$32 \text{ mm} (1^{1}/_{4} \text{ in.})$	42 mm $(1^{11}/_{16} \text{ in.})$
t	$\frac{10t}{3}$	$\frac{13t}{3} + 1.5 \mathrm{mm} \left(\frac{13t}{3} + \frac{1}{16} \mathrm{in.} \right)$

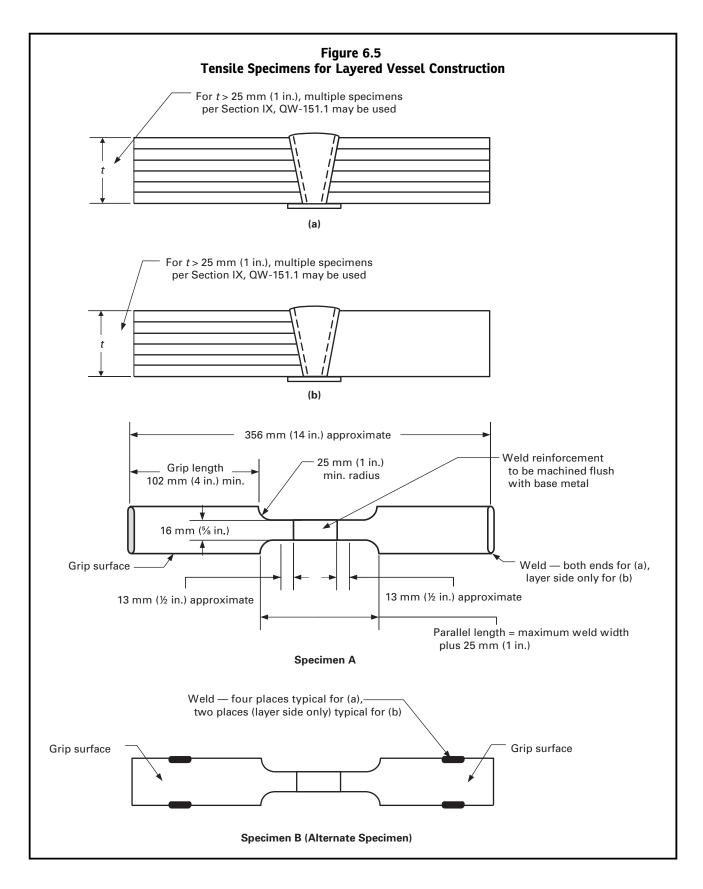

744

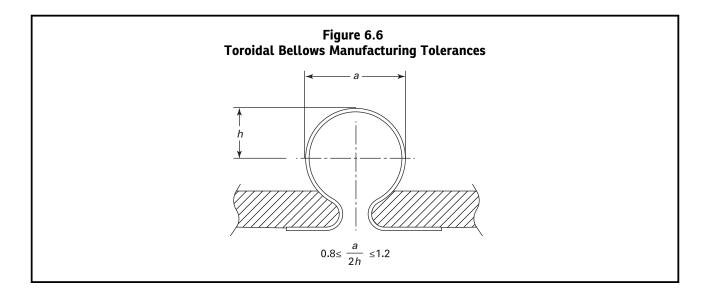

Bellows Dimension [Note (1)]	Manufacturing Tolerance				
Convolution pitch, q					
≤12.7 mm (≤0.5 in.)	±1.6 mm (±0.063 in)				
>12.7 mm to 25.4 mm (>0.5 in. to 1.0 in.)	±3.2 mm (±0.125 in.)				
>25.4 mm to 38.1 mm (>1.0 in. to 1.5 in.)	±4.7 mm (±0.188 in.)				
>38.1 mm to 50.8 mm (>1.5 in. to 2.0 in.)	±6.4 mm (±0.250 in.)				
>50.8 mm (>2.0 in.)	±7.9 mm (±0.313 in.)				
Convolution height, w					
≤12.7 mm (≤0.5 in.)	±0.8 mm (±0.031 in.)				
>12.7 mm to 25.4 mm (>0.5 in. to 1.0 in.)	±1.6 mm (±0.063 in.)				
>25.4 mm to 38.1 mm (>1.0 in. to 1.5 in.)	±2.4 mm (±0.094 in.)				
>38.1 mm to 50.8 mm (>1.5 in. to 2.0 in.)	±3.2 mm (±0.125 in.)				
>50.8 mm to 63.5 mm (>2.0 in. to 2.5 in.)	±4.0 mm (±0.156 in.)				
>63.5 mm to 76.2 mm (>2.5 in. to 3.0 in.)	±4.7 mm (±0.188 in.)				
>76.2 mm to 88.9 mm (>3.0 in. to 3.5 in.)	±5.6 mm (±0.219 in.)				
>88.9 mm to 101.6 mm (>3.5 in. to 4.0 in.)	±6.4 mm (±0.250 in.)				
>101.6 mm (>4.0 in.)	±7.1 mm (±0.281 in.)				
Convolution inside diameter, D_b					
≤219 mm (≤8.625 in.)	±1.6 mm (±0.063 in.)				
>219 mm to 610 mm (>8.625 in. to 24.0 in.)	±3.2 mm (±0.125 in.)				
>610 mm to 1 219 mm (>24.0 in. to 48.0 in.)	±4.7 mm (±0.188 in.)				
>1 219 mm to 1 524 mm (>48.0 in. to 60.0 in.)	±6.4 mm (±0.250 in.)				
>1 524 mm (>60.0 in.)	-±7.9 mm (±0.313 in.)				


Table 6.21


NOTE: (1) See Figure 4.19.1 for the definitions of dimensions q, w, and D_b .

6.12 FIGURES





6.12

ANNEX 6-A POSITIVE MATERIAL IDENTIFICATION PRACTICE

(Informative)

6-A.1 INTRODUCTION

6-A.1.1 When required by the User's Design Specification (UDS), a Manufacturer may be required to perform positive material identification (PMI) of a specific material, component, or weld. This may include components used by the Manufacturer for the fabrication of pressure-retaining parts and supports, raw material covered by ASME material specifications, overlay deposits, or components of fabricated vessels. This Annex is provided as a guide for use by the Manufacturer in developing a PMI procedure that may be used to test the raw material, component, vessel, or other item, and to evaluate the results.

6-A.1.2 The reader is cautioned that the use of this Annex does not ensure that the materials or welds have been processed correctly or that they have the appropriate mechanical properties for the intended service.

6-A.2 REFERENCES

The following standards and practices are referenced in this practice.

- ASME Section II, Part A Ferrous Material Specifications
- ASME Section II, Part B Nonferrous Material Specifications
- ASME Section II, Part C Specifications for Welding Rods, Electrodes, and Filler Metals
- ASTM A751 Standard Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products
- ASTM E353 Standard Test Methods for Chemical Analysis of Stainless, Heat-Resisting, Maraging, and Other Similar Chromium-Nickel-Iron Alloys
- ASTM E354 Standard Test Methods for Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys

6-A.3 **DEFINITIONS**

Some commonly used terms relating to this practice are defined below.

100% positive material identification (PMI): for components, the collection of at least two tests from each component (valve, pipe, or fitting). For welded components, such as a valve with a ferrule connection welded to it, at least two tests must be made on each heat number comprising the component, including the weld. Each test should meet the applicable criteria. This term does not apply to clad surfaces.

AV: an acronym for "Alloy Verified," used for marking material indicating that it has been analyzed by PMI using the instrument in alloy identification mode.

calibration check (instrument performance): a quantitative verification against a known standard to verify the accuracy of the measuring instrument.

inspection lot: a group of components or welding consumables of the same product form and heat number or combination of heat numbers, received in a single shipment, except when otherwise defined by the user or Manufacturer.

PMIV: an acronym for "PMI Verified," used for marking material indicating that it has been analyzed by PMI using the instrument in analysis mode.

positive material identification (PMI): a process used to verify that materials other than carbon steels have the specified amount of alloying elements that are detectable by portable X-ray fluorescent techniques.

qualification: demonstrated training, skill, knowledge, and experience required for personnel to perform the duties of a specific job.

representative sampling: PMI testing of a sample of two or more pieces (components), selected at random, from an inspection lot.

XRF: X-ray fluorescence.

6-A.4 SCOPE

6-A.4.1 The scope of this practice is limited to alloy verification of metals used for the construction of vessels and pressure parts to the requirements of this Division. The primary basis for this practice is the application of portable X-ray fluorescence (XRF) instruments or optical emission spectrometers (OES). When carbon steels are to be analyzed, portable OES may be used to measure carbon and other elements (e.g., silicon) not readily detectable by XRF.

6-A.4.2 This Positive Material Identification Practice (PMIP) addresses important aspects of the methods for alloy verification, materials marking, and the written procedure by which PMI should be conducted.

6-A.4.3 The materials that are covered in this PMIP include low alloy steels, creep-strength enhanced ferritic steels, high alloy steels, nickel-based alloys, and any other alloys having important alloying elements whose presence is critical to the performance of the material and can be detected by the specified instrument. Carbon steels do not normally require PMI controls or testing. However, for some services in which microalloying content or restricted chemical compositions are necessary to ensure that the pressure vessel will perform suitably in service, PMI of carbon steels may be specified.

6-A.4.4 This PMIP does not provide absolute confirmation of all mandatory elements listed in the materials specification in the same sense as laboratory methods such as wet chemistry, optical emission spectroscopy, energy dispersive spectroscopy, combustion/infrared spectroscopy, atomic absorption spectroscopy, etc., which provide detailed analysis including analysis of interstitial elements. Nevertheless, when coupled with other documentation, such as a mill or material test report (MTR), a Certificate of Compliance (COC), or material marking, this PMIP can establish a high degree of confidence that the material in question contains the required amount of important alloying elements.

6-A.4.5 PMI shall be performed as specified by the User's Design Specification (see 2.2.3.2). The extent of sampling shall be a matter of mutual contractual agreement between the user or his designated agent and the Manufacturer or the entity providing PMI testing. For cases where sampling rates are not specified, 6-A.5 of this Annex provides recommended sampling rates.

6-A.5 RECOMMENDED SAMPLING RATES

6-A.5.1 The following items should be considered for 100% PMI:

(*a*) all pressure-retaining welds. For double-welded joints, both weld caps, inside and outside, shall be inspected, when accessible. A minimum of two tests are recommended for each weld. Depending on the length of weld to be tested, more tests may be necessary. The number of tests is a matter of contractual agreement between user and Manufacturer.

(b) all pressure-containing tubing and piping components (includes fittings, valves, thermowells, instrument manifolds, etc.).

(c) pressure-retaining components of heat exchangers (to include the plates for plate and frame heat exchangers, except components exempted by 6-A.5.4) and other pressure vessels. Two tests are recommended for each component. For welded components, two tests are recommended for each subcomponent and each weld.

(*d*) plate, forgings, castings, and other raw material from which pressure-retaining components are to be fabricated. At least two tests are recommended for each piece of raw material.

(e) external valve components (body, flanges, bonnet, plugs and vents, and associated welds). See (a) for the number of tests for pressure-retaining welds.

(f) expansion joints and bellows in pressure-retaining service. A minimum of two tests per joint or bellows is recommended.

(g) air-cooled heat exchanger tubes (air fin tubes). A minimum of two tests per set of tubes is recommended.

(h) load-bearing attachments. A minimum of two tests per attachment is recommended.

(i) any other components or materials specifically designated for PMI on the purchase specification.

(*j*) materials with no alloy type identification (i.e., permanent marking), except for non-pressure-retaining bolts. See (a) for number of tests.

6-A.5.2 Unless specifically exempted by the purchase specification, the following products used in fabrication of equipment should be considered for PMI on a representative sampling basis, as a minimum, in conjunction with an MTR or other documentation:

(a) tubular products used in the fabrication of equipment such as heat exchangers and boilers.

(b) heat exchanger and boiler internals (tube hangers, tube supports, and tubesheets).

(c) all fasteners greater than $\frac{1}{2}$ in. (13 mm) in diameter.

(d) ring joint flange and clamp type connector flange gaskets.

(e) insert rings used for tube or pipe welding. Since these usually have no markings, they must be tested by sampling them in groups taken from the bag containing the identification.

6-A.5.3 The following items should be considered for internal metallic lining/cladding and weld overlay cladding: (*a*) Integral cladding: Measurements should be made at the nodes defined by a rectangular grid with suitable dimensions

(*b*) Weld overlay, back cladding, and linings applied by other methods such as co-extrusion, roll-bond or explosively bond clad: Measurements should be made at the nodes defined by a rectangular grid with suitable dimensions.

6-A.5.4 The following items are exempt, unless specifically designated for PMI on the purchase specification: *(a)* non-pressure-retaining welds

(b) all gaskets, except as required by 6-A.5.2(d) or the user or his designated agent's representative, based on criticality of service

(c) internal non-pressure-retaining parts

6-A.6 GENERAL REQUIREMENTS

6-A.6.1 PMI, as defined in 6-A.4.1 of this Annex, shall not be used in lieu of a real chemical composition analysis. It is not capable of, nor should it be used for, determining whether a material or component is in compliance with the material specification to which it was ordered.

6-A.6.2 PMI is limited to alloy verification, to the extent that materials, components, or welds can be analyzed to determine whether they contain the required amounts of specific alloying elements. This should be accomplished by reviewing the PMI data, as described in this Annex, along with the requirements of the applicable purchase order, the applicable material specification, and the MTR or other documentation supplied with the item in question.

6-A.6.3 The Manufacturer, or any organization charged with performing PMI, shall provide a written procedure for PMI that complies with the requirements of the User's Design Specification and this Annex.

6-A.6.4 The alloying elements to be tested shall be either those necessary to identify the alloy in question or those having a significant effect on the performance characteristics of the material. This may be a matter of agreement between the user and the organization performing the PMI. The instrument employed shall be capable of detecting the alloying elements of interest.

6-A.6.5 Records of PMI results shall be provided to the user or his designated agent as part of the as-built documentation for new construction.

(*a*) For fabricated or assembled equipment, these records shall include an itemized list of all components, including the heat numbers of components made from more than one heat, and welds, or the equivalent thereof.

(b) Tabulation of tested items shall be keyed to as-built drawings through the use of reference numbers.

(c) Positively identified materials shall be traceable to the heat numbers in material documentation, such as MTRs.

(*d*) Shop-fabricated equipment or assemblies that have been PMI tested in the Supplier's shop may be verified again in the field. The Supplier's report of alloy verification shall also be submitted to the user or his designated agent after the equipment has been fabricated.

6-A.6.6 Materials requiring PMI (see 6-A.5.1 through 6-A.5.3) shall be analyzed using an acceptable method as defined in this Annex.

(a) XRF instruments may be used in the analysis mode. Measured values shall be evaluated against the requirements in the applicable material specification using the appropriate product analysis tolerance combined with the as-displayed accuracy tolerance.

(*b*) XRF instruments may be used in an alloy identification (alloy matching) mode, when approved by the user or his designated agent.

(*c*) When permitted by the user or his designated agent, follow-up and/or referee analysis may be required when the results of PMI testing do not meet the specified requirements. See 6-A.6.8(e) and 6-A.7.3.

6-A.6.7 Acceptance criteria for PMI data shall be as follows:

ASME BPVC.VIII.2-2023

(*a*) In the analysis mode, the PMI instrument will produce chemical composition data, including an accuracy tolerance, for each alloying element of interest. This will result in a range of values for each alloying element. These ranges shall fall within or overlap the corresponding chemical composition ranges in the applicable material specification as modified by the product (check) analysis tolerances in the material specification incorporated by reference.

(*b*) When used in the alloy identification (alloy matching) mode, the instrument shall confirm that the tested material is identified as, or at least is consistent with, the alloy specified in the purchase specification. When using this mode, the user is cautioned that any alloy identified by the PMI instrument is defined by a single material specification whose chemical composition ranges may not coincide with those in the material specification invoked in the purchase specification. As a result, the user of the PMI instrument must take into consideration potential differences between the material specification loaded into the PMI library and that specified on the purchase specification.

(c) Test results shall be properly identified and documented (see 6-A.9). Materials shall be identified in accordance with the user or his designated agent's specification, and marked in accordance with 6-A.8.

6-A.6.8 The Manufacturer may reject or replace any material, component, or weld for which PMI data does not meet the requirements of 6-A.6.7. The following shall apply:

(*a*) Whenever materials or welds are identified as not meeting the required chemical composition, a rejection notice shall be issued indicating that materials have failed to meet specified chemical composition requirements.

(b) The Manufacturer shall be responsible for performing PMI.

(c) Material rejected by PMI shall be marked to designate rejection using techniques specified in the applicable Manufacturer's Quality Control System. The rejected items shall be held in a designated area to prohibit their use.

(*d*) If the PMI test results fall outside the acceptable range using the techniques described in this Annex, a quantitative analysis may be performed by an independent testing laboratory, when permitted by the user or his designated agent. If no referee method is referenced in the applicable material specification, an appropriate method of chemical analysis, mutually agreeable to the material supplier, Manufacturer, and user, shall be used. Results of this analysis shall govern.

(e) Any material, component, or weld whose rejection by PMI is confirmed by the mutually agreed upon referee method shall be replaced by the supplier.

6-A.6.9 When 100% PMI is required, inspection shall be performed according to one of the following:

(*a*) On raw materials, each piece shall be subject to PMI testing. Multiple tests of each piece are recommended (see 6-A.5.1).

(b) On all components, including welded components, PMI testing may be performed before or after PWHT. Each heat number of a component having more than one heat number shall be tested, i.e., a valve having ferrules or tube stubs welded onto it. A minimum of two tests of each heat number are recommended.

(c) For welded components, PMI units having special nozzles with reduced port sizes shall be used for testing welds to ensure that no base metal is inadvertently included in the analysis. Multiple tests are recommended for each weld. Acceptance criteria for the measured weld metal composition shall be established by mutual agreement between the Manufacturer and user prior to testing.

(*d*) On individual components, PMI may be performed prior to fabrication, as long as the component is clearly marked in accordance with 6-A.8.1. Following fabrication, when required by the user, all welds shall be PMI inspected in accordance with 6-A.6.11.

6-A.6.10 Where multiples of the same raw material or component are used in construction, representative sampling may be used when allowed by the user. In this case, material may be tested upon receipt. Such pieces shall be marked PMIV (Positive Materials Identification Verified) or AV (Alloy Verified). Items from the same lot that are not tested shall be marked to indicate that their alloy identity has been verified based on the representative sampling described herein. Marking shall be in accordance with the applicable Quality Control System.

(a) A minimum of two items from each inspection lot should be PMI tested.

(b) If any piece from the representative sample is unacceptable, all items in that inspection lot shall be PMI tested.

(c) When a lot is found to contain unacceptable pieces, 100% of the next two inspection lots from the same supplier shall be examined. If both lots are acceptable, or when two successive lots are acceptable, the representative sampling procedure may be resumed.

6-A.6.11 All welds requiring PMI shall be PMI inspected, identified in the documentation applicable for that job, and marked PMIV or AV. Due to variations in dilution within a single weld and from weld to weld, it may be very difficult to determine by PMI testing if the proper filler metal has been used. Prior to heat treatment, painting, or insulating, the user or his designated agent shall verify that materials have been installed in accordance with the purchase specification. Welds requiring PMI should be inspected according to the following:

(*a*) automatic welds — a minimum of one sample from each girth or long seam weld. One sample per every 900 mm (36 in.) of weld, but no more than five per weld. One sample should be taken on each side of any start/stop location.

(b) manual welds — two samples from each girth section \geq 600 mm (\geq 24 in.) diameter. Each welder's work must be sampled.

(c) manual welds — one sample from each girth seam <600 mm (<24 in.) diameter. Each welder's work must be sampled.

(*d*) autogenously welded pipe and fittings — PMI verification of only the base metal.

6-A.6.12 The user of this Annex is cautioned that the surface chemical composition data obtained by PMI testing may not be characteristic of the bulk composition. Surface cleaning techniques, particularly those involving acids, corrosive attack, or other surface treatments may significantly alter the surface composition. A metallurgist who has experience with PMI data and is also familiar with the material's history should be consulted to review the PMI data if these conditions exist.

6-A.7 WRITTEN PRACTICE

6-A.7.1 PMI shall be conducted following a written procedure. The written procedure shall define the following: *(a)* the instrument to be used

(b) the mode in which the instrument is to be operated

(c) sampling plan definitions for each material

(d) material, component, or surface to be inspected

(e) documentation requirements

(f) material identification requirements

(g) frequency of instrument calibration and instrument calibration checks

(h) personnel qualification requirements

(i) control of rejected material

6-A.7.2 This procedure may include segregation procedures for tested material, marking, and small percentage random sampling. When representative sampling is identified in the written procedure, conditions for progressive sampling when some material in an inspection lot is rejected shall be addressed.

6-A.7.3 The organization charged with performing the PMI shall be responsible for selecting the instrument to be used and it shall be identified in the their written procedure.

(*a*) While this PMI does not endorse specific XRF instruments, the objective is to use instruments that identify the elements necessary for the alloy to be positively identified.

(b) The user or his designated agent may specify or exclude specific instruments based upon demonstrated and documented performance testing.

(c) Analytical laboratories using XRF spectrometry, optical emission spectroscopy, energy dispersive spectroscopy, combustion/infrared spectroscopy, atomic absorption spectroscopy, and/or wet chemical analysis may be used for referee (arbitration) in cases where PMI test results are indeterminate or in question.

(*d*) The user or his designated agent may approve PMI methods other than portable XRF (e.g., magnetic techniques) for austenitic stainless steel weld metal or base metal in cryogenic (and noncorrosive) service.

6-A.7.4 All testing shall be performed according to the alloy analyzer manufacturer's operating instructions. The user or his designated agent shall approve any modification of these operating instructions.

6-A.7.5 When using XRF, the written procedure shall also define whether the analysis mode or the alloy identification mode shall be used.

(*a*) When the results of data obtained using the alloy identification mode are indeterminate or in question, as an alternative, testing may be performed in the analysis mode, producing recordable elemental composition results.

(b) As an alternative, methods of arbitration, as identified in 6-A.7.3(c), may be used when permitted by the user or his designated agent.

6-A.7.6 The written procedure shall state the requirements for the qualifications of individuals performing PMI. The organization performing PMI shall maintain a record of the qualifications of individuals performing PMI. The qualifications shall be acceptable to the Manufacturer and user or his designated agent.

6-A.7.7 Individuals performing PMI shall be trained and qualified. The training shall address the following, as a minimum:

(a) minimum exposure times for adequate data collection

(b) proper activation of the analyzer window shutter to ensure that it opens completely during exposure and data collection

(c) ensuring that the surface to be analyzed completely covers the analyzer window

(d) precautions to take when using the alloy analyzer on curved or contoured surfaces

(e) special instructions or ancillary equipment needed for analyzing welds

(f) demonstration of capabilities, if required by the user

6-A.7.8 The written procedure shall require that each analyzer shall be calibrated according to the operating instructions.

(*a*) Units shall be calibrated on an annual basis, as a minimum. The calibration tests shall be documented, although the specific data does not need to be recorded.

(*b*) At the beginning and end of each shift, the instrument shall be checked at least three times against a known standard for each alloy category to be inspected during the shift, using the method to be used during the shift. This check shall be performed under environmental conditions similar to that of the test location.

6-A.7.9 The written procedure shall ensure that tests are conducted on clean surfaces from which all paint, rust, and other coatings have been removed. Light grinding or other similar techniques, when permitted by this Division, may be used for this purpose.

6-A.7.10 Test results shall be documented in a manner acceptable to the Manufacturer.

6-A.7.11 Acceptable material shall be marked in accordance with this Annex.

6-A.7.12 Rejected material shall be marked and stored in a manner specified by the Manufacturer.

6-A.8 MARKING

6-A.8.1 Each component (or weld) shall be marked immediately after PMI inspection and acceptance. Markings shall be permanent and readily visible. These markings shall be in addition to markings required by this Division and the requirements of the applicable material specifications. The technique to be used shall be consistent with the Manufacturer's Quality Control System.

6-A.8.2 Each component or weld analyzed shall be marked with the "PMIV" or "AV" code letter symbol, using a low-stress stamp or other marking approved by the Manufacturer, user, or his designated agent. This identification may include color coding, low-stress stamping, or documentation showing the PMI location and test results. A permanent dye or paint may be used to mark bolts and tubing. The marking shall be placed as follows:

(*a*) Pipe shall have two marks, 180 deg apart, 75 mm (3 in.) from each end of each length on the outer surface of the pipe.

(b) Welds shall be marked using marks placed adjacent to the welder's mark, directly on the weld. Welds on tubes used for heat transfer shall not be stamped, but marked by either stenciling or vibro-etching.

(c) Fittings and forgings shall be marked adjacent to the supplier's markings.

(*d*) Valves shall be marked adjacent to the supplier's markings on the valve body.

- (e) Plates shall be marked adjacent to the heat numbers.
- (f) Castings shall be marked adjacent to the supplier's markings and heat numbers.

(g) Tubes for heat transfer service shall be stenciled, not stamped, 300 mm (12 in.) from each end.

(1) The marking shall be done with a water-insoluble material that contains no harmful substances, such as metallic elements [aluminum (Al), lead (Pb), zinc (Zn), sulfur (S), or chlorides], that would attack or harmfully affect austenitic or nickel alloy steels at ambient or elevated temperatures.

(2) The chloride and sulfur content of water-insoluble materials shall be limited to 1% or less as determined by ASME SEC V B SD-808 and ASME SEC V B SD-129, or equivalent.

(3) The supplier shall submit an analysis of the marking material to the purchaser to demonstrate, by chemical analysis and history of use, that the marking material meets the requirements.

(h) Bolting shall be marked on one end.

(i) Nuts shall be marked on one flat.

(*j*) When material is cut after PMI testing and identification, the PMI marking shall be transferred to each piece of cut material in accordance with the Manufacturer's Quality Control System.

6-A.8.3 If the material or item is too thin, too small, or cannot otherwise be stamped, vibro-etching, color-coding, or other techniques permitted by the Manufacturer's Quality Control System shall be used. The technique shall be noted on the Technical Data Sheet or other acceptable documentation.

6-A.8.4 When heat treatment is performed after material verification, the identification marking shall be recognizable after such heat treatments. If the marking is unrecognizable, PMI testing shall be repeated.

6-A.8.5 When an alloy pipe or plate is cut after PMI testing and marking, the PMI marking shall be transferred onto the unmarked section as described in this Annex.

6-A.9 DOCUMENTATION

6-A.9.1 The Manufacturer shall document the results of PMI testing, as required by the user or his designated agent.

6-A.9.2 For fabricated or assembled equipment, these records shall include an itemized list of all components and welds tested, by heat number. The Technical Data Sheet in Table 6-A.9.2-1 is supplied as an aide.

6-A.9.3 Tabulation of tested items shall be keyed to drawings through the use of reference numbers.

6-A.9.4 Positively identified materials shall be traceable to the heat numbers on required material documentation, such as MTRs.

6-A.9.5 The Manufacturer's records of alloy verification shall be available for review upon completion of the fabrication of the equipment.

				Тес			A.9.2- Sheet		11				
Technical [Data She	et Posi	tive Mat	erial Ide	entificat	ion							
Analysis M	ode Dat	a Sheet	:										
Fabricator:						Date:	ate:						
Location:						PMI Se	Il Service Vendor:						
Job Title:						Operate	ors:						
Job Numbe	r:					Analyze	r Model	Number:					
Drawing Nu	mber:					Analyze	er Serial I	Number:					
Purchase Or	der No.:						Cd-109	Source A	ge:				
Material Specification/Grade:					Fe-55 Source Age:								
ALLOY CONTENT, WT%													
Specification	Min.]		
Range	Max.										Accept		Reject
Standard	I.D.												
Component*	Heat #	Cr	Mo	Ni	Nb	Ti	Cu	w	AI	v			
						1							1
													1
						1							1
						1							1
* "Componen	t" refers to	the speci	fic elbow f	itting, pip	e segmen	t, plate, etc	. being ins	pected.	1				1
Revision Log							-						
Rev Date	Descriptio	n					Rev			Date	Aprvl	Descri	ption
1							4						
2							5						
3							Dwg. No	.:	1	I	1		
	1						1 5 10						

PART 7 INSPECTION AND EXAMINATION REQUIREMENTS

7.1 GENERAL

The requirements for examination including Nondestructive Examination (NDE) during fabrication of pressure vessels of welded construction to be marked with Certification Mark are provided in this Part. The requirements for examination of materials are provided in Part 3.

7.2 RESPONSIBILITIES AND DUTIES

7.2.1 RESPONSIBILITIES AND DUTIES OF THE MANUFACTURER AND INSPECTOR

Responsibilities and duties of the Manufacturer and Inspector are covered in Annex 7-A.

7.2.2 ACCESS FOR INSPECTOR

The Manufacturer of the vessel shall arrange for the Inspector to have free access to such parts of all plants as are concerned with the supply or manufacture of materials for the vessel, when so requested. The Inspector shall be permitted free access, at all times while work on the vessel is being performed, to all parts of the Manufacturer's shop that concern the construction of the vessel and to the site of field erected vessels during the period of assembly and testing of the vessel.

7.2.3 NOTIFICATION OF WORK PROGRESS

The Manufacturer shall notify the Inspector of the progress of all work associated with the design, fabrication, inspection and examination, and testing of the pressure vessel. In addition, the Manufacturer shall notify the Inspector reasonably in advance when any required tests or inspections are to be performed.

7.3 QUALIFICATION OF NONDESTRUCTIVE EXAMINATION PERSONNEL

Personnel performing nondestructive examinations in accordance with 7.5.3, 7.5.4, 7.5.5, 7.5.6, 7.5.7, or 7.5.8 shall be qualified and certified in accordance with the requirements of Section V, Article 1, T-120(e), T-120(f), T-120(g), T-120(i), T-120(j), or T-120(k), as applicable.

7.4 EXAMINATION OF WELDED JOINTS

7.4.1 NONDESTRUCTIVE EXAMINATION REQUIREMENTS

7.4.1.1 All finished welds shall be subject to visual examination in accordance with 7.5.2.

7.4.1.2 All finished welds shall be subject to nondestructive examination depending on Examination Group selected in 7.4.2 and the Joint Category and Weld Type as defined in 4.2.

7.4.1.3 All welding shall be subject to in-process examination by visual examination at the fit-up stage and during back gouging.

7.4.2 EXAMINATION GROUPS FOR PRESSURE VESSELS

7.4.2.1 Definition of Examination Groups.

(*a*) Table 7.1 defines the Examination Groups assigned to welded joints based on the manufacturing complexity of the material group, the maximum thickness, and the welding process. Nondestructive examination of welded joints shall be performed as indicated for each Examination Group. Each of the Examination Groups are further subdivided into subgroups "a" and "b" to reflect the crack sensitivity of the material.

(b) Table 7.2 indicates the required NDE, joint category designation, joint efficiency, and acceptable joint types for each Examination Group.

(23)

(c) The *governing welded joint* as used in 7.4.2.2 below is that welded joint within a given vessel section (e.g., shell course or head) that, as a result of the selected joint efficiency, determines the thickness of that vessel section.

7.4.2.2 Multiple Examination Groups.

(*a*) When more than one governing welded joint is located in a pressure vessel, a combination of Examination Groups is permitted, provided that the requirements of Table 7.1 are satisfied.

(b) If a combination of Examination Groups are used in a single vessel, the following requirements shall be met:

(1) In each vessel section, the Examination Group of the governing welded joint shall be applied to all welds within that vessel section, including nozzle attachment welds.

(2) Welds connecting two welded sections that are assigned to different Examination Groups shall be assigned to the Examination Group with the greater extent of examination.

(3) Welds connecting a welded section to a seamless section, or welds connecting two seamless sections, shall be assigned to an Examination Group based upon available thickness (thickness at the weld less tolerances and corrosion allowance). When the available thickness is greater than 1.18 (derived from 1/0.85) times the minimum required thickness, Examination Group 3 may be assigned. When the available thickness is less than 1.18 times the minimum required thickness, the Examination Group shall be assigned per Table 7.1.

7.4.3 EXTENT OF NONDESTRUCTIVE EXAMINATION

7.4.3.1 The extents of examination given in Table 7.2 are percentages of the total lengths of the welded joints under consideration. The extents of examination shown in Table 7.2 are minimum requirements and do not supersede supplementary examination requirements specified elsewhere in this Division.

7.4.3.2 The examination requirements in Table 7.2 pertain to all butt-welded joints.

7.4.3.3 The following welds shall be examined over their entire length per the requirements of Table 7.2 and if a radiographic examination was performed, the following welds shall also be ultrasonically examined per 7.5.4 or 7.5.5: (*a*) Welds made by the electron beam welding process, if the following conditions are not satisfied:

(1) The nominal thickness at the welded joint does not exceed 6 mm ($\frac{1}{4}$ in.).

(2) For ferromagnetic materials, the welds are examined either by the magnetic particle examination technique in accordance with 7.5.6 or by the liquid penetrant examination technique in accordance with 7.5.7.

(3) For nonferromagnetic materials, the welds are examined by the liquid penetrant examination technique in accordance with 7.5.7.

(b) Welds made by the continuous drive friction welding process.

7.4.3.4 The following welds shall be radiographically examined per 7.5.3 and ultrasonically examined per 7.5.4 or 7.5.5 over their entire length per the requirements of Table 7.2. The ultrasonic examinations shall be done following the grain refining (austenitizing) heat treatment or PWHT:

(a) Welds made by the electroslag welding process, and

(b) Welds made by the electrogas welding process with any single pass thickness greater than 38 mm $(1-\frac{1}{2} \text{ in.})$ in ferritic materials.

7.4.3.5 If the required extent of examination is less than 100%, the extent and location of nondestructive examination shall be determined by the criteria shown below.

(a) For shells, formed heads, communicating chambers and jackets the following requirements apply.

(1) Nondestructive examination shall be performed at all intersections of longitudinal and circumferential butt joints. A minimum length of 150 mm (6 in.) of the longitudinal seam(s) at these intersections shall be examined. Where the inclusion of all intersections exceeds the percentage in Table 7.2 then this higher value shall apply.

(2) If additional examination is required to obtain the percentages required in Table 7.2, additional locations on the butt-welded joint selected by the Inspector shall be subject to nondestructive examination.

(3) A sufficient number of examinations shall be taken to examine the welding of each welder or welding operator. Under conditions where two or more welders or welding operators make weld layers in a joint, or on the two sides of a double-welded butt joint, one spot may represent the work of all welders or welding operators who performed welding at the location of the spot.

(4) When openings are placed within main welds (longitudinal or circumferential) or within a distance of 13 mm $\binom{1}{2}$ in.) from the main welds, then the main weld shall be examined for a length of not less than the diameter of the opening on each side of the edge of the openings. These welds shall be included as an addition to the percentage in Table 7.2.

(b) Nozzles and Branches Attached to The Vessels - To determine the extent of nondestructive examination, the completed circumferential and longitudinal butt joints of at least one nozzle or branch in each group or partial group shall be examined as shown below.

(1) If the extent of examination is 100%, each individual nozzle and branch shall be examined.

(2) If the extent of examination is 25%, then one complete nozzle or branch for each group of 4 shall be examined.

(3) If the extent of examination is 10%, then one complete nozzle or branch for each group of 10 shall be examined.

(c) If the inclusion of the number of complete circumferential and longitudinal butt welds or nozzles exceeds the percentage in Table 7.2, then the higher value shall apply.

7.4.3.6 Thickness. When cited in the acceptance criteria of the various examination methods in 7.5 and Table 7.2, the thickness t is defined as the thickness of the weld, excluding any allowable reinforcement [see 6.2.4.1(d)]. For a butt weld joining two members having different thicknesses at the weld, t is the thinner of these two thicknesses. If a full-penetration weld includes a fillet weld, the thickness of the throat of the fillet shall be included in t.

7.4.4 SELECTION OF EXAMINATION METHOD FOR INTERNAL (VOLUMETRIC) FLAWS

The selection of the examination method for internal flaws (radiographic or ultrasonic) shall be in accordance with Table 7.3. The basis of the selection is the most suitable method to the relevant application in relation to the material type and thickness, as well as any additional NDE requirements specified in the User's Design Specification [see 2.2.3.2(a)].

NOTE: Considerations such as joint geometry or sensitivity of the material to cracking in the welding process may have an overriding influence, indicating that a method different from that in Table 7.3 should be used. In exceptional cases or where the design or load-bearing properties of the joint are critical (particularly for partial penetration joints), it may be necessary to employ both methods from Table 7.3 on the same joint or weld.

7.4.5 SELECTION OF EXAMINATION METHOD FOR SURFACE FLAWS

For nonferromagnetic or partially magnetic materials, or magnetic materials welded with nonferromagnetic or partially ferromagnetic filler metals, Liquid Penetrant Examination in accordance with 7.5.7 shall be used. For magnetic steels, Magnetic Particle Examination or Liquid Penetrant Examination, in accordance with 7.5.6 and 7.5.7 respectively, shall be used as applicable.

7.4.6 SURFACE CONDITION AND PREPARATION

The examination surface shall be prepared as necessary so that no surface irregularities or foreign matter interfere with the performance or interpretation of the applicable NDE method.

7.4.7 SUPPLEMENTAL EXAMINATION FOR CYCLIC SERVICE

Category A and B welds in vessels for which fatigue analysis is mandatory per 5.5.2 shall be subject to 100% examination in accordance with the methods specified in Table 7.3. Category C, D, and E welds shall be examined by the magnetic particle or liquid penetrant methods in accordance with 7.5.6 and 7.5.7, respectively.

7.4.8 EXAMINATION AND INSPECTION OF VESSELS WITH PROTECTIVE LININGS AND CLADDING

7.4.8.1 Examination of Chromium Alloy Cladding or Lining. The joints between chromium alloy cladding layers or liner sheets shall be examined for cracks as follows.

(*a*) Joints welded with straight chromium alloy filler metal shall be examined throughout their full length. Chromium alloy welds in continuous contact with the welds in the base metal shall be examined by the radiographic or ultrasonic methods. Liner welds that are attached to the base metal, but merely cross the seams in the base metal, may be examined by any method that will disclose surface cracks.

(*b*) Joints welded with austenitic chromium-nickel steel filler metal or non-air-hardening nickel-chromium- iron filler metal shall be given a radiographic or ultrasonic spot examination in accordance with the methods described in 7.5.3 and 7.5.4. For lined construction, at least one spot examination shall include a portion of the liner weld that contacts weld metal in the base plate. One spot examination shall be completed for every 15 m (50 ft) of weld.

7.4.8.2 Examination of Vessels and Parts.

(*a*) Vessels or parts of vessels constructed of clad or weld overlay base material shall have welded joints examined using the radiographic or ultrasonic methods as required in 7.4.1 through 7.4.7. The material thickness specified under these rules shall be the total material thickness for clad construction and the base material thickness for applied-lining construction, except as provided in (c) below.

(*b*) Examination of Base Plates Protected by a Strip Covering - If the base material weld in integral or weld metal overlay clad or lined construction is protected by a covering strip or sheet of corrosion resistant material applied over the weld in the base material to complete the cladding or lining, then any radiographic or ultrasonic examination required by 7.4.1 through 7.4.7 may be made on the completed weld in the base plate before the covering is attached. (c) Examination of Base Plates Protected by an Alloy Weld - The radiographic or ultrasonic examination required by 7.4.1 through 7.4.7 shall be made after the joint, including the corrosion resistant layer, is complete, except that the radiographic or ultrasonic examination may be made on the weld in the base material before the alloy cover weld is deposited, provided the following requirements are met:

(1) The thickness of the base material at the welded joint is not less than that required by the design calculation.

(2) The corrosion resistant alloy weld deposit is non-air-hardening.

(3) The completed alloy weld deposit is examined by liquid penetrant examination in accordance with 7.5.7.

(4) The thickness of the base material is used in determining the radiography requirement in (a) above.

7.4.8.3 Inspection and Tests.

7.4.8.2 - 7.4.10

(*a*) General Requirements - The rules in the following paragraphs apply specifically to the inspection and testing of vessels that have clad or weld overlay corrosion resistant linings, and shall be used in conjunction with the general requirements for inspection and testing in Parts 7 and 8, respectively.

(b) Tightness of Applied Lining

(1) A test for pressure tightness of the applied lining that will be appropriate for the intended service is recommended, but the details of the test shall be as specified in the User's Design Specification. NOTE: The test should be such as to assure freedom from damage to the load-carrying base material.

(2) Inspection of Vessel Interior after Test for Tightness - Following the hydrostatic pressure test the interior of the vessel shall be visually examined to determine if there is any seepage of the test fluid through the joints in the lining.

(3) Requirements When Seepage Is Detected - In cases where seepage behind the applied liner is detected, the vessel shall be heated slowly for a sufficient time to drive out all test fluid from behind the applied liner without damage to the liner. After the test fluid is driven out, the lining shall be repaired by welding. The Inspector shall determine if repetition of the radiography, the heat treatment, or the hydrostatic test of the vessel after lining repairs is required to determine whether the repair welds may have caused defects that penetrate into the base material.

7.4.9 EXAMINATION AND INSPECTION OF TENSILE PROPERTY ENHANCED Q&T VESSELS

The following paragraphs are applicable only to vessels constructed of ferritic materials, listed in Table 3-A.2, where the yield and ultimate tensile strength have been enhanced by quenching and tempering.

7.4.9.1 Type No.1 Welded Joint. 100% examination per Table 7.3 is required. The examination shall be done after all corrosion resistant alloy cover welding has been deposited.

(**23**)

7.4.9.2 Nozzle Attachment Welds. Nozzle attachment welds as provided for in Table 4.2.13 shall be examined using the radiographic or ultrasonic method in accordance with 7.5.3 or 7.5.4 or 7.5.5 (see Table 7.2 and Table 7.3). Nozzle attachment welds in shells over 50 mm (2 in.) in thickness shall be examined by the radiographic or ultrasonic methods in accordance with 7.5.3 or 7.5.4, except that for nozzles having an inside diameter of 50 mm (2 in.) or less, the radiographic or ultrasonic examination may be omitted. The required radiographic examination shall be made after all corrosion resistant alloy cover weld has been deposited.

7.4.9.3 Weld Examination.

(*a*) Except as permitted in (b), all welds, including welds for attaching nonpressure parts to quenched and tempered steel, shall be examined on all exposed surfaces, after pressure tests, by the magnetic particle method in accordance with 7.5.6. A magnetization method shall be used that will avoid arc strikes. Crack-like flaws are unacceptable and shall be removed or repaired. The vessel shall be retested in accordance with Part 8 following the repair, and the welds re-examined. For nozzle attachments shown in Table 4.2.10, Details 1, 2, and 7, the exposed cross section of the vessel wall at the opening shall be included in the examination.

(*b*) Alternative Use of Liquid Penetrant Method - As an acceptable alternative to magnetic particle examination or when magnetic particle methods are not feasible because of the nonferromagnetic character of the weld deposits, a liquid penetrant method shall be used, see 7.5.7. For vessels constructed of SA-333 Grade 8; SA-334 Grade 8; SA-353; SA-522; SA-553 Types I, II, and III; and SA-645 Grade A material, the surface examination required in Table 7.2 shall be by the liquid penetrant method either before or after the pressure test. Crack-like flaws are unacceptable and shall be removed or repaired. The vessel shall be retested in accordance with Part 8 following the repair, and the repair welds re-examined.

7.4.9.4 Examination of Corrosion Resistant Overlay Weld Metal. Corrosion resistant overlay weld metal shall be examined by a liquid penetrant method in accordance with 7.5.7. Crack-like flaws are unacceptable and shall be removed or repaired.

7.4.10 EXAMINATION AND INSPECTION OF INTEGRALLY FORGED VESSELS

The rules of the following paragraphs apply specifically to the nondestructive examination of integrally forged vessels.

7.4.10.1 Ultrasonic Examination.

(*a*) If the vessel is constructed of SA-372 Grade J, Class 110 material, the completed vessel after heat treatment shall be examined ultrasonically in accordance with 3.3.3 and 3.3.4. The reference specimen shall have the same nominal thickness, composition, and heat treatment as the vessel it represents. The angle beam examination shall be calibrated with a notch of a depth equal to 5% of the nominal section thickness, a length of approximately 25 mm (1 in.), and a width not greater than twice its depth.

(*b*) If the vessel is constructed of SA-723 Class 1, Grades 1, 2, and 3, and SA-723 Class 2, Grades 1, 2, and 3 materials, then the completed vessel shall be examined in accordance with 3.3.4 regardless of thickness.

(c) A vessel is unacceptable if examination results show one or more discontinuities that produce indications exceeding in amplitude the indication from the calibrated notch. Round bottom surface indications such as pits, scores, and conditioned areas exceeding the amplitude of the calibrated notch shall be acceptable if the thickness below the indication is not less than the design wall thickness of the vessel, and its sides are faired to a ratio of not less than three to one.

7.4.10.2 Examination of Weld Repairs.

(*a*) For weld repairs of material containing 0.35% Carbon or less, all weld repairs shall be examined by radiography, by a magnetic particle method, or by a liquid penetrant method, in accordance with the requirements of 7.5.3, 7.5.6, or 7.5.7. Weld repairs shall be radiographed when the depth of weld repair exceeds 10 mm ($\frac{3}{8}$ in.) or one-half the material thickness whichever is less. The acceptability of the repair welds shall be determined by the acceptance standards set forth in the applicable paragraph.

(b) For weld repairs of material containing more than 0.35% Carbon:

(1) The examination of weld repairs in other than quenched and tempered materials shall meet the requirements of (a), except that radiography shall be required when the depth of weld repair exceeds 6 mm ($\frac{1}{4}$ in.) or one-half the material thickness whichever is less.

(2) Examination of weld repairs in material that is to be or has been liquid quenched and tempered shall meet the requirements of (a), except that radiography shall be required regardless of the depth of weld deposit.

7.4.10.3 Inspection of Test Specimens and Witnessing Tests. When test specimens are to be taken under the applicable material specifications, the Inspector at his option may witness the selection, identifying stamping, and testing of these specimens. Tests and retests shall be made in accordance with the requirements of the material specification.

7.4.11 EXAMINATION AND INSPECTION OF FABRICATED LAYERED VESSELS

7.4.11.1 The rules of the following paragraphs apply specifically to the nondestructive examination of pressure vessels and vessel parts that are fabricated using layered construction. The examination requirements for layered vessel construction are shown in Table 7.4. The rules of 7.4.1 through 7.4.7 with Examination Group 1 or 2, whichever is applicable, shall apply for the non-layered parts that are integral with the layered vessel.

7.4.11.2 Inner Shells and Inner Heads. Category A and B joints in the inner shells of layered shell sections and in the inner heads of layered heads before application of the layers shall be examined throughout their entire length by the radiographic or ultrasonic method in accordance with 7.5.3 or 7.5.5 (see Table 7.3).

7.4.11.3 Layers — Welded Joints.

(*a*) Category A joints in layers 3 mm through 8 mm ($\frac{1}{8}$ in. through $\frac{5}{16}$ in.) in thickness welded to the previous surface shall be examined for 100% of their length by the magnetic particle method using direct current in accordance with 7.5.6 only when the material is ferromagnetic. The liquid penetrant method in accordance with 7.5.7 shall be used when the material is nonferromagnetic.

(b) Category A joints in layers over 8 mm through 16 mm (${}^{5}\!/_{16}$ in. through ${}^{5}\!/_{8}$ in.) in thickness welded to the previous surface shall be examined for 100% of their length by the magnetic particle method using direct current in accordance with 7.5.6 only when the material is ferromagnetic. The liquid penetrant method in accordance with 7.5.7 shall be used when the material is nonferromagnetic. In addition, these joints shall be examined for 10% of their length at random using the ultrasonic method in accordance with 7.5.4, except that for the bottom 10% of the weld thickness the distance amplitude correction curve or reference level may be raised by 6 dB. The random spot examination shall be performed as specified in 7.4.11.10.

(c) Category A joints in layers over 16 mm through 22 mm ($\frac{5}{8}$ in. through $\frac{7}{8}$ in.) in thickness welded to the previous layer shall be examined for 100% of their length using the ultrasonic method in accordance with 7.5.4, except that for the bottom 10% of the weld thickness the distance amplitude correction curve or reference level may be raised by 6 dB.

(*d*) Category A joints in layers not welded to the previous surface shall be examined before assembly for 100% of their length by radiographic or ultrasonic method in accordance with 7.5.3, 7.5.4 or 7.5.5 (see Table 7.3).

(e) Welds in spirally wound strip construction with a winding (spiral angle) of 75 deg or less measured from the vessel axial centerline shall be classified as Category A joints and examined accordingly.

7.4.11.4 Layers — Step Welded Girth Joints.

(*a*) Category B joints in layers 3 mm through 8 mm ($\frac{1}{8}$ in. through $\frac{5}{16}$ in.) in thickness shall be examined for 10% of their length by the magnetic particle method (direct current only) in accordance with 7.5.6. The random spot examination shall be performed as specified in 7.4.11.10.

(b) Category B joints in layers over 8 mm through 16 mm ($\frac{5}{16}$ in. through $\frac{5}{8}$ in.) in thickness shall be examined for 100% of their length by the magnetic particle method (using direct current only) in accordance with 7.5.6 only when the material is ferromagnetic. The liquid penetrant method in accordance with 7.5.7 shall be used when the material is nonferromagnetic.

(c) Category B joints in layers over 16 mm through 22 mm ($\frac{5}{8}$ in. through $\frac{7}{8}$ in.) in thickness shall be examined for 100% of their length by the magnetic particle method (using direct current only) in accordance with 7.5.6 only when the material is ferromagnetic. The liquid penetrant method in accordance with 7.5.7 shall be used when the material is non-ferromagnetic. In addition these joints shall be examined for 10% of their length by the ultrasonic method in accordance with 7.5.4, except that for the bottom 10% of the weld thickness the distance amplitude correction curve or reference level may be raised by 6 dB. The random spot examination shall be performed as specified in 7.4.11.10.

(*d*) Category B joints in layers over 22 mm ($\frac{7}{8}$ in.) in thickness shall be examined for 100% of their length by the ultrasonic method in accordance with 7.5.4, except that for the bottom 10% of the weld thickness, the distance amplitude correction curve or reference level may be raised by 6 dB.

7.4.11.5 Butt Joints.

(*a*) Full thickness welding of solid sections to layered sections. Category A, B, and D joints attaching a solid section to a layered section of any of the layered thicknesses given in 7.4.11.2 shall be examined by the radiographic method for their entire length in accordance with 7.5.3.

(*b*) It is recognized that layer wash or acceptable gaps (see 6.8.8.3) may show as indications difficult to distinguish from slag on the radiograph. Layer wash is defined as the indications resulting from slight weld penetration at the layer interfaces. Acceptance shall be based on reference to the weld geometry as shown in Figure 7.1. As an alternative, an angle radiographic technique, as shown in Figure 7.2, may be used to locate individual gaps in order to determine the acceptability of the indication. Category A and B joints attaching a layered section to a layered section need not be radiographed after being fully welded when the Category A hemispherical head and Category B welded joints of the inner shell or inner head made after application of the layers have been radiographed in accordance with 7.5.3.

(c) The inner shell or inner head thicknesses need not be radiographed in thicknesses over 22 mm (0.875 in.) if the completed joint is radiographed. Weld joints in the inner shell or inner head welded after application of the layers of the inner shell or inner head weld joints shall be radiographed throughout their entire length and meet the requirements of 7.4.11.2.

7.4.11.6 Flat Head and Tubesheet Weld Joints. Category C joints attaching layered shell, or layered heads to flat heads and tubesheets as shown in Figure 4.13.6, shall be examined to the same requirements as specified in 7.4.11.4 for Category B joints.

7.4.11.7 Nozzle and Communicating Chambers Weld Joints. Category D weld joints in layered shells or layered heads that do not require radiographic examination shall be examined by the magnetic particle or liquid penetrant method in accordance with 7.5.6 or 7.5.7. The partial penetration weld joining liner type nozzle to layer vessel shells or layer heads, as shown in Figure 4.13.9, shall be examined by magnetic particle or liquid penetrant in accordance with 7.5.6 or 7.5.7.

7.4.11.8 Welds Attaching Nonpressure Parts and Stiffeners.

(*a*) All welds attaching supports, lugs, brackets, stiffeners, and other nonpressure attachments to pressure parts shall be examined on all exposed surfaces by the magnetic particle or liquid penetrant method in accordance with 7.5.6 or 7.5.7.

(*b*) The examination required in 6.2.4.7 shall be made after postweld heat treatment for nonpressure parts and stiffeners attached to Material Type 2 parts, see Table 4.2.3.

7.4.11.9 Transition Welds.

(*a*) All weld metal buildup in solid wall sections or fillet welds in layered transitions shall be examined over the full surface of the deposit by either the magnetic particle or liquid penetrant method in accordance with 7.5.6 or 7.5.7.

(*b*) When such surface weld metal buildup is used in welded joints that require radiographic examination, the weld metal buildup shall be included in the examination.

7.4.11.10 Random Spot Examination and Repair of Welds. The random ultrasonic examination of 7.4.11.3(b) and 7.4.11.4(c), and random magnetic particle examination of 7.4.11.4(a) shall be performed as follows.

(a) The location of the random spot shall be chosen by the Inspector, except that when the Inspector has been duly notified in advance and cannot be present or otherwise make the selection, the fabricator may exercise his own judgment in selecting the random spot or spots. The minimum length of a spot shall be 150 mm (6 in.).

(b) When any random spot examination discloses welding which does not comply with the minimum quality requirements of 7.4.11.3(b) and 7.4.11.4(a) and 7.4.11.4(c), two additional spots of equal length shall be examined in the same weld unit at locations away from the original spot. The locations of these additional spots shall be determined by the Inspector or fabricator as provided for in the original spot examination.

(c) If either of the two additional spots examined shows welding that does not comply with the minimum quality requirements of 7.4.11.3(b) and 7.4.11.4(a) and 7.4.11.4(c) the entire unit of weld represented shall be rejected. The entire rejected weld shall be removed and the joint shall be re-welded or, at the fabricator's option, the entire unit of weld represented shall be completely examined and defective welding only need be corrected.

(*d*) Repair welding shall be performed using a qualified procedure and in a manner acceptable to the Inspector. The re-welded joint or the weld repaired areas shall be random spot examined at one location in accordance with the requirements of 7.4.11.3(b) and 7.4.11.4(a) and 7.4.11.4(c).

7.4.12 EXAMINATION AND INSPECTION OF EXPANSION JOINTS

7.4.12.1 Bellows Expansion Joints.

(a) Expansion joint flexible elements shall be visually examined and found free of unacceptable surface conditions, such as notches, crevices, material buildup or upsetting, and weld spatter, which may serve as points of local stress concentration. Suspect surface areas shall be further examined by the liquid penetrant method.

(*b*) Bellows butt-type welds shall be examined 100% on both sides by the liquid penetrant method before forming. This examination shall be repeated after forming to the maximum extent possible considering the physical and visual access to the weld surfaces after forming.

(*c*) The circumferential attachment welds between the bellows and the weld ends shall be examined 100% by the liquid penetrant method.

(d) Liquid penetrant examinations shall be in accordance with 7.5.7, except that linear indications shall be considered relevant if the dimension exceeds $0.25t_m$, but not less than 0.25 mm (0.010 in.), where t_m is the minimum bellows wall thickness before forming.

7.4.12.2 Flexible Shell Element Expansion Joints.

(a) Expansion joint flexible elements shall be visually examined and found free of unacceptable surface conditions, such as notches, crevices, and weld spatter, which may serve as points of local stress concentration. Suspect surface areas shall be further examined by the magnetic particle or liquid penetrant method in accordance with 7.5.6 or 7.5.7.

(*b*) Welds within the flexible element shall be 100% radiographed in accordance with 7.5.3. These welds shall be examined 100% on both sides by the magnetic particle or liquid penetrant method in accordance with 7.5.6 or 7.5.7 after forming. For flexible elements to be formed, this surface inspection shall be after forming.

(c) The circumferential welds attaching the flexible element to the shell, mating flexible element, or outer shell element, as appropriate to the expansion joint configuration per Figure 4.20.1, shall be examined 100% on both sides, where accessible, by the magnetic particle or liquid penetrant method in accordance with 7.5.6 or 7.5.7. The accessibility of welds shall be subject to the acceptance of the Inspector.

7.5 EXAMINATION METHOD AND ACCEPTANCE CRITERIA

7.5.1 GENERAL

Nondestructive Examination (NDE) techniques used in this Division and their associated acceptance criteria are shown in Table 7.5.

7.5.2 VISUAL EXAMINATION

7.5.2.1 Examination Method. All accessible welds for pressure-retaining parts shall be visually examined. Personnel performing visual examinations shall have vision, with correction if necessary, to read a Jaeger Type No. 2 Standard Chart at a distance of not less than 300 mm (12 in.), and be capable of distinguishing and differentiating contrast between colors used. Compliance with this requirement shall be demonstrated annually.

7.5.2.2 Acceptance Criteria. Welds that are observed to have indications exceeding the criteria given in Table 7.6 are unacceptable. Unacceptable indications shall be removed or reduced to an indication of acceptable size. Whenever an indication is removed by chipping or grinding and subsequent repair by welding is not required, the area shall be blended into the surrounding surface so as to avoid notches, crevices, or corners. Where welding is required after removal of indications, the repair shall be done in accordance with 6.2.7.

7.5.2.3 Examination of Hidden Weld Seams. Weld seams that will be hidden in the final vessel configuration shall be visually examined for workmanship prior to final assembly, see 8.2.5(a)(3).

7.5.3 RADIOGRAPHIC EXAMINATION

7.5.3.1 Examination Method. All welded joints to be radiographed shall be examined and documented in accordance with Section V, Article 2 except as specified below.

(*a*) A complete set of radiographs and records, as described in Section V, Article 2, T-291 and T-292, for each vessel or vessel part shall be retained by the Manufacturer in accordance with 2.3.5.

(*b*) Personnel performing and evaluating radiographic examinations required by this Division shall be qualified and certified in accordance with 7.3.

(c) Evaluation of radiographs shall only be performed by RT Level II or III personnel.

(*d*) Demonstration of density and Image Quality Indicator (IQI) image requirements on production or technique radiographs shall be considered satisfactory evidence of compliance with Section V, Article 2.

(e) Final acceptance of radiographs shall be based on the ability to see the prescribed hole (IQI) image and the specified hole or the designated wire of a wire IQI.

(f) Ultrasonic examination of SAW welds in $2^{1}/_{4}$ Cr-1Mo- $^{1}/_{4}$ V vessels in accordance with 7.5.4.1(e) is required.

7.5.3.2 Acceptance Criteria. Indications shown on the radiographs of welds and characterized as defects are unacceptable under the conditions listed in this paragraph and shall be repaired as provided in 6.2.7. Repaired welds shall be re-examined, either by radiography in accordance with this paragraph or, at the option of the Manufacturer, ultrasonically in accordance with 7.5.4 or 7.5.5 and the standards specified in this paragraph. Should ultrasonic examination be performed, this examination method shall be noted under remarks on the Manufacturer's Data Report Form.

(a) Linear Indications

(1) Terminology

Thickness t - see 7.4.3.6.

(2) Acceptance/Rejection Criteria

(-a) Any crack or zone of incomplete fusion or lack of penetration

(-b) Any other linear indication that has a length greater than:

(-1) 6 mm $\binom{1}{4}$ in.) for t less than or equal to 19 mm $\binom{3}{4}$ in.),

(-2) t/3 for t greater than 19 mm ($\frac{3}{4}$ in.) and less than or equal to 57 mm ($2^{1}/_{4}$ in.),

(-3) 19 mm (${}^{3}\!/_{4}$ in.) for t greater than 57 mm (2 ${}^{1}\!/_{4}$ in.).

(-c) Any group of indications in line that has an aggregate length greater than t in a length of 12t except when the distance between the successive imperfections exceeds 6L, where L is the length of the longest imperfection in the group;

(-d) Internal root weld conditions are acceptable when the density or image brightness change as indicated in the radiograph is not abrupt. Linear indications on the radiograph at either edge of such conditions shall be evaluated in accordance with the other sections of this paragraph.

(b) Rounded Indications

(1) Terminology

(-*a*) Rounded Indications - indications with a maximum length of three times the width or less on the radiograph are defined as rounded indications. These indications may be circular, elliptical, conical, or irregular in shape and may have tails. When evaluating the size of an indication, the tail shall be included.

(-b) Aligned Indications - a sequence of four or more rounded indications shall be considered to be aligned when they touch a line parallel to the length of the weld drawn through the center of the two outer rounded indications.

(-c) Thickness t - see 7.4.3.6

(2) Acceptance Criteria

(-a) Rounded Indication Charts - relevant rounded indications characterized as imperfections shall not exceed those shown in Figures 7.5 through 7.10, which illustrate various types of assorted, randomly dispersed and clustered rounded indications for different weld thicknesses greater than 3 mm ($^{1}_{/_{8}}$ in.). The charts for each thickness range represent full-scale 150 mm (6 in.) radiographs, and shall not be enlarged or reduced. The distributions shown are not necessarily the patterns that may appear on the radiograph, but are typical of the concentration and size of indications permitted.

(-b) Relevant Indications (see Table 7.7 for examples) - only those rounded indications that exceed the following dimensions shall be considered relevant and compared to the acceptance charts for disposition.

(-1) t/10 for t less than 3 mm ($\frac{1}{8}$ in.)

(-2) 0.4 mm ($\frac{1}{64}$ in.) for t greater than or equal to 3 mm ($\frac{1}{8}$ in.) and less than or equal to 6 mm ($\frac{1}{4}$ in.)

(-3) 0.8 mm ($\frac{1}{32}$ in.) for t greater than 6 mm ($\frac{1}{4}$ in.) and less than or equal to 50 mm (2 in.)

(-4) 1.5 mm $\binom{1}{16}$ in.) for t greater than 50 mm (2 in.)

(-5) Maximum Size of Rounded Indication - the maximum permissible size of any indication shall be t/4 or 4 mm ($\frac{5}{32}$ in.), whichever is smaller; except that an isolated indication separated from an adjacent indication by 25 mm (1 in.) or more may be t/3, or 6 mm ($\frac{1}{4}$ in.), whichever is less. For t greater than 50 mm (2 in.) the maximum permissible size of an isolated indication shall be increased to 10 mm ($\frac{3}{8}$ in.).

(-6) Aligned Rounded Indications - aligned rounded indications are acceptable when the summation of the diameters of the indications is less than t in a length of 12t (see Figure 7.3). The length of groups of aligned rounded indications and the spacing between the groups shall meet the requirements of Figure 7.4.

(-7) Clustered Indications - the illustrations for clustered indications show up to four times as many indications in a local area, as that shown in the illustrations for random indications. The length of an acceptable cluster shall not exceed the lesser of 25 mm (1 in.) or 2t. Where more than one cluster is present, the sum of the lengths of the clusters shall not exceed 25 mm (1 in.) in a 150 mm (6 in.) length weld.

(-8) Weld Thickness t less than 3 mm ($\frac{1}{8}$ in.) - for t less than 3 mm ($\frac{1}{8}$ in.) the maximum number of rounded indications shall not exceed 12 in a 150 mm (6 in.) length of weld. A proportionally fewer number of indications shall be permitted in welds less than 150 mm (6 in.) in length.

(-c) Image Density - density or image brightness within the image of the indication may vary and is not a criterion for acceptance or rejection.

(-d) Spacing - the distance between adjacent rounded indications is not a factor in determining acceptance or rejection, except as required for isolated indications or groups of aligned indications.

7.5.4 ULTRASONIC EXAMINATION

7.5.4.1 All welded joints whose joint efficiency is not determined by ultrasonic examinations may be examined and documented in accordance with Section V, Article 4 except as specified below:

(*a*) A complete set of records, as described in Section V, Article 4, T-491 and T-492, for each vessel or vessel part shall be retained by the Manufacturer in accordance with 2-C.3. In addition, a record of repaired areas shall be noted as well as the results of the reexamination of the repaired areas. The Manufacturer shall also maintain a record from uncorrected areas having responses that exceed 50% of the reference level. This record shall locate each area, the response level, the dimensions, the depth below the surface, and the classification.

(*b*) Personnel performing and evaluating ultrasonic examinations required by this Division shall be qualified and certified in accordance with 7.3.

(c) Flaw evaluations shall only be performed by UT Level II or III personnel.

(*d*) Ultrasonic examination shall be performed in accordance with a written procedure certified by the Manufacturer to be in accordance with the requirements of Section V, Article 1, T-150.

(e) SAW welds in $2^{1}/_{4}$ Cr-1Mo- $1^{1}/_{4}$ V vessels require ultrasonic examination using specialized techniques beyond those required by this Division (see 2.2.3.2). Annex A of API Recommended Practice 934-A may be used as a guide in the selection of the examination specifics.

7.5.4.2 Acceptance Criteria. These standards shall apply unless other standards are specified for specific applications within this Division. All imperfections that produce an amplitude greater than 20% of the reference level shall be investigated to the extent that the operator can determine the shape, identity, and location of all such imperfections and evaluate them in terms of the acceptance standards given in (a) and (b) below.

(*a*) Imperfections that are interpreted to be cracks, lack of fusion, or incomplete penetration are unacceptable regardless of length.

(*b*) All other linear type imperfections are unacceptable if the amplitude exceeds the reference level and the length of the imperfection exceeds the following:

(1) 6 mm $\binom{1}{4}$ in.) for t less than 19 mm $\binom{3}{4}$ in.)

(2) t/3 for t greater than or equal to 19 mm ($\frac{3}{4}$ in.) and less than or equal to 57 mm ($\frac{2}{4}$ in.)

(3) 19 mm ($\frac{3}{4}$ in.) for *t* greater than 57 mm ($2\frac{1}{4}$ in.)

In the above criteria, t is as defined in 7.4.3.6.

7.5.5 ULTRASONIC EXAMINATION USED IN LIEU OF RADIOGRAPHIC EXAMINATION

7.5.5.1 When used in lieu of the radiographic examination requirements of 7.5.3, automated or semi-automated ultrasonic examination shall be performed in accordance with a written procedure conforming to the requirements of Section V, Article 4, Mandatory Appendix VIII or Mandatory Appendix XI, as applicable, and the following additional requirements. For SAW welds in $2^{1}/_{4}$ Cr-1Mo- $^{1}/_{4}$ V vessels, additional ultrasonic examination is required and shall be in accordance with 7.5.4.1(e).

(*a*) The ultrasonic examination area shall include the volume of the weld, plus 50 mm (2 in.) on each side of the weld for material thickness greater than 200 mm (8 in.). For material thickness 200 mm (8 in.) or less, the ultrasonic examination area shall include the volume of the weld, plus the lesser of 25 mm (1 in.) or *t* on each side of the weld. Alternatively, examination volume may be reduced to include the actual heat-affected zone (HAZ) plus 6 mm ($\frac{1}{4}$ in.) of base material beyond the heat-affected zone on each side of the weld, provided the following requirements are met:

(1) The extent of the weld HAZ is measured and documented during the weld qualification process; and

(2) The ultrasonic transducer positioning and scanning device is controlled using a reference mark (paint or low stress stamp adjacent to the weld) to ensure that the actual HAZ plus an additional 6 mm (0.25 in.) of base metal is examined.

(b) The initial straight beam material examination (Section V, Article 4, T-472) for reflectors that could interfere with the angle beam examination shall be performed

(1) Manually,

(2) As part of a previous manufacturing process, or

(3) During the automated or semi-automated UT examination, provided detection of these reflectors is demonstrated.

(c) Personnel performing and evaluating UT examinations shall be qualified and certified in accordance with 7.3. Only UT Level II or or Level III personnel shall analyze the data or interpret the results. In addition, UT personnel shall meet the requirements of Section V, Article 4, Mandatory Appendix VIII, VIII-423 prior to performing production scans.

(*d*) Contractor qualification records of certified personnel shall be approved by the Certificate Holder and maintained by their employer.

(e) Qualification of the procedure shall be performed per Section V, Article 1, T-150(d), and Section V, Article 4, Mandatory Appendix VIII, VIII-421.2.

(f) Application of automated or semi-automated ultrasonic examinations shall be noted on the Manufacturer's Data Report, as well as the extent of its use.

NOTE: Sectorial scans (S-scans) with phased arrays may be used for the examination of welds, provided they are qualified satisfactorily in accordance with (e). S-scans provide a fan beam from a single emission point, which covers part or all of the weld, depending on transducer size, joint geometry, and section thickness. While S-scans can demonstrate good detectability from side drilled holes, because they are omnidirectional reflectors, the beams can be mis-oriented for planar reflectors (e.g., lack of fusion and cracks.) This is particularly true for thicker sections, and it is recommended that multiple linear passes with S-scans be utilized for components greater than 25 mm (1 in.) thick. An adequate number of flaws should be used in the demonstration block to ensure detectability for the entire weld volume.

7.5.5.2 Flaw Sizing. The dimensions of the flaw shall be determined by the rectangle that fully contains the area of the flaw, and the flaw shall be classified as either a surface or subsurface flaw (see Figures 7.11 through 7.17).

(a) The length, l, of the flaw shall be drawn parallel to the inside pressure-retaining surface of the component.

(b) The measured flaw through-wall dimension shall be drawn normal to the inside pressure-retaining surface and shall be defined as a for a surface flaw or 2a for a subsurface flaw.

(c) Subsurface flaw(s) close to a surface shall be considered surface flaw(s) if the distance between the flaw and the nearest surface is equal to or less than one-half the flaw through-wall dimension, as shown in Figures 7.11 through 7.17.

7.5.5.3 Flaw Evaluation and Acceptance Criteria. Flaws shall be evaluated for acceptance using the applicable criteria of Tables 7.8, 7.9, 7.10, or 7.11, and with the following additional requirements. Unacceptable flaws shall be repaired and the repaired welds shall be re-evaluated for acceptance.

(*a*) For surface connected flaws, the measured through-wall dimension, *a*, shall be compared to the value of *a* as determined from the applicable flaw acceptance criteria table.

(*b*) For subsurface flaws, the measured through-wall dimension, 2*a*, shall be compared to twice the value of *a* as determined from the applicable flaw acceptance criteria table.

(c) Surface Flaws - Flaws identified as surface flaws during the UT examination may or may not be surface connected, as shown in Figures 7.11 through 7.17. Therefore, unless the UT data analysis confirms that the flaw is not surface connected, it shall be considered surface connected or a flaw open to the surface, and is unacceptable unless surface examination is performed. If the flaw is surface connected, the requirements above still apply. However, in no case shall the flaw length, *l*, exceed the acceptance criteria in this Division. Acceptance surface examination techniques are as follows:

(1) Magnetic particle examination (MT) in accordance with 7.5.6,

(2) Liquid penetrant examination (PT) in accordance with 7.5.7,

(3) Eddy Current examination (ET) in accordance with 7.5.8.

(d) Multiple Flaws

(1) Discontinuous flaws shall be considered a singular planar flaw if the distance between adjacent flaws is equal to or less than the dimension *S* as shown in Figure 7.14.

(2) Discontinuous flaws that are oriented primarily in parallel planes shall be considered a singular planar flaw if the distance between the adjacent planes is equal to or less than 13 mm ($\frac{1}{2}$ in.) (see Figure 7.15).

(3) Discontinuous flaws that are coplanar and nonaligned in the through-wall thickness direction of the component shall be considered a singular planar flaw if the distance between adjacent flaws is equal to or less than S as shown in Figure 7.16).

(4) Discontinuous flaws that are coplanar in the through-wall direction within two parallel planes 13 mm ($\frac{1}{2}$ in.) apart (i.e., normal to the pressure-retaining surface of the component) are unacceptable if the additive flaw depth dimension of the flaws exceeds those shown in Figure 7.17.

(e) Subsurface Flaws - the flaw length, l, shall not exceed 4t.

7.5.6 MAGNETIC PARTICLE EXAMINATION (MT)

7.5.6.1 All magnetic particle examinations shall be performed and documented in accordance with Section V, Article 7 except as specified below:

(*a*) A complete set of records, as described in Section V, Article 7, T-790, for each vessel or vessel part shall be retained by the Manufacturer until the Manufacturer's Data Report has been signed by the Inspector.

(*b*) Personnel performing and evaluating magnetic particle examinations required by this Division shall be qualified and certified in accordance with 7.3. Evaluation of magnetic particle examination shall only be performed by MT Level II or III personnel.

(c) Magnetic particle examination shall be performed in accordance with a written procedure, certified by the Manufacturer to be in accordance with the requirements of Section V, Article 1, T-150.

(*d*) Indications will be revealed by retention of magnetic particles. All such indications are not necessarily imperfections, however, since excessive surface roughness, magnetic permeability variations (such as the edge of heat-affected zones), etc., may produce similar indications. An indication of an imperfection may be larger than the imperfection that causes it; however, the size of the indication is the basis for acceptance evaluation. Only indications which have any dimension greater than 1.5 mm ($\frac{1}{16}$ in.) shall be considered relevant.

(1) A linear indication is one having a length greater than three times the width.

(2) A rounded indication is one of circular or elliptical shape with a length equal to or less than three times its width.

(3) Any questionable or doubtful indications shall be reexamined to determine whether or not they are relevant.

7.5.6.2 Acceptance Criteria. The following acceptance standards shall apply unless other more restrictive standards are specified for specific material or applications within this Division. Unacceptable indications shall be removed or reduced to an indication of acceptable size. Whenever an indication is removed by chipping or grinding and subsequent repair by welding is not required, the excavated area shall be blended into the surrounding surface so as to avoid notches, crevices, or corners. Where welding is required after removal of indications, the repair shall be done in accordance with 6.2.7.

(*a*) All surfaces to be examined shall be free of:

(1) Relevant linear indications

(2) Relevant rounded indications greater than 5 mm $(\frac{3}{16} \text{ in.})$

(3) Four or more relevant rounded indications in a line separated by 1.5 mm ($\frac{1}{16}$ in.) or less, edge-to-edge (b) Crack like indications detected, irrespective of surface conditions, are unacceptable.

7.5.7 LIQUID PENETRANT EXAMINATION (PT)

7.5.7.1 All liquid penetrant examinations shall be performed and documented in accordance with Section V, Article 6 except as specified as follows:

(*a*) A complete set of records, as described in Section V, Article 6, T-691 and T-692, for each vessel or vessel part shall be retained by the Manufacturer until the Manufacturer's Data Report has been signed by the Inspector.

(b) Personnel performing and evaluating liquid penetrant examinations required by this Division shall be qualified and certified in accordance with 7.3. Evaluation of liquid penetrant examination shall only be performed by PT Level II or III personnel.

(c) Liquid penetrant examination shall be performed in accordance with a written procedure, certified by the Manufacturer to be in accordance with the requirements of Section V, Article 1, T-150.

(d) An indication of an imperfection may be larger than the imperfection that causes it; however, the size of the indication is the basis for acceptance evaluation. Only indications with major dimensions greater than 1.5 mm ($^{1}/_{16}$ in.) shall be considered relevant.

(1) A linear indication is one having a length greater than three times the width.

(2) A rounded indication is one of circular or elliptical shape with a length equal to or less than three times its width.

(3) Any questionable or doubtful indications shall be reexamined to determine whether or not they are relevant.

7.5.7.2 Acceptance Criteria. The following acceptance standards shall apply unless other more restrictive standards are specified for specific material or applications within this Division. Unacceptable indications shall be removed or reduced to an indication of acceptable size. Whenever an indication is removed by chipping or grinding and subsequent repair by welding is not required, the excavated area shall be blended into the surrounding surface so as to avoid notches, crevices, or corners. Where welding is required after removal of indications, the repair shall be done in accordance with 6.2.7.

(a) All surfaces to be examined shall be free of:

(1) Relevant linear indications

(2) Relevant rounded indications greater than 5 mm $\binom{3}{16}$ in.)

(3) Four or more relevant rounded indications in a line separated by 1.5 mm ($\frac{1}{16}$ in.) or less, edge-to-edge

(b) Crack like indications detected, irrespective of surface conditions, are unacceptable

7.5.8 EDDY CURRENT SURFACE EXAMINATION PROCEDURE REQUIREMENTS (ET)

7.5.8.1 All eddy current examinations shall be performed and documented as described in this section:

(*a*) A complete set of records for each vessel or vessel part shall be retained by the Manufacturer until the Manufacturer's Data Report has been signed by the Inspector.

(*b*) Personnel performing and evaluating eddy current examinations required by this Division shall be qualified and certified in accordance with 7.3. Evaluation of eddy current examination shall only be performed by ET Level II or III personnel.

(c) Eddy current examinations shall be performed in accordance with a written procedure, certified by the Manufacturer to be in accordance with the requirements of Section V, Article 1, T-150.

7.5.8.2 Procedure Requirements. The procedure shall provide a statement of scope that specifically defines the limits of procedure applicability (e.g., material specification, grade, type, or class). The procedure shall reference a technique specification, delineating the essential variables, qualified in accordance with the requirements below.

7.5.8.3 Procedure Specifications.

(a) The eddy current procedure shall specify the following regarding data acquisition:

(1) instrument or system, including manufacturer's name and model

(2) size and type of probe, including manufacturer's name and part number

(3) analog cable type and length

(4) examination frequencies, or minimum and maximum range, as applicable

(5) coil excitation mode (e.g., absolute or differential)

(6) minimum data to be recorded

(7) method of data recording

(8) minimum digitizing rate (samples per inch) or maximum scanning speed (for analog systems), as applicable

(9) scan pattern, when applicable (e.g., helical pitch and direction, rectilinear rotation, length, scan index, or overlap)

(10) magnetic bias technique, when applicable

(11) material type

(12) coating type and thickness, when applicable

(b) The eddy current procedure shall define the following regarding data analysis:

(1) method of calibration (e.g., phase angle or amplitude adjustments)

(2) channel and frequencies used for analysis

(3) extent or area of the component evaluated

(4) data review requirements (e.g., secondary data review, computer screening)

(5) reporting requirements (i.e., signal-to-noise threshold, voltage threshold, flaw depth threshold)

(6) methods of identifying flaw indications and distinguishing them from nonrelevant indications, such as indications from probe lift-off or conductivity and permeability changes in weld material

(7) manufacturer and model of eddy current data analysis equipment, as applicable

(8) manufacturer, title, and version of data analysis software, as applicable

(c) The procedure shall address requirements for system calibration. Calibration requirements include those actions required to ensure that the sensitivity and accuracy of the signal amplitude and time outputs of the examination system, whether displayed, recorded, or automatically processed, are repeatable and correct. Any process of calibrating the system is acceptable; a description of the calibration process shall be included in the procedure.

(d) Data acquisition and analysis procedures may be combined or separate, provided the above requirements are met.

7.5.8.4 Additional Personnel Requirements.

(a) Personnel performing data acquisition shall have received specific training and shall be qualified by examination, in accordance with the employer's written practice, in the operation of the equipment, applicable techniques, and recording of examination results.

(b) Personnel performing analysis of data shall have received additional specific training in the data analysis techniques used in the procedure qualification and shall successfully complete the procedure qualification described below.

(*c*) Qualification and certification of examination personnel shall be performed in accordance with the requirements of 7.3.

(d) Personnel qualifications may be combined, provided all requirements are met.

7.5.8.5 Procedure Qualification.

(a) Data sets for detection and sizing shall meet requirements shown below.

(b) The eddy current procedure and equipment shall be considered qualified upon successful completion of the procedure qualification.

(c) Essential Variables - an essential variable is a procedure, software, or hardware item that, if changed, could result in erroneous examination results. Further, any item that could decrease the signal to noise ratio to less than 2:1 shall be considered an essential variable.

(*d*) Any two procedures with the same essential variables are considered equivalent. Equipment with essential variables that vary within the demonstrated ranges identified in the Data Acquisition Procedure Specification shall be considered equivalent. When the procedure allows more than one value or range for an essential variable, the qualification test shall be repeated at the minimum and maximum value for each essential variable with all other variables remaining at their nominal values. Changing essential variables may be accomplished during successive procedure qualifications involving different personnel; each data analyst need not demonstrate qualification over the entire range of every essential variable.

7.5.8.6 Qualification Requirements.

(*a*) Specimens to be used in the qualification test shall meet the requirements listed herein unless a set of test specimens is designed to accommodate specific limitations stated in the scope of the examination procedure (e.g., surface roughness or contour limitations). The same specimens may be used to demonstrate both detection and sizing qualification. For examination of vessels with coated surfaces, Section V, Article 8 shall apply.

(b) Specimens shall be fabricated from the same base material nominal composition (UNS Number) and heat treatment (e.g., solution annealed, precipitation hardened, solution heat treated and aged) as those to be examined.

(c) Specimen surface roughness and contour shall be generally representative of the surface roughness and contour of the component surface to be examined. The examination surface curvature need not be simulated if the ratio of the component diameter to the coil diameter exceeds 20:1.

(*d*) Welding shall be performed with the same filler material AWS classification, and postweld heat treatment (e.g., as welded, solution annealed, stress relieved) as the welds to be examined.

(e) Defect Conditions

(1) The qualification flaws shall be cracks or notches.

(2) The length of cracks or notches open to the surface shall not exceed 3.2 mm (0.125 in.).

(3) The maximum depth of a crack or compressed notch shall be 1.02 mm (0.040 in.).

(4) Machined notches shall have a maximum width of 0.25 mm (0.010 in.) and a maximum depth of 0.51 mm (0.020 in.).

(f) Demonstration Specimens - the demonstration specimen shall include one crack or notch at each of the following locations:

(1) on the weld

(2) in the heat-affected zone

(3) at the fusion line of the weld

(4) in the base material

(g) Procedure Qualification Acceptance Criteria. All flaws in each of the four identified areas shall be detected with a minimum 2:1 signal-to-noise ratio at the maximum digitization rate (for digital systems) or maximum scanning speed (for analog systems) permitted by the procedure.

7.5.8.7 Evaluation of Eddy Current Results. Eddy current results shall be evaluated in accordance with the qualified procedure described in 7.5.8.3(b). If a flaw is determined by ET to be surface connected it shall comply with the Acceptance Criteria in 7.5.8.8 below.

7.5.8.8 Acceptance Standards. These acceptance standards apply unless other more restrictive standards are specified for specific materials or applications within this Division. All surfaces examined shall be free of relevant ET surface flaw indications.

7.5.9 EVALUATION AND RETEST FOR PARTIAL EXAMINATION

The locations selected under 7.4.3.5(a) and 7.4.3.5(b) shall be deemed to be representative of the welds examined. An imperfection detected on the circumferential seam shall be considered as representing the condition of the whole circumferential seam. An imperfection detected on the longitudinal seam shall be considered as representing the condition of the whole longitudinal seam. An imperfection detected on a nozzle or branch shall be considered as representing the condition of the group of nozzles or branches. According to the imperfections type, retesting shall be as follows:

(*a*) When a percentage of the weld, defined in Table 7.2, is examined and meets the minimum quality requirements of 7.5.3.2, 7.5.4.2, or 7.5.5.3, as applicable, the entire weld length represented by this examination is acceptable.

(*b*) When a percentage of weld, as defined in Table 7.2, is examined and discloses welding that does not comply with the minimum quality requirements of 7.5.3.2, 7.5.4.2, or 7.5.5.3, as applicable, two additional welds deposited by the same welder that are of the same type and category and were not previously examined shall be examined. The additional welds to be examined shall be selected by the Inspector or fabricator under the same criteria applied to the original examination.

(1) If the two additional welds examined are acceptable in accordance with the minimum quality requirements of 7.5.3.2, 7.5.4.2, or 7.5.5.3, as applicable, the entire weld increment represented by the examinations is acceptable, provided the unacceptable indications disclosed by examinations are removed, repaired, and reexamined.

(2) If either of the two additional welds examined do not comply with the minimum quality requirements of 7.5.3.2, 7.5.4.2, or 7.5.5.3, as applicable, the entire increment of weld represented shall be repaired and reexamined; or, at the fabricator's option, the entire increment of weld represented by the unacceptable examinations shall be completely re-examined and all unacceptable indications repaired and reexamined.

(3) Repair welding shall be performed using a qualified procedure and deposited by a qualified welder. The rewelded joint, or the weld repaired areas, shall be spot examined at one location as provided for in Table 7.2.

7.6 FINAL EXAMINATION OF VESSEL

7.6.1 SURFACE EXAMINATION AFTER HYDROTEST

If a fatigue analysis is required for a part of a vessel, then all of the internal and external surfaces of pressure boundary and attachment welds for that part shall be examined by wet magnetic particle method (if ferromagnetic) or by liquid penetrant method (if nonferromagnetic) after hydrotest, unless accessibility prevents meaningful interpretation and characterization of imperfections. The acceptance criteria shall be 7.5.6 and 7.5.7.

7.6.2 INSPECTION OF LINED VESSEL INTERIOR AFTER HYDROTEST

When it is observed that the test fluid seeps behind the applied liner during or after hydrotest, the fluid shall be driven out and the lining shall be repaired by welding in accordance with 7.4.8.3(b)(3).

7.7 LEAK TESTING

When specified in the User's Design Specification, leak testing shall be carried out in accordance with Section V, Article 10 in addition to hydrostatic test or pneumatic test as per 8.2.

7.8 ACOUSTIC EMISSION

If specified in the User's Design Specification, acoustic emission examination shall be carried out in accordance with Section V, Article 12 during the hydrostatic test or pneumatic test. The acceptance criteria shall be as stated in the User's Design Specification.

7.9 TABLES

		Examination	Table 7.1 Groups for Pre	essure Vessels				
			Examination	ination Group [Note (1)]				
Parameter	1a	1b	2a	2b	3a	3b		
Permitted material [Note (1)] [Note (2)] [Note (3)]	All materials in Annex 3-A	Groups 1.1, 1.2, 8.1, 11.1	Groups 8.2, 9.1, 9.2, 9.3, 10	Groups 1.1, 1.2, 8.1, 11.1	Groups 8.2, 9.1, 9.2, 10	Groups 1.1, 1.2, 8.1, 11.1		
Maximum thickness of governing welded joints	Unlimited [Note (4)]	30 mm (1 ³ / ₁₆ in.) for Groups 9.1, 9.2 16 mm (⁵ / ₈ in.) for Groups 8.2 [Note (5)], 9.3, 10	50 mm (2 in.) for Groups 1.1, 8.1, 11.1 35 mm (1 ³ / _θ in.) for Group 1.2	 30 mm (1³/₁₆ in.) for Groups 9.1 and 9.2 16 mm (⁵/₈ in.) for Groups 8.2 [Note (5)], 10 	50 mm (2 in.) for Groups 1.1, 8.1, 11.1 30 mm (1 ³ / ₁₆ in.) for Group 1.2		
Welding process	Unrestricted [Not	e (4)]	Mechanized welding	only [Note (6)]	Unrestricted [Note ([4)]		
Design basis [Note (7)]	Part 4 or Part 5 c	of this Division	Part 4 or Part 5 of t	his Division	Part 4 of this Division			

NOTES:

(1) All Examination Groups require 100% visual examination to the maximum extent possible.

(2) See Part 3 for permitted material.

(3) Material group numbers provided in this table are based on "ISO 15608 Group" column in Section IX, Table QW/QB-422. The ISO material groups are intended for use in determining NDE requirements and are not to be used for purposes of establishing welding procedure qualifications. Any material that does not have an ISO material group assigned in Section IX, Table QW/QB-422 shall be assigned to Examination Group 1a.

(4) Unrestricted with respect to weld application modes as set forth in this Table.

(5) See Table 7.2 for NDE, joint category, and permissible weld joint details that differ between Examination Groups 1a and 1b.

(6) Mechanized means machine and/or automatic welding methods.

(7) The design basis is the analysis method used to establish the wall thickness.

			Nond	Tabl Iestructiv	e 7.2 e Examinat	ion				
	F	xaminati	on Group		1a	1b	2a	2b	3a	3b
	Р	ermitted	Materials		All Materials in Annex 3-A	Groups 1.1, 1.2, 8.1, 11.1	Groups 8.2, 9.1, 9.2, 9.3, 10	Groups 1.1, 1.2, 8.1, 11.1	Groups 8.2, 9.1, 9.2, 10	Groups 1.1, 1.2, 8.1, 11.1
	W	eld Joint	Efficiency		1.0	1.0	1.0	1.0	0.85	0.85
Joint Category	Туре о	Weld (se	e Table 4.2.2)	Type of NDE [Note (1)]		Ex	tent of NDE [No	ote (2)] [Note (3)]	
A	Full penetration butt weld	1	Longitudinal joints	RT or UT	100%	100%	100%	100%	25%	10%
	(see Table 4.2.4 and			MT or PT	10%	10% [Note (4)]	10%	0	0	0
В	Table 4.2.5)	1	Circumferential joints on a shell,	RT or UT	25%	10%	25%	10%	10%	5% [Note (5)]
			including circumferential joints between a shell and a non-hemispherical head	MT or PT	10%	10% [Note (4)]	10%	0	0	0
В		2, 3	Circumferential joints on a shell,	RT	NP	100%	NP	25%	NP	25%
			including circumferential joints between a shell and a non-hemispherical head, with backing strip (as limited by 4.2.5.3)	MT or PT	NP	10%	NP	10%	NP	10%
В		1	Circumferential joints on a nozzle	RT or UT	25%	10%	25%	10%	10%	5% [Note (5)]
	_		where $d > 150$ mm (6 in.) and $t_n > 16$ mm (${}^{5}\!/_{8}$ in.)	MT or PT	10%	10% [Note (4)]	10%	10% [Note (4)]	10%	10% [Note (4)]
В		2, 3	Circumferential joints on a nozzle	RT	NP	100%	NP	100%	NA	25%
			where $d > 150$ mm (6 in.) and $t_n > 16$ mm ($\frac{5}{8}$ in.) with backing strip (as limited by 4.2.5.3)	MT or PT	NP	10%	NP	10%	100%	10%
В		1	Circumferential joints on a nozzle	RT or UT	NA	NA	NA	NA	NA	NA
			where $d \le 150 \text{ mm}$ (6 in.) or $t_n \le 16 \text{ mm}$ (⁵ / ₈ in.)	MT or PT	25%	10%	25%	10%	10%	5%
А		1	All welds in spheres, heads, and	RT or UT	100%	100%	100%	100%	25%	10%
	4		hemispherical heads to shells	MT or PT	10%	10% [Note (4)]	10%	0	0	0
A	4	1	All butt welds in flat tubesheets	RT or UT	100%	100%	100%	100%	100%	100%
В		1	Attachment of a conical shell with	RT or UT	100%	25%	100%	25%	10%	10%
			a cylindrical shell without a knuckle (large end of the cone) [Note (6)] [Note (7)]	MT or PT	100%	100%	100%	100%	100%	100%

(**23**)

774

			Nondestr	Table uctive Ex	e 7.2 amination (Cont'd)				
	E	xaminatio	on Group		1a	1b	2a	2b	3a	3b
	Р	ermitted 1	Materials		All Materials in Annex 3-A	Groups 1.1, 1.2, 8.1, 11.1	Groups 8.2, 9.1, 9.2, 9.3, 10	Groups 1.1, 1.2, 8.1, 11.1	Groups 8.2, 9.1, 9.2, 10	Groups 1.1, 1.2, 8.1, 11.1
	W	eld Joint	Efficiency		1.0	1.0	1.0	1.0	0.85	0.85
Joint Category	Tuno of	Wold (co	e Table 4.2.2)	Type of NDE [Note (1)]		Fy	topt of NDE [N	ote (2)] [Note (3	11	
B	Full penetration butt weld	8	Attachment of a conical shell with	RT or UT	100%	25%	100%	25%	10%	10%
Б	(see Table 4.2.4 and Table 4.2.5) (Cont'd)	0	a cylindrical shell without a knuckle (small end of the cone)	MT or PT	10%	10% [Note (4)]	100%	10% [Note (4)]	10%	10% [Note (4)]
В	Circumferential lapped		General application shell to head	RT or UT	NP	NP	NP	NP	NP	NP
	joints			MT or PT	NP	NP	NP	NP	NP	NP
			Bellows to shell, $t \le 8 \text{ mm} (\frac{5}{16} \text{ in.})$	RT or UT	NA	NA	NA	NA	NA	NA
				MT or PT	100%	100%	100%	100%	100%	100%
С	Assembly of a flat head or	1, 2, 3, 7	With full penetration	RT or UT	25%	10%	25%	10%	10%	5%
	tubesheet, with a			MT or PT	10%	10% [Note (4)]	10%	10% [Note (4)]	10%	10% [Note (4)]
С	cylindrical shell or	9, 10	With partial penetration if $a >$	UT	NP	NA	NA	NA	NA	NA
	Assembly of a flange or a collar with a shell (see		16 mm (⁵ / ₈ in.) (See Figure 7.18)	MT or PT	NP	100%	100%	100%	100%	10%
С	Table 4.2.6, Table 4.2.7,	9, 10	With partial penetration if $a \leq$	UT	NP	NA	NA	NA	NA	NA
	or Table 4.2.8)		16 mm (⁵ / ₈ in.) (See Figure 7.18)	MT or PT	NP	100%	100%	100%	10%	10%
С	Assembly of a flange	1, 2, 3, 7	With full penetration	RT or UT	25%	10%	25%	10%	10%	5%
	or a collar			MT or PT	10%	10% [Note (4)]	10%	10% [Note (4)]	10%	10% [Note (4)]
С	with a nozzle (see Table 4.2.9)	9, 10	With partial penetration	RT or UT	NP	NA	NA	NA	NA	NA
				MT or PT	NP	100%	100%	10%	100%	10%
С		9, 10	With full or partial penetration	RT or UT	NA	NA	NA	NA	NA	NA
			$d \le 150 \text{ mm } (6 \text{ in.}) \text{ and} t_n \le 16 \text{ mm } (\frac{5}{8} \text{ in.})$	MT or PT	10%	10% [Note (4)]	10%	10% [Note (4)]	10%	10%

ASME BPVC.VIII.2-2023

							-			
	E	xaminatio	on Group		1a	1b	2a	2b	3a	3b
	Р	ermitted 1	Materials		All Materials in Annex 3-A	Groups 1.1, 1.2, 8.1, 11.1	Groups 8.2, 9.1, 9.2, 9.3, 10	Groups 1.1, 1.2, 8.1, 11.1	Groups 8.2, 9.1, 9.2, 10	Groups 1.1, 1.2, 8.1, 11.1
	W	eld Joint	Efficiency		1.0	1.0	1.0	1.0	0.85	0.85
Joint Category	Type of	Wold (co	e Table 4.2.2)	Type of NDE [Note (1)]		Fv	tent of NDE [No	ote (2)] [Note (3	11	
D		r È	With full penetration $d > 150$ mm	RT or UT	25%	10%	25%	10%	10%	5%
D		1, 2, 3, 7	(6 in.) (as shown in Table 4.2.13)	MT or PT	10%	10% [Note (4)]	10%	10% [Note (4)]	10%	10% [Note (4)]
D		1, 2, 3, 7	With full penetration $d \le 150 \text{ mm}$	RT or UT	NA	NA	NA	NA	NA	NA
			(6 in.) (or as shown in Table 4.2.10 or Table 4.2.11)	MT or PT	100%	10%	100%	10%	10%	10%
D		7, 9, 10	With full or partial penetration for	RT or UT	NA	NA	NA	NA	NA	NA
			any d ; $a > 16$ mm (${}^{5}/_{8}$ in.) (as shown in Table 4.2.10 or Table 4.2.12. See Figure 7.19)	MT or PT	100%	10%	100%	10% [Note (4)]	10%	10% [Note (4)]
D		7, 9, 10	With full or partial penetration	RT or UT	NP	NP	NP	NP	NA	NA
			<i>d</i> > 150 mm (6 in.) <i>a</i> ≤ 16 mm ($\frac{5}{6}$ in.) (as shown in Table 4.2.10 or Table 4.2.12. See Figure 7.19)	MT or PT	NP	NP	NP	NP	10%	10%
D		7, 9, 10	With full or partial penetration	RT or UT	NA	NA	NA	NA	NA	NA
			$d \le 150 \text{ mm } (6 \text{ in.})$ $a \le 16 \text{ mm } (\frac{5}{8} \text{ in.}) (as shown in Table 4.2.10)$	MT or PT	100%	10%	100%	10%	10%	10%
D			With reinforcing pads [Note (9)]	MT or PT	25%	10%	10%	10%	10%	5%
D			Weld joint in reinforcing pads	RT or UT	100%	100%	100%	100%	25%	10%
			[Note (10)]	MT or PT	100%	10%	10% [Note (4)]	10%	0	0
E	Permanent attachments	1, 7, 9, 10	With full penetration or partial penetration	MT or PT	100%	10%	100%	10%	10%	10% [Note (4)]
F	Tube-to-tubesheet welds	Se	e Figures 4.21.1.and 4.21.2	MT or PT	100%	100%	100%	100%	100%	100%
NA	Pressure-retaining areas after removal of attachments	NA		MT or PT	100%	100%	100%	100%	100%	100%
	Cladding by welding			RT or UT		See 7.4.8	.1 for detailed e	xamination requi	rements.	•
				MT or PT	100%	100%	100%	100%	100%	100%

7.9

ASME BPVC.VIII.2-2023

			Nondestr	Tabl ructive Ex	e 7.2 amination (Cont'd)				
	E	xaminati	on Group		1a	1b	2a	2b	3a	3b
	Р	ermitted	Materials		All Materials in Annex 3-A	Groups 1.1, 1.2, 8.1, 11.1	Groups 8.2, 9.1, 9.2, 9.3, 10	Groups 1.1, 1.2, 8.1, 11.1	Groups 8.2, 9.1, 9.2, 10	Groups 1.1, 1.2, 8.1, 11.1
	W	eld Joint/	Efficiency		1.0	1.0	1.0	1.0	0.85	0.85
Joint Category	Type of	Weld (se	e Table 4.2.2)	Type of NDE [Note (1)]		Ex	tent of NDE [No	ote (2)] [Note (3)]	
	Repairs [Note (11)]			RT or UT	100%	100%	100%	100%	100%	100%
				MT or PT	100%	100%	100%	100%	100%	100%

GENERAL NOTE: NA = not applicable; NP = not permitted.

NOTES:

777

(1) RT is not applicable to Types 7, 9, and 10 weld joints. UT is not applicable to Types 2, 9, and 10 weld joints.

(2) The percentage of surface examination refers to the percentage of length of the accessible welds both on the inside and the outside.

(3) Both volumetric and surface examinations shall be performed to the extent shown. All examination groups require 100% visual examination to the maximum extent possible.

(4) 10% if t > 35 mm (1³/₈ in.), 0% if $t \le 35$ mm (1³/₈ in.), with t as defined in 7.4.3.6.

(5) 2% if $t \le 35$ mm (1³/₈ in.) and same weld procedure specification as longitudinal, for steel of material groups 1.1, 8.1, and 11.1, with t as defined in 7.4.3.6.

(6) Unless the design is such that the thickness at the weld exceeds 1.4t_c (see 4.3.11), in which case use NDE requirements for Category B, Type 1 circumferential joints on a shell.

(7) For connections with a knuckle, use NDE requirements for Category B, Type 1 circumferential joints on a shell.

(8) Percentage in the table refers to the aggregate weld length of all the nozzle attachment welds; see 7.4.3.5(b).

(9) In the column associated with specified examination percentages for this type of weld, the joint efficiencies indicated are not applicable.

(10) RT or UT is not required when the shell itself is used as backing, or the weld is oriented at least 45 deg from the longitudinal axis of the cylinder.

(11) The percentage of examination refers only to the repair weld, which shall be examined using the original examination methods. See 6.2.7.3.

Selection of Nona	estructive Testing Method for Ful	t renetration Joints
	Shell th	ickness, t
	t + ((1/ in)	$t \ge 6 \text{ mm} (\frac{1}{4} \text{ in.})$
Type of Joint	$t < 6 \text{ mm } (\frac{1}{4} \text{ in.})$	τ <u>2</u> 0 mm (/4 m.)
Type of Joint 1, 2, 3	r < 6 mm (/4 m.) RT	RT or UT per 7.5.5

	Table 7.4 Nondestructive Examination of Layer	red Vessels	
Joint Category	Weld Joint Description	Type of NDE	Extent
А, В	Category A and B joint in the inner shell and in the inner head	RT or UT	100%
		MT or PT	NA
А	Category A joints in layer 3 mm through 8 mm ($\frac{1}{8}$ in. through $\frac{5}{16}$ in.) in thickness welded to previous surface	RT or UT	NA
	In unckness welder to previous surface	MT (or PT)	100%
А	Category A joints in layer 8 mm through 16 mm $(\frac{5}{16}$ in. through $\frac{5}{8}$ in.) in thickness welded to previous surface	UT	10%
	in unckness welded to previous surface	MT (or PT)	100%
А	Category A joints in layer 16 mm through 22 mm (${}^{5}\!/_{\!_{B}}$ in. through ${}^{7}\!/_{\!_{B}}$ in.) in thickness welded to previous surface	UT	100%
	unough /8 m.) in unckness weided to previous surface	MT (or PT)	NA
А	Category A joints in layers not welded to previous surface	RT or UT	100%
В	Category B step welded girth joints in layer 3 mm through 8 mm	RT	NA
	$(\frac{1}{8} \text{ in. through } \frac{5}{16} \text{ in.})$ in thickness	MT (or PT)	10%
В	Category B step welded girth joints in layer 8 mm through 16 mm	RT or UT	NA
	$(\frac{5}{16} \text{ in. through } \frac{5}{8} \text{ in.) in thickness}$	MT (or PT)	100%
В		RT	NA
	$(\frac{5}{8}$ in. through $\frac{7}{8}$ in.) in thickness	UT	10%
		MT (or PT)	100%
В	Category B step welded girth joints in layer over 22 mm ($^{7}/_{8}$ in.) in thickness	UT	100%
	uiichiess	MT or PT	NA
A, B, D	Category A, B, D full thickness butt welding of solid section to layered section	RT	100%
		MT (or PT)	NA
С	Flat head and tube sheet weld joints of step welded girth joint	Same as Category B s	tep welded girth joint
D	Nozzle and communicating chamber to layered shell or layered head	MT (or PT)	100%

(**23**)

	Table 7.4 Nondestructive Examination of Layered V	/essels (Cont'd)	
Joint Category	Weld Joint Description	Type of NDE	Extent
Е	Attachment welds to the pressure boundary	MT (or PT)	100%
	All weld metal buildup in solid weld sections or fillet weld in layered transitions	MT (or PT)	100%

NDE Techniques, Metho	Table 7.5 od, Characterization, Acce	ptance Criteria
NDT Technique	Method	Paragraph Reference for Characterization and Acceptance Criteria
Visual examination (VT)		7.5.2
Radiographic examination (RT)	Section V, Article 2	7.5.3
Ultrasonic examination(UT)	Section V, Article 4	7.5.4
Ultrasonic examination (when used in lieu of RT) [Note (1)]	Section V, Article 4 and 7.5.5	7.5.5
Magnetic particle examination (MT)	Section V, Article 7	7.5.6
Liquid penetrant examination (PT)	Section V, Article 6	7.5.7
Eddy current examination (ET)	7.5.8	7.5.8

(1) For SAW welds in $2\frac{1}{4}$ Cr-1Mo- $\frac{1}{4}$ V vessels, ultrasonic examination in accordance with 7.5.4.1(e) is required.

		Table 7.6 Visual Examination Accept	ance Criteria
No.	Type of	Imperfection [Note (1)]	Acceptance Criteria
1	Cracks (all)		Not permitted.
2	Gas cavity (all) Shrinkage cavity (all)	and h	Not permitted.
3	Slag inclusions (all) Flux inclusions (all) Oxide inclusions (all) Metallic inclusions (all)		Not permitted when occurring at the surface [Note (2)
4	Incomplete fusion (all)	Incomplete	<pre>Not permitted.</pre>

No.	Type of I	nperfection [Note (1)]	Acceptance Criteria
5	Lack of penetration		Not permitted if a complete penetration weld is required.
6	Undercut	$\begin{array}{c c} & & & \\ & & & \\ \hline & & \\ \hline & & & \\ \hline \\ \hline$	Refer to 6.2.4.1(b)(2) for acceptable undercut. Requirements in 7.5.3.2 to permit proper interpretation of radiography shall also be satisfied.
7	Weld reinforcement		Acceptable weld reinforcement in butt welding joints shall be in accordance with 6.2.4.1(d). A smooth transition is required.
8	Joint offset		Refer to 6.1.6 for acceptable offset in butt-welded joints
9	Peaking		Refer to 6.1.6 for acceptable peaking in butt welding joints.
10	Stray flash or arc strike		Not permitted [Note (2)].
11	Spatter		Spatter shall be minimized [Note (2)].
12	Torn surface Grinding mark Chipping mark		Not permitted [Note (2)].
13	Concavity		Refer to 6.2.4.1(d) for acceptable concavity.

NOTES:

(1) The following symbols are used in this Table:

a = nominal fillet weld throat thickness

- *b* = width of weld reinforcement
- d = diameter of pore
- h = height of imperfections t = wall or plate thickness

(2) These imperfections may be removed by blend grinding.

_	Maximum Size of Acceptable Rounded Indication		Maximum Size of
Thickness, t	Random	Isolated	Nonrelevant Indications
Less than 3 mm ($\frac{1}{8}$ in.)	$^{1}/_{4}t$	$\frac{1}{3}t$	$\frac{1}{10}t$
3 mm (¹ / ₈ in.)	0.8 mm (¹ / ₃₂ in.)	1.1 mm ($\frac{3}{64}$ in.)	0.4 mm (¹ / ₆₄ in.)
5 mm $\binom{3}{16}$ in.)	1.2 mm $(\frac{3}{64})$ in.)	1.5 mm $\binom{1}{16}$ in.)	0.4 mm (¹ / ₆₄ in.)
6 mm (¹ / ₄ in.)	1.5 mm $(\frac{1}{16} \text{ in.})$	2.1 mm $\binom{3}{32}$ in.)	0.4 mm $\binom{1}{64}$ in.)
8 mm (⁵ / ₁₆ in.)	2.0 mm (⁵ / ₆₄ in.)	2.6 mm (⁷ / ₆₄ in.)	0.8 mm ($^{1}/_{32}$ in.)
10 mm (³ / ₈ in.)	2.5 mm (³ / ₃₂ in.)	3 mm (¹ / ₈ in.)	0.8 mm (¹ / ₃₂ in.)
11 mm (⁷ / ₁₆ in.)	2.8 mm (⁷ / ₆₄ in.)	3.7 mm (⁵ / ₃₂ in.)	0.8 mm (¹ / ₃₂ in.)
13 mm $\binom{1}{2}$ in.)	3 mm (¹ / ₈ in.)	4.3 mm (¹¹ / ₆₄ in.)	0.8 mm (¹ / ₃₂ in.)
14 mm (⁹ / ₁₆ in.)	3.6 mm (⁵ / ₆₄ in.)	5 mm ($^{3}/_{16}$ in.)	0.8 mm $(\frac{1}{32})$ in.)
16 mm (⁵ / ₈ in.)	4.0 mm (⁵ / ₃₂ in.)	5.3 mm (⁷ / ₃₂ in.)	0.8 mm (¹ / ₃₂ in.)
17 mm ($^{11}/_{16}$ in.)	4.0 mm (⁵ / ₃₂ in.)	5.8 mm (15.64 in.)	0.8 mm (¹ / ₃₂ in.)
19 mm ($\frac{3}{4}$ in.) to 50 mm (2 in.), inclusive	4.0 mm $(\frac{5}{32})$ in.)	6.4 mm $(\frac{1}{4} \text{ in.})$	0.8 mm $\binom{1}{32}$ in.)
Over 50 mm (2 in.)	4.0 mm $(\frac{5}{32}$ in.)	10 mm $\binom{3}{8}$ in.)	1.5 mm $\binom{1}{16}$ in.)

Table 7.8 Flaw Acceptance Criteria for Welds With Thicknesses Between 6 mm ($\frac{1}{4}$ in.) and Less Than 13 mm ($\frac{1}{2}$ in.)

		а	
Thickness, t	Surface Flaw	Subsurface Flaw	1
6 mm (¹ / ₄ in.)	0.95 mm (0.040 in.)	0.48 mm (0.020 in.)	≤ 6.4 mm (¹ / ₄ in.)
10 mm $(\frac{3}{8} \text{ in.})$	1.04 mm (0.042 in.)	0.52 mm (0.021 in.)	≤ 6.4 mm (¹ / ₄ in.)
< 13 mm (¹ / ₂ in.)	1.13 mm (0.044 in.)	0.57 mm (0.022 in.)	≤ 6.4 mm (¹ / ₄ in.)

GENERAL NOTES:

(a) The parameter t is the thickness of the weld excluding any allowable reinforcement, and the parameter l is the length of the flaw. For a butt weld joining two members having different thicknesses at the weld, t is the thinner of these two thicknesses. If a full penetration weld includes a fillet weld, then the thickness of the throat of the fillet weld shall be included in t.

(b) The acceptance limits specified here are based upon workmanship considerations and are not necessarily intended for use in evaluating flaws identified after the vessel has gone into service.

(c) a and l are as defined in 7.5.5.2.

(d) For intermediate thicknesses t [6 mm $\binom{1}{4}$ in.) < t < 13 mm $\binom{1}{2}$ in.], linear interpolation is permissible.

(e) The criteria for < 13 mm ($\frac{1}{2}$ in.) is for interpolation of intermediate thicknesses only. See Table 7.9 for 13 mm ($\frac{1}{2}$ in.) thickness.

(f) A subsurface indication shall be considered as a surface flaw if the separation (S in Figure 7.11) of the indication from the nearest surface of the component is equal to or less than half the through dimension [2d in Figure 7.11, sketch (b)] of the subsurface indication.

Table 7.9Flaw Acceptance Criteria for Welds With Thicknesses Between 13 mm ($\frac{1}{2}$ in.) and Less Than 25 mm(1 in.)

Flaw Type	a/t	I
Surface flaw	≤ 0.087	≤ 6.4 mm (¹ / ₄ in.)
Subsurface flaw	≤ 0.143	≤ 6.4 mm (¹ / ₄ in.)

GENERAL NOTES:

(a) The parameter *t* is the thickness of the weld excluding any allowable reinforcement, and the parameter *l* is the length of the flaw. For a butt weld joining two members having different thickness at the weld, *t* is the thinner of these two thicknesses. If a full penetration weld includes a fillet weld, then the thickness of the throat of the fillet weld shall be included in *t*.

(b) A subsurface indication shall be considered as a surface flaw if the separation (*S* in Figure 7.11) of the indication from the nearest surface of the component is equal to or less than half the through dimension [2*d* in Figure 7.11, sketch (b)] of the subsurface indication.

(c) The acceptance limits specified here are based upon workmanship considerations and are not necessarily intended for use in evaluating flaws identified after the vessel has gone into service.

(d) a and l are as defined in 7.5.5.2.

Table 7.10 Flaw Acceptance Criteria for Welds With Thicknesses Between 25 mm (1 in.) and Less Than or Equal to 300 mm (12 in.)

Flaw	25 mm (1 in.) $\leq t < 64$ mm (2 ¹ / ₂ in.)		100 mm (4 in.) $\leq t \leq$ 300 mm (12 in.)	
Aspect Ratio, a/l	Surface Flaw, a/t	Subsurface Flaw, a/t	Surface Flaw, a/t	Subsurface Flaw, a/t
0.00	0.031	0.034	0.019	0.020
0.05	0.033	0.038	0.020	0.022
0.10	0.036	0.043	0.022	0.025
0.15	0.041	0.054	0.025	0.029
0.20	0.047	0.066	0.028	0.034
0.25	0.055	0.078	0.033	0.040
0.30	0.064	0.090	0.038	0.047
0.35	0.074	0.103	0.044	0.054
0.40	0.083	0.116	0.050	0.061
0.45	0.085	0.129	0.051	0.069
0.50	0.087	0.143	0.052	0.076

GENERAL NOTES:

- (a) The parameter t is the thickness of the weld excluding any allowable reinforcement, and the parameter l is the length of the flaw. For a butt weld joining two members having different thickness at the weld, t is the thinner of these two thicknesses. If a full penetration weld includes a fillet weld, then the thickness of the throat of the fillet weld shall be included in t.
- (b) A subsurface indication shall be considered as a surface flaw if the separation (*S* in Figure 7.11) of the indication from the nearest surface of the component is equal to or less than half the through dimension [2*d* in Figure 7.11, sketch (b)] of the subsurface indication.

(c) The acceptance limits specified here are based upon workmanship considerations and are not necessarily intended for use in evaluating flaws identified after the vessel has gone into service.

(d) For intermediate flaw aspect ratio a/l and thickness t [64 mm (2¹/₂ in.) < t < 100 mm (4 in.)], linear interpolation is permissible.

(e) If the acceptance criteria in this table results in a flaw length, *l*, less than 6.4 mm (0.25 in.), a value of 6.4 mm (0.25 in.) may be used.

(f) For materials having a specified minimum ultimate tensile strength greater than 655 MPa (95 ksi), the use of this table is limited to a thickness of 200 mm (8 in.).

(g) For high alloy steels listed in Table 3-A.3, the use of this table is limited to a thickness of 200 mm (8 in.) unless the PWHT is performed and fracture toughness is at least 132 MPa-m^{0.5} (120 ksi-in.^{0.5}).

(h) For related curves, see Figure 7.12, sketch (a), and Figure 7.13, sketch (a).

Aspect Ratio,	Surface Flaw,	Subsurface Flaw,
a/l	а	a
0.00	5.8 mm (0.228 in.)	6.1 mm (0.240 in.)
0.05	6.1 mm (0.240 in.)	6.7 mm (0.264 in.)
0.10	6.7 mm (0.264 in.)	7.6 mm (0.300 in.)
0.15	7.6 mm (0.300 in.)	8.8 mm (0.348 in.)
0.20	8.5 mm (0.336 in.)	10.1 mm (0.396 in.)
0.25	10.1 mm (0.396 in.)	11.6 mm (0.456 in.)
0.30	11.6 mm (0.456 in.)	13.4 mm (0.528 in.)
0.35	13.4 mm (0.528 in.)	15.5 mm (0.612 in.)
0.40	15.2 mm (0.600 in.)	17.7 mm (0.696 in.)
0.45	15.5 mm (0.612 in.)	20.4 mm (0.804 in.
0.50	15.8 mm (0.624 in.)	23.2 mm (0.912 in.)

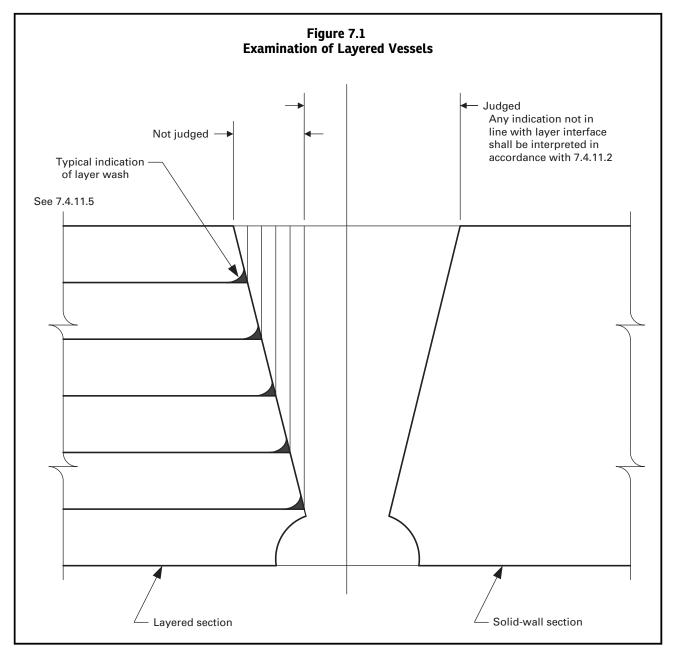
GENERAL NOTES:

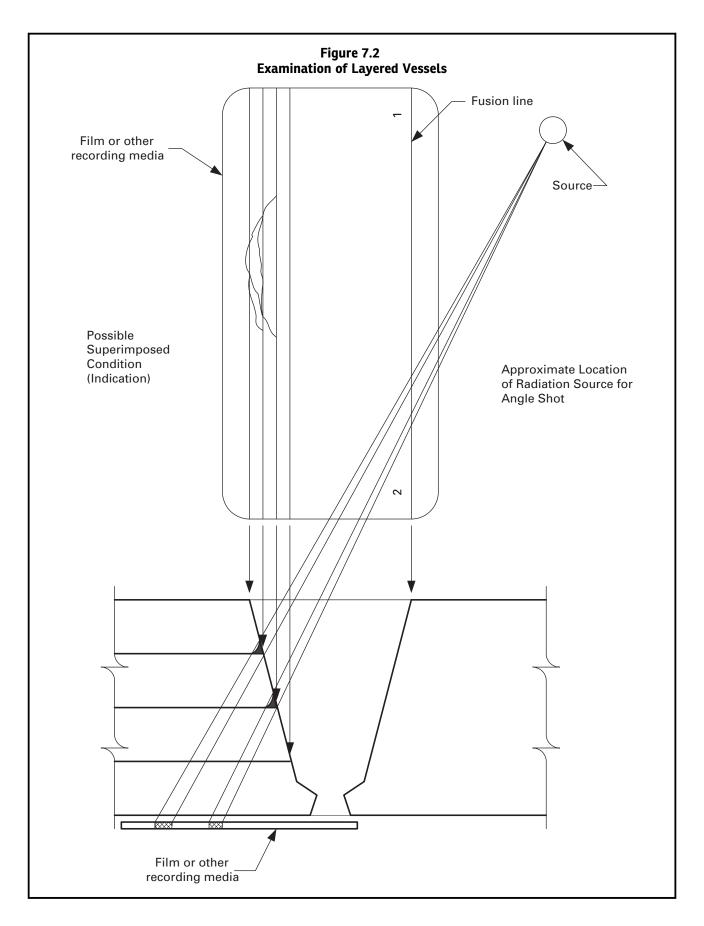
(a) The parameter *t* is the thickness of the weld excluding any allowable reinforcement, and the parameter *l* is the length of the flaw. For a butt weld joining two members having different thickness at the weld, *t* is the thinner of these two thicknesses. If a full penetration weld includes a fillet weld, then the thickness of the throat of the fillet weld shall be included in t.

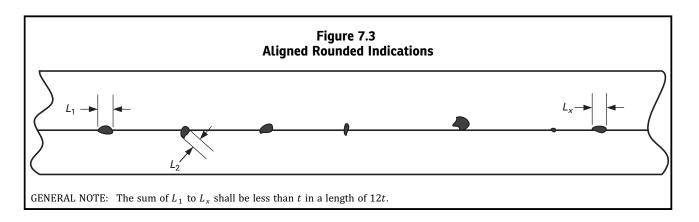
(b) A subsurface indication shall be considered as a surface flaw if the separation (S in Figure 7.11) of the indication from the nearest surface of the component is equal to or less than half the through dimension [2d in Figure 7.11, sketch (b)] of the subsurface indication.

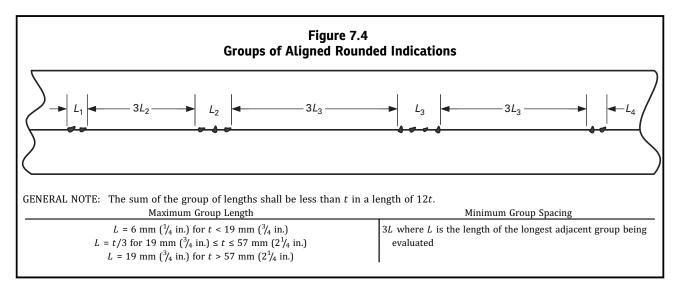
(c) The acceptance limits specified here are based upon workmanship considerations and are not necessarily intended for use in evaluating flaws identified after the vessel has gone into service.

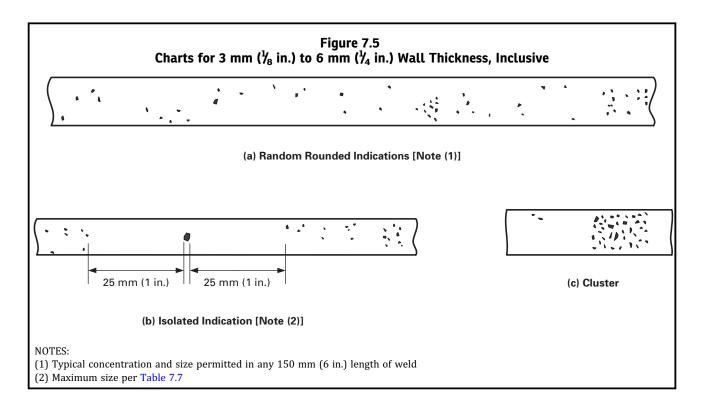
(d) Linear interpolation is permissible for intermediate values of the flaw aspect ratio a/l.

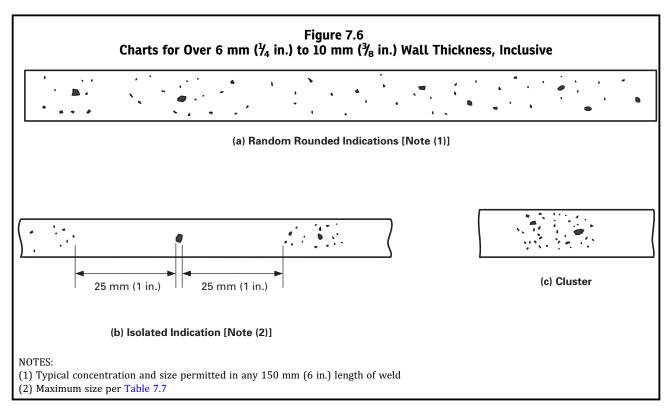

(e) This table is not applicable for materials having a specified minimum ultimate tensile strength greater than 655 MPa (95 ksi). (f) When the weld thickness, $t \ge 400$ mm (16 in.), the acceptance criteria for a thickness of 400 mm (16 in.) of this table shall be applied.

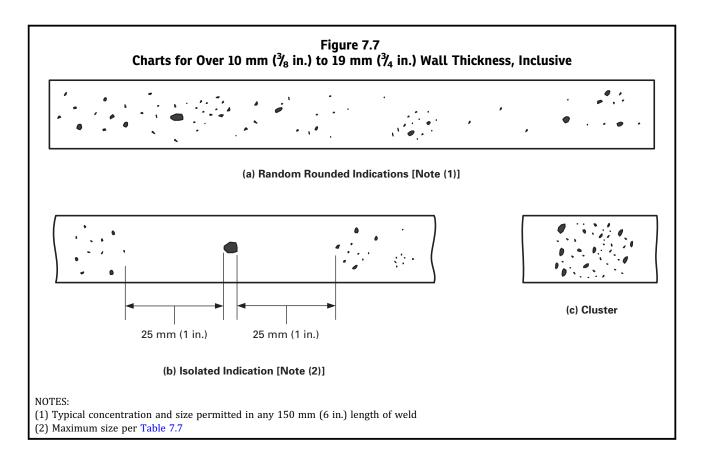

(g) When 300 mm (12 in.) \leq weld thickness, t < 400 mm (16 in.), linear interpolation between the acceptance criteria for 300 mm (12 in.) in Table 7.10 and 400 mm (16 in.) in this table is permitted.

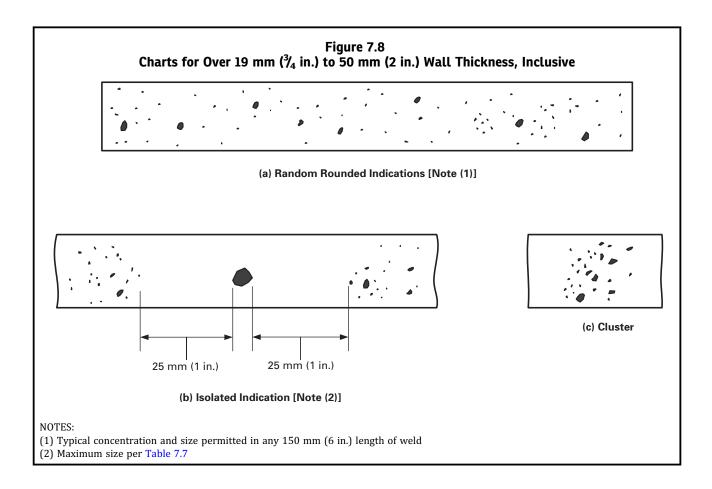

(h) For high alloy steels listed in Table 3-A.3, this table is not applicable unless the PWHT is performed and fracture toughness is at (ii) For high and y sector in radie of high and control of high and y sector in the sector of high and y sector in the sector in the

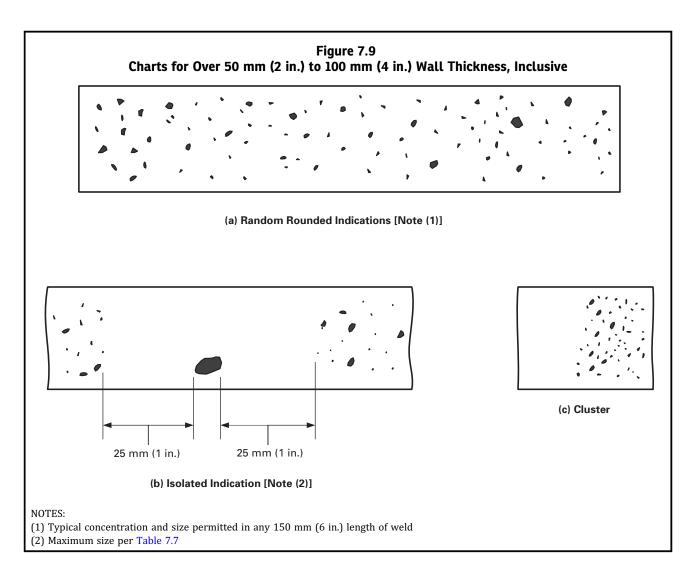

7.9

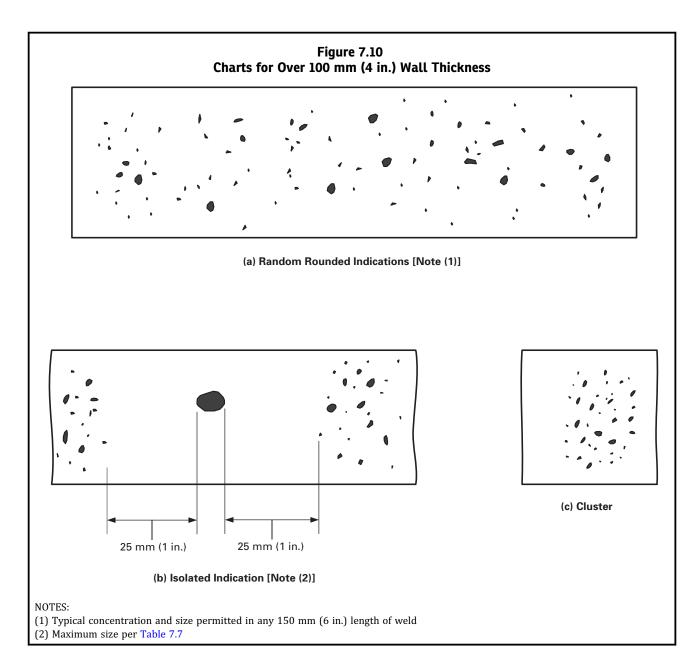

7.10 FIGURES

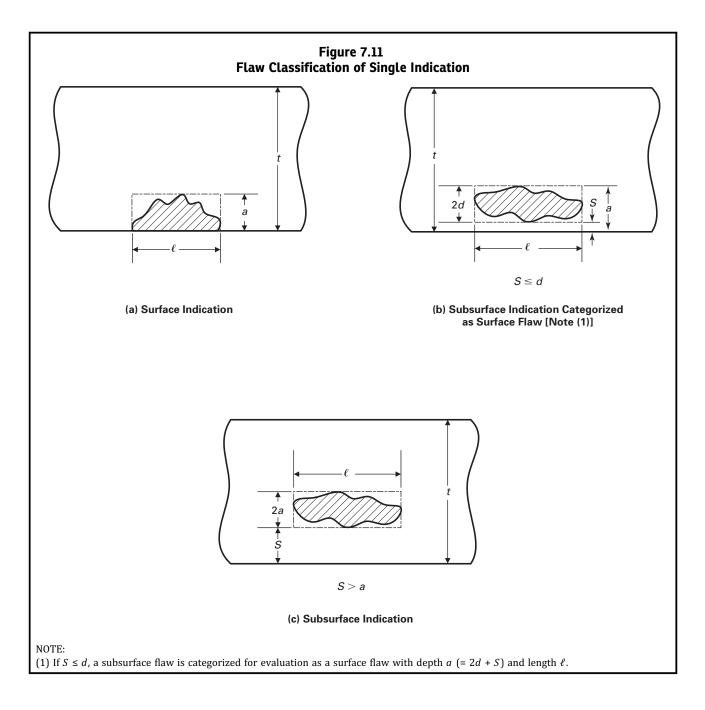


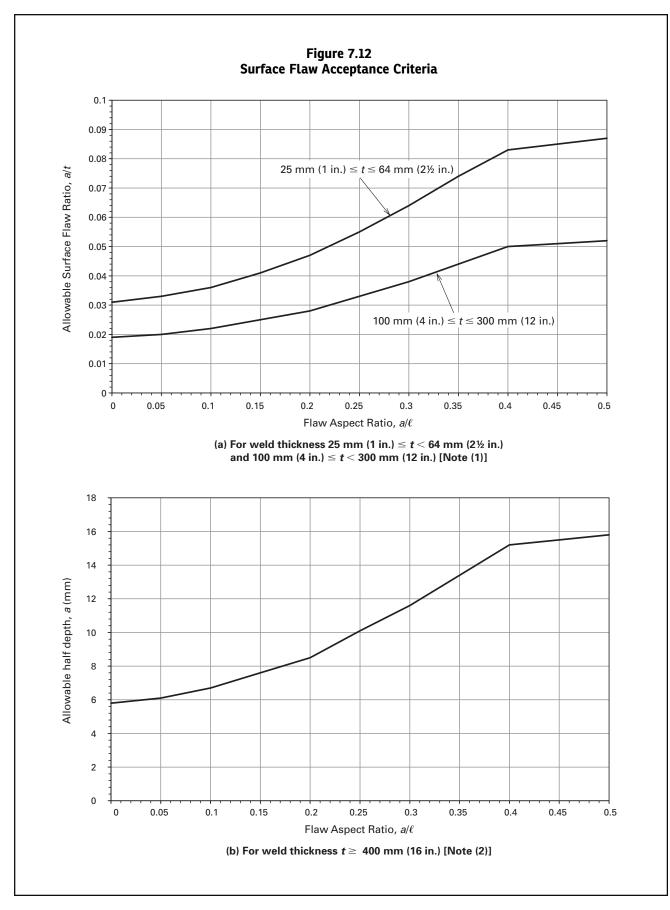


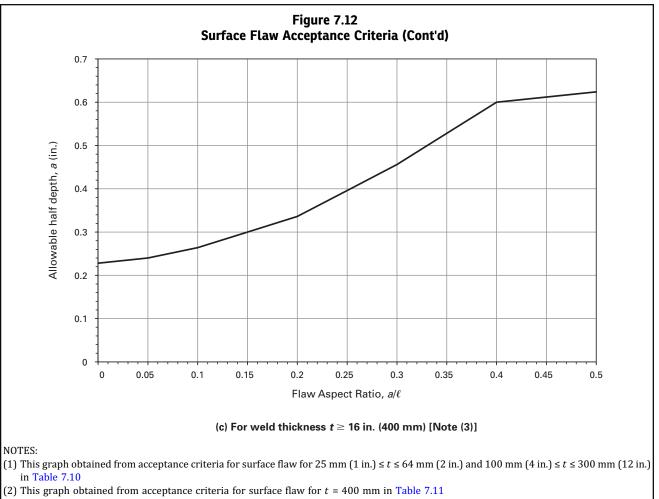


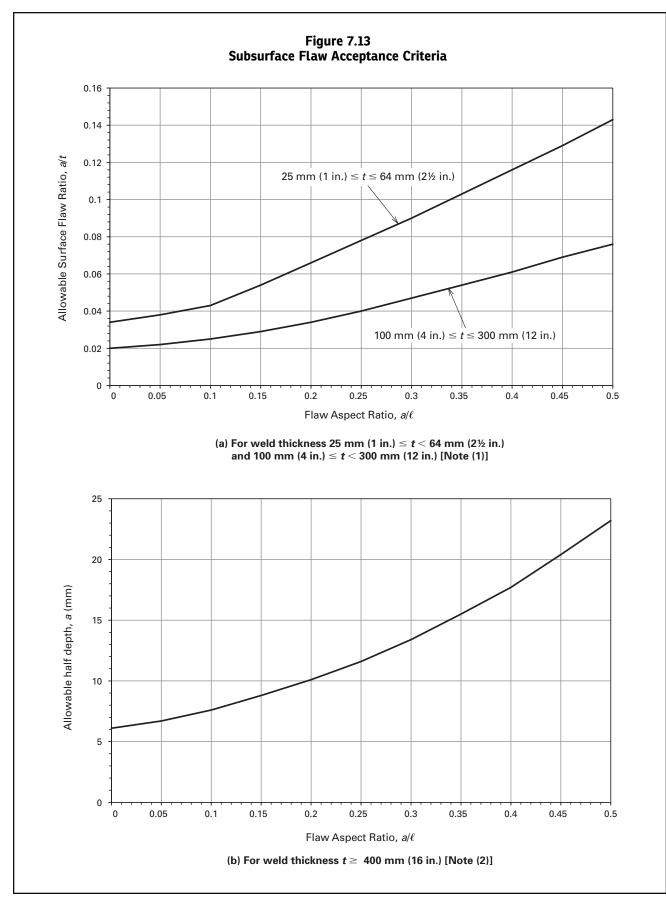


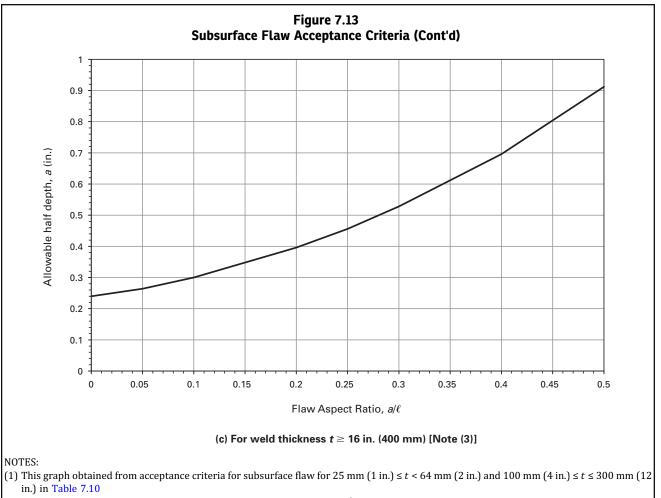


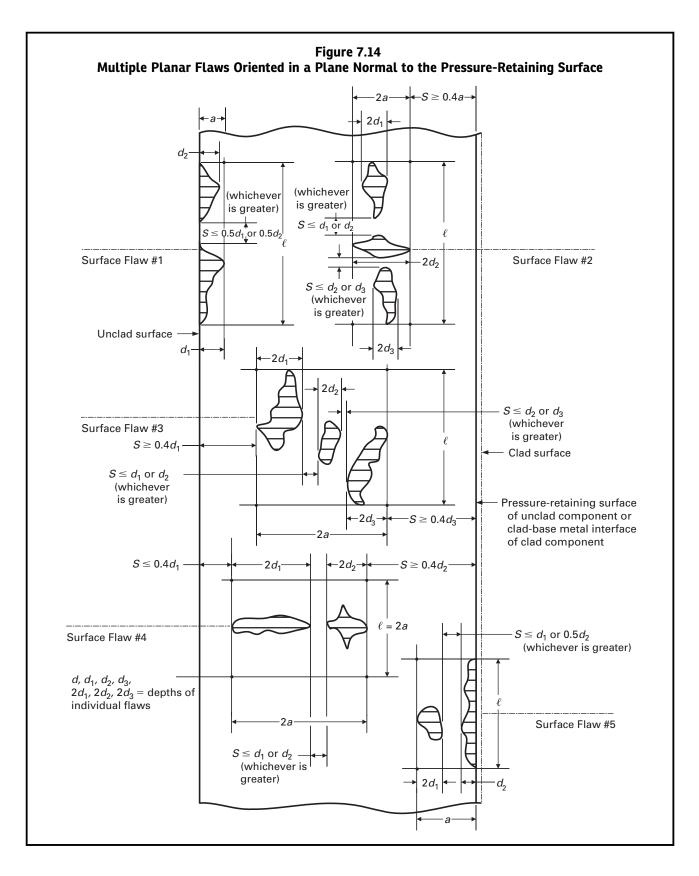


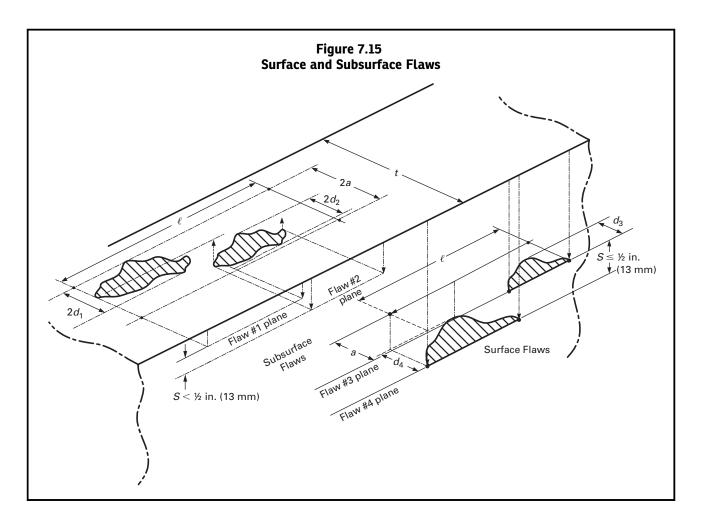


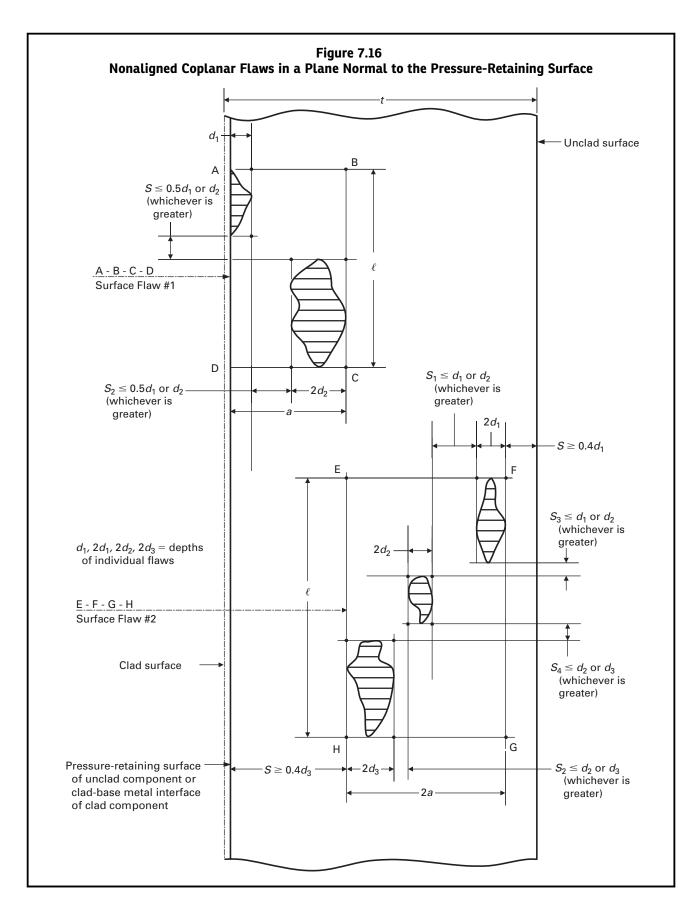


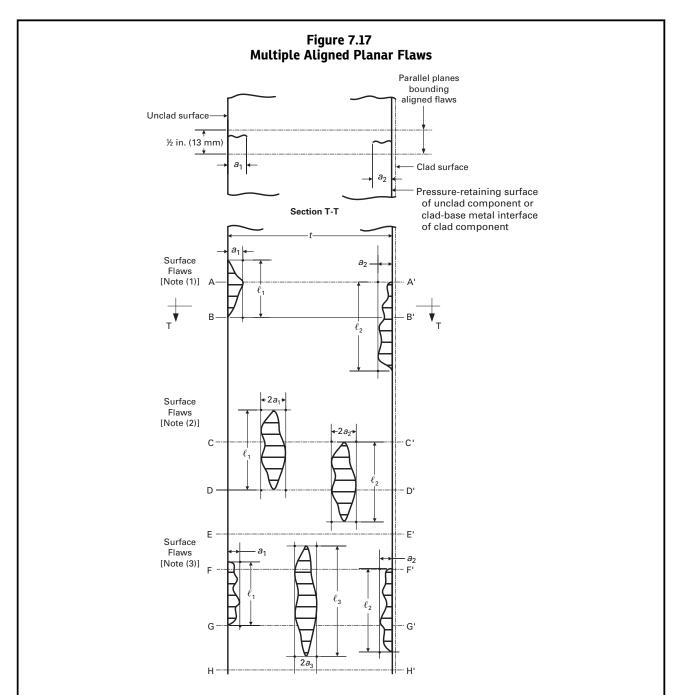





(3) This graph obtained from acceptance criteria for surface flaw for t = 16 in. in Table 7.11






(2) This graph obtained from acceptance criteria for subsurface flaw for $t \ge 400$ mm in Table 7.11

(3) This graph obtained from acceptance criteria for subsurface flaw for $t \ge 16$ in. in Table 7.11

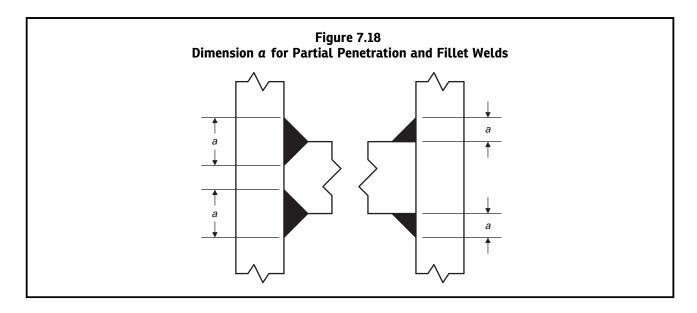
GENERAL NOTE: The flaw depth dimensions (a_s, a_s^*) and (a_e, a_e^*) are the allowable flaw criteria for surface and subsurface flaws, respectively.

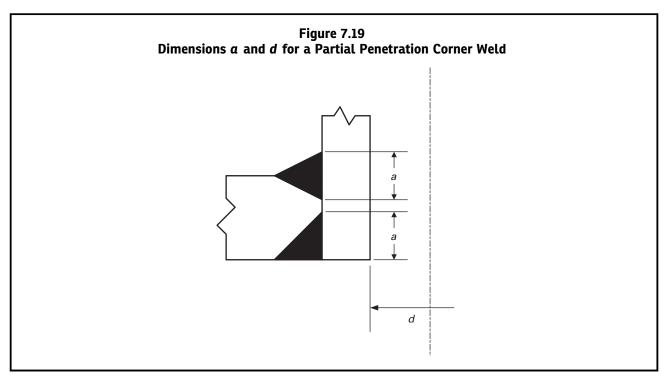
NOTES:

(1) This illustration indicates two surface flaws. The first, a_1 , is on the outer surface, and the second, a_2 , is on the inner surface: $(a_1 + a_2) \le (a_s + a_s^*)/2$ within planes A - A' and B - B'

(2) This illustration indicates two subsurface flaws: $(a_1 + a_2) \le (a_e + a_e^*)/2$ within planes C - C' and D - D'

(3) This illustration indicates two surface flaws and one subsurface flaw.


 $(a_1 + a_3) \leq (a_s + a_e^*)/2$ with planes E - E' and F - F'


Figure 7.17 Multiple Aligned Planar Flaws (Cont'd)

NOTES (CONT'D):

 $(a_1 + a_2 + a_3) \le (a_s + a_e + a_s^*)/3$ with planes F - F' and G - G'

 $(a_2 + a_3) \le (a_s^* + a_e)/2$ with planes G - G' and H - H'

ANNEX 7-A RESPONSIBILITIES AND DUTIES FOR INSPECTION AND EXAMINATION ACTIVITIES

(Normative)

7-A.1 GENERAL

The responsibilities and duties for inspection and examination including nondestructive examination during construction of pressure vessels are provided in this Annex. The responsibilities and duties for these activities as related to the specific duties of the Manufacturer and Inspector are covered for vessels to be marked with the Certification Mark.

7-A.2 MANUFACTURER'S RESPONSIBILITY

7-A.2.1 THE MANUFACTURER

(*a*) The Manufacturer who completes any vessel has the responsibility of complying with all the requirements of this Division and, through proper certification, of ensuring that any work done by others also complies with all requirements of this Division.

(*b*) The Manufacturer has the responsibility of assuring that the quality control, the detailed examinations, and the tests required by this Division are performed at the stages of construction to permit them to be meaningful. The Manufacturer shall provide to the Inspector, at the appropriate time, the information necessary to enable him to perform his specified duties.

7-A.2.2 INSPECTION AND EXAMINATION DUTIES

(*a*) Overview of Duties – The Manufacturer shall perform his specified duties. Some, but not all of duties pertaining to inspection and examination, which are defined in this Division, that are to be performed by the Manufacturer are summarized in Table 7-A.1.

(*b*) Certification of Competence of Magnetic Particle, Liquid Penetrant, and Eddy Current Examiner – the Manufacturer shall certify that each examiner meets the requirements of their written practice.

7-A.3 INSPECTOR'S RESPONSIBILITY

7-A.3.1 THE INSPECTOR

(*a*) All references to the Inspectors throughout this Division mean the Authorized Inspector as defined in this paragraph. All inspections required by this Division shall be:

(1) By an Inspector regularly employed by an ASME accredited Authorized Inspection Agency, except that

(2) Inspections may be by the regularly employed user's Inspector in the case of a User-Manufacturer which manufactures pressure vessels exclusively for its own use and not for resale.

Except as permitted in (2), the Inspector shall not be in the employ of the Manufacturer. All Inspectors shall have been qualified by a written examination under the rules of any state of the United States, province of Canada, or any other jurisdiction that has adopted the Code.

(b) Whenever Authorized Inspection Agency or AlA is used in this Division, it shall mean an Authorized Inspection Agency accredited by ASME in accordance with the requirements in the latest edition of ASME QAI-1, Qualifications for Authorized Inspection.

7-A.3.2 INSPECTION AND EXAMINATION DUTIES

7-A.3.2.1 General

(*a*) The Inspector shall make all inspections specifically required by the rules of this Division plus such other inspections the Inspector believes that are necessary to enable the Inspector to certify that the vessel to be stamped with the Certification Mark has been designed and constructed in accordance with the requirements of this Division.

(*b*) Some, but not all, of the required inspections and verifications that are defined in the rules of this Division are summarized in Table 7-A.1.

7-A.3.2.2 Manufacturer's Quality Control System

In addition to the duties specified, the Inspector has the duty to monitor the Manufacturer's Quality Control System.

7-A.3.2.3 Inspection of Materials

(*a*) Compliance of Materials With Requirements – the Inspector shall assure himself that all materials used comply in all respects with the requirements of this Division. The Manufacturer shall submit to the Inspector certification of materials compliance. The Inspector shall examine test reports or Certificates of Compliance for the materials used, except as otherwise provided for in the material specification or in this Division.

(*b*) Marking on Materials – the Inspector shall inspect materials used in the construction to see that they bear the identification required by the applicable material specification, except as otherwise provided in Part 3 of this Division. Should the identifying marks be obliterated or the material be divided into two or more parts, the marks shall be properly transferred by the Manufacturer as provided in 6.1.1.2.

7-A.3.2.4 Dimensional Check of Component Parts

(a) The Inspector shall satisfy himself that:

(1) Head and shell sections conform to the prescribed shape and meet the thickness requirements after forming;

(2) Nozzles, manhole frames, reinforcement around openings, and other appurtenances to be attached to the inside or outside of the vessel fit properly to the curvature of the vessel surface; and

(3) The dimensional requirements have been met, include making such dimensional measurements as the Inspector considers necessary.

(b) Use of Templates- if required by the Inspector, the Manufacturer of the vessel shall furnish accurately formed templates for his use.

7-A.3.2.5 Check of Heat Treatment Practice

The Inspector shall satisfy himself that the Manufacturer has conducted all heat treatment operations required by this Division. Certificates furnished by the Manufacturer may be accepted as evidence that the heat treatment operations were correctly carried out.

7-A.3.2.6 Inspection of Welding

(*a*) Check of Welding Procedure Specifications – the Inspector shall verify that the welding procedures employed in construction have been qualified under the provisions of Section IX and as specified in this Division. The Manufacturer shall submit evidence to the Inspector that those requirements have been met. When there is a specific reason to question a welding procedure, the Inspector may require re-qualification as a requirement for the procedure to be used on work subject to his inspection.

(b) Check of Welder and Welding Operator Performance Qualification – the Inspector shall verify that all welding is done by welders or welding operators qualified under the provisions of Section IX. The Manufacturer shall make available to the Inspector a certified copy of the record of performance qualification tests of each welder and welding operator as evidence that these requirements have been met. When there is a specific reason to question the ability of a welder or welding operator to make welds that meet the requirements of the Welding Procedure Specification, the Inspector may require re-qualification as a requirement for the welder or welding operator to continue welding on work subject to his inspection.

(c) Check of Nondestructive Examination Methods – the Inspector shall verify that the nondestructive examination methods of Part 7 which are used follow the techniques specified therein, that the examinations are performed by operators who are certified by the Manufacturer as being qualified in the techniques of the methods employed and in the interpretation and evaluation of the results, and that the Manufacturer has met the requirements of all of the rules of this

Division. If there is a specific reason to question an operator's qualifications, the Inspector has the right to require proof of the operator's ability to perform and interpret the examinations specified. The Inspector may witness nondestructive examinations at his discretion.

7-A.3.2.7 Witness of Pressure Test

The Inspector shall witness the hydrostatic test or pneumatic test required by Part 8 of this Division.

7-A.4 TABLES

		Paragraph Reference			
Inspection and Examination Activities	Time of Examination	Procedure	Acceptance Criteria	- Manufacturer's Responsibilities	Inspector's Duties
The Certificate of Authorization from ASME Boiler and Pressure Vessel Committee	Before start of all work	Annex 2-G, Annex 2-E	NA	Obtain the Certificate and maintain Quality Control System	Verify the validity of Certificate and that Quality Control System is in place and being followed
Manufacturers Quality Control System		2.3.5, Annex 2-E	7-A.3.2.2	Maintain and Quality Control System	Verify that Quality Control System is in place; monitor the Quality Control System during fabrication
The applicable drawings and documents	Before fabrication	NA	2.2.3, Part 4, Part 5	Prepare applicable Design Report, User's Design Specification (if applicable), drawings, and related documents	Verify that applicable Design Report, User's Design Specification, drawings, and related documents are available
Compliance of all material used in the fabrication of the vessel or part including sample test coupons	Before fabrication	Part 3	Part 3, 7-A.3.2.3	Make certain that material used complies with the requirements of Part 3	Verify compliance of material with the requirements of Part 3
Repair of material defects	Before fabrication	6.1.1.3	6.1.1.3	Make certain that material defects repaired by welding are acceptably repaired and reexamined	Verify that material defects repaired by welding are acceptably repaired and reexamined
Traceability of the material identification	During cutting of material	3.2.7.2	NA	Make certain that the material identification numbers have been properly transferred	Make examinations to confirm that the material identification numbers have been properly transferred
Proper thickness and dimensional check of vessel components	Before welding	6.1.2.2, 6.1.2.7, 6.1.2.8	6.2, 7-A.3.2.4	Examine to confirm they have been properly formed to shape within tolerances	Verify that the thickness and dimensions are within tolerances
Qualification of welding procedure	Before welding	6.2.2.4, Sec. IX, 6.3.4, 6.5.3, 6.5.6, 6.6.5, 6.7.7.1, 6.7.7.2, 6.8.3, 6.8.4.2	Sec. IX	Perform and maintain qualification	Verify that all welding procedures have been qualified

		Paragraph Reference		-	
Inspection and Examination Activities	Time of Examination	Procedure	Acceptance Criteria	Manufacturer's Responsibilities	Inspector's Duties
Qualification of welders and welding operators	Before welding	6.2.2.5, Sec. IX, 6.6.5.1, 6.5.6.4, 6.7.7.2, 6.8.4.3	7-A.3.2.6(b), Sec. IX	Perform and maintain qualification	Verify that all welders and welding operators have been qualified
Repair of material cut edge defects	During fabrication	6.1.3.1	7.4.4, 7.4.5, 7.4.6	Make certain that material edge defects repaired by welding are acceptably repaired and reexamined	Verify that material cut edge defects repaired by welding are acceptably repaired and reexamined
Proper fitting and cleaning of parts for welding	Before welding	6.1.3, 6.1.4, 6.1.5, 6.1.6, 6.1.2.8	7-A.3.2.4	Examine all parts to make certain they have been properly fitted/aligned and the surfaces to be joined have been cleaned for welding	Verify that all parts have been properly fitted/aligned and the surfaces to be jointed have been cleaned for welding
Any repairs for defects by welding	During fabrication	6.2.7	7.4.2 through 7.4.6	Make certain that weld defects are acceptably repaired and reexamined	Verify that weld defects are acceptably repaired and reexamined
Control for required heat treatments	During fabrication	6.4, 6.1.2.3(b), 6.1.2.3(c), 6.1.2.4, 6.1.2.5(b), 6.1.2.5(c), 6.5.5, 6.6.3, 6.6.6, 6.7.6, 6.8.10	7-A.3.2.5	Control to ensure that all required heat treatments are performed	Verify that the heat treatments, including PWHT, have been performed properly
Impact tests for welds as production test	After welding	3.11.8	3.11.8	Perform tests and provide records	Verify that impact tests have been performed and that the results are acceptable
Certification of qualification of nondestructive radiographic, ultrasonic, magnetic particle, liquid penetrant, and eddy current test examiners	0	7.3	7-A.3.2.6(c)		Verify that each operator meets requirements of the Division
Nondestructive examinations	After welding	7.4, 7-A.3.2.6(c)	2.3.1.2, 2.3.8.2, 7.4.3, 7.4.4, 7.4.5, 7.4.6, 7.4.7	Perform examinations, document acceptance of examination results, and provide records, including retaining radiographs and UT scans	Verify that required nondestructive examinations have been performed and tha the results are acceptable
Visual examinations	After welding	7.5.2	Table 7.6	Perform visual examinations	Make a visual inspection of the vessel to confirm that there are no welding and dimensional defects

Inspection and Examination Activities	Time of Examination	Paragraph Reference			
		Procedure	Acceptance Criteria	Manufacturer's Responsibilities	Inspector's Duties
Hydrostatic or pneumatic test with required inspection during such test	After fabrication	Part 8	Part 8, 7-A.3.2.7	Perform inspection and test	Perform inspections and witness the hydrostatic or pneumatic tests
Stamping and/or nameplate to the vessel	After fabrication	Annex 2-F	NA	Apply the required stamping and/or nameplate to the vessel	Verify that the required marking, including stamping, is provided and that any name plate has been attached
Manufacturer's Data Report	After fabrication	Annex 2-D	NA	Prepare, certify, and provide to the Inspector for certification	Sign the Certificate of Inspection
Manufacturer's Data Report and records specified by this Division	After delivery	Annex 2-C	NA	Maintain proper records and distribute the documentation package	Verify that the Manufacturer has maintained proper records during vessel manufacture

PART 8 PRESSURE TESTING REQUIREMENTS

8.1 GENERAL REQUIREMENTS

8.1.1 SELECTION OF PRESSURE TEST METHODS

(*a*) Except as otherwise permitted in (b) and (c), a completed vessel designed for internal pressure shall be subjected to a hydrostatic test performed in accordance with 8.2. Pressure tests of vessels designed for vacuum or partial vacuum only shall be tested in accordance with 8.1.3.1. A vessel shall be considered a completed vessel after:

(1) All fabrication has been completed, except for operations that could not be performed prior to the test such as weld end preparation, or cosmetic grinding on the base material that does not affect the required thickness including corrosion allowance.

(2) All examinations have been performed, except those required after the test.

(b) Subject to the limitations and additional nondestructive weld examination requirements that may be imposed elsewhere in this Division, a pneumatic test performed in accordance with 8.2 may be substituted for a hydrostatic test if any of the following are true.

(1) The vessel is constructed and supported such that the weight of the hydrostatic test fluid could cause permanent visible distortion.

(2) The vessel cannot be readily dried and is to be used in services where traces of the testing liquid cannot be tolerated.

(3) The vessel is so constructed that brittle fracture is not a credible mode of failure at the pressure test conditions.

(4) The pneumatic test is monitored by acoustic emission examination in accordance with Section V, Article 12.(c) Combined hydrostatic-pneumatic tests may be substituted in cases where it is desirable to test a vessel partially filled with liquid. Combined hydrostatic-pneumatic tests shall be performed in accordance with 8.3.1.

8.1.2 PRECAUTIONS

(a) Pressure tests shall be carried out under controlled conditions with appropriate safety precautions and equipment.

(*b*) Vents shall be provided at all high points of the vessel in the position in which it is to be tested to allow purging possible air pocket locations while the vessel is filled for hydrostatic testing. Attention shall be given to nozzle protrusions and vessel internals.

(c) When performing a pneumatic test, particular care shall be taken to avoid brittle fracture given the potential hazards of the energy stored in the compressed gas. In this regard, the decision to perform a pneumatic test shall be considered during the design of the vessel so that the minimum design temperature/coincident pressure conditions for all pressure-boundary components, including any reduction in temperature and to a coincident reduction in pressure of the service fluid as the design pressure is released (auto-refrigeration), are considered when selecting the materials of construction.

(*d*) Air or gas is hazardous when used as a testing medium. It is therefore recommended that the vessel be tested in such a manner as to ensure personnel safety from a release of the total internal energy of the vessel. See also ASME PCC-2, Article 501, Mandatory Appendix 501-II, "Stored Energy Calculations for Pneumatic Pressure Test," and Mandatory Appendix 501-III, "Safe Distance Calculations for Pneumatic Pressure Test." Liquid test media may also present hazards due to the stored energy in the compressed liquid and strain energy stored in the vessel material.

(e) Unless permitted by the user or an agent acting on behalf of the user, pressure-retaining welds of vessels shall not be painted or otherwise coated either internally or externally prior to the pressure test.

(1) The user or an agent acting on behalf of the user shall state in the User's Design Specification [see 2.2.3.2(h)(6)] if painting or coating prior to a pressure test is permitted.

(2) When painting or coating is permitted or when internal nonmetallic linings are to be applied, the welds shall first be leak tested in accordance with Section V, Article 10. Such a test may be waived with the approval of the user or an agent acting on behalf of the user.

8.1.3 REQUIREMENTS FOR VESSELS OF SPECIFIC CONSTRUCTION

8.1.3.1 Vessels Designed for Vacuum or Partial Vacuum Only. Vessels designed for vacuum or partial vacuum only and chambers of multi-chamber vessels designed for vacuum or partial vacuum only shall be subjected to a pressure test in accordance with 8.1.1. The internal test pressure shall not be less than $\gamma_{St/S}$ times the difference between normal atmospheric pressure and the minimum design internal absolute pressure.

8.1.3.2 Jacketed Vessels.

(*a*) For jacketed portions of vessels where the internal vessel is designed to operate at atmospheric pressure or vacuum conditions only, the pressure test need only be applied to the jacket volume. In such cases, the MAWP shall be set as the differential pressure between the jacket and the internal vessel for the purposes of determining the test pressure.

(*b*) If the jacket is designed to operate under vacuum conditions, it shall be tested in accordance with 8.1.3.1.

(c) If the jacket is designed to operate under both pressure and vacuum conditions, then it shall be tested at the greater of the pressures determined in accordance with (a) or (b).

8.1.3.3 Combination Units. Combination units shall be tested by one of the following methods

(a) Independent Pressure Chambers. Pressure chambers of combination units that have been designed to operate independently shall be hydrostatically tested as separate vessels; that is, each chamber shall be tested without pressure in the adjacent chamber. If the common elements of a combination unit are designed for a larger differential design pressure than the higher maximum allowable working pressure to be marked on the adjacent chambers, the hydrostatic test shall subject the common elements to at least their design differential pressure, corrected for temperature as described in 8.2.1(b), as well as meet the requirements of 8.2.1(a) or 8.2.1(e) for each independent chamber.

(b) Dependent Pressure Chambers. When pressure chambers of combination units have their common elements designed for the maximum differential pressure that can possibly occur during startup, operation (including upset conditions) and shutdown, and the differential pressure is less than the higher pressure in the adjacent chambers, then the common elements shall be subjected to a hydrostatic test pressure calculated using eq. (8.1) where the MAWP is the differential pressure to be marked on the unit.

(1) Following the test of common elements as required in (a), and their inspection, the adjacent chambers shall be simultaneously tested at the test pressure required for internal pressure. Care must be taken to limit the differential pressure between the chambers to the pressure used when testing common elements.

(2) The vessel stamping and vessel Data Report shall describe the common elements and their limiting differential pressure.

8.1.3.4 Lined Vessels.

(*a*) For lined vessels, a test is recommended for the pressure tightness of the applied lining that is appropriate for the intended service. Details of the test shall be a matter for agreement between the user and the Manufacturer. The test should be such as to ensure freedom from damage to the load-carrying base material. When corrosion of the base material is to be expected from contact with the contents of the vessel, particular care should be taken in devising and executing the tightness test.

(*b*) Following the hydrostatic pressure test, the interior of the vessel shall be inspected to determine if there is any seepage of the test fluid through the joints in the lining.

(c) When the test fluid seeps behind the applied liner, there is danger that the fluid will remain in place until the vessel is put in service. In cases where the operating temperature of the vessel is above the boiling point of the test fluid, the vessel should be heated slowly for a sufficient time to drive out all test fluid from behind the applied liner without damage to the liner. This heating operation shall be performed at the vessel manufacturing plant. After the test fluid is driven out, the lining should be repaired as required. Repetition of the radiography, the heat treatment, or the hydrostatic test of the vessel after lining repairs is not required except when there is reason to suspect that the repair welds may have defects that penetrate into the base material, in which case an Inspector shall decide which one or more shall be repeated.

(*d*) As an alternative to the procedure in 8.1.3.4(c), it is recommended that consideration be given to adding a weep hole at a low point in each pressure boundary component that is protected by a liner panel that is seal welded all around the panel to the pressure boundary component. These weep holes should be monitored for leakage during both testing and operation and will minimize pressure build-up behind the panels, a circumstance that could cause the panel to buckle upon release of the internal pressure in the vessel.

8.1.3.5 Layered Vessels. Pneumatic testing is not permitted when using the procedures of 4.13.12.2 to measure the contact between layers during construction.

8.1.3.6 Expansion Joints.

(*a*) The completed expansion joint shall be pressure tested. The pressure testing may be performed as part of the final vessel pressure test, provided the joint is accessible for inspection during pressure testing.

(*b*) Expansion joint restraining elements shall also be pressure tested as a part of the initial expansion joint pressure test or as part of the final vessel pressure test after installation of the joint.

(c) In addition to inspecting the expansion joint for leaks or structural integrity during the pressure test, expansion joints shall be inspected before, during, and after the pressure test for visible permanent distortion.

8.1.4 PRESSURE GAGES

(23)

(*a*) Pressure gages used in testing vessels shall be indicating pressure gages and shall be connected directly to the vessel or with a pressure line that does not include intermediate valves. If the indicating gage is not readily visible to the operator controlling the pressure applied from a safe location, an additional indicating gage shall be provided where it will be visible to the operator and Inspector throughout the duration of the test. It is recommended that a recording gage be used in addition to the indicating gage.

(*b*) Dial indicating pressure gages used in testing shall be graduated over a range of about two times the maximum intended test pressure, but in no case shall the range be less than one and one-half times nor more than four times the intended test pressure. Digital reading pressure gages having a wider range may be used, provided the readings give the same or a greater degree of accuracy than obtained with dial pressure gages.

(c) All gages shall be calibrated against a standard deadweight tester or a calibrated master gage at least every 6 months or at any time there is a reason to believe that they are in error.

8.1.5 TEST GASKETS AND FASTENERS

Custom-designed flange assemblies, including modified standard flange assemblies where additional calculations are required, within the geometric scope of this Division (see 1.2.3 and 4.16.7) shall be tested with gaskets and bolting that meet the following requirements:

(a) be assembled with

(1) the identical gasket used for operation of the pressure vessel, or

(2) a gasket with the same outside diameter, inside diameter, thickness, gasket factor (m), and minimum seating stress (y) used in the flange design calculations

(b) be assembled with bolting having identical allowable stress at room temperature as used in the design calculations

The user or his/her designated agent may allow either or both requirements to be waived by including such a statement in the User's Design Specification. The use of test gaskets and bolting with properties differing from those used in the design calculation does not necessarily verify the integrity of flanged joints.

8.2 TESTING

8.2.1 TEST PRESSURE

(a) Except as noted for vessels of specific construction identified in 8.1.3, or enameled vessels whose test pressure shall be at least the MAWP to be marked on the vessel, the minimum test pressure shall be computed from eq. (8.1), where $\gamma_{St/S}$ shall be obtained from Table 4.1.3 for the applicable test medium and class.

$$P_T = \gamma_{St/S} \cdot \text{MAWP}\left(\frac{S_t}{S}\right)$$
(8.1)

(b) The ratio S_t/S in eq. (8.1) shall be the lowest ratio for the pressure-boundary materials, excluding bolting materials, of which the vessel is constructed.

(c) The requirement of (a) represents the minimum required test pressure. The upper limits of the test pressure shall be determined using the method in 4.1.6.2, 5.2.2.5, 5.2.3.6, or 5.2.4.5. Any intermediate value of pressure may be used. (d) The test pressure is the pressure to be applied at the top of the vessel during the test. This pressure plus hydro-

static head, if applicable, is used in the applicable design equations to check the vessel under test conditions, 4.1.6.2.

(e) A pressure test based on a calculated pressure may be used by agreement between the user and the Manufacturer. The test pressure at the top of the vessel shall be the minimum of the test pressures calculated by multiplying the basis for the calculated test pressure for each pressure element as shown in eq. (8.1) and reducing this value by the hydrostatic head on that element. The basis for this calculated test pressure is the highest permissible internal pressure, as determined by the design equations, for each element of the vessel using the nominal thicknesses, including corrosion allowance, and the allowable stress values given in Annex 3-A for the temperature of the test. When this pressure is used, it shall be as set forth in the Manufacturer's Design Report.

8.2.2 PREPARATION FOR TESTING

Prior to testing, test equipment shall be examined to ensure that it is tight and all filling lines and other appurtenances that should not be subjected to the test pressure have been disconnected or isolated by valves or other suitable means.

8.2.3 TEST FLUID

(*a*) Any liquid, nonhazardous at any temperature, may be used for hydrostatic testing if below its boiling point. Combustible liquids having a flash point less than 45°C (110°F) such as petroleum distillates, may be used only for atmospheric temperature tests.

(*b*) Any pressurizing medium used in pneumatic testing shall be nonflammable and nontoxic. When compressed air is used for a pressure test, the following should be considered:

(1) Use only clean, dry, oil-free air meeting the requirements of Class 1, Class 2, or Class 3 air per ISO 8573-1.

(2) The dew point of the air should be between -20° C and -70° C (-4° F and -94° F).

(3) Verify that there is no hydrocarbon contamination or other organic residue within the vessel since such contamination could result in the formation of an explosive mixture.

(23) 8.2.4 TEST PROCEDURES

(a) See below.

(1) For materials not covered in 3.11.2, to minimize the risk of brittle fracture, the coldest metal temperature during the pressure test shall be at least 17°C (30°F) warmer than the vessel MDMT.

(2) For materials covered in 3.11.2, to minimize the risk of brittle fracture, the coldest metal temperature during a pressure test shall be at least 17°C (30°F) warmer than one of the following, as applicable:

(-*a*) the MDMT marked on the nameplate when the procedure outlined in 3.11.2.5 has not been applied to calculate the vessel MDMT

(-*b*) the temperature determined from either 3.11.2.2 or 3.11.2.3 when the procedure outlined in 3.11.2.5 has been applied to calculate the vessel MDMT

(3) Further reduction in the coldest metal temperature during testing determined from (2) may be achieved by following the rules in 3.11.2.5 with Step 4 modified as follows:

(-a) Calculate t_r for a pressure equal to the test pressure divided by $Y_{St/S}$ plus pressure due to hydrostatic head when applicable, using the allowable stress given in Section II, Part D, Subpart 1 for the material at the pressure test temperature.

(-b) The value of CA shall be zero.

(-c) The value of t_n shall be one of the following:

(-1) the nominal noncorroded thickness when the requirements of 3.3.6 have not been applied

(-2) the nominal thickness of the base material when the requirements of 3.3.6.3 or 4.1.10 have been applied

(-3) a thickness defined in 4.1.9.1 when the requirements of 3.3.6.2 have been applied

(4) The metal temperature during the test need not exceed 50°C (120°F).

(b) The test pressure shall not be applied until the vessel and the test fluid are at about the same temperature.

(c) The test pressure shall be gradually increased until the test pressure has been reached. For pneumatic tests, the test pressure shall be gradually increased until one-half of the test pressure is reached, after which the test pressure shall be increased in steps of approximately one-tenth of the test pressure until the test pressure has been reached. The pressure shall then be reduced to a value not less than the test pressure divided by $\gamma_{St/S}$ before inspecting for leakage in accordance with 8.2.5.

(23) 8.2.5 TEST INSPECTION AND ACCEPTANCE CRITERIA

(*a*) Following the reduction of the test pressure to the level indicated in 8.2.4(c), a visual inspection for leakage shall be made by the Inspector of all joints and connections and of all regions of high stress such as knuckles of formed heads, cone-to-cylinder junctions, regions around openings, and thickness transitions. Visual inspection of the vessel may be waived, provided all of the following requirements are satisfied:

(1) A suitable gas leak test is applied, 8.3.2.

(2) Substitution of the gas leak test is by agreement between the Manufacturer and Inspector.

(3) All welded seams that will be hidden by assembly are given a visual examination for workmanship prior to assembly.

(*b*) Any leaks that are present, except for that leakage that may occur at temporary test closures for those openings intended for welded connections, shall be corrected and the vessel shall be retested.

(c) The Inspector shall reserve the right to reject the vessel if there are any visible signs of permanent distortion.

8.3 ALTERNATIVE PRESSURE TESTING

8.3.1 HYDROSTATIC-PNEUMATIC TESTS

In cases where it is desirable to pressure test a vessel partially filled with liquid, the requirements of 8.2 shall be met, except the pneumatic pressure applied above the liquid level shall at no point result in a total pressure that causes the general membrane stress to exceed 80% of the specified minimum yield strength of the material at test temperature.

8.3.2 LEAK TIGHTNESS TESTING

(a) Leak tightness tests include a variety of methods of sufficient sensitivity to allow for the detection of leaks in pressure elements, including, but not limited to the use of direct pressure and vacuum bubble test methods, and various gas detection tests.

(b) The selection of a leak tightness test to be employed should be based on the suitability of the test for the particular pressure element being tested.

(c) The metal temperature for leak tightness tests shall be in accordance with 8.2.4(a). Additionally, the temperature shall be maintained within the specified range for the test equipment being used.

(d) Leak tightness tests shall be performed in accordance with Section V, Article 10.

8.4 DOCUMENTATION

For all pressure tests, as a minimum, the following data shall be recorded by the Manufacturer and shall be issued as part of the vessel's Data Report:

(a) Vessel Manufacturer and identification of the pressure vessel

(b) Name of Authorized Inspection Agency

(c) Type of test (hydrostatic, pneumatic, hydrostatic–pneumatic)

(d) Test pressure at the top of the vessel in the test position

(e) Position of the vessel (horizontal, vertical, normal operating)

(f) Test fluid and temperature

(g) Date of pressure test

(*h*) If a written pressure test procedure is followed, reference shall be made to this procedure.

8.5 NOMENCLATURE

MAWP = maximum allowable working pressure

- P_T = minimum test pressure
- S = allowable stress from Annex 3-A evaluated at the design temperature
- S_t = allowable stress from Annex 3-A evaluated at the test temperature
- β_T = test load factor for hydrostatic or pneumatic test and for Class 1 or Class 2 construction (see Table 4.1.3)
- $\gamma_{St/S}$ = test load factor considering the ratio of the allowable stress at the test condition to the allowable stress at the design condition for hydrostatic or pneumatic test and for Class 1 or Class 2 construction (see Table 4.1.3)

(23)

PART 9 PRESSURE VESSEL OVERPRESSURE PROTECTION

NOTE: In the 2021 Edition of Division 2, pressure relief device requirements were transferred from Part 9 to Section XIII and the remaining Division 2 overpressure protection requirements were restructured within Part 9. A complete cross-reference list of the changes between the 2019 and 2021 Editions is available in Annex 9-B of the 2021 Edition.

(23) 9.1 GENERAL REQUIREMENTS

(*a*) This Part provides the acceptable methods and requirements for overpressure protection for pressure vessels constructed to the requirements of this Division. Acceptable methods include pressure relief devices, open flow paths, and overpressure protection by system design. It establishes the type, quantity and settings of acceptable pressure relief devices, and relieving capacity requirements including maximum allowed relieving pressures. Unless otherwise specified, the required pressure relief devices shall be constructed, capacity certified, and bear the ASME Certification Mark in accordance with Section XIII. In addition, this Part provides requirements for installation of pressure relief devices.

(b) All pressure vessels within the scope of this Division, irrespective of size or pressure, shall be provided with protection against overpressure in accordance with the requirements of this Part or with overpressure protection by system design.

(c) Pressure relief devices for vessels that are to operate completely filled with liquid shall be designed for liquid service.

(*d*) Unless otherwise defined in this Division, the definitions relating to pressure relief devices in Section XIII shall apply.

9.2 **RESPONSIBILITIES**

(*a*) It is the user's or his designated agent's responsibility to determine the required relief rate, size and select the device, and design the relief system.

(*b*) It is the responsibility of the user to ensure that the required overpressure protection is properly installed prior to initial operation.

(c) It is the responsibility of the user or his designated agent to size and select the pressure relief device(s) or overpressure protection provisions based on its intended service. Intended service considerations shall include, but not necessarily be limited to the following:

(1) normal operating and upset conditions

(2) fluids

(3) fluid phases

(d) The overpressure protection system need not be supplied by the vessel Manufacturer.

9.3 DETERMINATION OF PRESSURE-RELIEVING REQUIREMENTS

(*a*) It is the user's or his designated agent's responsibility to identify all potential overpressure scenarios and the method of overpressure protection used to mitigate each scenario.

(*b*) The aggregate capacity of the pressure relief devices connected to any vessel or system of vessels for the release of a liquid, air, steam, or other vapor shall be sufficient to carry off the maximum quantity that can be generated or supplied to the attached equipment without permitting a rise in pressure within the vessel of more than that specified in 9.4.

(c) Vessels connected together by a system of adequate piping not containing valves that can isolate any vessel, and those containing valves in compliance with Section XIII, Nonmandatory Appendix B, may be considered as one unit in figuring the required relieving capacity of pressure relief devices to be furnished.

(*d*) Heat exchangers and similar vessels shall be protected with a pressure relief device of sufficient capacity to avoid overpressure in case of an internal failure.

(e) The rated pressure-relieving capacity of a pressure relief valve for other than steam, water, or air shall be determined by the method of conversion given in Section XIII, Mandatory Appendix IV.

(f) The relieving capacity of a pressure relief device for compressible fluids may be prorated at any relieving pressure greater than 1.10*p*, as permitted under 9.4, by applying a multiplier to the official relieving capacity as follows:

(U.S. Customary Units)

$$P + 14.7$$

 $1.10p + 14.7$

 $\frac{P + 101}{1.10p + 101}$

(SI Units)

where

P = relieving pressure, psig (kPa gage)

p = set pressure, psig (kPa gage)

For steam pressures above 1,500 psig (10 MPa gage), the above multiplier is not applicable. For steam valves with relieving pressures greater than 1,500 psig (10 MPa gage) and less than or equal to 3,200 psig (22.1 MPa gage), the capacity at relieving pressures greater than 1.10p shall be determined using the equation for steam and the correction factor for high pressure steam in Section XIII, 9.7.6.4 with the permitted absolute relieving pressure and the coefficient K for that valve design.

9.4 OVERPRESSURE LIMITS

(*a*) When a pressure relief device is provided, it shall prevent the pressure from rising more than 10% or 3 psi (20 kPa), whichever is greater, above the maximum allowable working pressure, except as permitted in (1) and (2) below and (c). (See 9.6 for pressure settings.)

(1) When multiple pressure relief devices are provided and set in accordance with 9.6(a), they shall prevent the pressure from rising more than 16% or 4 psi (30 kPa), whichever is greater, above the maximum allowable working pressure.

(2) When a pressure vessel can be exposed to fire or other unexpected sources of external heat, the pressure relief device(s) shall be capable of preventing the pressure from rising more than 21% above the maximum allowable working pressure. Supplemental pressure relief devices shall be installed to protect against this source of excessive pressure if the pressure relief devices used to satisfy the capacity requirements of (a) and (1) have insufficient capacity to provide the required protection. See Annex 9, 9-A.9 for cases where the metal temperature can cause vessel failure prior to reaching the MAWP due to fire or other sources of external heat.

(3) Pressure relief devices, intended primarily for protection against exposure of a pressure vessel to fire or other unexpected sources of external heat installed on vessels having no permanent supply connection and used for storage at ambient temperatures of nonrefrigerated liquefied compressed gases, are excluded from the requirements of (1) and (2) above, provided

(-*a*) the pressure relief devices are capable of preventing the pressure from rising more than 20% above the maximum allowable working pressure of the vessels

(-b) the set pressure marked on these devices does not exceed the maximum allowable working pressure of the vessels

(-c) the vessels have sufficient ullage to avoid a liquid-full condition

(-d) the maximum allowable working pressure of the vessels on which these pressure relief devices are installed is greater than the vapor pressure of the stored liquefied compressed gas at the maximum anticipated temperature that the gas will reach under atmospheric conditions

(-e) pressure relief valves used to satisfy these provisions also comply with the requirements of 9.6(e), Section XIII, 3.9(e)(5), and Section XIII, Table 9.7.2-1 for fire.

(b) For vessels that use overpressure protection by system design, the overpressure limits shall be per 9.5(e).

(c) The aggregate capacity of the open flow paths, or vents, shall be sufficient to prevent overpressure in excess of those specified in (a). When the MAWP is 15 psi (105 kPa) or less, in no case shall the pressure be allowed to rise more than 21% above the MAWP.

9.5 PERMITTED PRESSURE RELIEF DEVICES AND METHODS

Protection against overpressure shall be provided by pressure relief devices, open flow paths or system design, or a combination thereof in accordance with this paragraph.

(a) Pressure Relief Valves

(1) Pressure relief valves bearing the ASME Certification Mark with the UV Designator in accordance with Section XIII may be used. Pressure relief valves shall be of the direct spring-loaded or pilot-operated type.

(2) Pressure relief valves certified for a steam discharging capacity under the provisions of Section I and bearing the Certification Mark and V Designator for pressure relief valves may be used on pressure vessels constructed to this Division. The rated capacity in terms of other fluids shall be determined by the method of conversion given in Section XIII, Mandatory Appendix IV. (See Section XIII, 9.2.3.)

(b) Nonreclosing Pressure Relief Devices

(1) Rupture disks bearing the ASME Certification Mark with the UD Designator in accordance with Section XIII may be used as the sole pressure-relieving device for overpressure protection.

NOTE: When rupture disk devices are used, it is recommended that the design pressure of the vessel be sufficiently above the intended operating pressure to provide sufficient margin between operating pressure and rupture disk bursting pressure to prevent premature failure of the rupture disk due to fatigue or creep.

Application of rupture disk devices to liquid service should be carefully evaluated to ensure that the design of the rupture disk device and the dynamic energy of the system on which it is installed will result in sufficient opening of the rupture disk.

(2) A pin device bearing the ASME Certification Mark with the UD Designator in accordance with Section XIII may be used as the sole pressure-relieving device for overpressure protection.

(3) Spring-Loaded Nonreclosing Pressure Relief Device

(-*a*) A spring-loaded nonreclosing pressure relief device, pressure actuated by means which permit the springloaded portion of the device to open at the specified set pressure and remain open until manually reset, may be used. Such a device may not be used in combination with any other pressure relief device.

(-b) The calculated capacity rating of a spring-loaded nonreclosing pressure relief device shall not exceed a value based on the applicable theoretical formula (see Section XIII, 9.7.6.4) for the various media, multiplied by: K = coefficient = 0.62. The area A (square inches) in the theoretical formula shall be the flow area through the minimum opening of the spring-loaded nonreclosing pressure relief device.

(-c) In lieu of the method of capacity rating in (-b) above, a Manufacturer may have the capacity of a springloaded nonreclosing pressure relief device design certified in general accordance with the procedures of Section XIII, Part 9, as applicable.

(c) Combination of Devices

(1) The following combinations of devices may be used, provided they meet the requirements of Section XIII, Part 8: (-a) a rupture disk device installed between a pressure relief valve and the vessel

(-*b*) a rupture disk device installed on the outlet side of a pressure relief valve, which is opened by direct action of the pressure in the vessel

(-c) a pin device installed between a pressure relief valve and the vessel

(2) A pin device shall not be installed on the outlet side of a pressure relief valve that is opened by direct action of the pressure in the vessel.

(3) Spring-loaded nonreclosing pressure relief devices may not be used in combination with any other pressure relief device

NOTE: Use of nonreclosing pressure relief devices of some types may be advisable on vessels containing substances that may render a pressure relief valve inoperative, where a loss of valuable material by leakage should be avoided, or where contamination of the atmosphere by leakage of noxious fluids must be avoided. The use of rupture disk devices may also be advisable when very rapid rates of pressure rise may be encountered.

(d) Open Flow Paths

(1) Flow paths or vents, open directly or indirectly to the atmosphere, may be used as the sole pressure relieving device on a vessel.

(2) The calculated capacity of any pressure relief system may be determined by analyzing the total system resistance to flow. This analysis shall take into consideration the flow resistance of the piping and piping components including the exit nozzle on the vessels, elbows, tees, reducers, and valves. The calculation shall be made using accepted engineering practices for determining fluid flow through piping systems. This calculated relieving capacity shall be multiplied by a factor of 0.90 or less to allow for uncertainties inherent in this method.

(e) Overpressure Protection by System Design. Overpressure protection by system design in accordance with Section XIII, Part 13 is permitted.

(1) For vessels with overpressure protection by system design where the pressure is self-limited at or below the vessel MAWP, (see Section XIII, 13.2), there shall be no credible overpressure scenario in which the pressure exceeds the maximum allowable working pressure (MAWP) of the pressurized equipment at the coincident temperature.

(2) For vessels with overpressure protection by system design where the pressure is not self-limited at or below the vessel MAWP (see Section XIII, 13.3), there shall be no credible overpressure scenario in which the pressure exceeds 116% of the MAWP times the ratio of the allowable stress value at the temperature of the overpressure scenario to the allowable stress value at the vessel design temperature. The overpressure limit shall not exceed the vessel test pressure.

9.6 PRESSURE SETTINGS AND PERFORMANCE REQUIREMENTS

(*a*) When a single pressure relief device is used, the set pressure marked on the device shall not exceed the maximum allowable working pressure of the vessel. When the required capacity is provided in more than one pressure relief device, only one pressure relief device need be set at or below the maximum allowable working pressure. The additional pressure relief devices may be set to open at higher pressures but in no case at a pressure higher than 105% of the maximum allowable working pressure, except as provided in (b) below.

(b) For pressure relief devices permitted in 9.4(a)(2) as protection against excessive pressure caused by exposure to fire or other sources of external heat, the device marked set pressure shall not exceed 110% of the maximum allowable working pressure of the vessel. If such a pressure relief device is used to meet the requirements of both 9.4(a) and 9.4(a)(2), the device marked set pressure shall not be over the maximum allowable working pressure.

(c) The pressure relief device set pressure shall include the effects of static head and constant back pressure.

(d) The set pressure tolerance for pressure relief valves shall not exceed ± 2 psi (15 kPa) for pressures up to and including 70 psi (500 kPa) and $\pm 3\%$ for pressures above 70 psi (500 kPa), except as covered in (e) below.

(e) The set pressure tolerance of pressure relief valves that comply with 9.4(a)(3) shall be within -0%, +10%.

(f) The burst pressure tolerance for rupture disk devices at the specified disk temperature shall not exceed ± 2 psi (15 kPa) of marked burst pressure up to and including 40 psi (300 kPa) and $\pm 5\%$ of marked burst pressure above 40 psi (300 kPa).

(g) The set pressure tolerance for pin devices shall not exceed ± 2 psi (15 kPa) of marked set pressure up to and including 40 psi (300 kPa) and $\pm 5\%$ of marked set pressures above 40 psi (300 kPa) at specified pin temperature.

(h) The tolerance of spring-loaded nonreclosing pressure relief devices opening point shall not exceed $\pm 5\%$.

9.7 INSTALLATION

(*a*) Pressure relief devices shall be constructed, located, and installed so that they are readily accessible for testing, inspection, replacement, and repair and so that they cannot be readily rendered inoperative (see Annex 9-A).

(*b*) The pressure relief devices required in 9.1(b) need not be installed directly on a pressure vessel when either of the following conditions apply:

(1) The source of pressure is external to the vessel and is under such positive control that the pressure in the vessel cannot exceed the maximum allowable working pressure at the operating temperature, except as permitted in 9.4(a) above, or under the conditions set forth in Annex 9-A.

(2) There are no intervening stop valves between the vessel and the pressure relief device or devices, except as permitted under (f).

NOTE: Pressure reducing valves and similar mechanical or electrical control instruments, except for pilot-operated pressure relief valves as permitted in 9.5(a), are not considered as sufficiently positive in action to prevent excess pressures from being developed.

(c) Pressure relief devices intended for relief of compressible fluids shall be connected to the vessel in the vapor space above any contained liquid or to piping connected to the vapor space in the vessel that is to be protected. Pressure relief devices intended for relief of liquids shall be connected below the liquid level. Alternative connection locations are permitted, depending on the potential vessel overpressure scenarios and the type of relief device selected, provided the requirements of 9.2(b) and 9.4(a) are met.

(*d*) The opening through all pipe, fittings, and nonreclosing pressure relief devices (if installed) between a pressure vessel and its pressure relief valve shall have at least the area of the pressure relief valve inlet. The characteristics of this upstream system shall be such that the pressure drop will not reduce the relieving capacity below that required or adversely affect the proper operation of the pressure relief valve.

(e) The opening in the vessel wall shall be designed to provide unobstructed flow between the vessel and its pressure relief device (see Annex 9-A).

(*f*) When two or more required pressure relief devices are placed on one connection, the inlet internal cross sectional area of this connection shall be either sized to avoid restricting flow to the pressure relief devices or made at least equal to the combined inlet areas of the safety devices connected to it. The flow characteristics of the upstream system shall satisfy the requirements of (d) and (e) above. (See Annex 9-A.)

(g) There shall be no intervening stop valves between the vessel and its pressure relief device or devices, or between the pressure relief device or devices and the point of discharge, except

(1) when these stop valves are so constructed or positively controlled that the closing of the maximum number of block valves possible at one time will not reduce the pressure-relieving capacity provided by the unaffected pressure relief devices below the required relieving capacity, or

(2) under conditions set forth in Section XIII, Nonmandatory Appendix B

(*h*) The pressure relief devices on all vessels shall be so installed that their proper functioning will not be hindered by the nature of the vessel's contents.

(*i*) Discharge lines from pressure relief devices shall be designed to facilitate drainage or shall be fitted with drains to prevent liquid from lodging in the discharge side of the pressure relief device, and such lines shall lead to a safe place of discharge. The size of the discharge lines shall be such that any pressure that may exist or develop will not reduce the relieving capacity of the pressure relief devices below that required to properly protect the vessel, or adversely affect the proper operation of the pressure relief devices. [See Section XIII, 3.2.2(a) and Annex 9-A.]

(*j*) For rupture disks that are marked with only a lot number in accordance with Section XIII, 4.7.2, following the installation of the disk, the metal tag shall be sealed to the installation in a manner that will prevent removal of the disk without breaking the seal. The seal shall identify the organization responsible for performing the installation.

(*k*) Piping, valves and fittings, and vessel components comprising part of a nonreclosing device pressure-relieving system shall be sized to prevent the vessel pressure from rising above the allowable overpressure.

(1) Additional guidance is provided in Annex 9-A.

ANNEX 9-A BEST PRACTICES FOR THE INSTALLATION AND OPERATION OF PRESSURE RELIEF DEVICES

(Informative)

9-A.1 INTRODUCTION

This Annex provides additional guidance for design of pressure relief device installations. This Annex is a supplement to the installation requirements provided in Part 9. Note that there may be jurisdictional requirements related to the installation of pressure relief devices.

9-A.2 PROVISIONS FOR THE INSTALLATION OF STOP VALVES IN THE RELIEF PATH

Stop valves may be used in pressure relief systems in accordance with Section XIII, Nonmandatory Appendix B. These stop valves are sometimes necessary for the continuous operation of processing equipment of such a complex nature that shutdown of any part of it is not feasible or not practical. The requirements cover stop valves provided upstream and downstream of pressure relief valves, provided in the relief path where there is normally a process flow and in a relief path where fire is the only potential source of overpressure.

9-A.3 INLET PIPING PRESSURE DROP FOR PRESSURE RELIEF VALVES

For pressure relief valves, the flow characteristics of the upstream system shall be such that the cumulative total of all non-recoverable inlet losses shall not exceed 3% of the valve set pressure. The inlet pressure losses shall be determined accounting for all fittings in the upstream system, including rupture disks installed in the pressure relief valve inlet piping, and shall be based on the valve nameplate capacity corrected for the characteristics of the flowing fluid.

9-A.4 DISCHARGE LINES FROM PRESSURE RELIEF DEVICES

(*a*) Where it is feasible, the use of a short discharge pipe or vertical riser, connected through long-radius elbows from each individual device, blowing directly to the atmosphere, is recommended. For pressure relief valves, such discharge pipes shall be at least of the same size as the valve outlet. Where the nature of the discharge permits, telescopic (sometimes called "broken") discharge lines, whereby condensed vapor in the discharge line, or rain, is collected in a drip pan and piped to a drain, are recommended. This construction has the further advantage of not transmitting discharge pipe strains to the pressure relief device. In these types of installations, the backpressure effect will be negligible, and no undue influence upon normal operation of the pressure relief device can result.

(b) When discharge lines are long, or where outlets of two or more pressure relief devices are connected into a common line, the effect of the back pressure on pressure relief device operation and capacity shall be considered. The sizing of any section of a common discharge header downstream from each of the two or more pressure relief devices that may reasonably be expected to discharge simultaneously shall be based on the total of their outlet areas, with due allowance for the pressure drop in all downstream sections. Use of specially designed devices suitable for use on high or variable backpressure service should be considered.

(c) The flow characteristics of the discharge system of high lift, top guided direct spring loaded pressure relief valves or pilot-operated pressure relief valves in compressible fluid service shall be such that the static pressure developed at the discharge flange of a conventional direct spring loaded pressure relief valve will not exceed 10% of the set pressure when flowing at rated capacity. Other valve types exhibit various degrees of tolerance to back pressure and the Manufacturer's recommendation should be followed.

(*d*) All discharge lines shall be run as directly as practicable to the point of final release for disposal. For the longer lines, due consideration shall be given to the advantage of long-radius elbows, avoidance of close-up fittings, minimizing line strains and using well-known means of support to minimize line sway and vibration under operating conditions. (*e*) Provisions should be made in all cases for adequate drainage of discharge lines.

(*f*) It is recognized that no simple rule can be applied generally to fit the many installation requirements. Installations vary from simple short lines that discharge directly to the atmosphere to the extensive manifold discharge piping systems where the quantity and rate of the product to be disposed of requires piping to a distant safe place.

9-A.5 CAUTIONS REGARDING PRESSURE RELIEF DEVICE DISCHARGE INTO A COMMON HEADER

Because of the wide variety of types and kinds of pressure relief devices, it is not considered advisable to attempt a description of the effects produced by discharging them into a common header. Several different types of pressure relief devices may conceivably be connected into the same discharge header and the effect of backpressure on each type may be radically different. Data compiled by the Manufacturers of each type of pressure relief device used should be consulted for information relative to its performance under the conditions anticipated.

9-A.6 PRESSURE DIFFERENTIALS (OPERATING MARGIN) FOR PRESSURE RELIEF VALVES

9-A.6.1 GENERAL

(a) Due to the variety of service conditions and the various designs of pressure relief valves, only general guidance can be given regarding the differential between the set pressure of the pressure relief valve and the operating pressure of the vessel.

(*b*) Providing an adequate pressure differential for the application will minimize operating difficulty. The following is general advisory information on the characteristics of the intended service and of the pressure relief valves that may bear on the proper pressure differential selection for a given application. These considerations should be reviewed early in the system design since they may dictate the maximum allowable working pressure of the system.

9-A.6.2 CONSIDERATIONS FOR ESTABLISHING THE OPERATING MARGIN

9-A.6.2.1 Process Conditions

(a) To minimize operational problems, the user should consider not only normal operating conditions of fluids, pressures, and temperatures, but also start-up and shutdown conditions, process upsets, anticipated ambient conditions, instrument response times, pressure surges due to quick closing valves, etc.

(*b*) When such conditions are not considered, the pressure relief valve may become, in effect, a pressure controller, a duty for which it is not designed.

(c) Additional consideration should be given to hazard and pollution associated with the release of the fluid. Larger differentials may be appropriate for fluids that are toxic, corrosive, or exceptionally valuable.

9-A.6.2.2 Pressure Relief Valve Characteristics

(*a*) The blowdown characteristic and capability is the first consideration in selecting a compatible pressure relief valve and operating margin. After a self-actuated release of pressure, the pressure relief valve must be capable of reclosing above the normal operating pressure. For example, if the pressure relief valve is set at 690 kPa (100 psig) with a 7% blowdown, it will close at 641 kPa (93 psig). The operating pressure must be maintained below 641 kPa (93 psig) in order to prevent leakage or flow from a partially open valve.

(*b*) Users should exercise caution regarding the blowdown adjustment of large spring-loaded valves. Test facilities, whether owned by Manufacturers, repair houses, or users, may not have sufficient capacity to accurately verify the blowdown setting. The settings cannot be considered accurate unless made in the field on the actual installation.

(c) Pilot-operated valves represent a special case from the standpoints of both blowdown and tightness. The pilot portion of some pilot-operated valves can be set at blowdowns as short as 2%. This characteristic is not, however, reflected in the operation of the main valve in all cases. The main valve can vary considerably from the pilot depending on the location of the two components in the system. If the pilot is installed remotely from the main valve, significant time and pressure lags can occur, but reseating of the pilot assures reseating of the main valve. The pressure drop in the connecting piping between the pilot and the main valve must not be excessive; otherwise, the operation of the main valve will be adversely affected. The tightness of the main valve portion of these combinations is considerably improved above that of conventional valves by pressure loading the main disk or by the use of soft seats or both. Despite the apparent advantages of pilot-operated valves, users should be aware that they should not be employed in abrasive or dirty service, in applications where coking, polymerization, or corrosion of the wetted pilot parts can occur, or where freezing or condensation of the fluid at ambient temperatures is possible. For all applications, the pressure relief valve Manufacturer should be consulted prior to selecting a valve of this type.

(*d*) Tightness capability is another factor affecting valve selection, whether spring loaded or pilot operated. It varies somewhat depending on whether metal or resilient seats are specified, and also on such factors as corrosion or temperature. The required tightness and test method should be specified to comply at a pressure no lower than the normal operating pressure of the process. A recommended procedure and acceptance standard is given in API Standard 527, Seat Tightness of Pressure Relief Valves. It should also be noted that any degree of tightness obtained should not be considered permanent. Service operation of a valve almost invariably reduces the degree of tightness.

(e) Application of special designs such as O-rings or resilient seats should be reviewed with the pressure relief valve Manufacturer.

(f) The anticipated behavior of the pressure relief valves includes allowance for a plus-or-minus tolerance on set pressure that varies with the pressure level. Installation conditions, such as backpressure, variations, and vibrations influence selection of special designs and may require an increase in the differential pressure (operating margin).

9-A.6.2.3 General Recommendations for Pressure Differentials (Operating Margin)

The following pressure differentials are recommended unless the pressure relief valve has been designed or tested in a specific or similar service, and a smaller differential has been recommended by the Manufacturer.

(*a*) A minimum difference of 35 kPa (5 psi) is recommended for set pressures to 485 kPa (70 psi). In this category, the set pressure tolerance is +13.8 kPa (+2 psi), and the differential to the leak test pressure is 10% or 35 kPa (5 psi), whichever is greater.

(*b*) A minimum differential of 10% is recommended for set pressures from 490 kPa to 6 900 kPa (71 psi to 1,000 psi). In this category, the set pressure tolerance is +3% and the differential to the leak test pressure is 10%.

(c) A minimum differential of 7% is recommended for set pressures above 6 900 kPa (1,000 psi). In this category, the set pressure tolerance is +3% and the differential to the leak test pressure is 5%.

(*d*) Pressure relief valves having small seat sizes will require additional maintenance when the pressure differential approaches these recommendations.

9-A.7 PRESSURE RELIEF VALVE ORIENTATION

Spring-loaded pressure relief valves normally should be installed in the upright position with the spindle vertical. Where space or piping configuration preclude such an installation, the valve may be installed in other than the vertical position, provided that:

(a) The pressure relief valve design is satisfactory for such position and is acceptable to the Manufacturer of the valve,

(b) The media is such that solid material will not accumulate at the inlet of the pressure relief valve, and

(*c*) Drainage of the discharge side of the pressure relief valve body and discharge piping prevents collection of liquid on the valve disk or in the discharge piping.

9-A.8 REACTION FORCES AND EXTERNALLY APPLIED PIPING LOADS

(*a*) The discharge of a pressure relief device imposes reactive flow forces on the device and associated piping. The design of the installation may require computation of the bending moments and stresses in the piping and vessel nozzle. There are momentum effects and pressure effects at steady-state flow as well as transient dynamic loads caused by opening.

(*b*) Mechanical forces may be applied to the pressure relief device by discharge piping as a result of thermal expansion, movement away from anchors, and weight of any unsupported piping. The resultant bending moments on a closed pressure relief device may cause leakage, device damage, and excessive stress in inlet piping. The design of the installation should consider these possibilities.

9-A.9 SIZING OF PRESSURE RELIEF DEVICES FOR FIRE CONDITIONS

(a) Excessive pressure may develop in pressure vessels by vaporization of the liquid contents and/or expansion of vapor content due to heat influx from the surroundings, particularly from a fire.

(*b*) Pressure relief systems for fire conditions are usually intended to release only the quantity of product necessary to lower the pressure to a predetermined safe level, without releasing an excessive quantity. This control is especially important in situations where release of the contents generates a hazard because of flammability or toxicity.

(c) Under fire conditions, consideration must also be given to the possibility that the safe pressure level for the vessel will be reduced due to heating of the vessel material, with a corresponding loss of strength.

(*d*) Several equations have evolved over the years for calculating the pressure relief capacity required under fire conditions. The major differences involve heat flux rates. There is no single equation yet developed which takes into account all of the many factors that could be considered in making this determination. When fire conditions are a consideration in the design of a pressure vessel, the following references which provide recommendations for specific installations may be used:

(1) API Recommended Practice 520, Sizing, Selection, and Installation of Pressure-Relieving Systems in Refineries, Part 1 - Sizing and Selection, Seventh Edition, January 2000, American Petroleum Institute, Washington, DC.

(2) API Standard 521, Pressure-Relieving and Depressuring Systems, Fifth Edition, Jan. 2007, American Petroleum Institute, Washington, DC.

(3) API Standard 2000, Venting Atmospheric and Low-Pressure Tanks (Nonrefrigerated and Refrigerated), Fifth edition, April 1998, American Petroleum Institute, Washington, DC

(4) AAR Standard M-1002, Specifications for Tank Cars, 1978, Association of American Railroads, Washington, DC.
 (5) Safety Relief Device Standards: S-I.I, Cylinders for Compressed Gases; S-1.2, Cargo and Portable Tanks; and S-1.3, Compressed Gas Storage Containers, Compressed Gas Association, Arlington, VA.

(6) NFPA Code Nos. 30, 58, 59, and 59A, National Fire Protection Association, 1 Batterymarch Park, Quincy, MA, 02169-7471.

(7) Pressure-Relieving Systems for Marine Cargo Bulk Liquid Containers, 1973, National Academy of Sciences, Washington, DC.

9-A.10 USE OF PRESSURE-INDICATING DEVICES TO MONITOR PRESSURE DIFFERENTIAL

If a pressure-indicating device is provided to monitor the vessel pressure at or near the set pressure of the pressure relief device, one should be selected that spans the set pressure of the pressure relief device and is graduated with an upper limit that is neither less than 1.25 times the set pressure of the pressure relief device nor more than twice the maximum allowable working pressure of the vessel. Additional devices may be installed if desired.

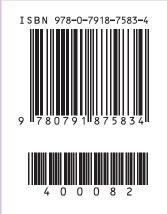
ANNEX 9-B (23) GUIDE TO THE RELOCATION OF OVERPRESSURE PROTECTION REQUIREMENTS

(Informative)

DELETED

9-B

2023 ASME Boiler and Pressure Vessel Code


The ASME Boiler and Pressure Vessel Code (BPVC) is a globally recognized and trusted source of technical requirements and guidance for the design, construction, and certification of boilers, pressure vessels, and nuclear components. With each new edition, the Code continues to evolve, introducing new technologies and processes to promote safety across pressure equipment applications and disciplines. Developed through a rigorous consensus process and fueled by the foresight of leading industry experts from around the world, the ASME BPVC is an ever-evolving set of standards that meets the needs of a changing world.

ASME provides BPVC users with an integrated suite of related offerings, which includes

- referenced standards
- related standards, reports, and guidelines
- conformity assessment programs
- conferences, seminars, and other events
- learning and development solutions
- ASME Press books and journals

For additional information and to order: Phone: 1.800.THE.ASME (1.800.843.2763) Email: customercare@asme.org Website: go.asme.org/bpvc

